Journal Article (119)
100.
Journal Article
5 (11), pp. 943 - 945 (2008)
Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 101.
Journal Article
26 (9), pp. 1035 - 1040 (2008)
Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology 102.
Journal Article
95, pp. 2989 - 2997 (2008)
Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophysical Journal 103.
Journal Article
181 (1), pp. 119 - 130 (2008)
The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. The Journal of Cell Biology 104.
Journal Article
70 (12), pp. 1003 - 1009 (2007)
Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration. Microscopy Research and Technique 105.
Journal Article
232 (1-2), pp. 1 - 9 (2007)
An integrated physiological and genetic approach to the dynamics of FtsZ targeting and organisation in a moss, Physcomitrella patens. Protoplasma 106.
Journal Article
104 (32), pp. 13005 - 13009 (2007)
Structural basis for reversible photoswitching in Dronpa. Proceedings of the National Academy of Sciences of the United States of America 107.
Journal Article
88 (2), pp. 161 - 165 (2007)
Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Applied Physics B-Lasers and Optics 108.
Journal Article
14 (4), pp. 651 - 661 (2007)
Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death and Differentiation 109.
Journal Article
402, pp. 35 - 42 (2007)
1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochemical Journal 110.
Journal Article
70 (3), pp. 269 - 280 (2007)
Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 111.
Journal Article
156 (3), pp. 517 - 523 (2006)
4Pi microscopy of quantum dot-labeled cellular structures. Journal of Structural Biology 112.
Journal Article
3 (9), pp. 721 - 723 (2006)
Nanoscale resolution in GFP-based microscopy. Nature Methods 113.
Journal Article
3 (9), pp. 721 - 723 (2006)
Nanoscale resolution in GFP-based microscopy. Nature Methods 114.
Journal Article
1763 (5-6), pp. 561 - 575 (2006)
High resolution imaging of live mitochondria. BBA- Molecular Cell Research 115.
Journal Article
119, pp. 3098 - 3106 (2006)
Fis1p and Caf4p, but not Mdv1p are required for a polar localization of Dnm1p clusters on the mitochondrial surface. Journal of Cell Science 116.
Journal Article
102 (49), pp. 17565 - 17569 (2005)
Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America 117.
Journal Article
102 (37), pp. 13070 - 13074 (2005)
Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 118.
Journal Article
168 (1), pp. 103 - 115 (2005)
Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. Journal of Cell Biology 119.
Journal Article
11 (12), pp. 1 - 4 (2005)
Insight into the structure and mechanism of the reversible photoswitch of a fl uorescent protein. MPIBPC News Book Chapter (6)
120.
Book Chapter
STED super-resolution microscopy of mitochondrial translocases. In: Mitochondrial Translocases Part B, pp. 299 - 327 (Ed. Wiedemann, N.). Elsevier, Amsterdam (2024)
121.
Book Chapter
Reversibly switchable fluorescent Proteins for RESOLFT nanoscopy. In: Nanoscale Photonic Imaging, pp. 241 - 261 (Eds. Salditt, T.; Egner, A.; Luke, D. R.). Springer, Cham (2020)
122.
Book Chapter
124, pp. 1 - 19 (Ed. Müller, S.). Springer, Berlin (2011)
Light microscopic analysis of mitochondrial heterogeneity in cell populations and within single cells. In: High resolution microbial single cell analytics. (Advances in biochemical engineering-biotechnology; 124), Vol. 123.
Book Chapter
Sample preparation for STED microscopy. In: Live cell imaging: methods and protocols, pp. 185 - 199 (Ed. Papkovsky, D. B.). Humana Press, New York (2010)
124.
Book Chapter
'FlAsH' protein labeling. In: Probes and tags to study biomolecular function: for proteins, RNA, and membranes, pp. 73 - 88 (Ed. Miller, L. W.). Wiley-VCH, Weinheim, Germany (2008)
125.
Book Chapter
Nanoscale resolution with focused light: STED and other RESOLFT microscopy concepts. In: Handbook of biological confocal microscopy, pp. 571 - 579 (Ed. Pawley, J.B.). Springer, New York (2006)