Journal Article (325)
151.
Journal Article
6, e26691 (2017)
9 angstrom structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. eLife 152.
Journal Article
8, 15741 (2017)
Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nature Communications 153.
Journal Article
6, e25637 (2017)
RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases. eLife 154.
Journal Article
545 (7653), pp. 248 - 251 (2017)
Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 155.
Journal Article
356 (6334), pp. 194 - 197 (2017)
Architecture of a transcribing-translating expressome. Science 156.
Journal Article
66 (1), pp. 38 - 49 (2017)
Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Molecular Cell 157.
Journal Article
66 (6), pp. 77 - 88 (2017)
Spt5 plays vital roles in the control of sense and antisense transcription elongation. Molecular Cell 158.
Journal Article
8, 14861 (2017)
The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA. Nature Communications 159.
Journal Article
169 (1), pp. 120 - 131 (2017)
Structural basis of RNA polymerase I transcription initiation. Cell 160.
Journal Article
13 (3), 920 (2017)
TT-seq captures enhancer landscapes immediately after T-cell stimulation. Molecular Systems Biology 161.
Journal Article
6, e23006 (2017)
Using the Volta phase plate with defocus for cryo-EM single particle analysis. eLife 162.
Journal Article
12 (1), e0169249 (2017)
Accurate promoter and enhancer identification in 127 ENCODE and roadmap epigenomics cell types and tissues by GenoSTAN. PLoS One 163.
Journal Article
55 (52), pp. 15972 - 15981 (2016)
Structural basis of transcription: 10 years after the Nobel Prize in Chemistry. Angewandte Chemie International Edition 164.
Journal Article
540 (7634), pp. 607 - 610 (2016)
Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 165.
Journal Article
113 (45), pp. 12733 - 12738 (2016)
Nucleosomal arrangement affects single-molecule transcription dynamics. Proceedings of the National Academy of Sciences of the United States of America 166.
Journal Article
5, e12188 (2016)
Inference of gene regulation functions from dynamic transcriptome data. eLife 167.
Journal Article
291 (34), pp. 17953 - 17963 (2016)
FBXO3 protein promotes ubiquitylation and transcriptional activity of AIRE (Autoimmune Regulator). Journal of Biological Chemistry 168.
Journal Article
44 (4), pp. 1177 - 1182 (2016)
Structure determination of transient transcription complexes. Biochemical Society Transactions 169.
Journal Article
7, 12129 (2016)
RNA polymerase I-Rrn3 complex at 4.8 Å resolution. Nature Communications 170.
Journal Article
428 (12), pp. 2569 - 2574 (2016)
Mediator architecture and RNA polymerase II interaction. Journal of Molecular Biology 171.
Journal Article
5, e14981 (2016)
Architecture and RNA binding of the human negative elongation factor. eLife 172.
Journal Article
352 (6290), pp. 1225 - 1228 (2016)
TT-seq maps the human transient transcriptome. Science 173.
Journal Article
533 (7603), pp. 353 - 358 (2016)
Transcription initiation complex structures elucidate DNA opening. Nature 174.
Journal Article
113 (11), pp. 2946 - 2951 (2016)
Mechanisms of backtrack recovery by RNA polymerases I and II. Proceedings of the National Academy of Sciences of the United States of America 175.
Journal Article
36 (5), pp. 820 - 831 (2016)
Structure of GPN-loop GTPase Npa3 and implications for RNA polymerase II assembly. Molecular and Cellular Biology 176.
Journal Article
12 (2), 857 (2016)
Determinants of RNA metabolism in the Schizosaccharomyces pombe genome. Molecular Systems Biology 177.
Journal Article
529 (7587), pp. 551 - 554 (2016)
Structure of transcribing mammalian RNA polymerase II. Nature 178.
Journal Article
61 (2), pp. 305 - 314 (2016)
Heptad-specific phosphorylation of RNA polymerase II CTD. Molecular Cell 179.
Journal Article
83 (10), pp. 1849 - 1858 (2015)
Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a non-canonical CTD-interacting domain fold. Proteins: Structure, Function, and Bioinformatics 180.
Journal Article
71 (9), pp. 1850 - 1855 (2015)
An alternative RNA polymerase I structure reveals a dimer hinge. Acta Crystallographica D 181.
Journal Article
58 (6), pp. 1079 - 1089 (2015)
Molecular basis of transcription-coupled pre-mRNA capping. Molecular Cell 182.
Journal Article
43 (7), pp. 3726 - 3735 (2015)
A model for transcription initiation in human mitochondria. Nucleic Acids Research 183.
Journal Article
16 (3), pp. 129 - 143 (2015)
Structural basis of transcription initiation by RNA polymerase II. Nature Reviews Molecular Cell Biology 184.
Journal Article
518 (7539), pp. 376 - 380 (2015)
Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 185.
Journal Article
25 (2), pp. 155 - 166 (2015)
BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Research 186.
Journal Article
10 (12), 768 (2014)
Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle. Molecular Systems Biology 187.
Journal Article
159 (5), pp. 985 - 994 (2014)
A tale of chromatin and transcription in 100 structures. Cell 188.
Journal Article
55 (5), pp. 745 - 757 (2014)
Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Molecular Cell 189.
Journal Article
55 (3), pp. 467 - 481 (2014)
Molecular basis for coordinating transcription termination with noncoding RNA degradation. Molecular Cell 190.
Journal Article
5, 4310 (2014)
Conserved architecture of the core RNA polymerase II initiation complex. Nature Communications 191.
Journal Article
9 (6), e100736 (2014)
Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One 192.
Journal Article
289 (25), pp. 17446 - 17452 (2014)
Rpb4 functions mainly in mRNA synthesis by RNA polymerase II. Journal of Biological Chemistry 193.
Journal Article
42 (6), pp. 4043 - 4055 (2014)
Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast. Nucleic Acids Research 194.
Journal Article
42 (6), pp. 3884 - 3893 (2014)
A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Research 195.
Journal Article
21 (2), pp. 175 - 179 (2014)
RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nature Structural and Molecular Biology 196.
Journal Article
10 (1), 717 (2014)
Periodic mRNA synthesis and degradation co-operate during cell cycle gene expression. Molecular Systems Biology 197.
Journal Article
9 (11), e1003914 (2013)
Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genetics 198.
Journal Article
155 (5), pp. 1075 - 1087 (2013)
Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 199.
Journal Article
288 (51), pp. 36676 - 36690 (2013)
The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. Journal of Biological Chemistry 200.
Journal Article
502 (7473), pp. 650 - 655 (2013)
RNA polymerase I structure and transcription regulation. Nature