Publications of A. Zielinska

Journal Article (4)

Journal Article
ElInati, E.; Zielinska, A.; McCarthy, A.; Kubikova, N.; Maciulyte, V.; Mahadevaiah, S.; Sangrithi, M. N.; Ojarikre, O.; Wells, D.; Niakan, K. K. et al.; Schuh, M.; Turner, J. M. A.: The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes. Nature Communications 11, 2598 (2020)
Journal Article
Zielinska, A.; Bellou, E.; Sharma, N.; Frombach, A. S.; Seres, B.; Gruhn, J. R.; Blayney, M.; Eckel, H.; Moltrecht, R.; Elder, K. et al.; Hoffmann, E. R.; Schuh, M.: Meiotic kinetochores fragment into multiple lobes upon cohesin loss in aging eggs. Current Biology 29 (22), pp. 3749 - 3765 (2019)
Journal Article
Gruhn, J. R.; Zielinska, A.; Shukla, V.; Blanshard, R.; Capalbo, A.; Cimadomo, D.; Nikiforov, D.; Chan, A. C.; Newnham, L. J.; Vogel, I. et al.; Scarica, C.; Krapchev, M.; Taylor, D.; Kristensen, S. G.; Cheng, J.; Ernst, E.; Bjørn, A. M. B.; Colmorn, L. B.; Blayney, M.; Elder, K.; Liss, J.; Hartshorne, G.; Grøndahl, M. L.; Rienzi, L.; Ubaldi, F.; McCoy, R.; Lukaszuk, K.; Andersen, C. Y.; Schuh, M.; Hoffmann, E. R.: Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365 (6460), pp. 1466 - 1469 (2019)
Journal Article
Zielinska, A.; Schuh, M.: Double trouble at the beginning of life. Science 361 (6398), pp. 128 - 129 (2018)

Book Chapter (1)

Book Chapter
Zielinska, A.; Schuh, M.: A microscopy-based approach for studying meiosis in live and fixed human oocytes. In: Methods in Cell Biology, Vol. 145, pp. 315 - 333 (Ed. Maiato, H.). Elsevier, Amsterdam (2018)

Conference Paper (1)

Conference Paper
Zielinska, A.: The untimely separation of chromosomes and kinetochores in human oocytes may explain the maternal age effect. 11th European Cytogenetics Conference, Florence, Italy, July 01, 2017 - July 04, 2017. Molecular Cytogenetics 10 (Suppl 1), L19, (2017)

Thesis - PhD (1)

Thesis - PhD
Zielinska, A.: Studies in oocytes from three mammalian species demonstrate that meiotic kinetochores are composed of previously unidentified subdomains and reveal two novel mechanisms behind the maternal-age effect in humans. Dissertation, Trinity College, University of Cambridge, United Kingdom (2018)
Go to Editor View