Computational Biomolecular Dynamics

Computational Biomolecular Dynamics

The group studies the relationship between dynamics and function of biological macromolecules at the atomic level using computer simulations. Modern, sophisticated techniques are employed to follow the motions of atoms and molecules at timescales of femtoseconds to microseconds, thereby providing insight into the functional mechanism of e.g. enzymesand transport proteins. The main research focus lies on permeation events in membrane channels like aquaporins or gramicidin, collective and functionally essential modes of motion in enzymes, and the development of novel simulation techniques as an alternative to conventional simulation methods.

Press releases & research news

Discovery in Parkinson’s research: Lipids influence the formation of protein clumps

In Parkinson’s patients, alpha-synuclein proteins clump together to form fibrils, which presumably damage nerve cells. A research team has now shown how lipids bind to these fibrils and influence their arrangement. They also demonstrated how the drug candidate anle138b attaches to the lipidic fibrils. The findings could open up new diagnostic and therapeutic approaches. more

<span>Wojciech Kopec receives Human Frontier Science Program grant 2021</span>

The biophysicist at the institute receives about 1.1 million euros funding for the next three years, together with two colleagues. With the grant’s help, the researchers will investigate the physiological effects of ultrasound waves on ion channel signaling. more

<span>Antivitamins as </span><span>new antibiotics</span>

Bacteria can develop resistance to antibiotics with the result that these drugs no longer work. Particularly problematic are pathogens which develop multi-drug resistance and are unaffected by most antibiotics. Scientists world-wide therefore search for new classes of antibiotics. Scientists from Göttingen have now presented a new promising approach to using antivitamins as a therapeutic alternative to conventional antibiotics. more

Size does matter

Size does matter

July 23, 2018

A team of scientists at the MPI for Biophysical Chemistry as well as the Universities of Dundee (UK) and Groningen (Netherlands) has now clarified how potassium ions slip through potassium channels so efficiently and exclusively: They pass through the channels “naked”.


<p>Scientists unveil secrets of important natural antibiotic</p>

An international team of scientists has discovered how an important natural antibiotic called dermcidin, produced by our skin when we sweat, is a highly efficient tool to fight tuberculosis germs and other dangerous bugs. more

Go to Editor View