Dynamics at Surfaces

Dynamics at Surfaces

Theoretical understanding of surface chemistry will eventually become a tool to design new chemical technology including: heterogeneous (photo) catalysts, photovoltaics, fuel cells and much more. To reach this goal, we require new ideas and new theories of molecular interactions at interfaces. Applying cutting-edge laser, molecular beam, and ultrahigh vacuum technology to design well-defined experiments that can catch molecules in the act of reacting, our group strives to provide benchmark measurements which set standards for the next generation of theoretical advance. In particular, we seek to discover the "rules" that govern the conversion of energy at interfaces. Although too small to see with the naked eye and too fast to follow except with the fastest pulsed lasers, energy conversion takes place one molecule at a time and one collision at a time. By isolating these individual energy conversion events and studying them, we are building the conceptual bridge connecting our macroscopic experience of energy conversion to the molecular world.



Press Releases & Research News

<span><span><span>Millions in funding for interstellar astrochemistry research</span></span></span>

Alec Wodtke, Liv Hornekær, Varun Verma, and Peter Saalfrank receive a Synergy Grant from the European Research Council worth 12 million euros over six years for their research project IRASTRO. more

Alec Wodtke wins 2022 Ertl Lecture Prize

With this award, the prize committee honors the Max Planck director’s research contributions to a better understanding of the dynamic interactions between molecules and surfaces. more

<p><strong>Hydrogen binds to graphene in 10 femtoseconds</strong></p>

Graphene is celebrated as an extraordinary material. It consists of pure carbon and is only a single layer of atoms thin. Nevertheless, it is extremely stable and even conductive. For electronics, however, graphene still has crucial disadvantages: It cannot be used as a semiconductor yet. Hydrogen atoms on graphene could change this. Researchers now showed how hydrogen atoms chemically bind to carbon atoms of graphene and what happens during this process.
more

<p><strong>No energy flux through the chemical bond! </strong></p>

When adsorbed at a salt crystal surface, the vibrations of excited carbon monoxide (CO) molecules are damped within milliseconds. This is due to electromagnetic interaction of the CO dipole with the salt crystal. In contrast, energy loss via the chemical bond is less important. more

Göttingen researchers have elucidated why hydrogen atoms bind to metals

The Göttingen researchers Oliver Bünermann and Alec Wodtke of the MPI for Biophysical Chemistry and the University of Göttingen have made a big step forward in understanding chemical reactions at surfaces in detail. Their findings could, in future, help to further improve catalytic processes such as emission control and to identify new catalytic materials. more

<p>Bunching atoms together</p>

Bunching atoms together

November 05, 2014

Göttingen researchers have now succeeded in generating ultra-short pulses of atoms. They might help to carry out time-resolved experiments initiated by atomic collisions. more

Press Articles, Special Publications & Lectures

Lecture by Alec Wodtke at UC Berkeley honoring Nobel Laureate Yuan Tseh Lee

Go to Editor View