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Abstract
Scattering experiments with femtosecond high-intensity free-electron laser pulses
provide a new route to macromolecular structure determination without the need
for crystallization at low material usage. In these experiments, the X-ray pulses
are scattered with high repitition on a stream of identical single biomolecules and
the scattered photons are recorded on a pixelized detector. The main challenges
in these experiments are the unknown random orientation of the molecule in each
shot and the extremely low signal to noise ratio due to the very low expected
photon count per scattering image, typically well below the number of over 100
photons required by available analysis methods. The latter currently limits the
scattering experiments to nano-crystals or larger virus particles, but the ultimate
goal remains to retrieve the atomic structure of single biomolecules.
In light of that goal, here I present a correlation-based approach that can de-

termine the molecular structure de novo from as few as three coherently scattered
photons per image. I derive for the first time an analytic expression of the full
three-photon correlation as a function of the molecules Fourier intensity using a
spherical harmonics expansion and propose a Monte Carlo simulated annealing
approach to solve the inverse problem of finding an intensity that fits the exper-
imentally observed triple correlations. The size of the search space is reduced by
using information from the analytic inversion of the two-photon correlation and
the electron density is retrieved by applying an iterative phase retrieval method
to the determined intensity.
Using synthetic scattering data of a small protein (46 residues) at realistic av-

erage photons counts of 10 photons per image, I demonstrate that near-atomic
resolution of 3.3 Å can be achieved using 3.3 · 109 images, which is within ex-
perimental reach. Remarkably, the data acquisition time required to achieve the
same resolution decreases to minutes if the average number of photons per image
is increased to only 100 photons (equivalent to a decrease in the number of images
by a factor 1000).
The noise levels in the experiment are expected to be quite high which is a chal-

lenge for all structure determination methods. To address this issue, I demonstrate
that my three-photon correlation approach is robust to isotropic noise from inco-
herent scattering, and that the number of disordered solvent molecules attached
to the macromolecular surface should be kept at a minimum.





List of Symbols
A list of mathematical symbols that are used in this thesis:

3D Structures

ρ(x) Electron density

A(k) Complex Fourier transform of the electron density ρ

I(k) Intensity as the absolute square of the Fourier transform of the
electron density ρ(x)

L Spherical harmonics expansion limit

K Number of spherical harmonics shells

k,k Reciprocal wave number/vector

kcut Wave number to which the intensity is eventually determined

kmax Maximum wave number for which signal is measured

K 2D vector in kxky-plane

PS+ Positivity and support projection of the phase retrieval

PM Amplitudes projections (constraints) of the phase retrieval

N(k Intensity distribution of a noise model

γ Signal-to-noise level

Photon Correlations

α, β Angles between the photon correlation with α, β ∈ [0, π]

N Number of discrete angles in the photon correlation histograms
∆α,∆β = π/N

c(k1, k2, α) Two-photon correlation function as expected for an intensity I(k)
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t(k1, k2, k3, α, β) Three-photon correlation function as expected for an intensity
I(k)

ck1,k2,α Two-photon correlation histogram counts as expected for an inten-
sity I(k)

tk1,k2,k3,α,β Three-photon correlation histogram counts as expected for an in-
tensity I(k)

t̃k1,k2,k3,α,β Normalized three-photon correlation histogram

hk1,k2,α Measured two-photon correlation histogram counts

hk1,k2,k3,α,β Measured three-photon correlation histogram counts

h̃k1,k2,k3,α,β Normalized measured three-photon correlation histogram counts

Ul Arbitrary 2l + 1-dimensional unitary matrix

Spherical Harmonics

Alm(k) Spherical harmonics coefficients of intensity I(k)

Flm(k) Spherical harmonics coefficients of Fourier density A(k)

Rlm(k) Spherical harmonics coefficients of electron density ρ(r)

Dl
mm′(α, β, γ) Wigner-D matrix element for the rotation of spherical harmonics

Pl(cos θ) Legendre polynomial of order l

sphPl(cos θ) Spherical legendre polynomial of order l

Ylm(θ, ϕ) Spherical harmonics basis function

jl (x) Spherical Bessel function of order l



1 Introduction
In Nature a large variety of biomolecules has emerged, differing each in structure,
dynamics and function. The biological function is largely determined by the con-
formational dynamics which in turn is almost exclusively encoded in the molecular
structure i.e., the exact positions of the residues and comprising atoms in the three-
dimensional fold of the molecules. Without accurate models of these structures,
e.g., predictions about the dynamics and functions of biomolecules by molecular
dynamics simulations or structure-based drug design become challenging.
To this end, early on, structural biology has sought atomistic structure determi-

nation of proteins, nucleic acids, lipids, carbohydrates, and complexes thereof. The
first atomic structures of larger biomolecules were determined using X-ray crys-
tallography, e.g., Deoxyribose Nucleic Acid (DNA) by Franklin and Wilkins [1] in
1953 (Nobel Prize in Physiology in 1962), Myoglobin by Max Perutz [2] in 1957
(Nobel Prize in Chemistry in 1962 shared with Kendrew) or Lysozym by Blake [3]
in 1965. Because rigid biomolcules are the easiest to grow crystals from, they were
the first to be studied and therefore thought to be overall "quite rigid"[4]. Over
time, the rigid picture was replaced by that of dynamic proteins that constantly
move at physiological temperatures and explore the conformational space around
the averaged structures that are usually measured in X-ray experiments. Deter-
mining the biomolecular structure in the presence of large conformational changes
remains a big challenge in the field.
Today, many techniques are used for structure determination, most commonly

X-ray crystallography, cryo electron microscopy (cryo-EM), nuclear magnetic reso-
nance spectroscopy (NMR) and molecular modelling. In addition, many other ex-
perimental methods are used to support structure visualization, albeit lacking the
capability of de novo atomistic structure determination of entire proteins. Among
them are fluorescent imaging techniques such as fluorescence resonance energy
transfer (FRET) and stimulated emission depletion (STED) microscopy, atomic
force microscopy (AFM) and small-angle scattering (SAS) both with X-rays and
neutrons (SAXS/SANS).
Over 20 Nobel prizes have been awarded for work related to structure determi-

nation, for example, for the structure determination of the photosynthetic reaction
centre by Deisenhofer, Huber, and Michel in 1988, water and ion-channels by Agre
and MacKinnon in 2003, the RNA polymerase by Kornberg in 2006, the ribosome
by Ramakrishnan, Steitz, and Yonath in 2009 and the G protein-coupled receptors
by Lefkowitz and Kobilka in 2012 [5].
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All structure determination approaches have individual advantages and disad-
vantages that are complementing each other, most of which are discussed in more
detail in this thesis. X-ray crystallography, for example, fails when the target
protein does not form crystals or cannot be purified in sufficient quantities.
NMR, on the other hand, does not require crystallization, but instead requires

a substantial quantity of biomolecules in solution, which are difficult to synthe-
size and potentially forms unphysiological aggregates at the high concentrations
needed. In contrast to scattering experiments, NMR structure determination also
becomes more challenging with larger molecules (>100kDA).
In the recent years, only cryo-EM has produced a growing rate of deposited

structures mainly due to improvements of the detectors and structure determi-
nation algorithms. Although cryo-EM has proven to be a very reliable method,
the structure determination of small biomolecules remains challenging because
very noisy single particle images are difficult to extract from the background.
Both in X-ray crystallography and cryo-EM, the time resolution is limited and the
molecules are imaged at unphysiological conditions (e.g., in cryo-EM the samples
are plunge-frozen down to −269◦C).
Despite the great effort in the three fields over the past 60 years, the structures

of only about 0.75% of the more than 18 million known proteins [6] have been
determined to high resolution [7].
In light of the large number of unsolved structures and the individual limitations

the existing methods, single particle scattering experiments with high-intensity X-
ray free-electron lasers (XFELs) have been proposed by Neutze et al. [8] as a
novel approach to solving the three-dimensional atomic structure of biomolecules
without the need for crystallization at low material usage [9–15].
In these experiments, high-repetition and high-intensity X-ray pulses are scat-

tered on a stream of single randomly-oriented biomolecules and only a few photons
are scattered by the molecules and recorded on an extremely sensitive pixelized
photon detector. The short femtosecond pulses outrun the severe radiation damage
due to Auger decay and Coulomb explosion (“diffract and destroy” experiment)
and thus allow for extremely high peak brilliance to the point where individual
molecules can be imaged. Like in conventional X-ray crystallography, the phases
are not measured in such an experiment but in the absence of crystals the scat-
tering patterns are continuous and the phase problem is accessible to ab initio
phase-retrieval methods.
Whereas previous X-ray sources, including synchrotrons, have primarily engaged

in studies of static structures, X-ray FELs are by their nature suited for studying
dynamic systems at the time and length scales of atomic interactions. In contrast
to structure determination methods that measure a structure ensemble (NMR, X-
ray crystallography, SAXS, FRET), this new method can distinguish e.g., between
different native conformations, by sorting the single molecule images. Further, in
systems where reactions can be induced, e.g., by light, a sequence of structures
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at different reaction times may be recorded which opens the window to molecular
movies as a long-standing dream [16].
In the first proof of principle single molecule scattering experiments with the

available X-ray source in Stanford (LCLS), the 3D structure of single mimivirus
particles was determined to a resolution of 125 nm [17, 18], using images with more
than 107 scattered photons each. However, for a medium sized molecule and an
expected XFEL fluence of 6.3·107 photons/nm2 [19] at a 100 nm focus diameter and
5 keV beam energy, only about 10-50 coherently scattered photons per scattering
image are expected [20].
Standard analysis methods cannot cope with the high statistical noise in this

extreme Poisson regime, and hence so far all XFEL structure determination at-
tempts resorted to nano-crystals [21–28]. A particular challenge is to determine
the orientation of the molecule for each image to assemble all recorded images in
3D Fourier space for subsequent electron density determination.
For single molecule scattering experiments, several orientation determination

methods were developed [29–36], which however require at least 100 photons
per image. Alternatively, manifold reconstruction algorithms (manifold embed-
ding) [37–40] forego the explicit assembly in Fourier space and instead use the
similarity between scattering images to determine the manifold of orientations.
Because these algorithms work solely on the manifold level, they are not guaran-
teed to generate a self-consistent 3D intensity and are prone to instability in the
presence of noise. Moreover, also for these methods, successful structure determi-
nation was reported only for much more than 100 photons per image.
Photons correlations, as a summary statistic of the structure which is inde-

pendent of the image orientation, are a possible solution to the very low photon
counts per image because they can be either sampled by recording more photons
per image or by recording more images. In fluorescence microscopy or cryo-electron
microscopy, time integrated and time-correlated single-photon counting has been
successfully used at extremely low signal-to-noise ratios [41]. In the context of
single molecule X-ray scattering, Saldin et al. were the first in 2010 to demon-
strate the use of two-photon correlations for the determination of the molecular
shape of symmetric particles [42, 43] and the structure of particles randomly ori-
ented around an axis [44, 45]. However, as already shown by Kam [46] in 1980,
two-photon correlations do not contain enough information to retrieve the 3D
structure de novo.
Based on early analytic work by Kam on degenerate three-photon correlations [46]

– two out of three photons are recorded at the same position – structure deter-
mination of mesoscopic cylindrical particles (2012) [47] and of a highly symmetric
icosahedral virus (2015) [48, 49] was demonstrated. As this approach is limited to
only a small fraction of the recorded correlations, however, also this method has
so far not been applied to de novo single molecule structure determination.
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Despite the limited application of his method at the low photon counts, Kam’s
method demonstrated that the combined information of the two-photon and de-
generate three-photon correlation fully encodes the 3D structure. Based on this
assertion, I concluded that, instead, the full three-photon correlation should be
used for the structure determination because it is sampled much better by the few
photon scattering images. However, it was unclear if the additional information
in the rest of the three-photon correlation is sufficient to compensate the sparsely
sampled degenerate part and if unique solutions can be found. To this end, in this
Doctoral thesis, I derived the analytic expression of the full three-photon correla-
tion and developed an approach which uses these correlations, for the first time, for
de novo atomistic structure determination from the sparse single molecule X-ray
scattering images.
The next-generation free electron lasers are still under construction or testing

and therefore experimental data of proteins is not available yet. As a preparation
for the application of the method to experimental scattering data, I will validate
the method using synthetic scattering images of a medium-sized Crambin molecule
as a test-system using realistic estimates for the number of scattered photons. In
particular, I will address the question, how the achieved resolution depends on the
number of recorded images and further determine how these numbers change at
different average photon counts per image.
Noise due to incoherent scattering, the photoelectric effect, background radia-

tion, contaminants such as water molecules that adhere to the molecules’ surface
or detector noise will most likely be the limiting factor in single molecule structure
determination. I will therefore also demonstrate the structure determination in
the presence of additional non-Poissonian noise and study the dependence of the
achieved resolution on the shape and strength of the noise.
As further assessment of the method, I will evaluate the impact of the phasing

error on the resolution, discuss what the best model parameters are for maximizing
the resolution and minimizing the computational effort and investigate at which
point over-fitting occurs given the finite number of sparse scattering images.

Thesis Overview

In Chapter 2 I will begin with a brief overview of proteins which have emerged
with a large variety of structures and functions and are the main subject of the
presented structure determination method. In Section 2.2, I will discuss the three
major established structure determination methods (X-ray crystallography, NMR
and cryo-EM) with respect to their scope of application and their advantages
and disadvantages in contrast to single molecule X-ray scattering. Next, I will
describe the novel experimental setup of single molecule scattering in Sec. 2.3 along
with the operation of a free-electron laser and the physics behind the extremely-
high peak brilliance, which eventually allows for single molecule imaging. In the
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short overview of coherent diffraction theory in Sec. 2.3.2, I will explain how the
photon distribution of a scattering image is analytically connected to the electron
density of the molecule and calculate an estimate for the number of coherently and
incoherently scattered photons, both by the protein and the potential unstructured
water shell using realistic beam intensities.
In Chapter 3, I will discuss already proposed single molecule X-ray scattering

analysis methods and compare them with respect to their advantages and disad-
vantages. In particular, I will focus on the work that has been done on correlation-
based methods and finish with the current state of research, clearly separating my
contribution to the structure determination problem.

Figure 1.1: Summary of the correlation-based de novo structure determination
method. The two- and three-photon correlations in the scattering
images are histogrammed. The Monte Carlo simulated annealing ap-
proach (pink) determines the optimal intensity that fits both the two-
photon and the three-photon correlation. The retrieved intensity is
phased and the final electron density is obtained.

In Chapter 4, I will introduce my novel de novo structure determination ap-
proach which uses the full three-photon correlation. First, I will define the two-
and three-photon correlations and derive, for the first time, the analytic expres-
sions of the three-photon correlation in terms of spherical harmonics expansions
in Sec. 4.1. The three-photon correlation is difficult to invert analytically which is
why I chose a probabilistic approach and determine the most-likely structure that
has generated the experimentally-measured photon correlations (Sec. 4.2). The
size of the search space is reduced by isolating the search to structures that also
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fit to the measured two-photon correlation as explained in Sec. 4.3. The structure
optimization is done by a Monte Carlo / simulated annealing approach which I
explain in Sec. 4.4, including the definition of the ergodic Monte Carlo steps and
the temperature decay protocol. The computation time, which is a limiting factor,
is improved drastically by using histograms of the correlations (see Sec. 4.5) and
a high degree of parallelism in the computation of the three-photon correlations
(see Sec. A.2.2). After determining the structure in Fourier space, the phases are
retrieved using established algorithms that I modified to work with the spherical
harmonics expansion, as detailed in Sec. A.1.3.
In Section 4.6 I further explain the choice of the optimal spherical harmonics

parameters that minimize the computational effort and maximize the resolution.
In the end of the chapter, I will discuss the structure determination in the presence
of additional isotropic Non-Poissonian noise in Sec. 4.7. Figure 1.1 summarizes the
steps involved in determining the electron density from sparse scattering images
using the proposed three-photon correlations approach.
In Chapter 5, I discuss how I validated the method using synthetic scattering

image of a 45-residue Crambin protein. In particular, I will explain the rejection
method used to generate the images and describe how I calculate the resolution of
the phased electron densities using the Fourier shell correlation (FSC).
The structure determination approach and the validation methods are imple-

mented in the ThreePhotons.jl software package which I will briefly discuss in
Chapter 5.3. The library contains more than 5000 lines of well-tested and highly-
optimized code and has been published open-source1.
In the last Chapter 6, I will show structure determination results of Crambin that

were retrieved using up to 3.3 · 109 synthetic scattering images with 10 photons on
average. The structure result with the maximum achieved resolution are shown in
Sec. 6.1 and the dependence of the resolution on the number of scattering images
for a fixed number of photons per image is discussed in Sec. 6.2. Similarly, in
Section 6.3, I will assess how the resolution changes if the photons are distributed
on fewer or more images using scattering images with on average 10, 25, 50 or 100
photons.
The change of the structure resolution in the presence of additional noise is

shown in Sec. 6.4, where I will use a Gaussian noise model with different widths
and noise-levels to mimic different sources of noise. In the end of the Chapter, I
will evaluate the error due to phasing and determined the structure with different
model parameters to study at which point over-fitting occurs.

1https://github.com/h4rm/ThreePhotons.jl

https://github.com/h4rm/ThreePhotons.jl


2 Background on Structure
Determination

2.1 Proteins - The Building Blocks of Life
Proteins are large biomolecules that are often referred to as "the molecular ma-
chines of the body" due to their various shapes and functions. In their complex
structure, in most cases, the position of every atom is predetermined by nature and
important for the dynamics and functions, motivating numerous efforts in atomic
structure determination (including single molecule X-ray scattering experiments).
Here, I will give a brief overview of proteins and in particular discuss their fun-
damental building blocks – the amino acids –, how they are typically assembled
into higher-order structures and what complex functions have emerged from these
structures within organisms.
Human proteins are comprised of only 20 different amino acids (residues) as

shown in Fig. 2.1, though in certain cases also selenocysteine (denoted Sec or U)
and archaea-pyrrolysine (denoted Pyl or O) are incorporated. Amino acids con-
sist of amine (-NH2) and carboxyl (-COOH) functional groups and differ only by
the side chain (R group)2. They are classified into seven chemical groups, defined
by the properties of these side chains [50]: aliphatic (alanine, glycine, isoleucine,
leucine, proline, valine), aromatic (phenylalanine, tryptophan, tyrosine), ccidic
(aspartic acid, glutamic acid), basic (arginine, histidine, lysine), hydroxylic (ser-
ine, threonine), sulphur-containing (cysteine, methionine) and amidic (asparagine,
glutamine).
These chemical properties make them either a weak acid or a weak base, or a

hydrophile if the side chain is polar or a hydrophobe if it is nonpolar. Often, these
properties are the key to their interaction with their physiological environment,
e.g., the formation of hydrophilic and hydrophobic surfaces allow the protein to
be stably embedded into proteins [51].
In the scattering experiments, however, the chemical properties and the covalent

bonds are less important because the photons are scattered on the individual
carbon, oxygen, and nitrogen atoms. Nevertheless, the chemical knowledge is used

1Provided by Andy Brunning under Creative Commons: http://www.compoundchem.com/
2014/09/16/aminoacids/

2https://en.wikipedia.org/wiki/Amino_acid

http://www.compoundchem.com/2014/09/16/aminoacids/
http://www.compoundchem.com/2014/09/16/aminoacids/
https://en.wikipedia.org/wiki/Amino_acid
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Figure 2.1: The human genetic code directly encodes 20 amino acids which are ob-
tained from diet (essential) or synthesis (non-essential)1. Amino acids
are classified into seven chemical groups: aliphatic, aromatic, acidic,
basic, hydroxylic, sulphur-containing or amidic which make them weak
acids, weak bases, hydrophilic or hydrophobic.

to reconstruct the position of hydrogen atoms which are usually not resolved in the
scattering experiments due to their low scattering cross-sections. See Section 2.3.3
for a discussion of the coherent X-ray scattering cross-sections of the involved
atoms.
The sequence of the proteins amino acids is encoded linearly in the DNA and

assembled in-vitro by the ribosome through subsequent processes called transcrip-
tion, the read-out of the genetic information from DNA to mRNA, and translation,
the linear assembly of the protein by matching amino acids with the appropriate
codons in the mRNA [51]. The protein sequence is extracted experimentally with
little work, typically with mass spectrometry or Edman degradation using a protein
sequenator [52]. The length of the polypeptide chain of a protein usually exceeds
20-30 amino acids residues, smaller chains are simply referred to as peptides.
Over 60% of eukaryotic proteins fold to one or more specific 3D conformations,

while the rest remains mainly intrinsically disordered3. The 3D structure is com-
prised of a hierarchy with 4 levels4:

3https://en.wikipedia.org/wiki/Intrinsically_disordered_proteins
4https://en.wikipedia.org/wiki/Protein

https://en.wikipedia.org/wiki/Intrinsically_disordered_proteins
https://en.wikipedia.org/wiki/Protein
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• Primary structure: The linear sequence of the amino acids as produced by
the ribosome.

• Secondary structure: Local structures such as α-helices and β-sheets, emerg-
ing from patterns of hydrogen bonds between the main-chain peptide groups.

• Tertiary structure: Three-dimensional structure of the monomeric (one com-
ponent, e.g., ubiquitin) or multimeric (multiple components, e.g., aquaporin)
protein.

• Quaternary structure: Aggregation of two or more proteins to a large macro-
molecule (e.g., ribsome with 2 subunits).

Protein folding is a complex process in which the residues move at physiological
temperatures and form secondary and tertiary structures, mainly driven by hy-
drophobic interactions, the formation of hydrogen bonds and van der Waals forces.
In nature the exact same folds are usually achieved within milliseconds to seconds.
This is surprising because even for a medium-sized protein, the time to explore all
possible confirmations would quickly exceeds the time of the universe according
to the Levinthal’s paradox [53]. As a solution, many structures have evolve whose
motions are characterized by steep funnel-like energy landscapes which guide the
folding motion through a small part of phase space and exclude large parts of the
conformational entropy through high energy barriers. Even larger multi-domain
proteins solve the conformational challenge with a "divide and conquer"-method
by folding in multiple sub-steps. In some cases Chaperones aid the folding process
by shield the spontaneously folding proteins from external disturbances.
If, despite the effort, proteins fail to fold into their native structure, they become

inactive and in same cases even have toxic functionality. Several neurodegenerative
(and other) diseases are suspected to arise from aggregates of misfolded proteins
and many allergies are caused by the incorrect folding of proteins.
Predicting the fold of a protein from the primary structure alone remains one

of the big challenges in the field. For small molecules, the accuracy and the
times scales accessible by molecular dynamics simulations are usually sufficient to
extensively sample the conformational space and to localize the folded structure
as the free energy minimum. For larger molecules, homology modeling methods
may derive the 3D fold of a protein from experimental structures of evolutionarily-
related proteins.
De novo 3D structure determination rests on three established methods – X-ray

crystallography, NMR and cryo-EM – as discussed in the following Section. From
the limited set of 20 amino acids, a versatile zoo of structures has emerged as
shown in Figure 2.2.

5Provided by Axel Griewel under Creative Commons: https://en.wikipedia.org/wiki/
Protein_structure.

https://en.wikipedia.org/wiki/Protein_structure
https://en.wikipedia.org/wiki/Protein_structure
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Figure 2.2: Example for the diversity of protein structures available from the PDB
and EMDB5.

Once folded, the proteins are usually not rigid. Instead, they undergo a variety
of (fast) vibrations and (slower) structural rearrangements, the latter being called
’conformational transitions’. These conformational transitions are often implied
by the the protein structure and are usually responsible for the biological func-
tion. The atomic motions happen on a nanometer length scale and a femtosecond
timescale which makes them difficult to observe experimentally.
The motion of the folded structure in solution determines the protein’s function.

Among many other tasks in the body, proteins are involved in
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• transporting molecules (e.g., ion-channels [54] or water-conducting channels
aquaporin [55])

• responding to stimuli (e.g., SNARE proteins in the synaptical vesicles for
neuronal transmissions [56])

• synthesizing other proteins (e.g., ribosome [57])

• catalyzing metabolic reactions (e.g., lactase, alcohol dehydrogenase or DNA
polymerase)6

• composing structural elements in connective tissues (e.g., microtubules or
actin filaments) [51]

So far, only molecular dynamics simulations give a complete view of the con-
formational dynamics, albeit depending on the accuracy of the force fields (which
model/approximate various electron-related effects that influence the dynamics).
All three established structure determination experiments address the challenge of
imaging "molecular movies" of conformational changes or molecular reactions on a
nano-scale, but no universal method exists yet that resolves the 3D trajectory de
novo.

2.2 Established Structure Determination
Experiments

Three major structure determination methods solve biomolecular structures de
novo: X-ray crystallography, cryo electron microscopy (cryo-EM) and nuclear mag-
netic resonance spectroscopy (NMR). All three methods utilize different physical
effects to image the atoms of the molecules.
In X-ray crystallography, high-energetic photons are coherently scattered by the

electrons of the molecules (elastic photon scattering). In contrast, in cryo-EM,
high-energetic electrons are coherently scattered at the positive protons of the
atoms (Coulomb interaction). In NMR, the spin in the nucleus of the proteins are
aligned with a strong constant magnetic field and probed with a high-frequency
radio-pulse, resulting in distinctive measurable resonance signals (Nuclear Over-
hauser effect).
Here, I will review the three methods with respect to their mutual advantages

and disadvantages, the latter motivating the development of single molecule X-ray
scattering.

6https://en.wikipedia.org/wiki/Enzyme

https://en.wikipedia.org/wiki/Enzyme
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Figure 2.3: Logarithm of the total and yearly number of deposited structures in
the PDB [7] from X-ray crystallography, NMR and cryo-EM between
1976 and 2017.

2.2.1 X-Ray Crystallography

The X-ray crystallography method is the oldest structure determination method
which was pioneered by William Henry and his son William Lawrence Bragg in
1912. The first of such crystallographic experiments with biological molecules
were carried out in 1923 on hexamethylenetetramine [58] and later structures of
cholesterol, vitamin B12 and penicillin were determined by Dorothy Crowfoot
Hodgkin between 1937 and 1945. Starting in the 1950s, larger biomolecules were
resolved with X-ray crystallography, e.g., DNA by Franklin and Wilkins in 1953,
Myoglobin by Max Perutz in 1957 or Lysozym by Blake [3] in 1965. Since then,
X-ray crystallography has proven a reliable method to produce the largest output
of over 89% of the known structures according to the RCSB Protein Data Bank
(PDB) [7] as shown in Fig. 2.3.
In the experiment, bright X-ray light from synchrotron radiation or free electron

lasers is diffracted by millions of identical biomolecules which are placed on a three-
dimensional crystalline grid [59]. This results in a pointed diffraction pattern which
is comprised of the so called Bragg-peaks or Bragg-reflections (see Fig. 2.4b). These
peaks form when scattered light from multiple molecules in the crystal interfere

7https://en.wikipedia.org/wiki/X-ray_crystallography

https://en.wikipedia.org/wiki/X-ray_crystallography
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(a) 2D projection of the reflection of co-
herent planar light waves on successive
parallel crystal planes7. The path dif-
ference between two reflected waves is
2d sin(θ) and the waves interfere con-
structively when this difference is a mul-
tiple n of the wavelength λ. In all other
directions, the inference condition is not
met and the waves from many plane re-
flections interfere destructively.

(b) Exemplary X-ray diffraction pattern of
crystallized 3Clpro, a SARS protease
with signal up to 2.1 Å resolution7. The
pattern of spots (reflections) and the
relative strength of each spot (intensi-
ties) are used to determine the struc-
ture. (Image provided by Jeff Dahl li-
censed under Creative Commons)

such that they cancel out in almost all directions except the scattering directions
where the Bragg-peaks lie.
Constructive interference in direction θ happens if the path difference 2d sin(θ)

between the reflected waves is an integer multiple of the wavelength λ, as stated
by Bragg’s law (see Fig. 2.4a),

2d sin θ = nλ. (2.1)

The position and distance between the reflections depend on the inter-planar dis-
tance d and the wavelength of the beam λ. The effect of the constructive or
destructive interference intensifies because of the cumulative effect of reflection in
successive crystallographic planes of the lattice (as described by Miller notation
(hkl)).
Depending on the biomolecules, different crystal structure are used for crys-

tallization, e.g., cubic, tetragonal or rhombohedral Bravais lattices8 resulting in
8https://en.wikipedia.org/wiki/Bravais_lattice, https://en.wikipedia.org/wiki/

Crystal_structure

https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Crystal_structure
https://en.wikipedia.org/wiki/Crystal_structure
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different geometries of the reflecting crystal planes and the reflection patterns, re-
spectively. The molecular structure itself is encoded in the relative intensities of
the peaks Fhkl (structure factors) which are associated with the amplitudes of the
Fourier transform of the molecules’ electron density.
These structure factors Fhkl are the product of the Fourier transform of the

lattice and the Fourier transform of the molecule’s electron density, F [lattice] ×
F [molecule] (convolution theorem),

Fhkl =
N∑
j=1

fje[−2πik·x] (2.2)

=
N∑
j=1

fje[−2πi(hxj+kyj+lzj)] (2.3)

Here, the sum is over all N atoms at positions x in a unit cell and fj is the atomic
form factor of the j’th atom, fj(k) =

´
ρ(r)eik·rd3r. The wave vector k is expressed

in the basis (a,b, c) of the lattice, k = ha + kb + lc and the Miller indices (hkl)
define a reciprocal lattice point which corresponds to the real-space crystal plane
at which scattering occurred (depending on the lattice type).
In a perfect crystal, the scattering factors are discrete numbers at position k(hkl)

on the detector and the intensity at k depends on the squared modulus I(k) ∝
|Fhkl|2 of the crystallographic structure factors. Please note, that in experiments
on single or disordered molecules, in contrast to crystallography, the continuous
atomic form factors are measured as further discussed in the derivation of coherent
diffraction theory in Sec. 2.3.2.
The phases are not measured in X-ray crystallography experiments and nu-

merous phase-retrieval methods have been developed, among them, e.g., ab initio
phasing (similar to phasing in single molecule experiments) [60, 61], molecular re-
placement using the phases of similar structures [62], anomalous X-ray scattering
(MAD or SAD phasing) [63] or heavy atoms methods [62]. The phased electron
density map is used to build an atomic model of the protein by first fitting the
backbone structure and subsequently optimizing the orientations of the side-chains
of the amino-acids. These methods for model building are not exclusive to X-ray
crystallography and may also be applied in the context of single molecule scatter-
ing.
Due to the high number of scattering sources in the crystal, a strong signal

is detected also in the high-angle scattering regions which corresponds to high-
resolution information about the molecule’s electron density (see Sec. 2.3.2 for a
detailed discussion of coherent scattering and the resulting spatial resolution). For
that reason, molecular structures with a resolution better than 1.0 Å have been
determined by X-ray crystallography (e.g., the human aldose reductase at 0.66 Å
resolution), sometimes even resolving small hydrogen atoms to precise position [64].
X-ray crystallography is particularly useful for large molecules such as proteins.
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However, crystallography requires the growth of large crystals from purified
biomolecules which is not always possible, in particular for very flexible molecules.
Also sometimes, the biomolecules have to be slightly altered (e.g., cutting of loops)
or embedded in a non-physiological environments (e.g., solvents different from
water) to stably form large crystals. This has rendered some classes of proteins
inaccessible for X-ray crystallography, e.g., disease-associated protein aggregates,
disordered proteins and membrane proteins [65].
Carrying out the experiment usually requires expensive beam time at large syn-

chrotrons or free electron lasers which is scarce and difficult to obtain, especially
for smaller research teams.
In the recent years, the development of new and brither free electron lasers en-

abled scattering experiments on nano-crystals [21–28] which are easier to grow.
In order to record sufficient signal and to avoid radiation damage, in serial nano-
crystallography, various methods have been devised to successively record many
images of different nano-crystals in similar setup as single molecule scattering.
Within this experimental framework, recording molecular movies of the kinet-
ics of non-equilibrium chemical reactions or light-induced conformational changes
becomes feasible by looking at identically prepared nano-crystals at different sub-
sequent points in time. X-ray crystallography is still an evolving field and will
keep its significance for the foreseeable future.

2.2.2 Nuclear Magnetic Resonance Spectroscopy
Nuclear magnetic resonance spectroscopy determines the structure of proteins in
solution without the need for crystallization [66–68]. In 1938, Isidor Rabi first
described and measured the nuclear magnetic resonance effect in molecular beams
(Nobel Prize in Physics in 19449)) by extending the the Stern–Gerlach experiment.
Felix Bloch and Edward Mills Purcell further improved the concept of NMR for
the use on liquids and solids in 1946 (shared Nobel Prize in Physics in 195210).
In the experiment, the nuclei spins S are measured in a constant external mag-

netic field B0, in which the energy difference between the spin levels becomes
∆E = γ~B0. In order to flip the spin e.g, from −1/2 to 1/2 in the case of isolated
hydrogen or carbon atoms, an electromagnetic field oscillating with the Larmor
frequency ν0 needs to be applied, such that the energy of the field matches the
energy difference between the spin states, ∆E = hν0 = γ~B0. Throughout time,
the flipped spins relax back towards their thermal equilibrium and the nuclear
magnetic resonance response is measured.
In the complex electrostatic environment of a protein, however, the surrounding

electrons (carrying a spin themselves and producing a magnetic field opposite the

9http://www.nobelprize.org/nobel_prizes/physics/laureates/1944/
10http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/

http://www.nobelprize.org/nobel_prizes/physics/laureates/1944/
http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/
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external field) act as a "shield" and reduce the magnetic field at the individual
nucleus. As a result, the resonance frequencies of the spins are shifted in a specific
way, uniquely defined by the 3D structure of the chemical environment, and the
frequencies encode the structural information.
Normally, instead of slowly recording spectra in the frequency domain, radiofre-

quency pulses are applied to the sample and time-dependent responses are Fourier
transformed to retrieve an NMR spectrum [69]. In two-dimensional nuclear mag-
netic resonance spectroscopy (2D-NMR), a series of pulses manipulates the co-
herence of the spins and the decay signal is measured similar to one-dimensional
FT-NMR. The shapes, frequencies and durations of these pulses distinguish dif-
ferent NMR experiments from one another. In 2D NMR experiments there are
two frequency axes representing a chemical shift and the axis are associated with
the length of the pulsing period and the time elapsed during the detection period.
After Fourier transformation, the measured data is comprised of intensity value for
each pair of frequency variables as can be seen in the exemplary NMR spectrum
shown in Fig. 2.5.
For protein structure determination, the cross-relaxation (a mechanism related

to spin–lattice relaxation) is measured by perturbing the magnetization of a spin
and observing the change in magnetization of the other spins as the equilibrium
is reestablished (nuclear Overhauser enhancement effect (NOE)). The strength of
the NOE is inversely proportional to distance between the interacting spins with
∼ r−6, thus limiting NOE signals to interactions within 5 Å [68]. The result of
a NOSEY spectrum are interatomic distances between close atoms and residues
(see Fig. 2.5) from which a structural model is built using (metric matrix) distance
geometry [71].
In 2002 Wüthrich was awarded the Nobel prize in Chemistry for using the nu-

clear Overhauser effect spectroscopy (NOESY) to determine the three-dimensional
structure of biological macromolecules in solution from two-dimensional NMR
spectrocopy [69]. Today, over 10426 proteins or 8% of all known proteins have
been determined with NMR [7] but the yearly structure depositions are declin-
ing (see Fig. 2.3). Recently, magic-angle spinning solid-state NMR has proven to
resolve the structure of biomolecules, for which X-ray crystallography or solution
NMR spectroscopy fail, such as membrane proteins and disease-related protein
aggregates (see Ref. [65] for more detail on MAS NMR).
The strength of all NMR methods is the ability to resolve protein structures un-

der physiological conditions (temperature, ion-concentration, solvent). In contrast
to cryo-EM, very small and flexible proteins can be resolved with NMR techniques.
Also, NMR spectrocopy does not deteriorate the sample through, e.g., radiation
damage, because the spin flips are a reversible process.

11With kind permission from Alan Brash (Vanderbilt University School of Medicine) and PNAS.
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Figure 2.5: Exemplary NOESY NMR spectrum of the bicyclobutane ring of prod-
uct 1 [70]11. In contrast to X-ray crystallography, hydrogen atoms are
also measured.

Kinetic changes of the molecules or reaction-induced shifts in the ensemble pop-
ulation can be traced by observing the change of the resonance peaks over time.
Similarly, the flexibility of the ensemble can be derived from the width of the
peaks.
On the other hand, NMR techniques have drawbacks. Only proteins with less

than 100 kDa (approx. 1000 residues) molecular weight can be determined, al-
though in some special cases, complexes with > 1 MDa have already been resolved
with NMR [72, 73]. Proteins must be in solution and should not aggregate up to
a concentration of at least 1 mM [68]. In order to measure sufficient signal, a
high protein concentration is needed which is a typical bottle-neck of the method
because protein synthesis in large quantities is challenging.
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Interpreting NMR data can be challenging because the spectra of large proteins
are complex with many overlapping signals and mapping the spectroscopy peaks to
the inter-atomic distances requires good models [74]. Also, the superimposition of
different conformation in the measurement makes de novo structure determination
difficult, especially for flexible proteins. In the extreme case of a very flexible
disordered protein, no resonance peaks are visible.

2.2.3 Cryo Electron Microscopy

Figure 2.6: An example of single-particle structure determination using cryo-
EM [75]12. a: Exemplary micrograph image of ryanodine receptor
1 (RyR1) particles in the raw phase-contrast image. b: Particles after
post-processing (phase reversals of the contrast-transfer function) and
orientation classification. Each row of particles corresponds to a sim-
ilar orientation. c: Averages of five different orientations over ∼ 100
images in each class. d: 2D projections of the reassembled 3D density
map in comparison to (c). The final electron density was determined
by Ludtke et al. [75] with a resolution of 9.6 Å from the noisy images,
an impressive demonstration of the strength of probabilistic structure
determination algorithms.

Electrons have been used since the 1920s to study the microscopic structure
of matter. In contrast to X-rays, the wavelength of electrons is much shorter
(0.0197 Å for 300 keV electrons vs. 1.0Å for hard X-rays). Electrons are scattered
12With kind permission from Fred Sigworth (Yale University School of Medicine) and the APS

Journal.
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by the positive potential of the protons of the atoms (Coulomb interaction), while
X-rays interact with the electron cloud. As the result, the interaction of electrons
with matter is much stronger (106-107 times higher) than that of X-rays, although
multiple scattering events become a problem.
The first proof-of-principle electron microscope was demonstrated by Ruska and

Knoll in 1931, allowing four-hundred-power magnification, and eventually even
exceeding the resolution of optical light microscopy two years later [76]. In 1937,
Manfred von Ardenne pioneered the scanning electron microscope for which he
scanned the specimens with a raster pattern to build up the full highly-resolved
image, a method that he already successfully used for rastering the images in
televisions or electronic cameras [77, 78].
Early on, the microscopes were used to image biological specimens but the radia-

tion damage required the sample to be cooled down to cryogenic temperatures [79,
80], with a positive side effect that the evaporation of the solvent is also avoided.
In the experiment, a purified solution of the biomolecules is spread on a thin

holey carbon film such that a thin liquid layer is formed across the holes in the
carbon film. The film is then plunge-frozen in liquid ethane cooled by liquid
nitrogen to preserve the native structure to the atomic level, to prevent dehydration
of biological samples within the vacuum of an electron microscope and to reduce
the effects of radiation damage. The film is then imaged using an electron beam
yielding 2D projections of multiple randomly oriented particles.
The images have a very low signal-to-noise ratio, mainly due to the additional

water (and other solvents) around the molecule and the limited electron exposure
that is tolerated before radiation damage becomes too severe [81]. Determining
both, the correct orientation and translation of each individual particle within a
single image is required to average the respective projections and to reconstruct
the 3D Coulomb potential density map, similar to the electron density map in
X-ray crystallography (see Fig. 2.6). This requires, however, that the individual
molecules in the images are in identical or similar conformations.
To this day, only 1650 or ∼ 1% of the protein structures deposited in the Protein

Data Bank originate from cryo-EM experiments. However, with a steep increase
in the yearly deposited high-resolution structures since 2013 (see Fig. 2.3), it is
expected that cryo-EM will produce a larger fraction of determined structures
in the coming years. This increase is mainly attributed to the development of
new generation of electron detectors and the improvement of the highly-parallel
probabilistic structure determination algorithms [82] that handle the extremely
low signal-to-noise ratios (see Fig. 2.6a for the high noise in the images of RyRl).
Cryo-EM has demonstrated enormous potential in determining large biomolec-

ular structures such as the ribosome up to atomic resolution of <3.0 Å [79, 83,
84]. The method approaches X-ray crystallography in terms of resolution in some
cases and can be used to determine atomic structures of macromolecules for which
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crystallization has so far been unsuccessful or which are difficult to crystallize in
specific functional states.
Cryo-EM experiments record real space images which contain both the ampli-

tudes and the phases and therefore eliminate the phasing problem. The resolution
of structure increases with the number of particle images (in analogy to the size
of a 3D crystal) because the accuracy of image alignment is increased with every
image. Therefore the method requires a high computational effort and many data,
both of which is addressed by a high degree of automization. Especially in con-
trast to X-ray crystallography, where both the growth of the large crystals and the
limited beam time at large syncrotrons and free electron lasers are major limiting
factors, cryo-EM experiments on biomolcules can be carried out with less effort at
any research site with (comparably) inexpensive electron microscopes.
Since cryo-EM is also a single molecule method and the whole ensemble of struc-

tures in equilibrium is imaged, information on structural heterogeneity and kinetics
is accessible [84, 85] at the post-processing stage. Here, the images are not just
sorted into orientational classes but also into different conformational states which
are then linked to the states of the in-vivo dynamics (equilibrium – thermody-
namics). Each structure usually corresponds to the free energy minimum in the
respective part of phase-space [86]. If the molecule is flexible and many conforma-
tions are present in the ensemble, however, the determination of orientation and
conformational classes at the same time becomes challenging, posing the limit on
the time resolution for the dynamics.
Despite the many advantages of cryo-EM, the problem remains that the plunge-

freezing may not be fast enough to avoid conformational changes due to the cooling
and as a result, unphysiological conformations are imaged. Also, molecular movies
of induced reactions, as proposed by numerous serial nanocrystallographic exper-
iments, will most-likely not be possible with the frozen specimens in cryo-EM
experiments.
The energy of the electrons used for imaging (80-300 kV) is high enough that co-

valent bonds are broken and the radiation damage destroys the samples much faster
than e.g., in X-ray crystallography, decreasing the signal-to-noise ratio over time.
Although structure determination methods handle the extreme signal-to-noise ra-
tios very well, the extraction of the single particle images from the background
remains challenging for small biomolecules.

2.3 Single Molecule X-Ray Scattering
Despite the great effort in structure determination, the structures of only about
0.75% (∼ 132,000) of the more than 18 million known proteins [6] have been de-
termined to high resolution [7]. Over the past years the yearly number of new
structure depositions have been stagnating at 10,000 structures from X-ray crys-
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Figure 2.7: Sketch of a single molecule scattering experiment. A stream of
randomly-oriented particles is injected into the high-intensity short-
pulsed FEL beam, hit sequentially by femtosecond X-ray pulses, and
the few coherently scattered photons (red dots) are recorded on the
pixel detector. The spatial distribution of the photons follows the
Fourier intensity of the molecule which is depicted here in light blue in
the background of the photon pattern. After illumination, ionization
effects charge the molecules and the resulting Coulomb forces quickly
disintegrate the molecule. Note that the size of the FEL beam, the
size of the detector and the distance between particle and detector are
not shown to scale for visualization purposes.

tallography and even regressing below 1000 structures from NMR, as shown in
Fig. 2.3. The growth of existing structure determination methods, except cryo-
EM, seem to have reached a fundamental limit and new approaches are required
to extend the knowledge of biomolecular structures.
To this end, X-ray scattering experiments with single biomolecules have been

proposed by Neutze et al. as a novel de novo structure determination approach
for proteins without the need for crystallization [8–10, 12, 14]. Single molecule
X-ray imaging becomes possible due to newly-developed free electron laser that
produce very high-intensity femtosecond-short X-ray pulses with a focus size of



22 2. Background on Structure Determination

down to 100 nm (see Sec. 2.3.1). Here, despite the much higher cross-section
of electron scattering, photons are used instead of electrons, because due to the
diverting Coulomb forces between the electrons, the electron beams, in contrast to
the X-ray beam, cannot be focused sharp enough to achieve the fluence required
for single-shot molecule imaging.
As sketched in Fig. 2.7, in the experiment, a stream of (typically) hydrated

and randomly oriented proteins enters the pulsed X-ray beam at a rate of one
molecule per pulse. Despite the high photon flux of the incident beam, only a few
photons are scattered by the molecules and recorded on the pixelized detector (see
Sec. 2.3.2 for the theory of image formation in coherent scattering experiments).
Sample delivery is non-trivial due to the nanoscopic size of the biomolecules and

several solutions have been proposed, e.g., using electrospraying techniques [87],
gas focused liquid jets [88], oil/water droplet immersion jet [89] or embedding the
molecules into polymers to save material (lipidic cubic phase injector) [90]. In
each sample delivery method, it is important that the single molecules stay in
their physiological environment in order to observe the natural conformations.
In the scattering process, ionization (Auger decay) charges the atoms in the

molecule and leads to Coulomb explosion, coining the method as a “diffract and
destroy” experiment. However, the short pulses, usually less than 100 fs long,
outrun the severe radiation damage because the molecular motion in response to
the changed electronic configuration is estimated to take longer than 100 fs [8, 91]
and the incident photons are scattered by the unperturbed structure before the
molecule degenerates.
Like in conventional X-ray crystallography, only the intensities and not the

phases are measured. However, due to the absence of crystals, the measured
signal is the continuous Fourier transformation of the molecule, rendering the
phase problem accessible to established ab initio phase-retrieval methods.
Whereas previous X-ray sources, including synchrotron sources, have primarily

engaged in studies of static structures, X-ray FELs are by their nature suited for
studying dynamic systems at the time and length scales of atomic interactions.
In contrast to methods that measure a structure ensemble (NMR, SAXS, FRET),
this method gives access to single molecule images and, with a seed model, the
images could be e.g., sorted probabilistically to distinguish between different na-
tive conformations. Further, similar to nano-crystallography, in systems where
reactions can be easily induced, e.g., by light, a sequence of structures at different
reaction times may be recorded which opens the window to molecular movies as
a long-standing dream [16]. Even without sorting, the variance of the native con-
formations can be assessed via the variance of the determiend electron density in
which flexible regions would be smeared out more than rigid protein motifs.
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2.3.1 Free Electron Laser

electrons from 
accelerator

to electron 
dump

X-ray
beam

Figure 2.8: Sketch of the undulator of a free electron laser13. The electrons beam
(red) enters the undulator, which consists of alternating magnets (green
and blue), and is forced on a sinusoidal "wiggling" motion transversely
to the beam axis. Due to this motion, X-ray photons are emitted in
the direction of the beam that interact with the electrons and further
increase the formation of bunches, an effect called self-amplified sponta-
neous emission (SASE). As a result, a very high-intensity short-pulsed
X-ray beam is emitted.

Single molecule scattering experiments only have become possible because of
the development of very powerful free electron lasers (FELs) which were initially
invented in 1971 by John Madey in 1971 at Stanford University [92]. Today, they
are the brightest available X-ray sources and have many applications beyond single
molecule scattering on biomolecules.
The laser consist of two major parts [93, 94]. In the first part of the apparatus,

an electron gun, produces a beam of electrons which is accelerated linearly to
relativistic speed.
In the second part, the beam traverses a periodically alternating magnetic field

created by the undulator magnets (see Fig. 2.8). Due to the Lorentz force of the
magnetic field, the electrons are brought onto a sinusoidal path about the axis of
the beam which results in the release of monochromatic incoherent photons. The
electric field of the photons then interacts with the electron current which leads
13With kind permission from the European XFEL GmbH. Source: http://www.xfel.eu/

overview/how_does_it_work/.

http://www.xfel.eu/overview/how_does_it_work/
http://www.xfel.eu/overview/how_does_it_work/
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to an energy loss or gain of the electrons, depending on the phase of the photons.
Eventually microbunches of electrons are formed which themselves emit more co-
herent photons. This process is called self-amplified spontaneous emission (SASE)
and eventually it results in an exponential increase of emitted radiation power
which leads to high beam intensities and laser-like properties. The wavelength λr
of the radiated X-rays,

λr ∝
λu
2γ2 , (2.4)

is determined by the distance between the undulator magnets λu (the spatial
period of the magnetic field), the relativistic Lorentz factor γ and a proportionality
constant which depends on the undulator geometry14. In contrast to conventional
lasers, the X-ray pulse is produced by a single pass of radiation through the un-
dulators because no mirrors are available that can reflect the X-rays as resonant
cavities. The pulse length, defined as the full-duration at half-maximum, varies
between a few and about 100 fs [94, 95]
The first high intense free electron laser was demonstrated with the Lineac

Coherent Light Source (LCLS) at SLAC, Stanford with a record short wavelength
of 1.5 Å in 2009 [96]. The European XFEL at DESY, which came into operation
in 2017 and has a total length of 3.4 kilometers, is currently the most powerful
X-ray free electron laser available [97]. It reaches up to 27.000 pulses per second,
electron energies of 17.5 GeV, a minimum wavelength of λ = 0.5 Å and a peak
brilliance of 5 · 1033 (photons / s / mm2 / mrad2 / 0,1% bandwidth) which is "a
billion times higher than that of the best conventional X-ray sources".
The XFEL soon will be complemented by the equally powerful LCLS-2 at Stan-

ford [16, 98] which starts operation in the early 2020s. Other hard X-ray FELs are
available at slightly lower brightness, e.g., SACLA at RIKEN Harima Institute in
Japan and SwissFEL at the Paul Scherrer Institute in Zürich, Switzerland and two
soft X-ray FELs, FLASH and Fermi, are also in operation at DESY in Hamburg,
Germany, and in Sincrotrone Trieste, Italy.
Beyond single molecule scattering experiments, the next-generation FELs will

presumably used in many serial nano-crystallography experiments for ab initio
biomolecular structure determination and imaging of molecular movies. Beyond
these atomic structure determination, FELs will also be used for imaging chemical
and structural processes over a wide range of length and time scales of other organic
and inorganic specimens. This includes imaging and modifying matter in extreme
environments, imaging nanoscale materials, heterogeneity and fluctuations and
observing emergent phenomena in quantum materials through a range of scatter-
ing (e.g., time-resolved and high-resolution resonant inelastic X-ray scattering) or
spectroscopy (time-resolved photoemission or nonlinear X-ray spectroscopy) ex-

14https://en.wikipedia.org/wiki/Free-electron_laser

https://en.wikipedia.org/wiki/Free-electron_laser
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periments. I recommend the LCLS-II proposal [16] for more detailed information
on possible applications of FELs.

2.3.2 Coherent X-ray Scattering on Biomolecules
The images in single molecule X-ray scattering experiments are formed by the
scattering of the photons on the electron density of the atoms within the molecules.
Often the terms diffraction and scattering are used interchangeably in the con-

text, but while "diffraction" describes the directional change of the light wave and
its interference, "scattering" is used in the context of single photons and refers
to the momentum change, possibly in all directions. In the experiment, the X-
ray pulse is comprised of over 1012 photons and the mathematical derivation of
coherent scattering can be described in both pictures (scattering and diffraction).
Here, I use the wave formulation to derive the coherent scattering amplitudes

but in the following chapters about photon correlations I will use the photon
formulation, because due to the low signal, only single photons are recorded in the
experiment. I will derive the elastic X-ray scattering in the far field (Fraunhofer
diffraction) in the absence of other resonates or multiple scattering events and
under the assumption that the molecules size is much smaller then the distance
between the molecule and the detector. I further assume that, first, there is no
reflection/interference at the particles interface and second, there is not phase
change within the particle (coherence). The derivation presented here mainly
follows Ref. [99–102].
In elastic scattering processes, the wavelength λ of the incoming and outgoing

light waves is the same, i.e. the energy of the wave is conserved, and only the
direction of the light wave changes. Here, I will describe the incoming and scattered
waves with the wave vectors ki and ks, respectively, each with length |k| = 2π/λ.
Further, the oscillating field of the incoming light is described as a complex planar
wave,

Ei(x) = A · exp(iki · x). (2.5)

If the incoming planar wave is scattered at two different points x0 and x in the
same direction ks as depicted in Fig. 2.9a, the diffracted waves arrive at a point
far away from the object with a path difference δl = δl1 + δl2 or the corresponding
phase difference ∆ϕ = 2πδl/λ = −k·x. Here, the path and phase difference depend
on the scattering vector k which is defined as the difference between the incoming
and the scattered wave vectors, k = ki − ks (see Fig. 2.9b). The expression
for the phase shift only holds if we assume that the (almost) parallel scattered
15Inspired by http://www.rodenburg.org/theory/Ewaldsphere21.html, https:

//www.slideshare.net/lsinstruments/light-scattering-fundamentals, https:
//en.wikipedia.org/wiki/Coherent_diffraction_imaging, https://en.wikipedia.
org/wiki/Diffraction#General_aperture and Ref. [102]

http://www.rodenburg.org/theory/Ewaldsphere21.html
https://www.slideshare.net/lsinstruments/light-scattering-fundamentals
https://www.slideshare.net/lsinstruments/light-scattering-fundamentals
https://en.wikipedia.org/wiki/Coherent_diffraction_imaging
https://en.wikipedia.org/wiki/Coherent_diffraction_imaging
https://en.wikipedia.org/wiki/Diffraction#General_aperture
https://en.wikipedia.org/wiki/Diffraction#General_aperture
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Figure 2.9: Sketch of coherent scattering on multiple atoms within a biomolecule15.
a: The incident wave, denoted by the wave vector ki, is scattered at
multiple atoms (red) in the direction θ, denoted by the wave vector ks.
The path difference between two waves that scatter at atoms x0 and x
amounts to δl1 + δl2 = δl which equals a phase shifts ∆ϕ = 2πδl/λ =
−k · x. b: The scattering vector k = ki − ks for different scattering
angles lie on the Ewald sphere with radius k = 2π/λ. Each scattering
image follows the intensity in the projection of the detector plane onto
the Ewald sphere (blue).

waves from the two close points in the object plane intersect, after propagating
the long detector distance, at point k. The phase difference is the essential part
in understanding interference of multiple scattering sources.
Instead of just two scattering sources, the electron density ρ(x) of a protein is

a continuous scattering volume and on the detector, the scattered waves of all the
infinitely small scattering volumes interfere. In order to express the total sum of
these waves, each infinitely small portion of the electron density is considered as
the source of a new wavelet (spherical wave) according to the Huygens-Fresnel
principle. The amplitudes of these waves depends on the local electron density
and the contributions of the wavelets at any given point k on the detector is given
by

dE(k) = ρ(x)dx︸ ︷︷ ︸
source strength

exp(−i∆ϕ(k))
r(k)︸ ︷︷ ︸

Huygens spherical wave

. (2.6)
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Here, dx is the very small volume element from which the wavelet originates. Both
the radius r and the phase shift ∆ϕ depend on the position k but only the former
can be approximated as the detector distance, r ≈ d, because it is much larger
than the object size, d� |robject|.
On any point on the detector k, the diffracted waves of all atoms interfere

and the respective contributions of dE(k) (in particular the phase differences) are
added up. In the limit of infinitely small volumes, this sum converges to an integral
which is identical to the Fourier transform of the electron density ρ(x) (omitting
the 1/d factor),

A(k) =
ˆ
ρ(x) exp(−ik · x)dx (2.7)

Since the detector only records the absolute square of the scattering amplitudes
A(k), the measured signal (intensity) reads

I(k) = J0r
2
eP (xi,ks,u) |A(k)|2 ∆Ω, (2.8)

with the fluence of the incident X-ray beam J0 (photons / area), the Thomson
scattering cross-section r2

e and the solid angles ∆Ω of the detector pixel (considered
to be small) [99].
The polarization P (xi,ks,u) (P (xi,ks,u) = 1− (ks · u)2 for linearely-polarized

light and P (xi,ks,u) = 1/2
(
1 + (ki · ks)2

)
for unpolarized light) is usually ne-

glected because it can be extracted from the signal in the data analysis step. The
expression for the scattering amplitudes can also be elegantly derived from first
principles in quantum mechanics, see Ref. [103, 104].
Due to the energy conservation in elastic scattering experiments, the points

on the planar detector are actually projections from a 2D sphere in the three-
dimensional reciprocal space for which the condition k = ki − ks is met (see
Fig. 2.9b). This Ewald sphere has a radius k = 2π/λ and intersects with the
origin of reciprocal space. In this thesis, however, I assume that the radius of the
Ewald sphere is large due to the small wavelength of the X-ray λ ∼ 1.0 Å, and
for small scattering angles the slices in Fourier space are approximately planar
(Note, that in Fig. 2.9b the radius of the Ewald sphere is depicted small for visual
reasons).
According to the Abbe diffraction limit, the minimum distance that can be re-

solved in a scattering experiment is proportional to the wavelength (omitting nu-
merical aperture),

dmin ≤ λ

= 2π
kmax

. (2.9)

The resolution therefore is limited by the maximum wave number kmax for which
scattered photons are recorded in the experiment.
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Figure 2.10: a: In each scattering snapshot, the molecule is imaged at a fixed
orientation. b: If sufficiently many images with strong signals are
recorded and the orientations {Ωi} at the time of illumination are
known, then the 3D intensity can be assembled from the images by
projecting them into Fourier space.

The molecular orientation determines the orientation of the Ewald sphere (ap-
prox. planar here) in Fourier space because the rotation R and the Fourier trans-
form commute, R [F (ρ(x)]) = F [R [ρ(x)]]. However, the molecule’s orientation
at the time of the illumination is unknown and the photon counts at the pixels
therefore cannot be trivially mapped to the originating positions k in Fourier space
to reassemble the Fourier density (as shown for the optimal case with known ori-
entations in Fig. 2.10). In contrast to X-ray crystallography, I(k) is continuous for
single molecule scattering, rendering the phase problem accessible to established
methods [105–108] (see Appendix A.1.3).

2.3.3 Estimation of the Number of Scattered Photons and
Data-Acquisition Times

In the experiment, the photons are not just scattered coherently (Rayleigh) but
also incoherently (Compton scattering) [19] by bound- and free-electrons. In fact,
scattering images are expected to contain a substantial amount of noise from var-
ious sources including from inelastic scattering, the photo-electric effect, detector
noise and the water-shell or other bulk material[8]. Theoretically, a signal-to-noise
ratio of 1 to 10 is expected from scattering cross-sections of the photo-electric effect
but early experiments on the mimivirus show a much lower noise-level to an extent
that the noise is not addressed in the reconstruction. The lack of photo-electric
photons can in part be attributed to the very short beam pulses [91] that outrun
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the radiation damage. Therefore, I have only considered inelastic (incoherent)
scattering processes so far.

Photon
Energy
[keV]

C [barns/atom] H [barns/atom] O [barns/atom]

COH INCOH COH INCOH COH INCOH
1.0 21.57 0.2519 30.03 0.256 39.89 0.2262
2.0 16.69 0.7702 24.33 0.8165 33.55 0.756
5.0 7.219 1.984 11.1 2.225 16.4 2.323
8.0 4.205 2.497 6.244 2.858 9.145 3.139
10.0 3.248 2.697 4.722 3.093 6.805 3.439

Table 2.1: Coherent and incoherent atomic scattering cross-sections σ for multiple
photon energies [109] in [barns/atoms] = [10−28m2/atoms].

Due to the limited fluence the experiment, the scattering images are a sparse
sampling of the planar cuts with noise according to a Poisson distribution (also
called "shot noise"). The total number of scattered photons can be approximated
with a simple model of the biomolecules consisting of only J carbon, nitrogen and
oxygen atoms as

Ntotal = Nphotons

(d/2)2π

J∑
j=1

σjNj. (2.10)

This assumes, as mentioned earlier, that each atom scatters independently of the
other atoms such that the individual contributions can be added up. The scattering
cross-sections σ for coherent X-ray scattering have been measured to high-precision
and are denoted in Table 2.1. At the European XFEL, the X-ray beam will be
comprised of Nphotons = 5.0 · 1011 photons at 5 keV beam energy (according to
the simulation framework for the European XFEL [19]) focused into a spot with
diameter d = 100 Å.
In this thesis, I will validate my structure determination method with the 46

residue Crambin protein which totals to 211 carbon, 57 nitrogen and 67 oxygen
atoms. At the given beam parameters of the XFEL mentioned above, I estimated
an average of 20 coherently and 5 incoherently scattered photons per Crambin
shot (25% noise-level) for this relatively small biomolecule. A similar number of
photons (16) was obtained using the SimEx simulation framework for imaging
single particles at the European XFEL using realistic beam profiles [19, 20]. In
Section 4.7, I will discuss the photon distribution of incoherently scattered photons
which follows the Klein-Nishina differential cross-section.



30 2. Background on Structure Determination

The number of photons n at each pixel position k is Poisson-distributed,

P (n photons,k) = e−λ
λ(k)n
n! , (2.11)

with the average number of photons λ(k) ∼ I(k), given by the intensity, which
also sets the variance of the distribution.



3 Existing Single Molecule X-Ray
Scattering Analysis Methods

The structure determination from sparse single molecule scattering images faces
two major challenges, first, the unknown orientation of the molecule at the time
of illumination and, second, the low number of scattered photons along with the
additional background noise, resulting in low signal-to-noise levels. Over the past
years, several structure determination methods have been proposed and demon-
strated which mainly fall into two major classes.
The first class of methods predicts the orientation of the molecules at the time of

illumination for each scattering image either explicitly or implicitly e.g., through
statistical similarities between images or by using a coarse seed model. Images
that belong to the same orientation are averaged and these averages are assembled
into the 3D intensity similar to cryo-EM (see Fig. 2.10). However, almost all of
the orientation classification methods are limited to scattering datasets with more
than 100 average photons per image.
The second class of methods forgoes the classification of orientations by using

photon correlations as an averaged summary statistics of the entire image dataset
that is independent of the individual orientations. So far, these methods are either
limited by low photon counts, require a seed model or are only applicable to
molecules which are highly symmetric or only randomly rotated about a single
axis such as membrane molecules.
Here, I give a brief overview on the current state of research within the two

approaches. For a detailed discussion of photon correlations, the main subject of
this thesis, please read up in the following Chapter 4.

3.1 Methods Classifying Pattern Orientations
Common Line Approach

A common approach is to estimate the orientation of the molecule at the time of
illumination explicitly. Images corresponding to the same orientation and Fourier
slice, respectively, are averaged and the differently-oriented continuous images are
projected back into the 3D Fourier space to reassemble the diffraction volume.
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Huldt et al. [10], Shneerson et al. [29] and Bortelt et al. [110] compared two
patterns using only their common line of intersection (see Fig. 2.10) which allows
to orient the patterns with respect to each other. This technique has successfully
been used in electron microscope imaging but it requires more than 10 photons per
detector pixel and image which is about three orders of magnitude larger than the
expected scattering count in the experiment. Similar to cryo-EM, the discretiza-
tion of the orientations requires up to 106 orientational classes to unambiguously
determine a 3 Å resolution structure of a 100 Å molecule [29]. These initial aver-
aging approaches have since been superseded by other methods that overcome the
issue of low signal-to-noise by treating the data globally.

Manifold Embedding Methods

Manifold reconstruction algorithms forego the explicit reconstruction of the inten-
sity and use the similarity between scattering patterns as a proxy for the similarity
between orientations to reconstruct the manifold of orientations. Since these al-
gorithms work solely on the manifold level they are not guaranteed to generate a
self-consistent 3D intensity.
The first method was proposed by Fung et al. [37] and is based on a Generative

Topographic Mapping (GTM), "a Bayesian nonlinear factor-analytical approach
originally developed for data projection, visualization and neural network appli-
cations". The method relies on the fact that the Fourier intensity is smooth and
continuous. The correlations between scattering images are used together with a
maximum likelihood measure to map the images into three-dimensional space of
possible orientations which itself is embedded in the N-dimensional space of pixels.
The manifold generation is done for a large number of diffraction patterns and

the closest patterns are classified into orientational classes which are eventually
used for averaging. In contrast to the common-line method, the Bayesian approach
determines the orientations of the patterns with a global optimum.
However, statistical uncertainty is introduced when classifying the scattering

images by orientation, and the method depends on the angular discretization of
orientation space. The method works with a low scattering signal but still requires
more than 100 average photons per image. As an example, Fung [37] claim to have
reconstructed the 500 kD chignolin with a 1.8 Å resolution at 4 · 10−2 photons per
pixel.
More recently, diffusion map techniques have been developed to compute low-

dimensional manifolds from XFEL diffraction data [39, 40]. These techniques allow
to sort the images into more than three dimensions, incooperating other experi-
mental variables such as sample heterogeneity or changing beam conditions. The
algorithm determines the dimension of the manifold space autonomously which
removes the human bias but makes the interpretation of the manifold challenging.
One way to explicitly relate the data-space to rotations is via mapping geodesic
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distances as demonstrated by Kassemeyer et al. in the imaging of 150 nm nanorice
particle [33].
Recently, manifold-embedding was used to determine the structure of single

icosahedral Rice Dwarf virus particles (70 nm diamter) using hard X-ray at LCLS
to 6.7 Å resolution [111].

Expansion-Maximization-Compression (EMC) Algorithms

Loh and Elser have introduced the Expansion-Maximization-Compression (EMC)
algorithm which maximizes the likelihood of an intensity model to fit a set of
diffraction images using Bayes’ theorem [30]. Bayes methods can handle low signal-
to-noise levels and allow to incorporate information about the noise statistics.
However, also in this method, the orientations for individual diffraction images

are determined, but in contrast to previous methods, the algorithm calculates for
each image a probability (likelihood) for every possible orientation, accounting for
statistical uncertainty in the classification of the orientation. Further, an intensity
model is used which is iteratively updated in each step by averaging the aligned
images in 3D reciprocal space. The method was used to determine the structure
of a GroEL molecule at 20 Å resolution from 106 synthetic diffraction images.
Another EMC-like algorithm was proposed by Tegze and Bortel [112] which

addressed the high computational effort by reducing the pattern comparisons and
by assigning the orientations of the images through the best fit to the iteratively
refined intensity instead of a probabilistic way.
Walczak and Grubmüller [31] developed a solution for the classification uncer-

tainty that utilizes a seed model of the structure in real space to speed up conver-
gence and to discriminate between different conformations. The seed model of the
structure can be a low resolution version of the protein, obtained from NMR or
X-ray crystallography, or a homology model. A variant of the method involves a
Monte Carlo search in which the tertiary structure of polypeptides is determined
by using the primary and secondary structure as a starting point and modifying
bond angles. Very few photons per picture in the range of Nphotons ≈ 10− 100 are
sufficient to successfully reconstruct viable structure information, but the neces-
sity of a seed model makes it impractical for the study of large protein structures
because the search space grows combinatorially.
EMC algorithms are computationally expensive and the effort grows with the

recorded scattering pattern because the overall probability depends on all images.
Large datsets of > 104 images that are expected in the experiment will be chal-
lenging.
To this end, Flament et al. [32] improved the EMC method by using shell-

wise spherical harmonics expansions, allowing the method to scale in terms of
angular and radial resolution. Their method uses the hierarchical properties of the
spherical harmonics expansion to resolve, first, the intensity with few patterns and
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lower resolution and proceeding to higher resolutions and more patterns, increasing
the convergence speed.
Ekeberg et al. have demonstrated in a proof of principle experiment that it is

possible to determine a low resolution 3D structure of a Mimivirus based on XFEL
single molecule scattering data using the EMC algorithm [18].
Donatelli et al. proposed a "multitiered iterative phasing algorithm to recon-

struct structural information from single-particle diffraction data by simultane-
ously determining the states, orientations, intensities, phases, and underlying
structure in a single iterative procedure" [36]. The method leverages real-space
constraints on the structure to improve convergence from very few images (<100)
with ∼ 8000 photons each, yielding a resolution of 5.5 Å.

3.2 Methods Using Photon Correlation
Photon correlations are a measure for how often certain angles between photon
doublets, triplets, etc... and distances of the photons to the detector center are ob-
served in the scattering images. Only photons within a single image are correlated
but the correlation can be refined by collecting more images.
If the photons of individual doublets or triplets should were coherently scat-

tered on a single particle, then these correlations encode structural information.
The sum of all photon correlations throughout all scattering images present an
orientation-independent summary statistic of the scattering data which can be
obtained without sorting of the images into orientational classes beforehand.
In other fields such as fluorescence microscopy, time integrated and time-correlated

single-photon counting [41] is successful when working with low signal-to-noise ra-
tios.

Two-Photon Correlations

Saldin et al. [42] first proposed to use of photon correlations in the context of single
molecule scattering experiments in 2009 with an approach in which two-photon
correlations are used to reconstruct the shape function of the protein. However,
the shape is a binary function which describes the nonzero regions of the electron
density and cannot be used to retrieve the atomic positions of the molecule.
In a follow up paper, Saldin et al. [43–45] showas that the structure can be solved

from two-photon correlations when the molecules only rotate about a fixed axis
in the experiment. This approach is a feasible for membrane bound proteins (e.g.
potassium or aquaporin channel proteins) in situ embedded in the membrane but
it excludes a large group of solvated proteins. Two-photon correlations are also
applicable for the determiantion of the full electron density if the studied particle
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has a high degree of symmetry, such as an icosahedral virus as demonstrated by
Saldin in another paper in 2011 [48].

Two-Photon Correlations in Fluctuation X-ray scattering (CXS)

Two-photon correlations have also been successfully used in fluctuation X-ray scat-
tering (CXS) which is a completely different type of experiment similar to solu-
tion scattering. However, the methods and results are also interesting for single
molecule scattering.
In conventional solution scattering, the orientational averaging that occurs dur-

ing the X-ray illumination results in signal which carries only 1-dimensional (ra-
dial) intensity information and all angular information is averaged out. In CXS
experiments, however, the X-ray pulses from synchronous or free electron lasers
are much shorter than the orientational diffusion times of the molecules such that
they appear to be fixed in space.
In each image multiple particles with different orientations are recorded and

as a result speckle patterns emerge from which angular correlations are calcu-
lated [113]. Kam [46] pointed out that the correlated signal, when averaged over
many images with multiple particles, converges to the two-photon correlation of
a single biomolecule, and that this occurs even if an extremely large number of
biomolecules are illuminated simultaneously in each shot. The information content
of the resulting correlated scattering data set grows in proportion to the cube of
the particle size, unlike isotropic SAXS data, where the information content grows
linearly with particle size [99].
Mendez et al. [114] have determined two populations of nanoparticle domains

from the two-photon correlations in solution, and in a more general approach,
Kirian et al. demonstrated the wide use of correlated X-ray scattering (CXS) in
the determination of 2D projections of particles [99].
Liu et al. demonstrated ab initio model reconstruction from fluctuation X-ray

scattering profiles using two-photon correlation ("average angular auto-correlation")
[115], however, at a relatively low resolution of 48 Å. The method represents the
electron density on a grid in real space and in successive Monte Carlo steps, the
density is locally perturbed by random dilations or an erosions. The expected
two-photon correlations from the proposed densities are then compared with the
correlations from the experimental fluctuation data and the difference is minimized.
Donatelli et al. has proposed to phase directly from the two-photon correlation

in fluctuation X-ray experiments [113] to overcome the information deficiency in
the two-photon correlations, but the method relies on prior information on the
structure.
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Degenerate Three-Photon Correlation

The presented two-photon correlation methods have demonstrated that, remark-
ably, two photons per image already carry important structural information, but
as shown by numerous publications [43, 44, 46, 116], they are not sufficient to
retrieve the 3D structure unambiguously (see Appendix A.1.2). This analytic ob-
servation was a motivation for my work to look into higher order correlations, in
particular three-photon correlations.
The first analytic work on three-photon correlations has been done by Kam in

1980 in the context of electron microscopy. He demonstrated that in principle
three photons per picture are sufficient to retrieve the Fourier density [46] by com-
pensating the information deficiency in the two-photon correlation with additional
information from the degenerate part of three-photon correlation, i.e., triplets in
which two photons are recorded at the same detector position. However, Kam’s
method cannot universally be applied to few photon single molecule X-ray scat-
tering data because the degenerate three photon events, which are only a small
subset of the entire three-photon correlation, are not sufficiently sampled at the
low photon counts (in contrast to the dense electron micrograph images).
Based on Kam’s approach, Starodub et al. determined the structure of compa-

rably large cylindrical particles (polystyrene spheres with a 91 nm diameter) at
200 Å resolution [47] and Poon at al. resolved the missing signs of the spherical
harmonics coefficients of a highly symmetric icosahedral virus at 220 Å resolu-
tion [49].
In conclusion, all existing correlation-based approaches are either limited to

symmetrical molecules or have only demonstrated low-resolution structure deter-
mination. No available approach so far has made use of the full three-photon
correlation information available in the images.



4 The Three-Photon Structure
Determination Method

Figure 4.1: Schematic depiction of the three-photon correlation using an exemplary
synthetic single molecule scattering images of Crambin with ca. 20
coherently scattered photons. In the detector plane kxky the recorded
photons are grouped into triplets, each of which is characterized by
distances k1, k2, k3 to the detector center (orange lines) and the angles
α and β between the respective photons (orange circular arcs).

In this Chapter I will present the three-photon correlation method that I have
developed for the de novo structure determination from few photon single molecule
X-ray scattering images. The main idea is to determine the intensity I(k) from
the full three-photon correlation t(k1, k2, k3, α, β) which is accumulated from all
photon triplets in the recorded scattering images as illustrated in Fig. 4.1.
A single triplet is characterized by the angles α and β between the photons and

the distances of the photons to the detector center. Each triplet is comprised of
three correlated doublets (k1, k2, α, ), (k2, k3, β) and (k1, k3, α+β). The angles are
chosen as the minimum difference between the pairs, α, β ∈ [0, π].
In the following Section I will derive an analytic expression of the full three-

photon correlation t(k1, k2, k3, α, β) as a function of the 3D intensity I(k) using
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shell-wise spherical harmonics (SH) expansions [117] for I (k) = ∑
lmAlm (|k|)Ylm (θ, ϕ).

For a brief introduction to spherical harmonics expansions, see Appendix A.1.1.
The correlations, expressed in spherical harmonics terms, are faster to calcu-

late than e.g., the numerical integration, and they allow for adapting the number
K(L2 + 3L + 2)/2 of spherical harmonics basis functions to the target resolu-
tion via the largest considered wave number kcut, the number K of used shells
between 0...kcut, and the expansion order L. The hierarchical properties of spher-
ical harmonics basis functions further allow to determine the structure first with
low angular resolution and then to successively refine it to higher resolutions and
higher expansion limits, respectively (see Sec. 4.4 for implementation details).

4.1 Derivation of the Three-Photon Correlation
expressed in Spherical Harmonics

The following derivation follows Kam [46], but further generalizes it to the full
three-photon correlation. I assume that, due to the small wavelength of the X-ray
photons, the Ewald sphere has a large radius and its intersections with the Fourier
space density (from which the scattering images are sampled) are approximately
planar.
The triple correlation t(k1, k2, k3, α, β) is the orientational average 〈〉ω of the

product between three intensities I(k) that lie in the same plane in Fourier space
(see Fig. 4.2),

t(k1, k2, k3, α, β)I(k) = 〈Iω (k1(k1, 0)) · Iω (k2(k2, α)) · I∗ω (k3(k3, β))〉ω . (4.1)

Here, without loss of generality, the kxky-plane is chosen as the detector plane and
the vectors k1 = (k1, 0, 0), k2 = k2(cosα, sinα, 0) and k3 = k3(cos β, sin β, 0) on
this plane are chosen as one arbitrary realization of the triplet (k1, k2, k3, α, β),
characterized by the angles α and β between the vectors and distances to the
detector k1, k2 and k3, respectively (see Fig. 4.1).
For the orientational average 〈〉ω it is assumed that in the experiment the orien-

tation of the molecule is unknown and uniformly sampled. Note that the orienta-
tional average can either be expressed as an average over all rotations of Iω(k) for
fixed k1,2,3 (our approach) or as an average over all rotations of the vectors k1,2,3,ω
for a fixed I(k).
Next, I(k) is decomposed into spherical shells with radius k and each shell is

expanded using a spherical harmonics basis [117],

I (k) =
∑
lm

Alm (k)Ylm (θ, ϕ) . (4.2)

The coefficients Alm(k) describe the intensity function on the respective shells
and are non-zero only for even l ∈ {0, 2, 4, ..., L} because of the symmetry of
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Figure 4.2: Sketch of the orientational average of the product of three intensities
as a visualizing of the integration of the three-photon correlation. a:
Three intensities in the 3D Fourier space on different shells k1 (green),
k2 (blue) and k3 (red) with angles α (green,blue) and β (green, red)
forming one realization of the triplet (k1, k2, k3, α, β). b: The orien-
tational average rotates the triplets with all possible Euler rotations
ω. Depicted with opacity are two possible rotations of the triplet
(k1, k2, k3, α, β). The right triplet is rotated about the z-axis (out of
page) in clockwise direction and the left triplet is rotated counterclock-
wise and additionally rotated about the axis given by the reciprocal
vector k1. Each of the three triplets correspond to different points
in the 3D intensity and therefore contribute different intensity triple
products (proportional to the probability of observing the triplet) to
the integral of the three-photon correlation.

I(k) = I∗(−k) (Friedel’s law). In this description, a 3D Euler rotation ω of
I(k) is expressed by transforming the spherical harmonics coefficients according
to Arot

lm(k) = ∑
mm′D

l
mm′A

unrot
lm′ (k), using the rotation operators Dl

m′m which are
composed of elements of the Wigner D-matrix as defined, e.g., in Ref. [117], yielding
the rotated intensity,

Iω (k) =
∑
lmm′

Alm (k)Ylm′ (θ, ϕ)Dl
m′m (ω) . (4.3)
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Inserting the spherical harmonics expansion of the rotated intensity Iω (k), evalu-
ated at positions k1, k2 and k3 in the kxky plane (θ = π/2), into the expression
for the three-photon correlation, Eq. (4.1), yields
t(k1, k2, k3, α, β){Alm(k)} =

∑
l1 l2 l3

∑
m1 m2 m3

∑
m′

1 m
′
2 m

′
3

Al1m1 (k1)Al2m2 (k2)A∗l3m3 (k3)(4.4)

Yl1m′
1

(
π

2 , 0
)
· Yl2m′

2

(
π

2 , α
)
· Y ∗l3m′

3

(
π

2 , β
)

〈
Dl1
m1m′

1
·Dl2

m2m′
2
·Dl3

m3m′
3

〉
ω
,

such that the orientational average only involves the elements of the Wigner D-

matrix Dl
mm′. Using the Wigner-3j symbols

(
l1 l2 L
m1 m2 −M

)
[118], the product

of two rotation elements Dl
mm′ reads

Dl1
m1m′

1
Dl2
m2m′

2
=

l1+l2∑
L=|l1−l2|

∑
MM ′

(2L+ 1) (−1)M−M
′

(4.5)
(

l1 l2 L
m1 m2 −M

)
(

l1 l2 L
m′1 m′2 −M ′

)
DL
MM ′ .

With the orthogonality theorem for orientational averages of the product of two
Wigner D operators,〈

DL
MM ′Dl3∗

m3m′
3

〉
ω

= 1
2L+ 1δl3Lδm3Mδm′

3M
′ , (4.6)

the three-photon correlation finally reads
t(k1, k2, k3, α, β){Alm(k)} =

∑
l1 l2 l3

∑
m1 m2 m3

Al1m1 (k1)Al2m2 (k2)A∗l3m3 (k3) (4.7)
(

l1 l2 l3
m1 m2 −m3

)
∑

m′
1 m

′
2 m

′
3

(−1)m3−m′
3

(
l1 l2 l3
m′1 m′2 −m′3

)

Yl1m′
1

(
π

2 , 0
)
Yl2m′

2

(
π

2 , α
)
Y ∗l3m′

3

(
π

2 , β
)
.

This expression only involves sums of products of three spherical harmonics
coefficients Alm(k) with known Wigner-3j symbols and spherical harmonics basis
functions Ylm(θ, ϕ). The numerical calculation of the three photon correlation
is the computationally limiting step in the structure determination approach. I
have devised a fast implementation using GPUs (CUDA) which I will discuss in
Appendix A.2.2.
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4.2 Structure Determination using Three-Photons
I was unable to invert the analytic expression of the three-photon correlation in
Eq. (4.7), and the number of unknowns (e.g., 4940 for K = 26, L = 18) is too
large for a straightforward numeric solution. Instead, I chose a probabilistic ap-
proach and asked which intensity I(k) is most likely to have generated the com-
plete set of measured scattering images and triplets, respectively. To this end, I
considered the Bayesian probability p (with uniform prior) that a given intensity
I(k), expressed in spherical harmonics by {Alm(k)}, generated the set of triplets,
{ki1, ki2, ki3, αi, βi}i=1...T ,

p
({
ki1, k

i
2, k

i
3, α

i, βi
}
i=1...T

∣∣∣ {Alm(k)}) =
T∏
i=1

t̃(ki1, ki2, ki3, αi, βi){Alm(k)}. (4.8)

Due to the statistical independence of the triplets, this probability p is a prod-
uct over the probabilities t̃(ki1, ki2, ki3, αi, βi) of observing the individual triplets i
which is given by the normalized three-photon correlation t̃ (k1, k2, k3, α, β). Here,
t̃ (k1, k2, k3, α, β) was calculated using Eq. (4.7) for varying intensity coefficients
{Alm(k)} and the coefficients that maximized p ({ki1, ki2, ki3, αi, βi}) were deter-
mined using a Monte Carlo scheme as described in Sec.4.4.
In contrast to the direct inversion, the probabilistic approach has the benefit

of fully accounting for the Poissonian shot noise implied by the limited number
of photon triplets that are extracted from the given scattering images. I note
that this approach also circumvents the limitation faced by Kam [46], where only
triples are considered, in which two photons are recorded at the same detector
position. Because all other triples had to be discarded, Kam’s approach is limited
to very high beam intensities, and cannot be applied in the present extreme Poisson
regime.

4.3 Reduction of the Search Space using
Two-Photon Correlations

The high-dimensional search space was reduced by utilizing the structural informa-
tion contained within the two-photon correlation. In analogy to the three-photon
correlation, the two photon-correlation is expressed as a sum over products of
spherical harmonics coefficients Alm(k) weighted with Legendre polynomials Pl [42,
46],

ck1,k2,α =
∑
l

Pl (cos (α))
∑
m

Alm (k1) (ω)A∗lm (k2) . (4.9)

The inversion yields coefficient vectors A0
l (k) = (A0

l−m, ..., A
0
lm) for all l ≤ L ≤

Kmax/2 and −l < m < l, as first demonstrated by Kam [46] (See Appendix A.1.2
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for detailed inversion of the two-photon correlation). However, all rotations in the
2l + 1-dimensional coefficient eigenspaces of A0

l (k) by Ul are also solutions,

Al (k) = UlA0
l (k) . (4.10)

The result implies that the inversion only gives a degenerate solution for the co-
efficients and the intensity cannot be determined solely from two photons. Note
that the maximum L, corresponding to the angular resolution of the intensity
model, scales with the number of shells Kmax (or the inverse of the shell spacing
∆k respectively) used for the two-photon inversion.
Here, I used Eq. (4.10) to search for the optimal rotations Ul instead of optimal

coefficients Aall
lm(k), which reduced the size of the search space from (1

2L
2 + 3

2L+

1) ·K to 1
3(L3 + 15

4 L
2 + 7

2L) unknowns (e.g., reducing the number of unknowns
from 4940 coefficients to 2370 rotation angles for L = 18 and K = 26). A rotation
in dimension D has D(D−1)/2 free angles and for D = 2l+1 the sum over 2l2 + l

free angles for l ∈ {2, 4, ..., L} yields 1
3(L3 + 15

4 L
2 + 7

2L). Note that the number
of rotation angles does not depend on the number of shells K anymore, and the
difference in the number of unknowns further increases with the number of shells
K.

4.4 Monte Carlo Simulated Annealing
The probability p from Eq. (4.8) was maximized by a Monte Carlo / simulated
annealing approach on the ’energy’ function

E
({
ki1, k

i
2, k

i
3, α

i, βi
}
| {Alm(k)}

)
= − log p

({
ki1, k

i
2, k

i
3, α

i, βi
}∣∣∣ {Alm(k)})(4.11)

= −
∑
i

log t̃(ki1, ki2, ki3, αi, βi){Alm(k)},

in the space of all rotations Ul given by the inversion of the two-photon correlation
discussed in the previous Section. Each Monte Carlo run was initialized with a
random set of rotations {Ul} and the set of unaligned coefficients {A0

l }. In each
Monte Carlo step j, all rotations Uj

l were varied by small random rotations ∆l(βl)
such that the updated rotations for each l (l ≤ L) read Uj+1

l = ∆l(βl) ·Uj
l using

stepsizes βl. In order to escape local minima, a simulated annealing was performed
using an exponentially decaying temperature protocol, T (j) = Tinit exp(j/τ). Steps
with an increased energy were also accepted according to the Boltzmann factor
exp(−∆E/T ). I further used adaptive stepsizes such that all β(l) were increased
or decreased by a factor µ when accepting or rejecting the proposed steps, respec-
tively. Convergence was improved by using a hierarchical approach in which the
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intensity was first determined with low angular resolution and further increased to
high resolution. To this end, the variations of low-resolution features were "frozen
out" faster than the variations of high-resolution features.
The random rotations

{
Ul ∈ R2l+1×2l+1

}
were generated using QR decomposi-

tions of matrices whose entries were drawn from a normal distribution as described
by Mezzadri [119]. The rotational variations ∆l (β) were calculated via the basis
transformation

∆l (β) = RlSl (β) R−1
l (4.12)

with

Sl (β) =


cos (β) − sin (β) 0 ... 0
sin (β) cos (β) 0 ... 0

0 0 I2l+1−2
... ...
0 0

 (4.13)

and random rotation matrices Rl [120]. Here, sub-matrix I2l−1 in Sl is a 2l − 1-
dimensional unity matrix.
By using the small rotational variations ∆l (β), the SO(n) is sampled ergodically.

Approximately [1/(2− 2 cos(β))]n · log(n) steps are necessary to achieve sufficient
sampling aaccording to Ref. [120]. For the largest search space of L = 18 with a ro-
tation dimension of n = 37 (n = 2L+1) and a minimum stepsize of β = 0.025 rad,
213.777 steps were required to sample rotations in SO(37) sufficiently dense. To
ensure that the search space is exhaustively explored, I aimed at an optimization
length of over 200.000 Monte Carlo steps. To this end, a time constant for the
temperature decrease of τ = 50000 steps was chosen. The initial temperature Tinit
was calculated as 10% of the standard deviation of the energy within 50 random
steps away from the starting structure using the initial stepsizes. Further, I used
a factor µ = 1.01 for the adaptive stepsizes. The hierarchical approach was imple-
mented by distributing the initial stepsizes according to β(l) = (l− 1)π such that
spherical harmonics coefficients with larger expansion orders l are always varied
with a larger stepsize β(l) than coefficients with lower orders.

4.5 Efficient Computation of the Energy using
Histograms

Calculating the probability from Eq. (4.8) (and energy in the Monte Carlo scheme)
is computationally expensive due to the typically large number of triples T . I
therefore approximated this product by grouping triplets with similar α, β angles
and distances k into bins and calculated the function t(k1, k2, k3, α, β) for each
bin only once, denoted tk1,k2,k3,α,β, thus markedly reducing the number of function
evaluations to the number of bins. To improve the statistics for each bin, the
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intrinsic symmetry of the triple correlation function was also used. In particular,
all triplets were mapped into the sub-region of the triple correlation that satisfies
k1 ≥ k2 ≥ k3. Special care was taken to correct for the fact that triplets with
k1 = k2 6= k3 or k1 6= k2 = k3 or k1 = k3 6= k2 occur 3 times more often than
k1 = k2 = k3 and triplets with k1 6= k2 6= k3 occur 6 times more often. To
compensate for different binsizes, each bin was normalized by k1k2k3.
In our study, the two-photon and three-photon correlations were histogrammed

using sets of scattering images ranging from 1.3 · 106 to 3.3 · 109 images with an
average of 10 photons per shot. I further used Kmax = 38 shells and N = 32
(∆α,∆β = 5.6◦) as bin sizes in correlation space. In Section 4.6, the choice for
number of shells Kmax and its impact on the resolution is discussed. In this work,
the α and β discretization was varied e.g., to N = 48 but without an increase in
the resolution of the retrieved structures, indicating that N = 32 is sufficiently
large.
The above histogramming, required us to calculate the probability p differently.

In the triplet histogram {nk1,k2,k3,α,β}, the intensity is integrated over different shell
volumes with width ∆k each. Depending on the fluctuation of the intensity within
these volumes, this leads to different integration errors for different (k1, k2, k3)-
combinations. However, this error decreases with smaller shell distances ∆k.
To avoid this error, I compared the intensities only by the expected (α, β)-

distribution of the triplets, omitting the expected relative number of triplets per
(k1, k2, k3)-combination. Hence, the probability p from Eq. (4.8) was calculated as

p ({n(k1, k2, k3, α, β)} | {Alm(k)}) =
∏

k1,k2,k3

∏
α,β

(
t̃k1,k2,k3,α,β

)ñk1,k2,k3,α,β , (4.14)

normalizing the probabilities

t̃k1,k2,k3,α,β = tk1,k2,k3,α,β∑
α,β tk1,k2,k3,α,β

(4.15)

and histogram counts

ñk1,k2,k3,α,β = nk1,k2,k3,α,β∑
α,β nk1,k2,k3,α,β

, (4.16)

for each (k1, k2, k3)-combination individually. Note that the radial shape of the
intensity is already encoded in the two-photon correlation.

4.6 Choice of Optimal Spherical Harmonics
Parameters

Three parameters of the spherical harmonics expansion and the histogramming
control the resolution of the determined structure. First, for a maximum wave
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Figure 4.3: Comparison of the effect on resolution of Kmax, K and L for differ-
ent parameter combinations. By increasing Kmax (35(a), 38(b), 41(c),
43(d)), higher order terms in the spherical harmonics expansion and
larger K result in increased resolution.

number kmax up to which sufficient signal is detected, the number of shells Kmax
that is used in the inversion of the two-photon correlation can be chosen freely. The
choice of Kmax determines both the shell spacing ∆k and the maximum expansion
order Lmax = Kmax/2 to which the intensity model, used in the Monte Carlo search,
is initially determined. The second parameter is the number of shells K ≤ Kmax of
the intensity model in the structure determination, which determines the maximum
wave number kcut = K · ∆k and sets an upper bound for the resolution. The
third parameter is the expansion order L ≤ Kmax/2 of the intensity model, which
controls the angular resolution of the intensity model. The angular resolution of the
intensity does not directly correspond to the resolution of the real-space electron
density which is why the impact of L on the resolution is indirect. However, for



46 4. The Three-Photon Structure Determination Method

each wave number kcut, there is a minimum L that is required to describe the
intensity "sufficiently" accurately.
Here, I aimed at the optimal set of parameters (Kopt, Lopt, Kmax,opt) by which

a specific resolution is achieved with minimal computational effort. As discussed
in Sec. A.2.2, the computational effort is determined by the time to calculate the
full three-photon correlation matrix T and approximated here as K · (K + 1) ·
(K + 2)/6 ·L4. For our parameter optimization, I further assumed that an infinite
number of photons is recorded up to the maximum wave number kmax.
As an example, I aimed at a resolution of 3 Å. To determine the suitable param-

eters, I calculated the corresponding real space resolution of intensity models with
varying expansion parameters K, L and Kmax (see Sec. 5.2 for the calculation of
the resolution). Note that in this check, no structure determination was involved.
Figure 4.3 shows the achieved resolution as a function of L for various number of

shells K for four different Kmax (35, 38, 41, 44). Although the maximum possible
L and K increase with Kmax the kcut (kcut = K ·∆k) of the model does not increase
the same way due to the decrease of ∆k. In all the cases, the optimal expansion
order Lopt = Kmax/2 was equivalent to the maximum possible expansion order and
Kmax and K were the limiting parameters.
From all parameter combinations yielding a resolution close to 3 Å, Kmax =

38, K = 26 and L = 18 minimized the computational effort, with the matrix
multiplication of A ∈ R163153×17576 with F ∈ R1024×163153 for each Monte Carlo
step was the limiting factor.

4.7 Structure Determination in the Presence of
Additional Non-Poissonian Noise

To asses how additional noise (beyond the Poisson noise due to low photon counts)
affects the achievable resolution, I have carried out synthetic scattering experi-
ments including Gaussian distributed photons,

G(k, σ) = (2πσ2)−1/2 exp
(
−|k|2/2σ2

)
(4.17)

(see Fig. 4.4), as a simple noise model. From the generated scattering images,
intensities S(k) were determined as described in Sec.4.2.
Assuming that the noise is independent of the molecular structure, the obtained

intensities S(k) = I(k) +γN(k) are a linear superposition of the molecules’ inten-
sity I(k) and the intensity of the unknown noise N(k). Accordingly, the noise was
subtracted from S(k) in 3D Fourier space using our noise model N(k) = G(k, σ)
and the estimated signal-to-noise ratio γ. Since the spherical harmonics expansion
of a Gaussian distribution is described by a single coefficientGl=0,m=0(k) = G (k, σ)
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Figure 4.4: Comparison of linear cuts through the normalized intensities of
noise distributed according to Gaussian functions with widths σ =
[0.5, 0.75, 1.125, 2.5]Å−1 (purple shades and black), noise from Comp-
ton scattering (grey) and noise from the a disordered water shell of
5 Å thickness (aqua). A cut through the Crambin intensity without
noise (green) is given for reference. Note that, due to the normaliza-
tion in 3D, the noise intensities are shown at a signal-to-noise ratio
γ = 100%; at different signal-to-noise ratios, the noise intensities are
shifted vertically with respect to the Crambin intensity.

on each shell k, the noise subtraction simplified to Anoise−freel=0,m=0 (k) = Anoisyl=0,m=0(k)−
γG (k, σ). The noise-free intensity I(k) was then processed as described in Sec. 5.2.
I assessed the effect of noise for different Gaussian widths σ ∈ [0.5, 0.75, 1.125,

2.5] Å−1 and signal-to-noise ratios γ ∈ [10%, ..., 50%]. Figure 4.4 compares the
Crambin intensity (green) with the different Gaussian distributions (puples shades,
black) at signal-to-noise ratio of γ = 100%.
The Figure also shows the noise expected from Compton scattering (grey), which

was estimated using the Klein-Nishina differential cross-section [121, 122]

dσ = 1
2
α2

m2

(
E ′

E

)2 [
E ′

E
+ E

E ′
− sin2 θ

]
dΩ, (4.18)
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with the scattering angle θ, the energy of the incoming photons E, the energy
of the scattered photon E ′ = E/(1 + E

m
(1 − cos θ)), the fine structure constant

α = 1/137.04 and the electron resting mass me = 511 keV/c2. As can be seen, the
noise from Compton scattering (grey) is described well by a Gaussian distributions
with width σ = 2.5Å−1 (black), and thus was used to approximate incoherent
scattering.
Finally, I also estimated the noise from the disordered fraction of the water shell

by averaging the intensities of 100 Crambin structures with different 5 Å-thick
water shells. The resulting intensity (aqua) is similar to the reference intensity
with fewer signal in the intermediate regions (0.2 Å−1 < k < 1.0 Å−1) and more
signal in the center and the high-resolution regions (k > 1.0 Å−1). Since the
noise of the water shell depends on the structure of the biomolecule, potentially
combined with ordered water molecules, it is unlikely to be well described by our
simple Gaussian model. Therefore, simple noise subtraction will be challenging,
and more advanced iterative techniques will be required.



5 Methods for Validating the
Approach

Figure 5.1: Electron density of Crambin with 2 Å resolution.

Contrary to intuition, in single molecule structure determination, smaller molecules
are more challenging than larger ones [31] because they scatter fewer photons. I
therefore challenged the approach with synthetic scattering images of the rather
small, 46 residue comprising, Crambin protein (PDB descriptor: 3U7T), which is
known to 0.45Å resolution from X-ray crystallography [123, 124] (Fig. 5.1). The
choice for Crambin is based on its size and the resulting low expected signal and
not on its function as a small seed storage protein in Cabbage.
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5.1 Synthetic Data Generation
For the synthetic scattering experiments, I approximated the 3D electron density
ρ(x) by a sum of Gaussian functions centered at the atomic positions xi,

ρ(x) =
Natoms∑
i=1

Ni exp−(x−xi)2/(2σ2
i ) . (5.1)

The heights and variances of the Gaussian spheres depend on the type of atom i.
The variances σi correspond to the size of the atoms with respect to their scattering
cross-section and the height is determined by Ni, the number of electrons which
are the potential targets for scattering.
The absolute square of the electron densities’ Fourier transformation I(k) =
|F [ρ(x)]|2 was used to generate synthetic scattering images. In each synthetic
scattering experiment, the molecule, and thus also I(k), was randomly oriented.
In each shot, on average P photons per image were generated according to the
distribution given by the randomly oriented planar slice of the intensity Iω(K).
To generate the distributions numerically, first, a random set of Npos positions
{Ki} in the kxky-plane was generated according to a 2D Gaussian distribution
G(K) with width σ = 1.05Å−1. Given a random 3D rotation U (see Sec. 4.4
for uniform sampling of SO(3)), rejection sampling was used to accept or reject
each position according to ξ < Iω(U ·Ki)/(M ·G(Ki)) using uniformly-distributed
random numbers ξ ∈ [0, 1] each. Here, the constant M was chosen as Imax ·
max(G(K)) such that the ratio Iω(U ·Ki)/(M ·G(Ki)) is below 1 for all K.
In accordance with our most conservative estimate discussed in Sec. 2.3.3, the

number of positions Npos was chosen such that on average 10 scattered photons
were generated. For assessing the dependency of the resolution on the number of
scattered photons, additional image sets with 25, 50 or 100 scattered photons were
also generated (See Sec. 6.3).
For technical reasons, I used a spherical harmonics expansion of the intensity

with a high expansion order L = 35 as a sufficiently accurate approximation for
I(k) to generate the images. The accuracy of the intensity model was cross-checked
with the intensity calculated on a cubic grid (150 grid size) using the Fast Fourier
Transform (FFT), resulting in a 0.9999 correlation, thus establishing sufficient
accuracy. Altogether, up to 3.3 · 109 images were generated using a high degree of
parallelism.

5.2 Calculating Resolutions
Figure 5.2 summarizes the calculation of the electron densities as carried out in
this work. All intensities were obtained up to an arbitrary Euler rotation (θ, φ, ψ)
and were therefore rotationally fit to the known reference intensity for subsequent
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Figure 5.2: Flowchart outlining how electron densities are calculated from the scat-
tering images.

comparison. The phases of the aligned intensities were calculated using the relaxed
averaged alternating reflections (RAAR) method by Luke [107] as described in Ap-
pendix A.1.3. In order to reduce interpolation errors, which are introduced when
switching between cubic and spherical harmonics representation, I have adapted
the original RAAR implementation to work with spherical harmonics expansions.
The resolution of the phased electron densities was characterized by the Fourier
shell correlation (FSC),

FSC(k) =

∑
ki∈k

F1(ki) · F2(ki)∗

2

√∑
ki∈k
|F1(ki)|2 ·

∑
ki∈k
|F2(ki)|2

. (5.2)

I have adopted the "gold standard" for the definition of the resolution from cryo-
EM [125], where the resolution is defined as the scattering angle kres at which
FSC(k) = 0.5, yielding a radial resolution ∆r = 2π/kres.
Starting from an individual set of doublet and triplet histograms (Fig.5.2, top

left), 20 independent intensity determination runs were carried out to asses and
improve convergence of the Monte Carlo simulated annealing runs. To reduce the
phasing error, the phase retrieval of one intensity was carried out 8 times and
the resulting 8 electron densities were averaged. The final electron density, for
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which the resolution is given, is the average of those 20 individual densities and
the resolution error was estimated from the standard deviation of the resolution
of the 20 individual electron densities. I chose to average in real space instead
of Fourier space before phasing because I found that this sequence yielded more
accurate electron densities.

5.3 Structure Determination Software Package
ThreePhotons.jl

I have implemented the structure determination approach and the validation meth-
ods in the ThreePhotons.jl software package which is written in Julia1 and released
on https://github.com/h4rm/ThreePhotons.jl under the MIT License2.
Julia was chosen as a language, among other reasons, because it was developed

and optimized for scientific/numerical calculations and therefore handles mathe-
matical expressions and vector/matrix operations very well. It is a very fast due to
the just-in-time (JIT) compiler and the optional static-typing. It has elegant and
extensible conversions and promotions for numeric and handles complex numbers
natively. The C interface via FFI functionality was easy to use and no wrappers
or special APIs were required to use existing C libraries such as the s2kit used for
the spherical harmonics transformations. In many cases, I used the quick and effi-
cient parallelization mechanisms, e.g., the generation of many scattering image, for
the rotational fitting of the intensities or multiple parallel phasings. Performance
critical parts of the code were found and optimized by the extensive profiling ca-
pabilities of the language. Julia further offered easy installation on all locations
including institute cluster, Hydra and GWDG cluster and is free and open source
(MIT licensed). I have used the seamless integration with Python libraries such
as matplotlib for all graphs generated in this work.
The ThreePhotons.jl software package consists of over 6000 lines of code covering

the following functions:

• Handling cubic and spherical harmonics represented volumes (loading, sav-
ing, set, get, basic operations, transformations)
• Loading of PDB structures, creating electron densities from atomic positions
• Calculating Fourier amplitudes and intensities in both cubic and spherical

harmonics representation
• Calculating synthetic scattering images including additional Gaussian noise
• Histogramming the two- and three-photon correlation in the scattering im-

ages
1http://julialang.org/
2https://opensource.org/licenses/MIT

https://github.com/h4rm/ThreePhotons.jl
http://julialang.org/
https://opensource.org/licenses/MIT
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• Calculating two- and three-photon correlations from intensities represented
as spherical harmonics expansions
• Inverting two-photon correlations
• Determining intensities from histogrammed two- and three-photon correla-

tions using the MC simulated annealing approach
• Calculating electron densities from the retrieved intensites using the RAAR

phase retrieval method
• Calculating resolutions via Fourier shell correlations

Table 5.1 give a detailed view into the structure of the package. In Appendix A.2.3
I will give source code examples that show how to generate 3D structure of PDB
files, generate synthetic scattering images, histogram them and start a structure
determination run using the library.
The software package makes extensive use of external libraries. The main de-

pendencies are on the S2Kit library3 for calculating fast spherical harmonics trans-
formations, FFTW 3.34 for Fast Fourier Transform in S2Kit, Gnu Science Library
(GSL)5 for calculating spherical harmonics basis functions Ylm, Legendre Polyno-
mials Pl and Wigner-3j symbols, CUDArt.jl6 and CUBLAS.jl7 for fast calculation
of three-photon correlations using CUDA v8.08, and, Distributions.jl9 for generat-
ing synthetic scattering images.

3http://www.cs.dartmouth.edu/~geelong/sphere/
4http://www.fftw.org/
5https://www.gnu.org/software/gsl/
6https://github.com/JuliaGPU/CUDArt.jl
7https://github.com/JuliaGPU/CUBLAS.jl
8https://developer.nvidia.com/cuda-toolkit
9https://github.com/JuliaStats/Distributions.jl

http://www.cs.dartmouth.edu/~geelong/sphere/
http://www.fftw.org/
https://www.gnu.org/software/gsl/
https://github.com/JuliaGPU/CUDArt.jl
https://github.com/JuliaGPU/CUBLAS.jl
https://developer.nvidia.com/cuda-toolkit
https://github.com/JuliaStats/Distributions.jl
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File/Directory Content
cubic.jl Handling volumes described by cubes.

spherical_harmonics.jl Handling volumes described by a spherical harmonics
expansion.

structure.jl Approximation of electron densities loaded from PDB
files using Gaussian sphere.

data_processing.jl Calculation of the resolution via Fourier shell correla-
tions of many phasings.

utilities.jl
Random N-dimensional rotations, conversion between
spherical and Cartesian coordinates, Gaussian distribu-
tions, data serialization.

datagen.jl Generation of synthetic scattering images including
noise. Also handles the histogramming of the images.

correlations.jl Fast calculation of two- and three-photon correlations.
Also implements inversion of two-photon correlation.

cuda.jl,
cuda_kernel.cu CUDA implementation of the three-photon correlation.

determination.jl Monte Carlo simulated annealing search scheme.
phases.jl RAAR phasing for spherical harmonics volumes.
tests Unit tests for all the modules described above.

jobs Scripts for handling the execution of the code on various
clusters, in particular the OWL institute cluster.

sh
\s2kit_interface.c implements the C interface to the
s2kit used by spherical_harmonics.jl to handle all SH
transformations. See sh\Makefile for compilation.

Table 5.1: List of source files/directories and a description of the functionality
implemented within these files.
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Figure 6.1: Expected number of photons and triplets as a function of image num-
bers for 10, 20, 50, and 100 photons per image. Also shown (top) is
the estimated data acquisition time given a 27 kHz XFEL repetition
rate and 10% hit rate.

To stay below the estimate of approximately 20 photons per image (see Sec. 2.3.3
for estimate), I generated up to 3.3 · 109 synthetic scattering images with only 10
photons on average, totalling up to 3.3 · 1010 recorded photons. With an expected
XFEL repetition rate of up to 27 kHz [126], and assuming a hit-rate of 10%, I
expect this data to be collected within a few days (see Fig. 6.1). However, as will
be discussed in the Sec. 6.3, the data acquisition time substantially decreases to
e.g., approx. 30 minutes when on average 100 photons per image are recorded,
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reducing the total number of required photons by a factor 100 to 3.3 · 108 (and
reducing the number of images by a factor 1000 to 3.3 · 106).

6.1 Near-Atomic Structure Determination of
Crambin

Starting from the histograms obtained from 3.3 · 109 synthetic scattering images,
I performed 20 independent structure determination runs. For all runs I used an
expansion order L = 18, K = 26 shells and a cutoff kcut = 2.15Å−1, thus setting
the maximum achievable resolution to 2.9 Å. Figure 6.2 compares the average
intensity obtained from these 20 runs (green) with the reference intensity derived
from the known X-ray structure (blue). Overall, the shape of the intensity is
recovered very well and only minor deviations in the outer shells, where fewer
photons are recorded, are present.
To assess the achievable resolution of the determined Fourier intensities, I cal-

culated 20 real space electron density maps using an iterative phase retrieval algo-
rithm [107]. Figure 6.3 compares the average of the 20 retrieved densities (d, green
shaded structure) with the the reference electron density (e, blue shaded structure)
which has been calculated from the Fourier density (including phases) with same
cutoff kcut as (d). The cross-correlation between the two densities is 0.9. For the
averaged electron density, the Fourier shell correlation (FSC) was calculated as a
function of the wave number k [125] and the resolution was calculated according
to ∆r = 2π/kres with kres being the wave number at which FSC(kres) = 0.5. Here,
a near-atomic resolution of 3.3 Å was achieved.
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Figure 6.2: Comparison of the retrieved density (green lines and structure) and the
reference density of Crambin (blue lines and structure) in Fourier space
and real space. Shown are averages over 20 structure determination
runs, each using the same 3.3·109 images with an average of 10 photons
per image yielding 3.3 · 1010 photons. A cutoff in reciprocal space of
kcut = 2.15Å−1 was used and the intensity was expanded with K = 26
shells using an expansion order of L = 18. a,b: Comparison of the the
retrieved intensity (a) and the reference intensity (b) in the kxky-plane
(logarithmic shading). c: Comparison of two orthogonal linear cuts
(vertical,v and horizontal,h) through the kxky-planes shown in panels
(a) and (b).
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Figure 6.3: Comparison of the retrieved electron density (a) and the reference elec-
tron density (b) corresponding to the intensities shown in Fig. 6.2. The
reference density was calculated from the known Fourier density using
the same cutoff kcut = 2.15Å−1 in reciprocal space as (a). The reso-
lution of the retrieved density is 3.3 Å, the resolution of the reference
density is 2.9 Å and the cross-correlation between the two densities is
0.9.

6.2 Impact of Total Number of Recorded Photons
on Resolution

Next I explored how the achieved resolution depends on the number of observed
photons (and triplets respectively) and, hence, the number of recorded images. To
this end, electron densities were calculated and averaged as above from 1.3 · 107

up to 3.3 ·1010 photons gathered from images with 10 photons on average (4.7 ·108

up to 1.2 · 1012 triplets).
Figure 6.4 shows the FSC curves of all retrieved (averaged) densities along with

the 0.5 cutoff (vertical dashed line) and the corresponding resolutions (inset). In
Figure 6.5 visualizes how the resolution improves with the increasing number of
detected photons by comparing four electron densities that were retrieved from
histograms with 2.0 · 108 to 3.3 · 1010 photons.
As mentioned before, the best electron density was retrieved with a near-atomic

resolution of 3.3 Å (Fig. 6.5d) from the histograms that was derived from a total
of 3.3 · 1010 photons.
Decreasing the number of photons by a factor of 10 decreased the resolution

only slightly by 0.4 Å to 3.7 Å (Fig. 6.5c), which indicates that very likely fewer
than 3.3 · 1010 photons suffice to achieve near-atomic resolution. If much fewer
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Figure 6.4: Fourier shell correlations (FSC) of densities retrieved from 1.3 · 107 to
3.3 · 1010 photons (4.7 · 108 to 1.2 · 1012 triplets) and infinite photon
number. As a reference, the "optimal" FSC is shown (dashed grey),
which was calculated directly from the known intensity using the same
expansion parameters. The inset shows the corresponding resolutions
estimated from FSC(kres) = 0.5.

photons are recorded, e.g. 2.0 · 108, the resolution decreased markedly to 7.8 Å
(Fig. 6.5a) and even 14 Å resolution for 1.3 · 107 photons. For comparison, the
diamter of Crambin is 17 Å.
To address the question how much further the resolution can be increased, I

mimicked an experiment with infinite number of photons by determining the in-
tensity from the analytically calculated three-photon correlation. As can be seen
in Fig. 6.4 (purple line), the resolution only slightly improved by 0.1 Å to about
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(a) 2.0 · 108 photons, 7.8 Å resolution (b) 8.2 · 108 photons, 4.8 Å resolution

(c) 3.3 · 109 photons, 3.7 Å resolution (d) 3.3 · 1010 photons, 3.3 Å resolution

Figure 6.5: Electron densities retrieved from 2.0 · 108 to 3.3 · 1010 photons.

3.2 Å indicating that at this point either the expansion order L or insufficient con-
vergence of the Monte Carlo based structure search became resolution limiting.
To distinguish between these two possible causes, I phased the electron density
directly from the reference intensity, using the same expansion order L = 18 as in
the other experiments.
The reference intensity is free from convergence issues of the Monte Carlo struc-

ture determination and the resulting electron density only includes the phasing
errors introduced by the limited angular resolution of the spherical harmonics ex-
pansion in Fourier space. The FSC curve of the "optimal phasing" (grey dashed)
shows only a minor increase in resolution to 3.1 Å indicating that the Monte Carlo
search decreases the resolution by 0.1 Å. The remaining 0.2 Å difference to the
optimal resolution of 2.9 Å at the given kcut (not shown) is attributed to the finite
expansion order L and the corresponding phasing errors.
I have also independently assessed the overall phasing error by calculating the

intensity shell correlation (ISC) between the intensities of the phased electron
densities Iphased = |F [ρretrieved]|2 and the intensities before phasing Iretrieved. As
discussed independently in the Sec. 6.5, the phasing method does not markedly
deteriorate the structures.
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6.3 Impact of the Photon Counts per Image
In my histogram approach, the maximum number of triplets T that can be collected
from an image with P photons is T = P · (P + 1) · (P + 2)/6. However, these
triplets are not all statistically independent; instead, starting from 3 photons, each
additional photon adds only two real numbers to the triple correlation: a new angle
β (with respect to another photon) and a new distance k to the detector center.
The sampling of the three-photon correlation is improved by either collecting

more photons per image P or by collecting more images I. However, because for
each image, the orientation (3 Euler angles) needs to be inferred, the total amount
of information that remains available for structure determination increases with
the number of photons per image. Therefore, for every structure determination
method, including ours, increasing P is preferred over increasing I, especially at
low photon counts. For larger photon counts, the ratio between the 3 Euler angles
and P becomes small and hence also the information asymmetry between P and
I.
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Figure 6.6: The resolution as a function of the total number of photons collected
from images with 10, 25, 50 and 100 photons on average.

To assess this effect, I asked how the resolution depends on the number of images
I and the photons per image P and therefore carried out additional synthetic
experiments using image sets with 10, 25, 50 and 100 average photons P per shot
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at different image counts yielding different total number of photons. In Figure 6.6,
the achieved resolutions are shown as a function of the number of collected photons
for four different P = [10, 25, 50, 100]. For the best achievable resolution of 3.3 Å,
e.g., the total number of required photons decreases by a factor of 100 from 3.3·1010

to 3.3 · 108 photons (and the number of images decreased by a factor of 1000 from
3.3 ·109 to 3.3 ·106 images) when increasing the photons per image from 10 to 100,
thus substantially decreasing the data acquisition time from over 20.000 minutes
to only 30 minutes (see Fig. 6.1).

6.4 Structure Determination in Presence of
Additional Noise
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Figure 6.7: Achieved resolution for synthetic experiments with 3.3 · 109 images in-
cluding an additional fraction γ of random photons (γ = 0 − 50%)
following a Gaussian distribution with varying width σ. For noise
from incoherent scattering (indicated as grey background), I as-
sumed a width σ = 2.5Å−1, but also included narrower widths
σ = [0.5, 0.75, 1.125]Å−1 as a model for other sources of noise.
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I finally assessed how robust my approach is in the presence of additional ex-
perimental noise due to, e.g., incoherent scattering, background radiation, de-
tector noise, or scattering at the unstructured fraction of water molecules that
may adhere to the surface of the macromolecules [8]. Since only very few single
molecule scattering experiments have been carried out so far, quantitative noise
models are available only for incoherent scattering, for which a noise level of ca.
γ = 25% [109] is expected. Here I modeled the noise as a Gaussian distribution,
G(k, σ) = γ(2πσ2)−1/2 exp (−k2/2σ2). Depending on the width σ, different signal-
to-noise ratios are expected in the low-resolution and high-resolution regions of
the image respectively. For incoherent scattering (indicated as grey background)
a width of σ = 2.5Å−1 was assumed [121] (see Supplement) which correspond to
a relatively uniform noise distribution. Figure 6.7 (black line) shows a moderate
decrease in resolution to approx. 3.5 Å when this noise is included within my syn-
thetic experiments (as described in Supplement). Additional noise with a uniform
distribution from, e.g. background radiation or detector noise, slightly decreased
the resolution to 3.8 Å at 50% noise level.
For scattering at disordered water molecules that are attached to the macro-

molecular surface, a narrower intensity distribution is expected (see Supplement).
To also investigate this effect and the effect of other potential noise sources with
non-uniform distribution, in Fig. 6.7, I considered noise with widths of σ =
[0.5, 0.75, 1.125]Å−1 and noise levels γ between 10% and 50%, the latter cor-
responding e.g. to up to 100 disordered water molecules per Crambin molecule.
The resolution remained better than 5 Å within the 25% noise level but de-
creases markedly to 9 Å with γ = 50%, in particular for narrow noise widths
of σ = [0.5, 0.75]Å−1.
In Figure 6.8, the electron densities from the discussed runs are compared to

each other.
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Figure 6.8: Comparison of the electron densities retrieved from images contain-
ing noise of different levels γ ∈ [10%, ..., 50%] and widths σ ∈
[0.5, 0.75, 1.125, 2.5].

6.5 Evaluation of Phasing Errors
To asses the phasing error, I compared the intensities of the phased electron den-
sities Iphased = |F [ρretrieved]|2 with the intensities Iretrieved before phasing. To this
end, the intensity shell correlation (ISC) was calculated as

ISC(k) =

∑
ki∈k

(Ires(ki)− Ires(ki))(Iref(ki)− Iref(ki))√∑
ki∈k

(Ires(ki)− Ires(ki))2
√∑
ki∈k

(Iref(ki)− Iref(ki))2
. (6.1)

In analogy to the Fourier shell correlation, I considered ISC(k) = 0.5 as a mea-
sure for the resolution. As can be seen in Fig. 6.9, the phasing shifted this crossover
from approx. 2.8 Å to 3.1 Å, but it does not distort the shapes and relative heights
of the ISC curves. Assuming that the phasing error can be estimated from the
shift of this crossover, for the high-resolution density result with 3.3 Å resolution
(retrieved from 3.3 ·1010 photons), a decrease in resolution of ca. 0.3 Å is expected
to be due to phasing.
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Figure 6.9: Comparison between the intensity shell correlation (ISC) of the re-
trieved intensities (left) and the ISC calculated from the phased elec-
tron densities (right).

6.6 Evaluation of Over-Fitting

Because a large expansion order L requires a larger number of shells K and, there-
fore, much larger numbers of unknowns, the question remains at which point over-
fitting occurs. To quantify this effect for the used sets of images, I calculated
the achieved resolution as a function of expansion order L for four different total
photon counts 5.1 ·107, 2.0 ·108, 8.2 ·108 and 3.3 ·1010 (1.8 ·109, 7.1 ·109, 2.8 ·1010

and 1.2 · 1012 triplets respectively) at a fixed number of shells K = 26.
Indeed, as shown in Fig. 6.10, for up to 2.0 · 108 photons, the obtained three-

photon correlation is too noisy to yield an improved resolution when increasing
the model detail and for larger L, the probability p of the intensity model still
increases whereas the resolution decreases again, indicating over-fitting.
In contrast, for larger photon counts (> 8.2 · 108), the resolution improves even

up to the expansion order L = 18 and no over-fitting is expected here. Even in
the outer shells of these correlation histogram, e.g., k1 = k2 = k3 = 26, on average
32 triplets per bin are detected. This signal equals to an error of ∼ 17% in each
bin entry, a number which seems tolerable for this method.
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Figure 6.10: Achieved resolution as a function of the expansion order L using 5.1 ·
107, 2.0·108, 8.2·108 and 3.3·1010 photons (1.8·109, 7.1·109, 2.8·1010

and 1.2 · 1012 triplets respectively).

In all cases where no over-fitting occurred, convergence of the simulated anneal-
ing became computationally demanding due to the large parameter space.



7 Conclusion
The method developed in this thesis demonstrates de novo macromolecular struc-
ture determination from as few as three photons per XFEL scattering image at
near-atomic resolution. Given that currently available refinement methods require
at least 100 photons per image, this finding is quite unexpected. In particular,
because two photons per image do not uniquely determine the structure [46], here
I have reached the fundamental limit.
My synthetic scattering experiments with subsequent structure determination

have shown that, for the most challenging case of small biomolecules, a resolution
better than 3.3 Å should be achievable with available technology at realistic beam
times; specifically, as my estimate rests on a conservative estimate for the beam
fluence of 5.0 · 1011 transversely coherent photons per X-ray pulse.
The high-resolution structure was derived from 3.3 · 109 images which were gen-

erated for the 48 residues mid-sized Crambin protein. The images contained 10
coherently scattered photons, a number which is expected given the European
XFEL beam parameters, but in principle also lower photon counts are possible.
With only 10% of the scattering images, I have shown that a resolution of 3.7 Å
can still be achieved.
Notably, according to Barty et al.[126], the beam fluence may be as high as

1013 photons per pulse, which is more than 10 times higher than my estimate. I
have shown that with a 10-fold increase of the photon count to 100 photons per
image, the total number of required images and data acquisition time, respectively,
decreases by a factor 1000, putting the beam time required to measure a 3.3 Å
resolution structure in the order of minutes. Therefore, even higher resolutions
are conceivable for larger molecules [31] at realistic data acquisition times because
the number of scattered photons per image increases quickly with the number of
atoms in the molecule.
My analysis also suggests that the method is robust against noise from incoher-

ent scattering, and that removing disordered water (or other contaminants) from
the molecule in the experiment as much as possible is crucial. Further, fluctua-
tions of the beam intensity – both in time and space, which are a limiting factor
for image-wise orientation based methods – should not deteriorate the resolution
in my approach, as the correlations are insensitive to such fluctuations. Clearly,
further experimental data and improved noise models are required to study the
effect of these and other potential noise sources such as background radiation from
the evaporated water and detector noise.
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Since the experiment measures only intensities, the missing phases were retrieved
with a non-convex iterative phasing algorithm which is not guaranteed to produce
the optimal solution and there adds errors to the density. However, I have shown
that with my spherical harmonics implementation of the phasing, the resolution
of the densities deteriorates only by approx. 0.3 Å for the high-resolution case and
the phasing step is reliable and stable, in particular for the high-resolution cases.
Over-fitting effects were only seen in structure determination results from sparse

histograms with fewer than 107 images. The high-resolution results, however, were
retrieved from histograms that still had an average signal count of more than 32
triplets per bin even in the outer shells (e.g., k1 = k2 = k3 = 26 which only
involves photons with high scattering angles) and for these cases no over-fitting
was observed.
The Crambin structure determination of 3.3 Å resolution used L = 18 and

K = 26 as spherical harmonics expansion parameters and the Monte Carlo run
time was in the order of days. Going towards higher resolutions will require the use
of higher expansion parameters which increases the computational effort and even-
tually makes the computational resources a limiting factor for my approach in the
current version. Despite the fact that the most expensive matrix multiplication for
the three-photon calculation profits from the high-parallelization of modern graph-
ics cards, it most-like will become memory-limited for larger parameter spaces but
solutions are available for this class of problems.
I identified K = 26 and L = 18 as the optimal spherical harmonics parameters

to achieve approx. 3 Å resolution at minimal computational effort. However,
fundamentally, the resolution is only limited by the data collection, i.e. the number
of images and the photon counts per image.
Note that in this work, multiple gradient based method were tried for the struc-

ture optimization but failed due to the non-convex shape of solution space which
is comprised of many local minima. The Monte Carlo simulated-annealing ap-
proach was a good solution to escape these minima and sufficed to determine
near-optimal solutions for the inversion of the three-photon correlation. In partic-
ular the use of the hierarchically-distributed stepsizes substantially improved the
convergence of the optimization method because it exploited the hierarchy in the
high-dimensional search space. This hierarchy is an important advantage of using
spherical harmonics expansions and similar stepsize distributions or other iterative
refinement approaches will most likely also be used in other optimization schemes.
Assuming a conservative 10% hit rate, my method requires only ca. 1010

molecules, which is, compared to nano-crystallography, smaller by a factor of 10
(105 nano-crystals with 106nm3 volume) [23]. However, methods that are used
to increase the hit rate in nano-crystallographic experiments, e.g., embedding the
nano-crystals within polymers in order to decrease the flow velocity of the bulk ma-
terial, most likely will not improve single molecule scattering experiments because
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these sample delivery methods introduce a substantial amount of background noise
which negates the advantage of collecting more images.
I have demonstrated that the use of photon correlations does not require the

explicit classification of the orientations of the images. However, with the study
of the variation of the photon counts I have also shown that it is more beneficial
to collect more photons per image than to record more images. This information
asymmetry indicates that the lack of information on the orientations for each image
reduces the net information available for structure determination. In contrast
to previous non-correlation-based structure determination methods, however, my
three-photon correlation approach allows for compensation of fewer photons per
image P with more images I, in particular in the extreme Poisson regime.
Using only correlations up to third order is sufficient for de novo structure de-

termination, but the use of higher-order correlations (four-photons, etc...) may
further improve the resolution, albeit most likely rendering the calculation of
the forward model extremely expensive. Due to their universal nature, purely
Bayesian methods, such as the expectation maximization compression algorithm
(EMC) [32], should be optimal and cover the full information content. However, in
contrast to my approach, structure determination with EMC has not been demon-
strated with very few photons, probably because the method cannot handle the
large number of images required for low photon counts due to the exponential
computational effort required.
In this work, I have only considered single molecule shots but Kam suggested [46]

that the two-photon correlation of scattering images of multiple particles conver-
gence to the two-photon correlation of single particle images, and this occurs even
if an "extremely large number" of biomolecules is imaged in each shot (omitting the
potentially higher background noise for these scattering events). This fact has been
exploited already in several structure determination approaches that use angular
(two-photon) correlations measured in fluctuation X-ray scattering experiments
(CXS) on proteins in solution [99, 113, 115].
I expect that this ’convergence theorem’ also holds for higher-order correlations,

because all correlated doublets, triplets, etc... that are comprised of photons from
different particles will eventually average out and appear as background signal,
similar to noise from incoherent scattering. If, in fact, this is the mechanism
responsible for the convergence, this would imply that the speed of convergence is
slower for e.g., three-photon correlations because the ratio between triplets from
the same molecule and mixed triplets is much smaller than in the two photon case.
However, it would allow the illumination of multiple particles in a single shot from
time to time which would greatly ease the sample preparation and sample delivery
and result in a higher yield of usable scattering images.
It remains to be shown if this assumption holds for the full three-photon corre-

lations, e.g., numerically with the method at hand, by comparing the correlations
of synthetic images with superimposed signals of two particle orientations with the
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correlations of single particles generated for this thesis. If the sampling of three-
photon correlations are indeed robust to multi-particle shots, this may imply that
my method may also be applied for structure determination with CXS experiments
and potentially enable ab initio structure determination of system that are difficult
to asses with single molecule experiments, such as proteins that are embedded in
a 2D membrane or densely packed disordered systems.
Overall, my results suggest that near-atomic structure determination by single

molecule X-ray scattering is within experimental reach. The method is potentially
also useful to extract as much as possible information from other types of scat-
tering experiments, in particular when 3D structures are inferred from noisy two
dimensional projections, such as cryo-EM, X-ray microscopy, sub-diffractive opti-
cal microscopy [127, 128], and X-ray scattering experiments in material science.



8 Outlook
The structure determination results in this thesis suggest that a unique 3D inten-
sity solution exists for a given three-photon correlation because all runs with were
started independently from random starting points converged towards the same
intensities. However, a direct analytic inversion of the correlations has not been
achieved yet. Such a solution could provide an analytic estimate for the final reso-
lution of the electron density for a given set of images. Yet, also the direct inversion
will have to address the errors and inaccuracies introduces by the Poissonian shot
noise and my method may already by a good solution for this problem. In this
Chapter, I will therefore discuss potential improvements and possible validation
scenarios of the presented probabilistic three-photon correlation method.

8.1 Improving the Probability Maximization
The Monte Carlo simulated annealing scheme is one of many approaches to op-
timize the probability of observing the recorded triplets. Among others are,
e.g., gradient-based methods that require the derivative of the matrix equation
T = F · A(U) with respect to the rotations {Ul} [129] (note that local min-
ima need to be addressed), Markov chain Monte Carlo (MCMC) using Hamilton
dynamics [130] or replica exchange MCMC [131, 132].
Along with the optimization method, other energy functions (or probability

functions) are possible, that use e.g., additional constraints in the intensity search
space (e.g., the positivity and smoothness of the intensity) or different weighting
of the triplets and shells k1k2k3.
Also different metrics could be used for evaluating the statistical difference

between the probability distributions given by expected three-photon correla-
tion t(k1, k2, k3, α, β) and the recorded (histogrammed) three-photon correlation
h(k1, k2, k3, α, β), e.g., by Kullback–Leibler divergence [133] or Hellinger distance [134].

8.2 Improvements and Alterations to the Spherical
Harmonics Expansion

I have used the same expansion parameters on all spherical harmonics shells but, in
an extension of the method, lower shells could be described with a lower expansion
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limit L which could improve computation time and compensate for increasing
spatial resolution in lower shells due to the smaller radius.
The decomposition of 3D Fourier space in shells is motivated by the spherical

nature of the averaging on the detector. Here, the intensity is only expanded in
angular direction but it could also be expanded in radial direction through the use
of Zernike polynomials [115]. A radial expansion potentially eradicates the problem
of the histogramming which I addressed by normalizing k1k2k3-shells individually.
In addition, a radial expansion would allow to extend the hierarchical approach,
which goes from low to high angular resolution, to also go from low to high radial
resolution in the iterative refinement and thus further improve convergence.
As an alternative to the spherical harmonics expansion, the 3D intensity may

also be described with an infinite Gaussian mixture model [135], using Gaussian
spheres with a width that corresponds to the smallest structure in real space.
The three-photon correlation may be calculated in the Gaussian base, most likely
yielding basis functions f(..., α, β) with triple products of Gaussian functions.

8.3 Real Space Optimization
Combining the structure determination and the phasing into one step may give
better structure results with fewer computational effort, as demonstrated e.g. by
Donatelli et al. [36] with a method that determines the structure of test molecule
by classifying the orientations of 24 images with 8000 photons on average.
Such a combined approach (see Fig. 8.1) would start with a random "two-photon

conform" intensity and Fourier-transforms the corresponding amplitudes with ran-
dom phases to real space. After applying the real space constraints (e.g., finite
support and positivity of ρ(x)), the density is Fourier-transformed and its inten-
sity is projected onto the closest intensity that fits to the measured two-photon
correlation [136]. A Monte Carlo simulated annealing step then drives the in-
tensity towards a better fit with the measured three-photon correlation (my pro-
posed method) and the resulting new amplitudes A2,3 pc(k) are used for the back-
transform to real space with the phases ϕ(k) of the structure before two-photon
projection and three-photon optimization.
Beyond the typical real space constraints (positivity and support), chemical

information or information about the sequence would further reduce the size of
the search space. It was also proposed by Bhamre et al. [136] to retrieve the
phases from similar structures by orthogonal matrix retrieval recently developed
for cryo-EM, thus further increasing the accuracy and speed of the method.
All transformations and projections described in this proposed method can be

expressed in the spherical harmonics framework.
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Figure 8.1: Flowchart of a correlation-based structure determination method that
combines the phase-retrieval and the structure determination into one
iterative scheme.

8.4 Potential Challenges in Light of Experimental
Data

For now, single molecule scattering experiments have been carried out only on
large virus capsids [18, 111]. After post-processing (removal of all shots that
were empty, partly illuminated or contained multiple molecules), only a few 100
scattering images are available which are released on the Coherent X-ray Imaging
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Data Bank (CXIDB) [137]1 (provided by the Single Particle Initiative (SPI) at
Stanford).

Figure 8.2: Exemplary single molecule X-ray scattering images from the first ex-
periments in 2015 on giant mimivirus particles [18]2. A wavelength of
1.03 nm was used at LCLS (AMO beamline). The image is cropped
down to 300x300 pixel from originally 1000x1000 for visualization pur-
poses. The detector records single photon events.

In these images (see Fig. 8.2), the beam fluence significantly varies from shot to
shot, but as mentioned before, this is most likely no problem for my approach.
Due to the presence of the beam stop in the experiment, parts of the image are
occluded. A close look at the distribution of the noise per pixel throughout the
image may give important insights for improving the noise model.
The first single molecule scattering experiments on proteins are scheduled this

year at XFEL in Hamburg, most likely with rigid proteins because they are easy
to prepare and to inject with existing sample delivery methods. In the beginning,
the focus will be on the extensive evaluation of noise, in particular the substantial
amount of background radiation which is expected due to the evaporated water
molecules in vacuum [138].
As a preparation for experimental data and for further validation, the depen-

dency of the resolution on number of images/photons per image for different
1http://www.cxidb.org/
2http://www.cxidb.org/id-30.html

http://www.cxidb.org/
http://www.cxidb.org/id-30.html
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molecule sizes should be checked and in particular it should be verified that larger
molecules are simpler to determine. The method should be further validated with
scattering images that include some emulation of the beam-stop, although I expect
that the shadow of the beam-stop will be averaged out in the photon correlations.

Noise Distributions that Depend on the Structure

I have shown that structure determination in the presence of isotropic noise is
possible but in my model, the noise is assumed to be independent of the structure.
However, e.g., the noise from scattering on the water molecules on the molecule’s
surface is anisotropic and depends on the structure of the biomolecule and intensity,
respectively. In these cases, an improved model N(k|I(k)) for the connection
between structure and noise is required, including good estimates for the noise
levels γ(I(k)).
With structure-dependant noise models, the intensities may still be determined

with an iterative optimization based on
S(k) = I(k) + γ(I(k))N(k|I(k)) (8.1)

and a good initial guess for both the noise distributions N(k and the intensity
I(k).
My method can be validated further with different types of noise, maybe with a

more realistic model for the noise from water molecules that goes beyond Gaussian
distributions.

Conformational Ensembles

Although some proteins are rock-solid, others are very flexible in their physiological
environment. The latter pose a challenge for the structure determination because
the simple assumption that all molecules are identical and only differ in their
orientation does not hold anymore. Instead, in each single molecule scattering
shot, one particular conformation will be imaged and the information about this
conformation will be lost.
In a first step to address this problem, synthetic scattering images of random

representative of the conformational ensemble could be generated for validation. I
expect that the structure can still be determined but its density will be "smeared
out" in the regions where larger variance occurs. Molecular Replacement methods
may still be able to solve the structure in the presence of these uncertainties and the
variance gives important insights into the flexibility and dynamics of the protein.
In order to resolve the different conformations, the image sets could be sorted

into conformational sub-classes using a Bayesian approach and a coarse model of
the biomolecule and its conformations. The correlations of these sub-classes can
then be used for structure determination and the retrieved structures could be
used for another iterative refinement.
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8.5 Assessment of the Information Content in the
Scattering Images

I have shown that the achieved resolution depends both on the number of recorded
images I and the number of photons per image P . However, the total information
available for structure determination does not scale the same way as the total
number of photons M = I · P . Instead, the total available information c that is
contained within I images with P average photons may be calculated as

c = I(5 + 2(P − 3))− 3I. (8.2)

As discussed earlier, the first three photons contribute 5 distances and angles
and the following photons contributing 2 additional information each. From this
information, the three Euler angles required to determine the orientation, are
subtracted, which is the reason why additional photos per image are valuable,
especially at low photon counts.
The Equation 8.2 can be reformulated to express the total number of required

photons M as a function of the photons per images P ,

M = cP

2(P − 2) . (8.3)

If this assumption holds, the trend should be observable in the scattering images
of our synthetic experiments. Unfortunately, our generated histograms did not
match correct numbers of images and photons per image in order to validate this
hypothesis for now but future experiments will be done to clarify this question.
If the expressions above are valid, the total number of images needed to achieve

a particular resolution could be calculated for any given signal strength (photon
count per image), a prediction which is very important for the experiment.



A Appendix

A.1 Supplementary Theory

A.1.1 Spherical Harmonics Expansions

Figure A.1: Schematic depiction of the nodal lines of the spherical harmonics basis
functions.1. A nodal line marks the crossing of zero (transition between
positive and negative). In latitudinal direction, the real and imaginary
components of the associated Legendre polynomials cross zero l− |m|
times, whereas in longitudinal direction, the trigonometric sin and cos
functions have 2|m| zeros.
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In this work, the 3D Fourier intensity I (k) is decomposed into a set of concentric
shells with increasing radii k. The intensity on each shell is expanded in spherical
harmonics basis functions Ylm (θ, ϕ):

I (k) =
L∑
l=0

l∑
m=−l

Alm(k)Ylmϕ, θ) (A.1)

with the spherical harmonics coefficients Alm(k) specifying the contributions of
the corresponding Ylm. The set of spherical harmonics coefficients {Alm (k)} for
k = n · ∆k with 1 < n < K then describe the complete 3D structure. With
increasing orders l andm the spherical harmonics exhibit higher modes and express
finer structures. This allows to control the angular resolution of the description
by limiting the orbital momentum number l with an expansion limit L.
Incorporating the symmetry of the molecule’s Fourier intensity with Friedel’s

rule I (k) = I (−k) [42] leads to a reduction of descriptors in spherical harmon-
ics representation. This is easily shown by expressing the rule in the spherical
harmonics expansion of the intensity:

∑
lm

Alm (k)Ylm
(
k̂
)

=
∑
lm

Alm (k)Ylm
(
−k̂

)
=

∑
lm

Alm (k) (−1)l Ylm
(
k̂
)
. (A.2)

This expression only holds for even l which is why spherical harmonics coefficients
for l = 1, 3, 5, ... will be zero when describing symmetric functions such as the
intensity.

Fourier Transformation using Spherical Hankel Transform

Figure A.2: The spherical Hankel transform (also denoted as spherical Bessel
transform, or SB in contrast to the spherical harmonics transform, SH)
calculates the spherical harmonics coefficients of the Fourier transform
from the coefficients of the density in real space.

1https://de.wikipedia.org/wiki/Kugelflächenfunktionen

https://de.wikipedia.org/wiki/Kugelfl�chenfunktionen
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The spherical harmonics coefficients of the expansion of the Fourier transfor-
mation are calculated using the spherical Hankel transform (see Fig. A.2). The
Hankel transform of the SH coefficients of the electron density flm(r) is given by,

alm(k) = (i)l
√

1
k

ˆ ∞
0

flm(r)jl(kr)r2dr, (A.3)

with the spherical Bessel function jl(z) =
√
pi/2zJn+1/2(z). The resulting SH

coefficients alm(k) describe the expansion of the Fourier transformation. The back-
transform is calculated as

flm(r) = (−i)l
√

1
r

ˆ ∞
0

alm(k)jl(kr)k2dk. (A.4)

In this Thesis, the integral of the Hankel transform from Eq. A.3 is implemented
using direct integration where the sampling points are assumed to have been taken
at points related to the zeroes of a Bessel function of fixed order; just like in the case
of the discrete Fourier transform, where samples are taken at points related to the
zeroes of the sine or cosine function. Other methods can calculate the integral more
efficiently (see GNU GSL library) but they would require an uneven distribution
of the sampling points, i.e., an uneven spacing between the spherical shells of the
expansion. This aspect might be used in future implementations to further reduce
the errors in the back-and-forth transformation required, in particular during the
phasing.
The numerical integration is performed as a matrix product of the integration

kernel jl(kr) with the integrand I(r) = r2flm(r)∆r,

al =
M∑
m=0

jl(krm)Im (A.5)

The integrand is the product of the single with the ring area between neighboring
mid-points for r ∈ [∆r, ..., rmax]

I0 = flm(r0)
4 (r1 − r0)2

In = flm(rn)
4 (r2

n+1 − 2rn(rn+1 − rn−1)− r2
n−1)∀n ∈ [1, N − 1]

IN = flm(rN)
4 (2rNrN−1 − r2

N−1) (A.6)

The integration kernels are precomputed in my implementation which is based
on previous work by Leutenegger (MPI-BPC)2 but was modified to work with
spherical harmonics coefficients. Note that both real and imaginary parts of the
coefficients need to be transformed.

2http://de.mathworks.com/matlabcentral/fileexchange/13371-hankel-transform,
http://documents.epfl.ch/users/l/le/leuteneg/www/MATLABToolbox/
HankelTransform.html

http://de.mathworks.com/matlabcentral/fileexchange/13371-hankel-transform
http://documents.epfl.ch/users/l/le/leuteneg/www/MATLABToolbox/HankelTransform.html
http://documents.epfl.ch/users/l/le/leuteneg/www/MATLABToolbox/HankelTransform.html
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Calculating the Intensity

The intensity (I(k) = |F [ρ(x)]|2) is calculated in spherical harmonics coordinates
from the coefficients of the Fourier amplitudes Flm (k) with [42, 100]

Alm = (−1)m
∑

l1m1l2m2

G (l,m, l1,m1, l2,m2)Fl1m1 (k)F ∗l2m2 (k) (A.7)

where

G (l,m, l1,m1, l2,m2) = (−1)m1 (A.8)

×
[

(2l1 + 1) (2l2 + 1) (2l + 1)
4π

]1/2 (
l1 l2 l
0 0 0

)
(A.9)

×
(

l1 l2 l
m1 m̄2 m̄

)
. (A.10)

Expressing Rotations

Rotations are expressed as operations on spherical harmonics coefficients. To de-
scribe all possible rotations of a point on a sphere, two angular coordinates are
necessary. The angle α describes a rotation about the y-axis which is in plane with
the equator, while the angle β denotes the rotation about the polar z-axis. With
the help of the rotation factors Rl

m′m (ω) [117]

Rl
m′m (α, β) = eimβrlm′m (α) (A.11)

= eimβ
ˆ 2π

0

ˆ π

0
Ylm (Ry (α) (θ, ϕ))Ylm′ (θ, ϕ) sin (θ) dθdϕ(A.12)

the spherical harmonic coefficients are expressed after an arbitrary rotation as

Arot
lm =

l∑
m′=−l

Aunrot
lm Rl

m′m. (A.13)

The new coefficients are then a linear combination of the unrotated coefficients for
a fixed index l.

A.1.2 Inversion of The Two-Photon Correlation
The two photon correlation can be inverted analytically [46], which is best demon-
strated by rewriting the expression of the two-photon correlation in vector and ma-
trix form. To that end, we first define a (2l+1)-dimensional coefficient vector with
all the spherical harmonics coefficients Alm of fixed l and {m ∈ Z| − l < m < l} as
follows,

Al (k) =
(
Al−m (k) ... Alm (k)

)T
. (A.14)
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Figure A.3: Sketch of the two photons in the 3D intensity (left) and the orienta-
tional average of two intensities as a visualization for the integration
of the two-photon correlations (right).

By expressing the sum over m as a scalar product of coefficient vectors, the corre-
lation can be written partly in vector form,

ck1,k2,α =
∑
l

Pl (cos (α)) Al (k1) A∗l (k2)︸ ︷︷ ︸
Sl(k1,k2)

. (A.15)

If one further uses the vectors with correlation entries

ck1,k2 =
(
ck1,k2,α1 ... ck1,k2,αN

)
(A.16)

and scalar product entries

S (k1, k2) =
(
S0 (k1, k2) ... Sl (k1,k2)

)
(A.17)

as well as the matrix

P =

 P0 (cos (α1)) ... P0 (cos (αN))
... ... ...

Plmax (cos (α1)) ... Plmax (cos (αN))

 , (A.18)

the two-photon correlation is written as,

ck1,k2 = PS (k1, k2) . (A.19)

In Equation A.19 the vector c is known from the experiment and the matrix
P is constant, which is why the linear equation can be solved for the unknown
scalar products Sl (k1, k2). For a fixed orbital momentum number l and Kmax =
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2l+1, sufficiently many scalar products Sl (ki, kj) are available to express the Gram
matrix known from Distance Geometry,

Gl = FT
l Fl (A.20)

=

 Sl (k1, k1) ... Sl (k1, kKmax)
... ... ...

Sl (kKmax , k1) ... Sl (kKmax , kKmax)

 . (A.21)

The Gram matrix is comprised of the known scalar products Sl (kj,ki) between
the coefficients vectors belonging to a shell k and index l calculated from Eq. A.19.
The matrix Fl with Fl =

(
Sl (k1) Sl (k2) ... Sl (kKmax)

)
contains the spher-

ical harmonics coefficients for a fixed l. By diagonalizing Gl the system is solved
for the matrix Fl as follows,

Ll = YlGlYT
l . (A.22)

Solving this eigenvalue problem gives

Fl =
√

LlYl (A.23)

with the diagonal matrix Ll and the transformation matrix Yl.
The solution matrix Fl contains a valid set of spherical harmonics coefficients
{Alm} that yield the experimentally measured two-photon correlation. However,
this is an eigenvalue problem and the solution is only obtained up to an arbitrary
rotation Ul in the independent 2l + 1-dimensional eigenspaces,

Al (k) = UlA0
l (k) . (A.24)

In Figure A.4 randomly-chosen intensities (a-e, gray), represented by {Alm} and
calculated from random rotations {Ul}, that fit only the two-photon correlation
are compared with the reference intensity (f,green) which also fits the three-photon
correlation.
The numerical implementation of the inversion was calculated from the doublet

histogram, which itself was collected in analogy to the triplet histogram. Note, that
during histogramming, doublets with k1 6= k2 occur twice as often and the coeffi-
cients A0

lm are retrieved as real values. Real spherical harmonics coefficients were
transformed into complex spherical harmonics coefficients according to Ref. [117,
139, 140].

A.1.3 Phase Retrieval
As discussed in Sec. 2.3.2, on the detector the phases are not measured and as a
result, 50% of complex Fourier structure information is lost. However, the missing
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(a) (b) (c)

(d) (e) (f) Reference Intensity

Figure A.4: Comparison between different intensities that share the same two-
photon correlation. The intensities (a-e) were chosen randomly and
(f) is the reference intensity of Crambin.

information can be retrieved with iterative algorithms that use additional con-
straints to retrieve the phases. Starting from a set of random phases {ϕ(k)} and
the known amplitudes A(k) =

√
I(k), an electron density is calculated using the

inverse Fourier transformation. In real space, the electron density ρ(x) is projected
onto a set of constraints PS+ such that ρ?(x) = PS+ρ(x). The constraints account
for the fact that the:

• protein size is known (electron density support): ρ(r) = 0 | r > rmax

• density is positive: ρ(x) ≥ 0 | ∀x ∈ IR3

• density is real: ρ(x) ∈ IR3

The new electron density ρ?(x) is transformed back into Fourier space and the
phases are used together with the experimental amplitudes (amplitude projection
PM) for the next iteration.
Phasing algorithms slightly differ in the way they implement the projections PS+

and PM and how these projections are applied to the densities, thus varying in
stability and speed of convergence Here I use the well-established relaxed averaged
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Figure A.5: Schematic flowchart of the phase retrieval algorithm. A back-and-
forth transformation between real space and Fourier space is used to
fullfill the constraints in both spaces. In real space, the support (size)
of the density is known and the constraint that ρ(x) > 0 everywhere
is imposed. In Fourier space the retrieved amplitudes are imposed as
constraints.

alternating reflections (RAAR) algorithm developed by Luke[107]. The density
between consecutive steps are calculated as:

ρn+1 =
(
βn
2 (PS+PM + I) + (1− β)PM

)
ρn (A.25)

and a contraction factor βn,

βn+1 = β0 + (1− β0)(1− exp(−(n/7)3)), (A.26)

typically starting from β0 = 0.75 and increasing towards 1.0. Luke proposes the
convergence criteria

ES+(xn) = ‖PS+(PM(ρn))− PM(ρn)‖2

‖PM(ρn‖2 , (A.27)

however, in the implementation used in this Thesis, it sufficed to end the phasing
after ∼ 1000 iterations.
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(a) L = 4 (b) L = 6 (c) L = 8 (d) L = 10

(e) L = 12 (f) L = 14 (g) L = 16 (h) L = 18

Figure A.6: Electron density of a Crambin molecule with increasing L = 4..18
expanded with K = 18 shells.

A.2 Implementation Details

A.2.1 Implementation of the Spherical Harmonics Expansion

All Fast Spherical Harmonics Transformations were performed using the S2Kit
framework [141, 142]3. The same spherical harmonics expansion order L was used
for all shells. For the structure determination, L = 18 was used, which yields
(2L)2 = 1296 sample points on the sphere with an even sampling in φ ∈ [0, 2π]
and θ ∈ [−π/2, π/2] direction. The angular resolution of the expansion is ∆θ =
π/(2L) or ∆ϕ = 2π/(2L) respectively which in our case for L = 18 corresponds
to an angular resolution of ∆θ = 5.0◦ in longitude direction and ∆ϕ = 10.0◦
in latitude direction. The density ρ(x), expanded with a spherical harmonics
basis, was Fourier transformed by applying the spherical Bessel transform (Hankel
transform) to the coefficients according to Ref. [143–145] All Wigner matrices were
calculated as described in Ref. [139, 140] and the absolute square of the Fourier
density was calculated according to Ref. [100] by transforming the coefficients
directly.
As a visual demonstration for the scaling of the angular resolution with the ex-

pansion order L, Figure A.6 and Figure A.7 show the Crambin electron density and
the intensity respectively for L = 2...18 (∆θ = 45◦...5.0◦ and ∆ϕ = 90◦...10.0◦).

3http://www.cs.dartmouth.edu/∼geelong/sphere

http://www.cs.dartmouth.edu/~geelong/sphere
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(a) L = 4 (b) L = 6 (c) L = 8 (d) L = 10

(e) L = 12 (f) L = 14 (g) L = 16 (h) L = 18

Figure A.7: Intensity of a Crambin molecule with increasing L = 4..18 expanded
with K = 38 shells.

In Figure A.8, the intensity shell correlations (ISC) between different intensity
models expanded with a spherical harmonics order L ∈ [8, 10, ..., 20] and the refer-
ence intensity with expansion order L = 35 (mimicking high-resolution) is shown.
The intensity model expanded with L = 18, as used in this Thesis, is already very
close to reference model, indicating that L = 18 captures almost all structural
details.

A.2.2 Efficient Computation of the Three-Photon Correlation
Our method requires the fast evaluation of the three-photon correlation for a pro-
posed set of spherical harmonics coefficients {Alm(k)}. For this purpose, we com-
bined the Wigner-3j symbols and spherical harmonics basis functions into the
three-photon basis function f(l1, l2, l3,m1,m2,m3, α, β) which is non-zero only for
m1 +m2 +m3 = 0 and |l1− l2| ≤ l3 ≤ l1 + l2 as inherited by the Wigner-3j symbols.
Here, we denote the number of non-zero index combinations (l1, l2, l3,m1,m2,m3)
as B and the number of discrete angles α, β ∈ [0, π] in one dimension as N , as
further described in Sec. 4.5.
The entire three-photon correlation T is calculated by the matrix product

T = F ·A, (A.28)

with the matrix A ∈ RB×K3 that consists of the triple products of coefficients,
Aij = A

k1(j)
l1m1(i)A

k2(j)
l2m2(i)A

k3(j)∗
l3m3(i), the matrix F ∈ RN2×B that consists of three-photon
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Figure A.8: Intensity shell correlation (ISC) between a spherical harmonics model
of the reference intensity with large expansion order L = 31 (and high
angular resolution respectively) and a model with a lower expansion
limit L = [8, .., 20].

basis functions, Fij = f((l1l2l3m1m2m3)(i), (α, β)(j)) and the full three-photon
correlation matrix T ∈ RN2×K3 with the entries Tij = t((k1, k2, k3)(i), (α, β)(j)).
This vectorized expression can be calculated with a high degree of parallelism,
but nevertheless becomes the limiting factor in the computation. In particular,
the number B of three-photon basis functions f(l1, l2, l3,m1,m2,m3, α, β) grows
quickly with B ∼ L4 (e.g., B = 11841 for L = 10 and B = 163153 for L = 18). See
Sec. 4.6 on how this scaling affects our choice of spherical harmonics parameters.
In our implementation, we calculated both A and T using a custom CUDA

kernel, which significantly improved (> 100x) the performance over CPU-based
implementations and thus rendered the optimization computationally tractable.

A.2.3 Usage of ThreePhotons.jl Software Package
The electron density, Fourier density and intensity can be calculated from any
PDB structure as follows:
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Listing A.1: Example code for loading a Crambin pdb file and calculating electron
densities and Fourier densities.

# loading a Crambin structure and generating spherical
# harmonics represenations of its electron density ,
# Fourier transform and intensity

using ThreePhotons

# Maximum expansion order of SH expansion
LMAX = 25
# Maximum number of shells used in the expansion
KMAX = 30

# Description of the Crambin electron density ,
# Fourier density , and Fourier intensity expanded
#in Spherical Harmonics
density ,fourier , intensity =
createSphericalHarmonicsStructure (
"data/ structures / crambin .pdb", LMAX , KMAX , float(KMAX ))
#Same Crambin structure on a cubic grid
densityCube ,fourierCube , intensityCube =
createCubicStructure (
"data/ structures / crambin .pdb", 2* KMAX +1, float(KMAX ))

The synthetic scattering images are calculated as:

Listing A.2: Example code for generating 106 synthetic scattering images in par-
allel with 10 photons per image.

using ThreePhotons
include ("jobs/runs.jl")

generate_histograms (;
#Number of images to generate
num_images = Integer (1e6),
#Or maximum number of triplets
max_triplets = Integer (0),
#Number of CPU cores used for the data generation
Ncores = 8,
#Alpha/beta discretization
N = 32,
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photons_per_image = 10,
batchsize = round(Int64 ,1e6/8),
successive_jobs = 1,
#Use cubic or SH description for data generation
use_cube = false ,
# Fraction of maximum wave number
qcut_ratio = 1.0,
#total number of shells
K = 38,
# maximum radius in real space
rmax = float (38) ,
histogram_method =
" histogramCorrelationsInPicture_alltoall ",
structure_pdb_path = "data/ structures / crambin .pdb")

jobs/runs.jl includes helper functions to spawn data generation and structure
determination runs in various environments (including cluster systems).
Given a histogrammed two- and three-photon correlation, the structure can be

retrieved de novo:
Listing A.3: Example code for determining the structure from a two- and three-

photon correlation histogram.

using ThreePhotons
include ("jobs/runs.jl")

#number of images
num_images :: Int64 = Integer (1e6)
# Maximum shell number used for two -photon inversion
KMAX :: Int64 = 38
#Alpha/beta discretization
N:: Int64 = 32
# Maximum expansion order
L:: Int64 = 18
#Number of shells used for structure determination
K:: Int64 = 26
# Photons per image used for the histogram
ppi :: Int64 = 10
# Maximum radius of the reference structures
rmax = float(KMAX)
# histogram file name
name = " histogram .dat"



90 A. Appendix

run_determination (
#Name of the run
" runname ",
#Path to the histogram file
histograms = name ,

# Expansion parameters (see above)
K = K,
L = L,
KMAX = KMAX ,
rmax = rmax ,
N = N,

#Monte Carlo simulated annealing parameters
initial_stepsize = pi /4.0 ,
optimizer = " rotate_all_at_once ",
initial_temperature_factor =0.1 ,
temperature_decay = 0.99998 ,
stepsizefactor = 1.01
measure = "Bayes",

#Misc parameters
range = 1000:1019 ,
postprocess = true ,
gpu = true ,
Ncores = 20)
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