Publications of M. V. Rodnina
All genres
Journal Article (218)
201.
Journal Article
385 (6611), pp. 37 - 41 (1997)
Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 202.
Journal Article
15 (23), pp. 6766 - 6774 (1996)
The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. EMBO Journal 203.
Journal Article
93 (22), pp. 12183 - 12188 (1996)
The "allosteric three-site model" of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. Proceedings of the National Academy of Scienes of the United States of America 204.
Journal Article
93 (9), pp. 4202 - 4206 (1996)
Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA. Proceedings of the National Academy of Scienes of the United States of America 205.
Journal Article
271 (2), pp. 646 - 652 (1996)
Initial binding of the elongation factor Tu GTP aminoacyl-tRNA complex preceding codon recognition on the ribosome. The Journal of Biological Chemistry 206.
Journal Article
73 (11-12), pp. 1221 - 1227 (1995)
Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochemistry and Cell Biology 207.
Journal Article
14 (11), pp. 2613 - 2619 (1995)
Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO Journal 208.
Journal Article
229 (3), pp. 596 - 604 (1995)
Site-directed mutagenesis of thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. European Journal of Biochemistry 209.
Journal Article
92 (6), pp. 1945 - 1949 (1995)
GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proceedings of the National Academy of Scienes of the United States of America 210.
Journal Article
33 (40), pp. 12267 - 12275 (1994)
Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 211.
Journal Article
225 (1), pp. 305 - 310 (1994)
ATPase strongly bound to higher eukaryotic ribosomes. European Journal of Biochemistry 212.
Journal Article
228 (2), pp. 450 - 459 (1992)
Two tRNA-binding sites in addition to A and P sites on eukaryotic ribosomes. Journal of Molecular Biology 213.
Journal Article
185 (3), pp. 563 - 568 (1989)
Interaction of tRNA with the A and P sites of rabbit-liver 80S ribosomes and their 40S subunits. European Journal of Biochemistry 214.
Journal Article
5, pp. 5 - 14 (1989)
Models of the elongation cycle: Two or three tRNA binding sites on the ribosome? Biopolimery i kletka = Biopolymers and cell 215.
Journal Article
231 (1), pp. 71 - 74 (1988)
Number of tRNA binding sites on 80 S ribosomes and their subunits. FEBS Letters 216.
Journal Article
231 (1), pp. 71 - 74 (1988)
Number of tRNA binding sites on 80 S ribosomes and their subunits. FEBS Letters 217.
Journal Article
3, pp. 157 - 160 (1987)
tRNA binding sites on eukaryotic 80S ribosomes. Biopolimery i kletka = Biopolymers and cell 218.
Journal Article
2, pp. 53 - 55 (1986)
Codon responce of six isoacceptor leucine tRNAs from cow mammary gland. Biopolimery i kletka = Biopolymers and cell Book Chapter (4)
219.
Book Chapter
Deformylation of nascent peptide chains on the ribosome. In: Modifications and Targeting of Protein Termini: Part A, pp. 39 - 70 (Ed. Arnesen, T.). Elsevier, Amsterdam (2023)
220.
Book Chapter
Peptidyl transferase mechanism: the ribosome as a ribozyme. In: Ribozymes and RNA catalysis, pp. 270 - 294 (Eds. Lilley, D. M. J.; Eckstein, F.). Roy. Soc. Chem., Cambridge (2008)