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Abstract

Protein-protein interactions play an important role in all biological pro-

cesses. But the principles underlying these interactions are not yet fully

understood. Ubiquitin is a small signalling protein that non-covalently in-

teracts with and is recognised by a multitude of other proteins. I have

conducted molecular dynamics simulations of ubiquitin in complex with 12

different binding partners and compared ensembles of bound and unbound

ubiquitin to determine the influence of complex formation on the dynamic

properties of this protein. Along the main mode of fluctuation of ubiquitin,

binding in most cases reduces the conformational space available to ubiqui-

tin to a characteristic subspace of that covered by unbound ubiquitin. This

behaviour can be well explained using the model of conformational selec-

tion. For lower amplitude collective modes, a spectrum of zero to almost

complete coverage of bound by unbound ensembles was observed. The sig-

nificant differences between bound and unbound structures are exclusively

situated at the binding interface. Overall, the findings correspond neither

to a complete conformational selection nor induced fit scenario. Instead, I

introduce a model of conformational restriction, extension and shift, which

describes the full range of observed effects. The observation of characteristic

restrictions of the main mode dynamics in complexes, lead me to develop

the hypothesis that ubiquitin binding can be modulated by changing main

mode behaviour, for example by mutation of residues in the hydrophobic

core. Using a screening protocol based on non-equilibrium free energy sim-

ulations,eleven mutations of ubiquitin were identified that shift the equilib-

rium population of unbound ubiquitin along the main mode. I calculated

the effect of these mutations on the free energy of binding to different bind-

ing partners that require ubiquitin to be a characteristic state, observing a

significant shift in binding affinity.
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1

Introduction

1.1 Protein-protein interactions

The function of cells and in extension all biological systems is governed by the interac-
tome (1), the network of interactions between its molecular constituents, including an a
huge number of protein-protein interactions (2). This thesis will focus on non-covalent
interactions, that is interactions that are not based on chemical bonds. These interac-
tions can be permanent, as in the case of molecular assemblies like the haemoglobin or
aquaporin tetramers or the ribosome or transient as in the antibody-antigen recognition
(3) signalling pathways (4) or intracellular transport (5). Complex interaction networks
have been identified using experimental methods like two-hybrid screening (6), but the
reliability of these high-throughput methods seems to be limited (7, 8) and verification
of their results is necessary. The ability of proteins to form non-covalent complexes
is described by their binding affinity (described below). A multitude of experimental
methods has been developed to measure the binding affinity. Often, they are based
on indirect observations of the binding process, as in isothermal titration calorimetry
that measures the heat taken up or released upon binding. Other approaches are based
on differences of optical properties between bound and unbound proteins or observe
fluorescence. More extensive treatment of the different methods including their spe-
cific strengths and limitations can be found in the literature (9, 10, 11). The binding
affinity indicates if and how strong proteins interact, but not how. For this, structural
information is needed. X-ray structures of protein complexes provide a wealth of high
resolution structural information but reflect a static snapshot of the structure, leaving
the mechanism of complex formation and dynamics in the complex unaddressed.

Nuclear magnetic resonance (NMR) spectroscopy provides some information of
dynamics, but until recently, only very fast molecular motions in the picosecond to
nanosecond range (using NMR relaxation measurements) and slow dynamics (slower
than 10ms, observed by peak splitting) were observable, while observations in the bio-
logically relevant microsecond timescale require new approaches (12). The experimental
determination of complex structures faces specific problems in addition to those encoun-
tered in unbound structure determination, like managing to co-crystallise bound pro-
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1. INTRODUCTION

teins and potential low concentrations of complexes with low binding affinity. Compared
to the growing number of experimentally determined structures of unbound proteins,
there is only a small number of known structures of protein complexes.

Computational methods may be used to verify protein-protein interactions and
find complex structures based on the knowledge of unbound protein structures, but
these predictions both of binding affinities (13) and complex structures (14, 15) remain
challenging and highly non-trivial tasks. Computational methods have been shown to
produce high quality complex structures of proteins known to interact in a number
of cases. However, they are not well-suited to distinguish binding from non-binding
protein pairs or accurately predict binding affinities, as has been shown in cross-docking
studies, where docking algorithms have been applied to pairs of proteins known not to
interact as well as pairs known to interact (16, 17, 18, 19). Most of the methods consider
the binding partners to be rigid bodies, so predictions get highly inaccurate if significant
conformational changes are part of the binding process. Also, entropic contributions
to binding free energy can only be estimated using heuristic models. With the increase
in computational power, flexibility has been introduced in the computational methods,
and shows promising results (20). And a better understanding of the role of dynamics
in protein is likely to bring further advances in this field.

Understanding protein-protein interaction could allow many new approaches for
drug development, be it the disruption of unwanted interaction or the use of proteins
as drugs themselves. An extensive, recent overview about protein-protein interactions
can be found in (21).

In the case of transient interactions, the strength of binding is an important factor.
The interactions between the proteins have to be strong enough to enable interactions
but weak enough to allow dissociation if necessary.

The strength of protein binding is characterised by the binding affinity or dissoci-
ation constant Kd, which is given by the concentrations of unbound binding partners
([A] and [B] in the case of a complex involving two proteins) and the concentration of
the complex ([AB]) as

Kd =
[A] · [B]

[AB]
(1.1)

The binding affinity is a macroscopic quantity and as such not easily accessible to
microscopic methods like molecular dynamics simulation. It is however related to the
Gibbs free energy of dissociation (∆Gd) as

∆Gd = −RT ln
Kd

c0
(1.2)

where c0 is the concentration that defines the standard state (c0 = 1 mol L−1) and
R is the gas constant (8.3144 J K−1 mol−1). Since this means

Kd = c0 · e−
∆Gd
RT (1.3)

and considering equation 1.1 it is clear that significant concentrations of the complex

2



1.1 Protein-protein interactions

will only be observed if ∆Gd is positive (or the binding free energy ∆Ga = −∆Gd is
negative).

1.1.1 Binding models

Figure 1.1: Illustration of the alternative binding models of induced fit and
conformational selection. According to the induced fit model, the binding partners first
form an encounter complex before the conformational changes necessary for the formation
of the final complex are induced by the interactions. The induced fit model assumes that the
binding partners show different conformations when unbound including those compatible
with binding, which are then selected in the binding process as they are energetically
favorable.

Different models have been proposed to explain the selective interaction observed
between proteins. The lock and key model (22) already established a structural com-
plementarity between the binding partners as possible explanation. However, in some
cases, significant differences are observed between the structure of a protein in solution
and the structure of the same protein in a complex. Currently, two different models are
mainly used to explain these differences (figure 1.1). The induced fit model (23, 24)
postulates that after the formation of a preliminary “encounter complex”, the inter-
action between the binding partners induces conformational changes into the complex
structures. The conformational selection model (25, 26, 27) (which is similar to the “dy-
namic fit” model proposed in 1964 (28)) takes into consideration the inherent flexibility
of proteins. According to this model, unbound proteins can with a certain probability
sample the same conformations as observed when bound. In this model, changes in the
free energy landscape of the protein due to interactions in the complex shift the con-
formational density towards the complex structure upon binding. More recent studies
(29, 30) have indicated that elements of both models play a role in protein binding with
an initial conformational selection step followed by induced fit rearrangements (31).

3



1. INTRODUCTION

1.2 Ubiquitin

An interesting model system to investigate the conformational effects of complex for-
mation is ubiquitin with its binding partners. Ubiquitin is a globular 76 residue protein
that plays an important role in biological pathways, as the ubiquitination (the covalent
attachment of ubiquitin to a lysine side chain of a protein, also known as ubiquitylation)
can among other functions control the degradation or regulate transport of this pro-
tein. Structurally (32, 33) ubiquitin mainly consists of a 5-stranded β-sheet, one short
and one longer (3.5 turn) α-helix. An important surface feature is the solvent-exposed
hydrophobic patch (Leu-8, Ile-44, Val-70), which is involved in most binding interfaces.
The C-terminus of ubiquitin is exposed and flexible.

An introduction into the history of the discovery of ubiquitin and its functions can
be found in (34).

The first function of ubiquitination to be understood and still its most widely known
is its role in protein degradation (35, 36, 37). Other functions of ubiquitin besides its
role in protein degradation have been found in protein synthesis (38), membrane protein
endocytosis (39, 40), regulation of the cell cycle (41), DNA repair (42), transcriptional
regulation (43) and stress responses (44, 45).

The process of ubiquitination (figure 1.2) has been extensively researched (46, 47).
First, ubiquitin is activated by the ubiquitin-activating enzyme E1 at the expense
of energy which is supplied by the degradation of Adenosine triphosphate (ATP) to
Adenosine monophosphate (AMP) and inorganic phosphate. The activated ubiquitin
then is transferred to an ubiquitin-carrier protein or ubiquitin-conjugating enzyme (E2)
and finally attached to a substrate protein in a reaction catalysed by a ubiquitin-protein
ligase (E3). While the E1 enzyme is a unique protein in most organisms, specificity
of ubiquitination is provided by a variety of different E2 and especially E3 enzymes
(of which there are estimated to be more than a thousand in mammalian cells (34)).
As a result of this pathway, the carboxylic acid of the C-terminal glycine of ubiquitin
is covalently bound to the epsilon amine of a lysine in the substrate. Ubiquitin itself
contains seven lysines (residues 6,11,27,29,33,48,63), and additional ubiquitins can be
attached by the same mechanism to each of these Lysine side-chains as well as to the N-
terminus (”‘Linear chains”’ (48, 49, 50)). Different configurations of such polyubiquitin
chains have been observed in nature. The best known case is a chain of at least
four Lys-48-linked ubiquitins, which is necessary to mark a protein for protesomal
degradation. Another common case is that of Lys-63-linked ubiquitin chains, but also
mixed configurations (51) and even branched ubiquitin chains (52) have been observed.
The possibility to form different types of polyubiquitin chains allows ubiquitin to be part
of a number of different signalling pathways, with new ones still being discovered. These
different ubiquitin signals have to be recognised by corresponding receptor proteins to
correctly process the attached protein or affect a signal pathway (53). Finally, when the
ubiquitinated protein has reached its destination or as part of a corrective or regulatory
function (for example to extend the lifespan of certain proteins otherwise headed to the
26S proteasome), the ubiquitin or polyubiquitin chain has to be removed from the

4



1.2 Ubiquitin

protein. This is done by deubiquitinating enzymes (DUBs).

Figure 1.2: Schematic diagram of the ubiquitylation system.

As ubiquitin is involved in such a variety of different cell functions, it has been
implicated as essential in a number of different diseases (54) including cancer (55),
HIV (56, 57) (which “hijacks” the ubiquitin system to mark a protein for degradation
that would otherwise hinder replication of the virus) and different neurodegenerative
diseases like Huntington’s (58) and Alzheimer’s (59).

1.2.1 Ubiquitin binding domains

It is estimated that ubiquitin non-covalently interacts with more than 150 cellular
proteins (60), including members of the E1/E2/E3 ubiquitination process, deubiqui-
tinating enzymes or receptor enzymes. Within these, certain classes of structurally
similar binding motives or ubiquitin binding domains (60, 61, 62) have been observed.
The first domains to be discovered were the ubiquitin-interacting motif (UIM) and the

5



1. INTRODUCTION

ubiquitin-associated (UBA) domain. Other significant UBDs include zinc finger motifs
for example the polyubiquitin-associated zinc-finger (PAZ) and the Npl4 zinc finger
(NZF) motif, the coupling of ubiquitin conjugation to endoplasmic reticulum degra-
dation (CUE) domain, the Gga and TOM1 (GAT), the GRAM-like ubiquitin-binding
in Eap45 (GLUE) domain and ubiquitin-conjugating enzyme variant (UEV) motif. A
recent list of known UBDs can be found in (60), and new UBDs are still being dis-
covered . Some of these domains preferentially bind specific polyubiquitin chains, in
other cases, the receptor protein contains more than one UBD to recognise and bind
to polyubiquitin chains.

1.2.2 Ubiquitin complex structures

In this function, ubiquitin is recognised by and interacts with a multitude of other pro-
teins. For several of these complexes, the structures have been experimentally deter-
mined using either X-ray crystallography or nuclear magnetic resonance spectroscopy.
As of February 2013, the Protein database (PDB (63)) contains 140 structures that
contain at least one chain of wild type human ubiquitin. Many of these are complex
structures. For this study, a selection of the available structures was made according to
three main criteria. As the pincer mode of ubiquitin has already been implied to play an
important role in binding (12), so care was taken to consider complexes containing ubiq-
uitin in a variety of conformations along this mode. To reduce computational cost and
in view of a possible collaboration involving the use of RDC measurements, complexes
with small binding partners were prefered over ones involving big binding partners.
Finally, high resolution X-ray structures with few missing atoms were prefered over
lower quality structures to supply reliable starting structures for the simulation. As a
result, eleven structures (table 1.1 and figure 1.3) selected from the PDB for simulation.
An additional X-ray structure (dsk2 ) of ubiquitin in complex with the UBA domain of
Dsk2p was supplied by Stefan Becker from the department of NMR-based Structural
Biology of the Max Planck Institute for Biophysical Chemistry.

1.3 Previous work

In 2008, Lange et al. (12, 75) used residual dipolar couplings to derived an ensemble of
ubiquitin in solution, which showed significantly more structural variety than ensembles
of unbound ubiquitin that had previously been derived from NMR experiments (76, 77).
They compared this ensemble with 46 crystal structures from the PDB, most of which
were of ubiquitin in complex with a binding partner. As the backbone structure of each
of the X-ray structures was within a 0.8 Å RMSD of the nearest structure from the
NMR ensemble, they concluded that the conformational selection model was sufficient
to explain the structural diversity of bound ubiquitin on the backbone level. They also
identified those residues of ubiquitin usually involved in binding to be more flexible than
those not involved in binding, so it can be assumed that this flexibility of ubiquitin is
essential to its ability to bind a variety of binding partners. Finally, they identified

6



1.3 Previous work

Figure 1.3: A collection of ubiquitin complex structures used in this study. The
binding partners are drawn in grey, different ubiquitin chains in the same X-ray structure
are coloured differently. Structures are labelled with the corresponding PDB code.

7



1. INTRODUCTION

Table 1.1: Structures used for simulation setup.

PDB code binding partner resolution (Å) reference

1NBF Ubiquitin carboxyl-terminal hydrolase 7
(HAUSP)

2.30 (64)

1P3Q CUE domain of Vacuolar protein sorting as-
sociated protein (Vps9p)

1.70 (65)

1S1Q Tumor susceptibility gene 101 protein
(TSG101)

2.00 (66)

1UBI none (unbound reference) 1.80 (33)

1UBQ none (unbound reference) 1.80 (32)

1UZX UEV domain of Vps23 1.85 (67)

1XD3 Ubiquitin Carboxyl-terminal esterase L3
(UCH-L3)

1.45 (68)

2D3G UIM from hepatocyte growth factor-
regulated tyrosine kinase substrate (Hrs-
UIM)

1.70 (69)

2FIF Rab5 GDP/GTP exchange factor 2.49 (70)

2G45 Ubiquitin carboxyl-terminal hydrolase 5 1.99 (71)

2HTH Vacuolar protein sorting protein 36 2.70 (72)

2IBI Ubiquitin carboxyl-terminal hydrolase 2 2.20 (73)

2OOB E3 ubiquitin-protein ligase CBL-B 1.90 (74)

dsk2 UBA domain of Dsk2p 2.00

the a collective mode of motion (the pincer mode) as the main mode of fluctuation
responsible for binding.

Wlodarski and Zagrovic (30) performed a more thorough statistical analysis on
the structural ensemble published by Lange et al. in comparison to a similar set of
X-ray structures. They found that only a small number of structures from the NMR
ensemble constitute the most similar to all bound X-ray structures, deducing that
the unbound protein only rarely enters conformations compatible with binding. They
also identified statistically significant differences between bound and unbound protein
structures near the binding interface by calculating the average atomic rmsd between
each bound structure and the most similar unbound structure considering only atoms
up to a certain distance from the binding partner. They concluded that ubiquitin shows
considerable “residual induced fit” which they consider to be “comparable in magnitude
to conformational selection” observed in ubiquitin.

It has recently been shown (78) however, that the observed differences between
the experimental bound structures and a molecular dynamics (MD) ensemble of un-
bound ubiquitin decrease with an increasing number of snapshots considered from the
simulation ensemble indicating that indeed conformational selection largely suffices to
explaining the conformational heterogeneity of ubiquitin in different complexes.

8



1.4 Aim and organisation of this thesis

1.4 Aim and organisation of this thesis

This thesis aims to give a detailed description of the effect of non-covalent binding on
the dynamics of ubiquitin using MD simulations.

The principles of MD simulations and the methods used in the analysis of the
dynamics ensembles generated by MD are described in chapter 2. In chapter 3, these
methods are applied to investigate and analyse the dynamic properties of a selection
of ubiquitin complexes (listed in table 1.1). In particular, characteristic effects on
the pincer mode, the main mode of fluctuation of unbound ubiquitin are found to be
the main effect of binding. Similar effects can be reached by the mutation on ubiquitin
residues as will be shown in chapter 4, where also the effect of such mutations on binding
will be investigated. Finally, the results of this thesis will be discussed in chapter 5
including a short outlook on open questions and possible future investigations.

9
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2

Theory and Methods

2.1 Molecular dynamics simulations

Molecular dynamics (MD) simulations produce atomic resolution dynamic ensembles
of molecular systems. In this study, these are used to investigate the dynamics of
ubiquitin bound to various binding partners and compare them to the dynamics of
unbound ubiquitin. The first part of the following chapter describes the principles and
approximations of MD simulations, the second part introduces MD-based methods to
determine free energy differences and finally the methods used to analyse and compare
the ensembles are presented.

2.1.1 Approximations used in MD

2.1.1.1 Born-Oppenheimer approximation

The state of a molecular system evolves according to the time-dependent Schrödinger
equation:

i~
∂

∂t
ψ(r,R) = Hψ(r,R) (2.1)

where r and R are the positions of electrons and nuclei, ψ is the wave function
and H the Hamiltonian operator. Evaluating this equation is not feasible for large
molecules like proteins. For systems containing more than two independent particles,
no analytical solution of the Schrödinger equation exists, and numerical approaches
become computationally demanding for systems containing more than a relatively small
number of atoms. On the other hand, in most cases the precise time evolution of the
wave functions is not necessary to the understanding of biological functions so that a
more coarse view of protein dynamics often is appropriate. A number of simplifications
are being used to model molecular dynamics on an atomic scale while reducing the
computational complexity. Electron dynamics happen on timescales significantly faster
than those of nuclei, since the mass of electrons is several orders of magnitude smaller
than that of nuclei. To simplify the Schrödinger equation, the Born Oppenheimer

11



2. THEORY AND METHODS

approximation (79) can be used, which decouples the wave functions for electrons and
nuclei:

ψ(r,R) = ψn(R) · ψe;R(r) (2.2)

As electrons posses a mass which is several orders of magnitude smaller than that
of the nuclei, there is a separation of timescales between fast electrons and slow nuclei.
The electron wave function ψe;R(r) can be calculated under the assumption that the
nuclei supply an electric potential that does not change in time. For the calculation of
the nuclear wave function ψn(R), the electrons can be assumed to adjust infinitely fast
to the nuclear position.

2.1.1.2 Classical description of nuclear dynamics

Using the Born-Oppenheimer approximation, atomic electrons are considered to move
with the corresponding nuclei. Consequently, we now consider the motion of the nu-
clei (as electronic motion is not separately considered, these are equivalent to atoms),
which can be considered to behave like point particles that move according to Newton’s
equations of motion:

mi
∂ri
∂t2

= Fi, i = 1 . . . N (2.3)

where mi and ri are the mass and position of atom i, while Fi is the force act-
ing on it. The forces are calculated as the gradient of the potential energy function
V (r1, r2, . . . , rN ) describing all inter-atomic interactions:

Fi = ∇V (r1, r2, . . . , rN ) (2.4)

The potential energy function is calculated from simple mathematical functions de-
fined in the force-field (section 2.1.1.3). This treatment of atoms as classical particles is
justified in most cases, as the deBroglie wavelength of the atoms under the conditions
considered is considerably smaller than the distance of the atoms (the deBroglie wave-
length of a carbon atom at T = 300K is λdB ≈ 0.4 Å, while a C-C bond is d ≈ 1.5 Å
long). Another criterion is the treatment of bond vibrations - quantum mechanical
calculations are necessary if the resonance frequency of a harmonic oscillator exceeds
kBT/h which is approximately 200cm−1. As can be seen in table 2.1, different bond
vibrations, mainly those involving hydrogen, are close to this value (80). As will be
seen in section 2.1.5, most of the fast bond vibrations are removed from the system by
the use of constraints - while this is mainly done to increase the possible timestep in
the simulation and hence improve simulation speed, it also has the advantage that the
resulting constrained bonds correspond to the quantum-mechanical harmonic oscillator
in its ground state better than a classical harmonic oscillator would.

12



2.1 Molecular dynamics simulations

Table 2.1: Typical vibrational frequencies in molecular systems, according to (80)

type of bond type of vibration wavenumber (cm−1)

C-H, O-H, N-H stretch 3000-3500
C=C, C=O stretch 1700-2000

HOH bending 1600
C-C stretch 1400-1600

H2CX sciss,rock 1000-1500
CCC bending 800-1000

O-H. . .O libration 400-700
O-H. . .O stretch 50-200

2.1.1.3 Force Field

The interaction forces between the atoms in a molecular system are determined by
quantum mechanical effects. As these can not be calculated with reasonable effort for
systems consisting of ≈ N ≥ 100 atoms (which includes all systems considered in this
work), these interactions have to be modelled in a way consistent with the classical
approximation used in MD simulations. For this, empirical or semi-empirical force
fields have been devised, whose parameters are determined from quantum mechanical
calculations or adapted to reproduce experimental observables for simple model sys-
tems. Force field parametrisation is an ongoing field of research. Existing force fields
like the gromos force field (81, 82), the charmm force field (83, 84) oplsaa (85) and
different iterations of the amber force field (86, 87, 88) (which includes amber99sb, the
force field used in most simulations in this study) are continuously adapted to fit new
experimental observations (89) or to maintain plausible results for new, long timescale
simulations (90).

Bonded interactions are depending on bond-lengths (2.6), bond angles (2.7), dihe-
dral angles (2.8) and improper dihedrals (2.9). As each atom is only involved in a given
number of covalent bonds which does not change over the course of the simulation, the
computational effort necessary to calculate these bonded interactions increases linearly
with the number of atoms in the system. The non-bonded interactions are approxi-
mated by a Lennard-Jones potential ((91), eqn. 2.10), a mathematically simple model
of the quantum mechanical interaction between a pair of neutral atoms (which consist
of the attractive van der Waals force between induced dipole moments and the repulsive
exchange interaction which is based on the fact that two electrons cannot occupy the
same quantum mechanical state) and the Coulomb interactions (2.11) between charged
particles. These forces act between each pair of atoms in the system, increasing the
computational effort necessary to compute them quadratically with the system size and
hence severely limit the maximal size of the systems accessible to the method. The elec-
trostatic interaction between two particles depends on their respective charges. In MD
simulations, the particles represent atoms, most of them involved in covalent chemical
bonds, resulting in shared and sometimes (as in the case of aromatic rings) delocalised
charges. To model this, atoms are assigned effective charges based on the electric wave
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function of the molecule they are part of, which is assumed to depend only on the imme-
diate molecular surroundings (in the context of proteins, this is usually the amino-acid
residue in which the corresponding atom is located). It is calculated for model sys-
tems using numerical quantum mechanical methods and considered to be constant over
the course of the simulation, excluding polarisation effects as well as chemical reactions
which require the formation of breaking of covalent bonds or the relocation of electrons.
In practice, non-bonded interactions (especially the Lennard-Jones potential) are negli-
gibly small for distances larger than 1.4 nm. Optimisation methods like neighbour lists,
cut-offs and shift functions (80) use this to limit the number of non-bonded interactions
that have to be calculated each step and hence improve simulation performance.

V (r) = Vbonded(r) + Vnonbonded(r) (2.5)

=
∑

bonds i

ki
2

(bi − bi,0)2 (2.6)

+
∑

angles i

fi
2

(θi − θi,0)2 (2.7)

+
∑

dihedrals i

Vi
2

[1 + cos (nψ)] (2.8)

+
∑

impropers i

κi (ξi − ξi,0)2 (2.9)

+
∑

pairs i,j

4εij

[(
σij
dij

)12

−
(
σij
dij

)6
]

(2.10)

+
∑

pairs i,j

qiqj
4πε0εrrij

(2.11)

2.1.2 Water model

The natural environment of proteins consists mainly of water. MD simulations in
this study were conducted with the proteins surrounded by a large number of explicitly
modelled water molecules (and ions corresponding to 150 mM of NaCl). While “implicit
solvent” methods are being developed for MD, their results are generally less accurate
than those of simulations performed with explicit water (92, 93, 94). As water makes
up a significant part of the simulation box, a number of different models have been
developed to simulate water both accurate and efficiently (95, 96, 97). The SPC/E
water model (97) used here is a three site model which considers both bond length and
bond angles to be constant. As constant charges are assigned to the atoms of the water
molecule, polarisability is not modelled. To correct for this, the SPC/E model adds a

14



2.1 Molecular dynamics simulations

Figure 2.1: Different components of classical force fields.
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correction term 2.12 to the potential energy function,

Epol =
1

2

∑
i

(
µ− µ0

)2
αi

(2.12)

where µ = 2.35D is the dipole of the effectively polarised water molecule, µ0 = 1.85D
is the dipole moment of an isolated water molecule and αi = 1.608 × 10−40Fm2 is an
isotropic polarisability constant.

2.1.3 Integrating the equations of motion

Even in the classical approximation, the equations of motion for a system of n ≥ 3
bodies cannot be solved analytically and numeric integration has to be used. A number
of different numeric integration schemes exist. The one used in this work is the leapfrog
algorithm (eqn 2.13, 2.14) (98) which uses a discrete timestep ∆t:

vi

(
t+

∆t

2

)
= vi

(
t− ∆t

2

)
+

Fi(t)

mi
∆t (2.13)

ri (t+ ∆t) = ri(t) + vi

(
t+

∆t

2

)
∆t (2.14)

Both the velocity vi of and the force Fi acting on each particle are assumed to be
constant over the duration ∆t, so it has to be chosen small enough to correctly integrate
the fastest dynamics in the system. In molecular systems, these are bond oscillations
which have periods on the order of 10fs.

Figure 2.2: Periodic boundary condi-
tions. The original system (green protein) is
surrounded by its periodic images (blue pro-
tein). For better visibility, only one layer of the
lattice is shown.

As at least five integration steps should
be performed per period to accurately
model the dynamics using a leapfrog al-
gorithm (99), this would require a time-
step of ∆t ≤ 2fs. The time-step can
be increased if steps are taken to re-
move fast oscillations from the system
(see section 2.1.5).

2.1.4 Boundary conditions

2.1.4.1 Periodic boundary condi-
tions

As simulations are performed in an
aqueous environment, an increase of the
simulation system goes with an increase
of the atoms to be simulated and conse-
quently of the computational effort nec-
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essary to simulate each time-step. Be-
cause of this, it is desirable to use a simulation box which is as small as possible while
modelling the environment as realistically as possible. However, when the part of the
system (usually the protein) is too close to the boundary of the system, boundary effects
could distort its behaviour. Using periodic boundary conditions (figure 2.2), boundary
effects are avoided. By transforming coordinates “periodic images” of the simulation
box are created. Particles leaving the simulation box reenter it at the opposite side and
particles near the boundary interact across the periodic boundary.

While periodic boundary conditions avoid effects caused by “artificial” boundaries
of the simulation system, they too can cause artefacts. Care has to be taken to avoid
the interaction of a particle with two copies of the same other particle or even with
itself, for example by modifying interaction potentials to vanish for distances greater
equal half the box length. This can be achieved in multiple ways including truncation,
switch or shift (100) functions (101), while electrostatic interactions can be handled
using the PME method (section 2.1.4.2).

A simulation box with periodic boundary conditions can have a variety of shapes,
as long as it is space filling. In the most general case, to minimise the volume of the
system (and hence the number of water molecules that need to be simulated) while
maximising the distance between the protein and it’s periodic image, a space filling
shape best approximating a sphere should be chosen - for this, the dodecahedron (which
however is represented as a triclinic box in the computer (102)) has the optimal shape.
For non-globular proteins, non-symmetric (e.g. rectilinear) simulation boxes can be
more optimal, but in these cases care has to be taken to restrict the rotation of the
protein.

2.1.4.2 Efficient handling of electrostatics - PME

As mentioned in section 2.1.1.3, the computationally most expensive interactions in the
molecular system are the electrostatic ones, which are described by the coulomb poten-
tial. While bonded interactions are limited to a relatively small, unchanging number
of bonds and the Lennard-Jones potential quickly approaches zero (being proportional
to r−6), the coulomb potential (which is proportional to r−1) cannot simply be ignored
even at longer distances. An efficient handling of electrostatic interactions is Particle
Mesh Ewald (PME) summation (103, 104). It is based on the fact that the electrostatic
potential can be separated into two terms

VCoulomb(r) = VCoulomb,sr(r) + VCoulomb,lr(r) (2.15)

where one part (the short ranged part VCoulomb,sr(r)) quickly converges in real
space, while the other (the long ranged VCoulomb,lr(r)) quickly converges in recipro-
cal (or Fourier) space. This way, the computational cost of calculating the electrostatic
interactions of N atoms is reduced from O(N2) to O(N · logN).
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2.1.4.3 Temperature and Pressure coupling

In its original form, MD simulates a constant number of particles in a constant volume
and (barring numerical integration errors) obeys conservation of energy as all poten-
tials are conservative. The simulated ensemble is a NVE or microcanonical ensemble.
A simulation of a constant number of particles, constant Volume and constant Temper-
ature (NVT), also called a canonical ensemble, more closely resembles the natural state
of the protein. A number of methods (so called thermostats (105, 106, 107, 108)) have
been developed to keep the simulation system at a constant temperature. In general,
they adjust the velocities of the particles in the system so that the kinetic energy K
correspond to

K =
3N

2
kBT (2.16)

where N is the number of atoms and T is the set temperature. It can also be
necessary to simulate at constant pressure instead of constant volume (NPT ensemble).
A number of different pressure coupling algorithms (105, 109, 110, 111) adaptively
change the simulation box size to obtain a constant pressure in the system.

2.1.5 Optimisation methods

Biologically relevant dynamics of proteins usually are collective, correlated motions of
significant parts of the protein over relatively long (≥ 1ns) timescales. As mentioned
before (section 2.1.3), the integration timestep, and hence the computational effort
necessary to compute a given time span of protein dynamics is determined by the fastest
motions in the system, which usually are small scale, uncorrelated bond oscillations
(99). The fastest oscillations in MD (in order of increasing period according to (112))
are bond stretch vibrations (10-30fs) and bond angle vibrations involving hydrogen (13-
32fs). Different methods have been developed to “average out” these fast vibrations,
allowing for a longer time-step and hence more efficient simulations.

2.1.5.1 SETTLE and Lincs

The fastest motions in a macromolecular system are bond vibrations that have a high
frequency but low amplitude and are generally not functionally relevant. In explicit
solvent simulations, water molecules usually make up the biggest portion of the simu-
lated system (contributing more than 10 times as many atoms than the protein itself).
Hence, an efficient simulation of water significantly improves the performance of MD
simulations. The SETTLE algorithm (113) makes it possible to assume rigid bonds and
angles in small molecules like water. It enforces constant bond lengths by moving atoms
parallel to the bond direction. For larger molecules, LINCS (LINear Constraint Solver
(114)) is an efficient algorithm to accomplish the constant bond length. The assump-
tion of constant bond lengths has the additional advantage that it reduces errors due
quantum mechanical effects which would be neglected in the classical approximation of
these oscillations.
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2.1.5.2 Virtual sites

By removing fast bond length vibrations using SETTLE and LINCS, a simulation time
step of ∆t = 2fs can be used. This time step is necessary to correctly sample high-
frequency bond angle vibrations involving hydrogen atoms. Feenstra et al. ((112)) have
developed a method to remove these degrees of freedom altogether. Hydrogen atoms are
turned into mass-less “dummy atoms”, whose positions are geometrically constructed
from the positions of three nearby heavy atoms. Forces acting on the hydrogen are
distributed over these heavy atoms. Also, to keep the mass of the system constant, the
hydrogen-mass is added to the heavy atom it is bound to. This way, the timestep can
be increased to ∆t = 4fs or even ∆t = 5fs

2.2 Free Energy Calculations

The Gibbs free energy (G) at is given by

G = H − TS (2.17)

where H is the system’s enthalpy, T is the temperature and S is the entropy of the
system. It is a thermodynamic potential that describes the work that can be obtained
from a process at constant pressure and temperature (in contrast to the Helmholtz
Free energy which describes the same property at constant volume and temperature).
Protein behaviour and reactions are governed by free energy differences. Protein folding
and complex formation occur along free energy gradients. In principle, if the free energy
difference between two states is given by ∆G, the probability ρ1 to find the system (in
thermodynamic equilibrium) in state 1 compared to the probability ρ2 to find it in
state 2 at temperature T is given by

ρ1

ρ2
= e−∆G/kBT (2.18)

obviously, if ∆G is significantly greater than kBT (or smaller than −kBT ), the
system will almost certainly be found in one of the two states. In Chapter 4, this
principle will be used to determine if mutations of ubiquitin selectively destabilise
complexes with selected binding partners and hence can be used to selectively influence
the binding behaviour.

Like the entropy, which it depends on, free energy is an ensemble property, and
cannot simply be calculated as an ensemble average like the enthalpy. This turns the
calculation of the absolute free energy of a system using MD simulations into a very
challenging task, as it would require the exhaustive exploration of the phase space
available to the system. As this exploration is limited by the sampling time, the results
of such calculations are usually very inaccurate. However, the calculation of relative
free energy differences between two states of the system, while still challenging, usually
results in more accurate results.
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2.2.1 Thermodynamic Cycles

The determination of binding affinities is of high interest and has several applications
including docking and drug design. This has led to a number of different approaches to
calculate or estimate binding free energies, including both empiric (knowledge-based)
and physics-based methods (14). In this work, we will focus on physics-based methods,
especially free energy perturbations, which are based on MD simulations. Free energy
perturbation methods calculate the work needed to ”move” a system from one state
to another, not necessarily through physically meaningful paths. This is expressed by
a change from the Hamiltonian of the system in one state (H1) to that describing the
other state (H2):

Hλ = λ ·H1 + (1− λ) ·H2, λ ∈ [0, 1] (2.19)

To determine the free energy difference ∆G due to the difference between state 1 and
state 2, different methods have been developed including Thermodynamic Integration
(TI, section 2.2.3) and the Crooks Gaussian intersection method (section 2.2.5), which
has been used in chapter 4. Sufficient sampling is of critical importance in all free
energy methods, and the computational difficulty of reaching convergence increases
dramatically with the magnitude of the perturbation - the difference between the two
Hamiltonians H1 and H2.

Binding free energies result from a large perturbation - in one state, both binding
partners are free in solution, in the other they are in the complex. This renders binding
free energy calculations intangible by perturbation methods. A transition from the
protein wild type to the mutated protein, while physically impossible in reality, requires
a perturbation which is much smaller and can actually be performed in a simulation
by removing some atoms from the system (“turning off” all of their interactions) and
inserting other (“turning on” their interactions). As we are interested in the difference
between the binding free energies of the wild type and the mutant, we can make use
of the fact that the free energy is a state property which is the same independently of
how the state was reached. Hence, the free energy differences along a closed circle of
reactions (like the one depicted in figure 2.3) will always add up to be zero.

Using this fact, we can calculate the difference ∆∆G between the binding free
energies of wild type and mutant from the difference of the free energy differences of
mutation for the bound and unbound protein as

∆∆G = ∆G1 −∆G2 = ∆G3 −∆G4 (2.20)

2.2.2 Free Energy Perturbation

Free energy perturbation (FEP)(115) can be used to calculate the free energy difference
between a systems in state 1 described by the Hamiltonian H1 and state 2 described
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Figure 2.3: Example of a thermodynamic cycle. To determine whether a mutation
changes the binding affinity of a protein to another one, the difference between the binding
free energy of the wild type (∆G1) and that of the mutated protein (∆G2) needs to be
determined. However, the values (∆G3) and (∆G4) are more accessible to free energy per-
turbation methods. Using the conservation of energy in this closed cycle, we can conclude
∆∆G = ∆G1 −∆G2 = ∆G3 −∆G4.

by H2 using

∆G = − 1

β
ln
〈
e−β(H2−H1)

〉
1

(2.21)

where 〈〉1 denotes an ensemble average of the system in state 1. While FEP has been
used to calculate the free energy differences resulting from amino acid substitutions,
they require excessive sampling, especially for large perturbations (e.g. including the
addition or removal of atoms)(116, 117, 118).

2.2.3 Thermodynamic Integration

Thermodynamic Integration (TI) (119) uses the generalised force ∂H/∂λ to calculate
the free energy difference via

∆G =

∫ 1

0

∂H

∂λ
dλ (2.22)

where the coupling parameter λ is either changed slowly over time (slow-growth
thermodynamic integration - SGTI) or set to a number of discrete values between 0
and 1 in which case the integral in equation 2.22 turns into a sum

∆G =

∫ 1

0

∂H

∂λ
dλ ≈

N∑
i=0

〈
∂H

∂λ

〉
λi

∆λ (2.23)

both in the case of this discrete thermodynamics integration (DTI) and SGTI, it
is assumed that the system is at (or very close to) equilibrium over the cause of the
simulation. To achieve this, the change of λ has to be very slow, resulting in high
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computational costs.

2.2.4 Jarzynski’s equation and Crooks’ fluctuation theorem

According to Jarzynski(120, 121), the free energy difference ∆G between two states
can be calculated from a series of short, non-equilibrium transitions as

e−β∆G =
〈
e−βWτ

〉
(2.24)

where 〈〉 denotes the average over an ensemble of transitions which were started
from an equilibrated canonical ensemble. Wτ is the work

Wτ =

∫ 1

0

∂Hλ

∂λ
dλ (2.25)

integrated over the transition. Fundamentally, the work Wτ consists of the free
energy difference and the dissipation of energy due to the fact that the transition was
not performed in equilibrium (i.e. Wτ is closer to ∆G, the slower the transition is
performed up to the case where the system is in equilibrium all the time, in which
Wτ = ∆G which is the case assumed in thermodynamic integration). Hence, this
approach is limited by the fact that transitions with a high weight occur only with a
low probability, making it necessary to perform a high number of transition simulations.
As a result, the overall computational cost is similar to that of equilibrium methods
like SGTI and DTI (122, 123).

By performing transitions both from state 1 to state 2 (forward) and from state 2 to
state 1 (reverse), this problem can be circumvented. Crooks’ fluctuation theorem (124)
states that the distributions Pf (for forward transitions) and Pr (for reverse transitions)
are related to the free energy difference by

Pf (W )

Pr(−W )
= eβ(W−∆G) (2.26)

2.2.5 Gaussian Intersection method

From equation 2.26 it follows that the free energy difference between two states is ∆G =
Wi for the work for which the transition distributions intersect (Pf (Wi) = Pr(−Wi)).
Unfortunately, the population of the distributions at the intersection point usually is
small, resulting in large statistical errors. Fortunately, these work distributions can
be approximated by a Gaussian distribution (125), resulting in the Crooks Gaussian
Intersection (CGI) method (126). After fitting forward and backward transitions to
two Gaussian distributions
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Pf (W ) =
1

σf
√

2π
e
− 1

2

(
W−W̄f
σf

)2

(2.27)

Pr(W ) =
1

σr
√

2π
e
− 1

2

(
W−W̄r
σr

)2

(2.28)

the intersection point (and hence the free energy difference) is given by

∆GCGI =

Wf

σ2
f
− Wr

σ2
r
±

√
1

σ2
fσ

2
r

(Wf +Wr)
2 + 2

(
1
σ2
f
− 1

σ2
r

)
ln σr

σf

1
σ2
f
− 1

σ2
r

(2.29)

2.2.6 Umbrella sampling

Protein dynamics are often described as the movement of the protein on its “energy
landscape”. The potential of mean force (PMF) is a free energy with respect to a
generalised coordinate ξ (or a set of such variables) that depends on the coordinates of
the system (127). It was introduced by Kirkwood in 1935 (119) and is defined as

W (ξ) = W (ξ0)− kBT ln

[
〈ρ(ξ)〉
〈ρ(ξ0)〉

]
(2.30)

where ρ(ξ) is the probability distribution of finding the system at position ξ in
equilibrium. The potential is defined up to a constant and is set to an arbitrary value
W (ξ0) at and arbitrary position ξ0.

For a converged equilibrium ensemble, the PMF can directly be calculated from
the distribution of structures along the generalised coordinate according to equation
2.30, but in many cases, especially high energy barriers are present, this convergence is
hard to reach in standard MD simulations. Different methods have been developed to
overcome this problem and improve sampling in such energetically unfavourable states.
One of these approaches is Umbrella sampling (128). To ensure good sampling along
the whole range of ξ, a set of Nw simulations are performed, each with an additional
“umbrella potential”

wi(ξ) = Ki/2(ξ − ξci )2 (2.31)

which restrains the system to positions ξci (i = 1 . . . Nw) with a force constant Ki.
The position of the system in the reaction coordinate is recorded and an umbrella
histogram hi(ξ) is calculated for each simulation. To calculate a free energy profile for
the system along ξ, the influence of the umbrella potential wi(ξ) has to be considered.
A well established method to calculate the PMF from these biased histograms is the
weighted histogram analysis method (WHAM) (129, 130), which calculates the unbiased
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distribution P (ξ) using

P (ξ) =

Nw∑
i=1

g−1
i hi(ξ)

Nw∑
j=1

njg
−1
j exp [−β(wj(ξ)− fj ]

(2.32)

and

exp(−βfj) =

∫
dξ exp [−βwj(ξ)]P (ξ) (2.33)

β denotes the inverse temperature 1/kBT with the Boltzmann factor kB and the
temperature T . nj is the total number of points in the corresponding histogram hj and
the statistical inefficiency gi = 1 + 2τi with τi, the integrated autocorrelation time of
the corresponding umbrella window.

2.3 Trajectory analysis

During MD simulations, the positions of particles of interest (usually at least the atoms
of the protein) are saved at regular time intervals. This collection of structures is
called a trajectory and describes the time-evolution of the system. The amount of data
generated this way is huge, and trajectories contain significant noise that is not directly
relevant to biological function. Relevant dynamics are usually realised by slow, large
scale, collective motions in the protein, while most motions occurring in the protein (and
hence generated by MD simulations) are fast, small scale local vibrations. To extract
relevant information from the noisy collection of data in MD trajectories, a number
of statistical methods has to be employed, which will be described in the following
sections.

2.3.1 Principal Component Analysis

The conformation of a molecular system consisting of N atoms (with N > 100 in most
biologically relevant systems) can be described by 3N coordinates. Hence, a MD tra-
jectory of such a system is a trajectory in 3N -dimensional space, with each coordinate
containing only little relevant information. Biologically relevant motions usually in-
volve the collective motion of whole parts of the protein. Principal component analysis
(131, 132, 133) is a well established statistical method that can be used to identify such
collective modes of motion in proteins. Mathematically, PCA uses an orthogonal trans-
formation to transform a set of variables (in this case the 3N Cartesian coordinates)
into a (possibly smaller) set of linearly uncorrelated generalised coordinates. This can
be accomplished by diagonalisation of the covariance matrix

C =
〈

(rt − 〈r〉) (rt − 〈r〉)T
〉

(2.34)
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Figure 2.4: Simple example of the re-
sults of a PCA: The two-dimensional point
cloud has a strong correlation between the x and
the y coordinate (in this example it is given by
(x1, x1 + x2), where x1 and x2 both are Gaus-
sian distributions). A PCA rotates the coor-
dinate system so that the coordinates are non-
correlated.

where r1, r2 . . . rT denote the T
points of the trajectory (in this case the
structures in the trajectory, but the en-
semble can be more general). PCA con-
sists of finding the orthonormal trans-
formation matrix R

RTCR = diag(λ1, λ2, . . . , λ3N )
(2.35)

diag(λ1, λ2, . . . , λ3N ) is a diagonal
matrix with the eigenvalues λi on the
diagonal. The order of the λi is am-
biguous and is chosen so that λ1 ≥ λ2 ≥
. . . λ3N . Structures can be projected on
the principal modes (or eigenvectors) to
give the principal components pi:

p = RT (r− 〈r〉) (2.36)

The eigenvectors are usually sorted
by the magnitude of the corresponding
eigenvalues. The eigenvector with the
highest corresponding eigenvalue (the
first eigenvector) corresponds to the
new coordinate that shows the highest
variance in the data, the second eigenvector shows the second highest variance and so
on. By construction, the eigenvalues represent the variance of the projections to the
corresponding eigenvectors. When applied to protein trajectories, it is found that the
eigenvalues decrease rapidly (see figure 2.5), indicating that the majority of the motion
of the protein is represented by a small number of eigenvectors (133).

2.3.2 Functional mode analysis

The first few eigenvectors found by a PCA of MD trajectories describe large scale
correlated motions of the protein. In many cases, these large scale motions are biologi-
cally relevant. However, not all important collective modes directly correspond to PCA
eigenvectors. Functional mode analysis (FMA) (134, 135) is a method aimed at finding
collective modes that best correlate with a function f which is assumed to depend on
the structure x of the system under consideration. In mathematical terms, FMA tries
to minimise the residuals ε in the regression problem

f = Xβ + ε (2.37)

where f is the vector containing the functional values, X is the Cartesian coordi-
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2. THEORY AND METHODS

nate matrix containing the corresponding structures and β is a one-dimensional set
of coefficients, that represents a collective mode of fluctuation that best captures the
fluctuations in f.

2.3.3 Partial least squares regression and its application in discrimi-
nation analysis

Figure 2.5: Example of an “eigenvalue
spectrum”.

Partial least squares regression (PLS)
can be used to find a linear model to
calculate an external parameter from
protein structures as for example in
FMA. By defining a label of which
structures belongs to which class (in
this case −1 denoting structures from
unbound ensembles and +1 denoting
structures from bound ones) as this
external parameter, PLS can be used
to calculate a model which describes
differences between these two classes
of structures provided such a differ-
ence exists. The resulting linear model
yields a difference vector similar to a
PCA eigenvector.

If a structural difference between the classes exist, the projection of structures onto
this difference vector will make it possible to assign a structure to one or the other
class. If it is not possible to completely distinguish structures belonging to the two
different classes, the model will still produce the best possible distinction, allowing
quantification of the remaining overlap between bound and unbound ensembles. For
this, both ensembles are projected onto the difference vector and histograms of the
projections are calculated (fig. 3.6).

The PLS-DA algorithm used in this study produces a model that maximises the
difference of the projection of two structures from different classes (bound vs. unbound)
while minimising the difference between structures from the same class. Consequently, if
more than one structural mode can be used to distinguish the two classes, the resulting
model will not necessarily represent both of them, especially if one would result in
stronger variation within the classes. While the method can be used to determine
whether or not a full distinction between bound and unbound ensembles can be found,
additional steps are necessary to fully characterise the structural differences. For this,
PLS-DA was performed on sub-groups of atoms (i.e. the backbone as well as each
residue including side-chain individually) after fitting of the ensemble on the backbone
atoms.

Helland’s Algorithm (136) as implemented by Denham (137) was used to perform
the partial least squares discrimination analysis (PLS-DA) on the simulation ensembles.
PLS performs a regression on a basis that is optimised to correlate with the external

26



2.3 Trajectory analysis

parameter. Choosing a high dimensional basis generally improves the quality of the
model on the training data but can decrease its predictive power due to overfitting.
For this, the combined structures of the bound and unbound ensemble were divided
into a model building set (containing half of both ensembles) and a test set (containing
the other half of each ensemble). Comparing model quality for both training and test
set (figure 2.6) shows both correlations to reach a plateau for > 5 dimensions and no
overfitting effects, so a ten dimensional basis was used in all PLS-DA calculations.

Figure 2.6: Cross correlation test of PLS-DA models. Correlation between target
and model for training (green) and test (orange) set for PLS-DA between unbound and
bound ensembles based on backbone atoms of residues 1-70 evaluated for different basis
dimensionality.

For comparison, the projections of structures from both ensembles onto the differ-
ence vector found by PLS-DA were sorted into the same set of 100 bins spanning their
combined range. The overlap of one ensemble by the other is defined as the normalised
sum of the products of the number of structures for each bin. Coverage of one ensem-
ble by another is defined as the fraction of structures from the first ensemble in bins
containing a minimum number (50) of structures from the other ensemble.

The stationary bootstrap algorithm 2.3.6 was used to estimate the uncertainty of
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2. THEORY AND METHODS

overlaps and coverage.

2.3.4 Clustering

Clustering is a well established machine learning method which aims to automatically
partition a large number N of multi-dimensional points into a small number k of classes.
One of the best known clustering algorithms is k-means clustering (138). In k-means,
each cluster is defined by its mean point and each data point is assigned to the cluster
whose mean is nearest to the point. While finding clusters that perfectly fulfil this
description is computationally expensive (NP-complete), iterative algorithms to find
locally optimal solutions are commonly used (139).

The clusters generated by k-means are usually of similar size, which is not always
the best partition of the data. A more sophisticated approach is the use of Gaussian
Mixture models (GMM) optimised by the Expectation-maximisation Algorithm (140).
Here, the clusters are defined as multivariate Gaussian distributions

p(xi) =
k∑
j=1

1

σi,j
√

2π
e
− 1

2

(
xi−µi,j
σi,j

)2

i = 1 . . . N (2.38)

Figure 2.7: Gaussian Mixture Model. The
resulting model and the three underlying Gaus-
sian distributions are shown in one dimension.

where i = 1 . . . N are the dimen-
sions of the data points and j = 1 . . . k
are the k different gaussian distribu-
tions (which correspond to k “clusters”)
each with a mean value µi,j and a stan-
dard deviation σi,j for each dimension.
As the Gaussian distributions tend to
overlap (figure 2.7), each data point can
be assigned a set of probabilities as to
which of the underlying distributions of
the GMM it belongs to. Usually, this
probability is near zero for all but one
of the distributions.

2.3.5 Comparison of structural
ensembles

A necessary condition for the conformational selection binding model (section 1.1.1),
and one which is often considered as a strong indication of the applicability of this
model, is the existence of conformations of the protein that are observed in the complex
in the absence of a binding partner (12). In this work, ensembles of the protein both in
complex and free in solution have been considered, so the question of whether the bound
conformation can be observed in the unbound state is replaced by the more complicated
task to compare bound and unbound ensembles. Due to the high dimensionality, the
probability of finding the same conformation in two simulation ensembles - even if both
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2.3 Trajectory analysis

simulate the same system under the same conditions just with slightly different starting
conditions - is astronomically small.

2.3.5.1 Histogram comparison methods

Figure 2.8: Histogram comparisons.
In graph A, the histograms are completely
distinct, both overlap and coverage are
zero. In graph B, the red histogram is com-
pletely covered by the blue one, resulting
in a coverage of 1.0. Both the coverage of
the blue histogram by the red one and the
overlap of the two histograms is below 1.0.

After reduction of the dimensionality (e.g.
by projection on a PLS-DA difference mode
or PCA eigenmode), the histograms of the
ensembles are compared. This can be done
using different similarity measures, two of
which have been used here, the overlap

o(hA,hB) =
∑
i

hA,i · hB,i
NANB

(2.39)

where hA,i and hB,i are the counts of
the i-th histogram bin for the corresponding
ensemble. NA and NB are normalisation
factors

NA/B =

√∑
i

(hA/B,i · hA/B,i) (2.40)

The overlap of two histograms is 1 if
both histograms have the same (up to a con-
stant factor) count in each bin, i.e. are iden-
tical.

It is zero if they are completely distinct,
i.e. if each bin that has a non-zero count
in one histogram is empty in the other and
vice versa.

Another measure is the coverage of one
histogram by the other

ot(hA,hB) =
∑
i

hA,i ·H(hB,i − t)∑
i hA,i

(2.41)

where H(x) is the Heaviside function, which is 1 for any argument greater than 0
and 0 everywhere else. t is a threshold which can be set to t > 0 to remove the influence
of low-populated bins that can be the result of noise. In contrast to the overlap, the
coverage is not commutative. It is equal to 1 if all bins containing a non-zero count for
histogram A contain a count above the threshold for histogram B. It is 0 if the overlap
of the histograms is zero.
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2.3.6 Bootstrap uncertainty estimation

Bootstrap methods (141) are used to determine the uncertainty of statistical measure-
ments calculated from finite samples. To determine the variation of these values on the
data sample used for calculation, new ensembles are constructed by choosing random
subsets of the original data and performing the same analysis on them. Classical boot-
strapping methods assume that the elements of the original sample are uncorrelated.
This assumption is not fulfilled for samples based on MD trajectories. An alternative
approach, the stationary bootstrapping method (142) was used to determine uncertain-
ties in these cases (e.g. in section 3.2.2). In this approach, not individual data points
but series of points are selected from the original data set.
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3

Ubiquitin dynamics in
complexes1

Thus far most studies have focused on static snapshots of ubiquitin complexes in com-
parison to structures from solution ensemble of unbound ubiquitin. Here, based on
several experimental structures of ubiquitin in different complexes (64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74) depicted in figure 1.3, we have performed and analysed MD
simulations of ubiquitin interacting with different binding partners, thereby taking into
account the flexibility the proteins display in the bound state. It has been shown (144)
that MD simulations of unbound ubiquitin agree quantitatively with solution NMR
data.

While structural information is available for several protein complexes (a few exam-
ples are listed in table 1.1), fundamental properties of complexes (first and foremost the
binding affinity) cannot be deduced from just one structure, but are based on ensem-
ble properties. I employed molecular dynamics (MD) simulations (see section 2.1) to
investigate how binding influences the dynamic behaviour of ubiquitin. In particular, I
identified differences between bound and unbound ubiquitin ensembles, characterising
both restrictions and extensions of the accessible conformational space.

3.1 Simulation setup

From the Protein Data Bank (PDB,(63)), eleven structures of ubiquitin in complex with
a binding partner and two structures of unbound ubiquitin were selected (see table 1.1
for PDB codes and references). In addition, one X-ray structure of an additional com-
plex (dsk2 ) was supplied Stefan Becker from the department of NMR-based Structural
Biology of the Max Planck Institute for Biophysical Chemistry. To avoid unspecific
interactions, structures containing more than one complex were separated before sim-
ulation. Simulations were performed using GROMACS 4 (145). In accordance with
recent evaluations of simulation setups ((144) and (146)) the ffamber port (147) of

1The results presented in this chapter have already been published by the same author in (143).
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3. UBIQUITIN DYNAMICS IN COMPLEXES

the amber99sb force field (88), particle-mesh Ewald electrostatics (103, 104) were em-
ployed with fourth order interpolation, a maximum grid spacing of 0.12nm and a cutoff
of 0.9nm. Water was modelled using the SPC/E water model (97). A twin-range van
der Waals cut-off (0.9/1.4 nm) was used. Both protein and solvent where separately
held at a temperature of 300K using the v-rescale algorithm (108) (τT = 0.1ps) and
pressure coupled at 1 bar using the Berendsen algorithm (105) (τp = 1ps). A 4fs time
step was achieved by using Lincs bond constraints (114), SETTLE (113) constraints
on water and virtual sites (112). After a steepest descent energy minimisation and a
1ns equilibration using position restraints on the protein, 10 production runs of 100ns
each were performed for each ensemble, using random starting velocities. Simulation
snapshots were taken every 10ps for analysis. For each simulation of bound ubiqui-
tin, an unbound control simulation from the same starting structure of ubiquitin was
performed without the binding partner. To allow for relaxation of structural differ-
ences, the first 10ns of these unbound simulations were not included in the analysis.
An unbound reference ensemble was created from simulation trajectories based on the
unbound X-ray structures 1UBI and 1UBQ and these unbound control trajectories.
Ensembles based on similar structures (i.e. from starting structures from the same
PDB entry) were not used in comparisons with either bound or control ensembles.

3.2 Results

In total, Eighteen structures of ubiquitin in complex with twelve different binding
partners were simulated both in the presence of the binding partner (bound) and in its
absence (control). Additional simulations starting from two X-ray structures without
binding partner (1UBI (33) and 1UBQ (32)) were conducted for comparison.

3.2.1 Conformational overlap and restriction observed in the main
modes of ubiquitin backbone dynamics

To investigate the effect of binding on the backbone dynamics of ubiquitin, a principal
component analysis (PCA) of the backbone atoms of residues 1-70 of the ubiquitin
chain was performed. The first eigenvector corresponds to the pincer mode (figure
3.2, previously described in (12)), that has direct influence on the geometry of the
“hydrophobic patch”, a group of three hydrophobic residues (Leu 8, Ile 44 and Val
70) that are involved in most binding interfaces of ubiquitin with other proteins. A
1µs simulation of unbound ubiquitin (figure 3.3 “1ubi”) spans a conformational space
similar to that covered by a large number of known experimental structures from both
X-ray and NMR experiments (figure 3.1).

Like the unbound simulation ensemble, also simulations of bound ubiquitin show
considerable conformational variety and in fact show a conformational entropy similar
to unbound simulations (figure 3.4, estimated according to (148)).

However, while the dynamics of bound ubiquitin ensembles are considerable, specific
restrictions can be observed in most of the 12 complexes when considering the main
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Figure 3.1: Simulation ensembles cover the same conformational space as
known experimental structures. PCA projection of unbound MD simulation (start-
ing structure 1ubi, red and a collection of experimental X-ray (black, 139 structures from
63 different PDB entries) and NMR (blue, 783 structures from 35 different PDB entries)
structures.

backbone dynamic modes (figure 3.3). All bound trajectories sample a subspace of
that spanned by the unbound trajectory. The first two eigenvectors displayed here
cover about 30% of the total variance, and are the only ones for which significant
differences between bound and unbound ensembles could be observed.

In all but one of the bound ensembles, the free energy profile along the “pincer
mode” appears to have changed to shift the equilibrium towards either side of the con-
formational range (figure 3.3). While in most cases the shift is partial and most of
the conformational space still is sampled (albeit with a lower probability on one side),
some trajectories can be described as purely “open” (the ensembles based on the PDB
structures 1xd3 and 2fif) or “closed” (ensembles based on PDB structures 1nbf and
2ibi). Besides the obvious exception of the ensemble 1ubi based on an unbound ubiq-
uitin structure, only one ensemble of bound ubiquitin (2hth) shows a distribution very
similar to the unbound reference ensemble and therefore does not indicate restriction
of the ubiquitin dynamics in the complex.

Figure 3.5 shows a possible explanation for the restriction in both the open and
closed states in two of the complexes. Ubiquitin bound to HAUSP (the binding partner
in complex 1nbf) resides in a cavity that restricts its conformation in the closed state.
In the open conformation, clashes would occur between residues Leu-8 and Thr-9 of
ubiquitin and Ser-353 and Met-407 of HAUSP. In the complex of ubiquitin and UCH-L3
(complex 1xd3), residues Leu-8 and Thr-9 reside in a cavity of UCH-L3 when ubiquitin
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3. UBIQUITIN DYNAMICS IN COMPLEXES

Figure 3.2: Visualisation of the first PCA eigenvector. It corresponds to pincer
mode already described in (12). The residues of the hydrophobic patch (Leu8, Ile44 and
Val70) are marked in red.
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3.2 Results

Figure 3.3: PCA results. Projection to the first two PCA-eigenvectors based on the
backbone of residues 1-70 of all simulated ensembles. For comparison, the combination
of unbound reference ensembles is also plotted in blue. The original X-ray structures are
marked in yellow, all others in black. Histograms for the projection on the first eigenvectors
are plotted above the corresponding plots. PDB codes for the starting structures of the
simulations are in the upper left corner. Capital letters denote the chain identifier.
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3. UBIQUITIN DYNAMICS IN COMPLEXES

Figure 3.4: Bound ensembles show significant structural dynamics. Conforma-
tional entropy observed in unbound (blue) and bound (red) simulation ensembles estimated
according to the Schlitter formula (148).

is in the open conformation. In the closed conformation, a clash between these residues
and Leu-220 of the binding partner would occur which precludes these conformations.

The C-terminal tail of ubiquitin, comprising residues 71-76, shows high flexibility
in the unbound and most of the bound ensembles to a degree that some parts of it
are fully resolved only in four of the eleven experimental structures used for simulation
setup (PDB codes 1nbf, 1s1q, 1ubi and 2g45) with three experimental structures (PDB
codes 1uzx, 1xd3 and 2ibi) missing only the last residue. Four of these structures (1nbf,
1xd3, 2g45 and 2ibi) are the only ones in this study that show a significantly stronger
restriction of dynamics if the C-terminal residues are included in the analysis. Besides
this, the dynamic behaviour of the ubiquitin tail seems to be rather unstructured.
Hence, like in other studies (12, 78) we focus on the analysis of ubiquitin dynamics to
residues 1-70 as we have done in the PCA and will do in the following analysis, where
inclusion of the C-terminal residues also does not qualitatively change the results while
significantly increasing estimated uncertainties.

3.2.2 Differences between bound and unbound conformational en-
sembles as observed using Partial Least Squares Discrimination
Analysis (PLS-DA)

The principal component analysis indicates conformational overlap between bound and
unbound ensembles on the level of the dominant collective backbone degrees of freedom.
However, PCA as a method is not aimed at discrimination, especially if the amplitude
of the differences is small compared to the variation within the ensembles. It is well
possible that differences between the ensembles on a more local level are not detected
by PCA. To determine differences between multidimensional ensembles, partial least
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3.2 Results

Figure 3.5: Steric clashes restricting pincer mode dynamics in the com-
plex.Detail from the X-ray structure (A) 1nbf (ubiquitin bound to HAUSP) and (B) 1xd3
(ubiquitin bound to UCH-L3). For each structure, the compatible ubiquitin structure is
shown in blue, while an incompatible structure that has been fitted to the same position
is shown in yellow. Clashes with the binding partner are marked in orange.
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3. UBIQUITIN DYNAMICS IN COMPLEXES

squares discrimination analysis (PLS-DA, cf. Materials and Methods) has been found
to be more effective than PCA (149).

Indeed, using this method, models can be found to almost completely distinguish
some of the bound ensembles from the unbound reference ensemble The magnitude
of these differences is however significantly smaller than that of the main fluctuation
modes of ubiquitin (compare length-scales in figures 3.3 and 3.6).

Figure 3.6: PLS-DA results on backbone atoms of residues 1-70. Different bound
ensembles (red) and the unbound reference ensemble (blue) have been projected onto the
difference vector between these ensembles as determined by PLS-DA.

PLS-DA distinguishes between ensembles both on a global as well as on a local
level. Even the systematic difference between two ensembles in e.g. a single side chain
rotamer will result in a zero overlap.

While both bound and unbound control ensembles are fully covered by the unbound
reference ensemble along the main mode of ubiquitin dynamics (figure 3.7 A), the
coverage of the bound ensembles after PLS-DA on the backbone atoms of residues 1-70
(figure 3.7 B) is found to be significantly lower. When also considering all non-hydrogen
side chain atoms (figure 3.7 C), several bound ensembles are no longer covered by the
unbound reference ensemble. To validate the significance of the observed differences, the
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same method has been applied to calculate the coverage of unbound control ensembles
by the unbound reference ensemble. It was found to be significantly higher (i.e. almost
full), as expected.

The observed differences correlate well (r = -0.92) with number of ubiquitin atoms
involved in binding (i.e. with a distance of less than 0.6nm from the binding partner,
figure 3.7 D). Hence a more extensive binding interface correlates with more significant
differences to the unbound state.

3.2.3 Local conformational differences on the residue level can be ob-
served using PLS-DA

To localise differences between bound and unbound ensembles, individual PLS-DA
calculations were performed on the conformations of each residue (including side chains)
of ubiquitin separately after superimposing the backbone of the whole chain.

Only a small number of residues for each complex ensemble show an overlap with
the unbound reference ensemble which is significantly below 1.0 and none of them shows
an overlap below 0.2, Most of the unbound control ensembles show almost complete
(1.0) overlap with the reference ensemble. The observed differences due to binding
interactions are local, as all of the residues found to change their conformation are
located near the binding partner (figure 3.8).

Again, in none of the cases, a complete distinction between bound and unbound
ensembles could be found. Even for the residue displaying the smallest overlap between
bound and unbound ensembles (residue His68 in ensemble 1nbf chain C) a small fraction
of bound structures can be found in the same conformational region as the unbound
ones (figure 3.9).

39



3. UBIQUITIN DYNAMICS IN COMPLEXES

Figure 3.7: Coverage of different ensembles by the unbound reference ensemble.
The histogram-coverage of bound ensembles (red) compared to coverage of unbound control
ensembles (blue) after projection of the structures onto the first PCA-eigenvector (figure
3.3) of backbone atoms of residues 1-70 (A), the PLS-DA difference vector of backbone
atoms of residues 1-70 (B and D), and the PLS-DA difference vector of all non-hydrogen
atoms of residues 1-70 (C). Ensembles in A-C have been sorted according to the coverages
displayed in C. Uncertainties have been determined using the stationary bootstrap method.
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Figure 3.8: Overlap between bound (red) and unbound control (blue) ensem-
bles. Overlap has been calculated with the unbound reference ensemble after projection
to the difference vector found by PLS-DA on single residues after superimposing to the
backbone and plotted versus distance from the binding partner. Residues displaying a
significant difference in the bound ensemble are labelled.
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3. UBIQUITIN DYNAMICS IN COMPLEXES

Figure 3.9: Example of a difference found in PLS-DA and its structural origin.
Histogram of the projection of bound (red) and unbound (blue) ensemble onto the difference
vector found by PLS-DA for residue His68 of ensemble 1nbf chain C. Out of all 11 complexes
studied, this residue shows the smallest overlap between bound and unbound ensembles.
The inset shows the corresponding structures from the simulation ensembles.
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Influence of core mutations of
ubiquitin on dynamic modes.

The results in this chapter have been reached in collaboration with Monika Sharma,
Daniel Seeliger and Servaas Michielssens who have developed the protocol and per-
formed the calculations described in section 4.2.

In the previous chapter it was shown that the pincer more of ubiquitin plays a
crucial role in its ability to form a multitude of complexes. Different ubiquitin binding
partners require ubiquitin to specifically be in one of the two main states along this
mode. This leads to the idea that restricting the conformational preference of ubiquitin
to one of these states should alter its binding specificity, which would allow to alter the
binding behaviour by tuning the dynamics rather than the structure of the interface.
In the following chapter, I describe a protocol to identify mutations of ubiquitin that
shift its conformational preference along the pincer mode. It was used to identify sev-
eral candidate mutations of core residues of ubiquitin that prefer either the open or the
closed state along the pincer mode. Finally the hypothesis that these mutations specif-
ically influence the binding behaviour of ubiquitin was tested by calculating changes in
binding affinity of ubiquitin to several binding partners.

4.1 Experimental evidence of selective influence of ubquitin
core mutations on binding behaviour

Ubiquitin is a strongly conserved protein over a wide variety of organisms (150), in-
dicating that changes in its sequence are likely to disrupt its function. The fact that
mutation of surface residues can influence the binding behaviour of a protein is well
established and often used to identify binding sites (for example in (151)). But it has
also been observed that mutations of core residues of ubiquitin can selectively change
its binding behaviour (152, 153).

Haririnia et al. (152) identified mutations (L69S, L67S) that selectively influence
the binding behaviour even though the mutated residues are not part of the binding
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Figure 4.1: Free energy profiles for L69S mutants of yeast ubiquitin (red,left
graph) and human ubiquitin (red, right graph) compared to that of wild type
unbound ubiquitin (blue). The profiles where calculated using the Boltzman factor
from simulation ensembles consisting of ten 100ns simualations. The yeast ubiquitin sim-
ulations are based on a set of NMR structures published by Haririnia et al. (PDB access
code 2JWZ), while the human ubiquitin ensemble is based on structures from a wild type
simulation that have been modified using the WHATIF software.

interface. Simulation of L69S mutations on both yeast and human ubiquitin show a
shift to the closed conformation along the pincer mode (figure 4.1).

As seen in section 3.2.1, complex formation with specific binding partners can also
significantly shift the population of the ubiquitin ensemble along the pincer mode. The
binding partners investigated by Haririnia et al. were Rpn10 and S5a (both of which
did not bind the mutated ubiquitin) as well as Rad23 and hHR24A (which did interact
with the mutants). In terms of ubiquitin binding motifs, this means that the mutant
does not bind to the ubiquitin-interacting motif (UIM) but does still interact with the
Ubiquitin-associated domain (UBA).

In chapter 3, complexes have been investigated both including a UIM (2d3g) and a
UBA (2oob) binding motif. It has been seen that ubiquitin bound to a UIM ubiquitin
binding motif (as in the complex 2d3g) strongly prefers open conformations. This
mismatch between the L69S mutant mainly occupying the closed state of the pincer
mode and the ubiquitin bound to an UIM motif in the 2d3g ensemble preferring the
open state could explain the inability of this mutant to bind another binding partner
containing the same binding motif (it should be noted that 2oob, the complex ensemble
containing a UBA motif, does also prefer the open state, and L67S, the other mutant
found to show the same selectivity as L69S does not show preference for one of the
states).

In a more recent study, Zhang et al. (153) engineered a number of ubiquitin
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Figure 4.2: Free energy profiles for selective mutants from the work of Zhang et
al. The mutants “U7Ub7” and “U7Ub25.2540” (upper row, red) have been optimised for
increased binding affinity to USP7 (lower left, red) while they do not bind UCHL3 (lower
right, red). The profiles have been calculated using the Boltzman equation from histograms
of 10x100ns (4hjk), 4x10x100ns (4hk2) or 2x10x100ns (1nbf,1xd3). For comparison, the
free energy profile of unbound ubiquitin has been plotted in each panel (blue).
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DYNAMIC MODES.

mutants specifically to increase the binding affinity to ubiquitin-specific protease 7
(USP7, which is the ubiquitin binding partner in structure 1NBF). They found that
the mutations that best improved binding affinity to USP7 also significantly decreased
binding affinity to several other ubiquitin binding proteins including the ubiquitin
carboxyl-terminal esterase L3 (UCHL3, which is the binding partner to ubiquitin in
structure 1XD3). The majority of mutants found by Zhang et al. contained cys-
tein residues in positions 7 (sometimes 8) and 69, which formed a disulfide bond.

Figure 4.3: Fast growth thermodynamic
integration and Crooks Gaussian inter-
section simulation protocol. Two equilib-
rium ensembles are generated (here by MD sim-
ulations), one for the wild type (wt) protein, one
for the mutated protein. From these ensembles,
snapshots are selected and used to set up short
(100ps) FGTI simulations, in which the wt is
turned into the mutant and vice versa.

A MD simulation based on a crystal
structure of one of these mutants (fig-
ure 4.2) shows that the mutation re-
stricts ubiquitin to the “closed” state
of the pincer mode, which would ex-
plain the preference for USP7, which re-
quires ubiquitin to be in the closed state
over UCHL3 which requires the open
state (both depicted in figure 4.2). An-
other selective ubiquitin mutant found
by Zhang et al. lacking the disulfide
bond but including mutations of sur-
face residues to optimise binding affin-
ity does not show the same preference
for the closed state.

Here, we aim to identify ubiqui-
tin mutations that specifically influence
binding behaviour without altering the
binding interface. For this, we devel-
oped a fast growth thermodynamic in-
tegration/crooks Gaussian intersection
(FGTI/CGI)-based protocol to calcu-
late the difference in the change of free
energy due to mutation for different
states of a protein. Using this proto-
col, we performed an extensive scan of
ubiquitin core mutants and identified
a number of candidates for which one
of the two states of the pincer mode is
energetically more favourable than the
other. Finally, we tested the influence
of these mutations on the binding of
ubiquitin to binding partners that have
been shown in chapter 3 to clearly restrict ubiquitin to one of the two states, again
using FGTI/CGI.
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4.2 Determination of changes in the stability of open or
closed states in ubiquitin by different mutations

In this chapter, the pincer mode is described as the first eigenvector of a PCA based
on the 213 backbone atoms of residues 1-71 of 61 experimentally determined ubiquitin
structures taken from the Protein Database PDB.

4.2.1 Restriction to open and closed states

Using the Boltzman formula 2.18, the free energy profile of unbound ubiquitin (ensemble
“1ubi” from chapter 3) was calculated from a histogram of projections of ensemble-
structure to this eigenvector. It possesses two minima, one corresponding to an open
state, the other to a closed. Between these two states is a barrier of approximately
2 kJ mol−1 (figure 4.4). As this is less than the thermal energy at 300 K which is
(approximated for an ideal gas) 3/2 · NA · kT ≈ 3.74 kJ mol−1, a simulation of the
protein will frequently cross this barrier. This is undesirable in the CGI simulations,
as we’re trying to analise the effect of the mutation in the open and closed states
individually. To restrict the protein to either the open or the closed state, a modified
version of the Essential Dynamics code of GROMACS (154, 155, 156) was used to add
semi-harmonic potentials (equation 4.1 or a “mirrored” version) along the collective
pincer mode coordinate ξ (figure 4.4).

V (ξ) =

{
V0 · (ξ − ξ0)2 ξ > ξ0

0 ξ ≤ ξ0
(4.1)

While this potential is necessary to prevent the simulation from leaving its assigned
state, the influence of the potential on the simulation should otherwise be as small as
possible. To achieve this, a high force constant V0 = 1000 kJ mol−1 nm−1 was selected.
The resulting high force acting on the system if it enters the non-zero part of the
potential will reduce the time the simulation spends in this region.

4.2.2 Screening of core residue mutants using FGTI/CGI

Figure 4.5: Thermodynamic cy-
cle used to test stabilization of one
over the other state of ubiquitin by a
mutation.

14 hydrophobic core residues (table 4.1) of ubiq-
uitin were chosen and mutated to the hydropho-
bic residues Alanine (A), Valine (V), Isoleucine
(I), Leucine (L), Methionine (M), Phenylalanine
(F), Tyrosine (Y) and Cysteine (C) as well as
Serine (S) and Threonine (T), resulting in a to-
tal of 112 mutants.

To determine the free energy difference (∆G)
caused by a mutation, fast growth thermody-
namic integration (FGTI) evaluated using the
Crooks Gaussian intersection (CGI) method de-
scribed in section 2.2.5 was used. For this, equi-
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Figure 4.4: Potentials used to restrict ubiquitin to “closed” (A) or “open”
conformations. The free energy profile of unbound ubiquitin (calculated from the “1ubi”
simulation ensemble in chapter 3) is plotted in black, the semi-harmonical potential to
prevent the simulation to enter the open (A) or closed (B) state is plotted in red. Due to
the high force constant, the non-zero part of the potential is almost vertical.

Table 4.1: Ubiquitin code residues mutated.

Residue number Residue type Short form

3 Isoleucine I3
5 Valine V5
13 Isoleucine I13
15 Leucine L15
17 Valine V17
23 Isoleucine I23
26 Valine V26
30 Isoleucine I30
36 Isoleucine I36
43 Leucine L43
56 Leucine L56
61 Isoleucine I61
67 Leucine L67
69 Leucine L69

librium ensembles of the system in both states, in this case wild type protein and
mutant, are calculated using MD simulations similar to those described in chapter 3.

From the ensemble of unbound ubiquitin (based on the X-ray structure 1UBI) sim-
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ulated in chapter 3, ten “open” and ten “closed” structures were selected and simulated
using the software WHATIF (157). Each of these mutated structures was simulated
for 10ns at equilibrium conditions, the ten open structures with the external potential
restricting them to the open state and ten closed ones with the potential restricting
them to the closed state. From these equilibrium ensembles, 100 snapshots were ex-
tracted from each the open and the closed ensemble for 100ps FGTI simulations using
tools described in (158). The ∂H/∂λ profiles calculated in these simulations are then
integrated to calculate transition energies.

Finally, transition energies are sorted into histograms and approximated by Gaus-
sian distributions (figure 4.3). The intersection point of the Gaussian distributions for
transformations in both directions (wild type to mutant and mutant to wild type) is
the best approximation for the free energy difference between the two states.

FGTI/CGO can be also be used to calculate the change in thermal stability of a
mutation (158), that is the change in the folding free energy of the protein due to the
mutation. For this, the free energy change of mutation calculated in the folded protein is
compared to that of the unfolded protein, which can be estimated from the free energy
change of mutation of a GXG (Glycine-X-Glycine) tripeptide. Besides shifting the
conformational population of ubiquitin to either the open or the closed state, a mutation
candidate resulting from this screening should also not significantly destabilise the
protein compared to the thermal stability of the wild type (∆Gunfold = 23.6 kJ mol−1

according to (152)).

4.2.3 Zero-Cycles

Figure 4.6: Zero cycle used to val-
idate the free energy calculation pro-
tocol.

Zero cycles are a common approach to vali-
date methods calculating free energy differences.
They are a simplified version of the thermody-
namic cycles described in section 2.2.1 and like
them are based on the fact that the free energy
is a state property. The simplest zero cycle con-
tains three states (figure 4.6). If the free energy
differences between the three states are calcu-
lated and summed up in a way that a closed
cycle is described, the sum of the free energy dif-
ferences should be zero. Three zero cycles were
calculated both with restrictions to the open and
the closed state. With one exception, the free
energy difference along a closed path of mutations was close to zero, as expected (table
4.2), and all values are within 1kcal (4.184 kJ mol−1) of zero.

4.2.4 Results of the conformational screening

Of the 112 mutations tested, only in 15 cases (table 4.3 including the already known
L69S mutant) a difference between the free energy differences calculated in the open
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Table 4.2: Zero cycles on unbound constrained ubiquitin with restritions to the
open/closed state. All energies in kJ/mol.

Wild type residue mutations ∆∆Gopen ∆∆Gclosed
V5 V→L→I→V −0.1± 1.0 1.6± 0.8
I13 I→Y→F→I −1.3± 1.2 −3.9± 1.2
L15 L→I→V→L 0.9± 0.8 −0.7± 0.8

and closed states was above 1kcal, and hence significant considering the accuracy of
the method (figure 4.7, lower half). In addition, the free energy difference ∆Gpeptide
calculated on the GXG tripeptide were compared to the result for the preferred state
to test if the mutation destabilises the protein (figure 4.7, upper half).

Table 4.3: Ubiquitin mutants showing significant difference between open and
closed state. The free energy difference ∆Gclosed − ∆Gopen between the mutation re-
stricted to the open and the closed conformation indicates which of the two states is more
stable. If the difference is negative, the mutants are predicted to prefer the closed confor-
mation, if it is positive, the mutant are predicted to prefer the open conformation. The
free energy differences ∆∆Gclosed and ∆∆Gopen are the change of binding free energy cal-
culated for the mutant restricted to the closed and the open conformation. If both of these
values are high (and positive), the mutant is significantly less stable than the wild type and
might not fold correctly. For the 15 mutants in this list, umbrella sampling simulations
were performed to confirm the predicted preference for one of the states. All energies in
are kJ/mol.

mutations ∆Gclosed −∆Gopen ∆∆Gclosed ∆∆Gopen confirmed

I30Y −13.1± 4.1 7.1± 2.3 20.2± 2.6 no
V17Y −6.5± 3.9 18.8± 2.2 25.3± 2.4 no
L69T −6.2± 2.1 15.4± 1.6 21.6± 1.4 yes
I30T −5.4± 1.6 −0.8± 1.0 4.6± 1.0 no
L69S −5.3± 2.2 18.6± 1.6 23.9± 1.4 yes
L56Y −5.1± 2.5 19.4± 1.7 24.6± 1.7 no
V5L −4.9± 1.3 1.2± 0.9 6.1± 1.1 yes
I36L −4.9± 0.9 −0.7± 0.6 4.2± 0.8 yes
V5C −4.4± 1.0 1.9± 0.8 6.3± 0.8 yes

I36F 4.5± 1.3 4.7± 0.9 0.2± 1.1 yes
I36S 5.2± 1.3 11.4± 1.0 6.1± 1.0 yes
I13F 5.5± 1.4 2.8± 1.2 −2.6± 1.1 yes
I36C 5.6± 1.0 4.9± 0.8 −0.7± 0.9 yes
I36Y 5.9± 1.7 3.0± 1.2 −2.9± 1.2 yes
I36A 8.6± 1.0 10.7± 1.4 2.1± 1.5 yes
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Figure 4.7: Changes in stability for ubiquitin mutants restricted to the open
or closed state respectively. Plot provided by Servaas Michielssens.
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4.2.5 Free energy profiles using umbrella sampling

While the FGTI/CGI protocol described above allows a wide screening of mutations
at (comparatively) low computational cost, an independent validation of free energy
profile would be desirable. For this, umbrella sampling simulations (section 2.2.6)
were performed on the 15 most promising mutations (listed in table 4.3). 20 umbrella
potentials were defined along the pincer mode and eleven restricted simulations of 15ns
each where performed in each window, the last 10ns of which where used for analysis.
The resulting histograms where analysed usig WHAM (129, 130) and a bootstrap (142)
method was used to estimate the uncertainty along the profile. As can be seen in figure
4.8, the profiles fit the FGTI/CGI result in most cases. For some mutants, particularly
for I30Y, V17Y, I30T and L56Y the calculated profile does not fit the preference of the
closed state that has been found by FGTI/CGI.
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Figure 4.8: Free energy profiles for different ubiquitin mutants. Calculated using
umbrella sampling.
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4.3 Calculating binding free energy changes due to muta-
tion of ubiquitin

FGTI/CGI-screening (section 4.2.4) and validation using umbrella sampling (section
4.2.5) have resulted in a list of eleven mutations, five (L69T, L69S, V5L, I36L and V5C)
that shift the conformational population of unbound ubiquitin to the closed state and
six (I36F, I36S, I13F, I36C, I36Y and I36A) that shift it to the open state. To validate
if the binding behaviour of ubqiutin can indeed be changed by these shifts, the change
in binding free energy due to some of these mutations in four characteristic complexes
has been calculated in section 4.3.3.

For two reasons, the equilibrium simulations used for complexes have been chosen
to be significantly longer (5x100ns instead of 10x10ns). First, the simulation system
including the binding is bigger than that only consisting of ubiquitin, hence it can be
assumed that more time is needed to sample the conformational space. Secondly, the
goals and hence requirements of the two calculations is different. The calculations on
unbound ubiquitin were a screening process that was supposed to identify valid can-
didates from a set of 112 candidates. Promising mutations were then validated using
umbrella sampling. The calculations described in the following sections are performed
on a smaller set of systems (six mutations in four complexes resulting in 24 combi-
nations) to validate the influence on the binding behaviour. A longer equilibration,
expected to lead to more accrate energy estimates, was also chosen since a further vali-
dation using umbrella sampling, as carried out for isolated ubiquitin, is not feasible for
ubiquitin complexes.

4.3.1 Zero cycles of mutations in ubiquitin complexes

As already done for unbound ubiquitin in section 4.2.3, the reliability of FGTI/CGI
results for ubiquitin complexes was tested using zero-cylcles.

Table 4.4: Zero cycles on ubiquitin complexes. All energies in kJ/mol.

Complex Wild type residue mutations ∆∆G

1xd3 K6 K→A→R→K −2.5± 2.0
1xd3 I30 I→T→Y→I −0.2± 2.1
1nbf L69 L→S→T→L 4.1± 1.8
2g45 L69 L→S→T→L −1.4± 1.7

Two of the four zero-cycles listed in table 4.4 are near zero within their uncertainty,
and all are in the range of ±1kcal (4.184 kJ mol−1). This suggests that that chosen
protocol indeed provides a similar accuracy as obtained for isolated ubiquitin.
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4.3.2 Testing calculated changes in binding free energy against ex-
perimental values

Wilkinson et al. (151) have measured the changes in binding free energy for different
ubiquitin mutants to UCH-L3, which is the protein binding ubiquitin in the 1XD3
structure. To test the feasibility of the used protocol to calculate affinity changes due
to mutation, calculations of these values were performed. The results are shown in
figure 4.9.

Figure 4.9: Comparison of experiental and calculated binding free energy
changes. The binding free energy differences for ubiquitin binding with UCH-L3 has
been measured for different mutations (151). Here, these values are compared with those
calculated using the alchemical free energy method. The green line is a fit of the data
points. The solid blue line is the identity. If the calculations would perfectly reproduce
the experimental values, all points would lie on this line. The broken blue lines delimit a
deviaton of ±1kcal/mol from experimental values.

Overall, the correlation coefficient is 0.70. The correlation coefficient for “conserva-
tive mutants” (i.e. K6R, L8A, K11R, K27R, K33R and I44A which conserve the charge
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of the residue) is 0.93.

4.3.3 Calculating the effect of mutations known to prefer one pincer-
mode state on binding behaviour

To test the hypothesis that the mutants identified in section 4.2 indeed affect bind-
ing selectivity by favouring a specific state in the pincer mode, the change in binding
free energy was calculated for four complexes. Two complexes with ubiquitin predom-
inantly in the open conformation and two with ubiquitin predominantly in the closed
conformation were chosen. Six ubiquitin mutations were performed on each of these
complexes, two preferring the open and four preferring the closed conformation ac-
cording to 4.2. For each complex, five structures equally distributed along the pincer
mode were selected from the equilibrium simulation (with wild type ubiquitin). Each
of these structures was mutated using the software WHATIF (157) and simulated for
110ns using the GROMACS 4.5 simulation package (145). The first 10ns are not used
in subsequent steps to allow the protein structure to relax into the ground state of the
mutated ubiquitin. Of the remaining 100ns per trajectory, 50 snapshots (every 2ns)
containing coordinates of all atoms of the simulation system (including solvent water
and ions) were extracted and used to set up Fast Growth Thermal Integration (FGTI)
simulation in which the mutated residue was changed back to the wild type residue
according to a setup adapted from (158). Similarly, 300 structures were selected from
the equilibrium simulation of wild type ubiquitin in the complex and FGTI simulations
were performed in which the wild type protein was turned into the mutant.

Table 4.5: Binding free energy changes due to ubiquitin mutation.

closed complexes open complexes
1nbf 2g45 1xd3 dsk2

closed mutants

V5L −2.6± 0.6 −4.5± 0.6 −2.1± 0.6 −0.6± 0.6
I36L 2.2± 0.6 3.7± 0.7 4.3± 0.6 −1.5± 0.6
L69S 6.2± 1.3 2.1± 1.3 17.2± 1.0 4.2± 1.2
L69T 5.0± 1.8 7.0± 1.7 18.4± 1.5 9.9± 1.6

open mutants
I13F 10.3± 1.1 4.8± 1.1 1.4± 1.0 −1.7± 1.0
I36A −1.0± 0.7 9.9± 0.7 0.9± 0.6 0.8± 0.6

Assuming that the pincer mode is indeed the determining factor both in the binding
as well as in the selected mutants, it would be expected that binding affinity would
decrease if the preferred state of complex and mutant are not compatible, while binding
should improve or not be affected if complex and mutant prefer the same state. As
can be seen in figure 4.10, most binding free energy changes for mutations preferring
the same state as the complexes they have been introduced are within ±1.0kcal/mol of
zero. Most of the mutations that prefer a pincer mode conformation that is different
from the complex cause a ∆∆Gbinding which is above 1.0kcal/mol. This indicates a
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destabilisation of the complex and a decrease of binding affinity. The average change
in binding free energy is ∆∆Gbinding,compatible = 1.8 kjoule/mol for the mutants that
are compatible with the complex and ∆∆Gbinding,incompatible = 6.3 kJ mol−1 for mutants
that are not compatible. The difference is statistically significant with a 95% confidence
level according to a two-sample t-test performed on the data. However, in four cases
(1nbf-I36A, 1xd3-V5L, dsk2-V5L and dsk2-I36L), the free energy of binding is hardly
affected by mutation at all. In the case of the V5L mutation, the ∆∆Gbinding values
calculated here would indicate that all complexes are stabilised, and those that require
the closed state, which should be preferred by V5L are actually more stable than the
ones requiring the open conformation (as would have been expected), even though the
difference is actually very small.

Figure 4.10: ∆∆Gbinding (in kJ/mol) for different mutations in different com-
plexes. Mutations that prefer the same pincer mode state as the complex are plotted in
blue on the left side, those preferring a different conformation are plotted in red on the
right side. The grey area marks a range of ±1.0kcal/mol, values within this range cannot
be assumed to be significantly different from zero.
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A look at the potential of mean force along the pincer mode (figure 4.11) shows that
the dynamics of mutants in the complex are usually similar to those of the wild type
in the same complex. It remains to be determined if this is a result of binding having
a stronger influence on the conformational behaviour of ubiquitin than mutation. The
equilibrium simulations used to estimate the PMFs in figure 4.11 were all started from
conformations taken from the corresponding bound wild type ensembles, so a bias due
to the starting structures cannot be excluded at this time. It should be noted, however,
that the starting structures for the unbound mutant simulations were also picked from
the unbound wild type ensemble and hence contained a similar starting structure bias
that the mutant simulations seem to have overcome quickly.
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Figure 4.11: Comparisons of potentials of mean force for bound wild type
ubiquitin, unbound and bound mutated ubiquitin. PMFs estimated from wild type
ubiquitin simulations in the complex are shown in the first row in red, PMFs calculated
from umbrella sampling simulations of unbound mutants are plotted in the first column
in blue. It can be seen that the PMFs estimated from simulations of mutant ubiquitin in
the complex (in cyan) are in most cases similar to those of the wild type in the complex,
indicating that complex formation has a stronger influence on ubiquitin dynamics than
single point mutations.
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5

Discussion

5.1 Influence of binding on ubiquitin dynamics

We compared ensembles of ubiquitin structures from molecular dynamics (MD) sim-
ulations with and without binding partners aimed at a detailed investigation of the
conformational effects of protein binding.

The main collective mode of fluctuation found in unbound ubiquitin is the pincer
mode which strongly influences the shape of the binding surface (fig. 3.2). It has been
indicated (12) that the flexibility of this mode is essential for ubiquitin to interact with
a large number of different binding partners. Indeed, this mode is characteristically
affected by binding as all but one of the bound ensembles show a significant shift
or restriction of conformational density, while still the whole range of flexibility of
unbound ubiquitin is required to accommodate all observed bound states. As all bound
ensembles are completely covered by the unbound ensemble along the pincer mode, the
conformational selection model is applicable for this aspect of binding.

Employing the partial least squares distinction analysis method that specifically
aims at identifying differences between ensembles, low amplitude difference modes be-
tween bound and unbound ubiquitin ensembles were identified.

The observation of the unbound protein displaying the bound state conformation is
often considered indicative of conformational selection ((12, 27, 78, 159)). I observed
a significant fraction of the unbound ubiquitin ensemble showing a strong similarity
(especially in the main pincer mode) to the conformations of bound ubiquitin. This
is consistent with a conformational selection binding scenario, while the differences
between bound and unbound ensembles on the local level indicate residual induced fit
effects as have been introduced in recent binding models (29, 30, 31).

It is still possible that a portion of the binding events occurs according to an in-
duced fit scenario. An alternative classification of the binding process is based on the
inclusion of binding kinetics (160, 161, 162). As I have concentrated our analysis on the
comparison of bound and unbound states rather than on association and dissociation
events, a kinetic approach is beyond the scope of this thesis.

An aspect not considered in recently discussed binding models (29, 30, 31) is the
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5. DISCUSSION

dynamic nature of bound proteins. Earlier work (163) already indicated that binding
does not necessarily decrease the conformational entropy of proteins. I have also found
that the dynamics of the bound ubiquitin ensembles are on a similar scale as those of
unbound ubiquitin (fig. 3.3, 3.4).

In general, two effects of binding on the conformational space of the protein can be
expected (fig. 5.1). Conformations accessible to the unbound protein can be prohibited
by interactions (fig. 3.5) with the binding partner (conformational restriction) while
conformations that were energetically unfavourable to the unbound protein can become
accessible due to favourable interactions with the binding partner (conformational ex-
tension).

Figure 5.1: Schematic description of the proposed binding models. The blue
ensemble would be that of the unbound protein, the red that of the bound. A sketch of
possible free energy profiles fitting the corresponding models is given on the right.

These two effects are not mutually exclusive and indeed in most cases I observe
a combination of both effects in the binding behaviour of ubiquitin. In the most ex-
treme cases, all conformations accessible to the unbound protein are restricted, with
all theconformations in the complex being the effect of conformational extension. This
“conformational shift” corresponds best to the induced fit binding model.

In the case of conformational extension, changes of the energy landscape due to
binding allow the protein to access conformations that are energetically unfavourable
in the absence of the binding partner. While not generally considered, conformational
extension is well compatible with the conformational selection model of binding, as
the binding process itself can well take place in the overlap between the bound and
unbound states.
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5.2 Designing ubiquitin mutants to influence the binding behaviour

Most complexes considered in this study can be described by the scenario of con-
formational extension combined with conformational restriction, showing a significant
overlap between bound and unbound ensembles. Interestingly, also for those complex
with near-zero overall overlap, substantial overlap is found between the bound and
unbound states on the level of individual residues. Hence, for these complexes, each
residue samples states in the unbound state that are found in the bound state, but the
probability to find all contact residues in a complex compatible state simultaneously
approaches zero for these complexes, resulting in zero overall overlap.

The consideration of conformational ensembles is a common feature of modern com-
putational protein docking approaches to account for conformational changes due to
binding (20, 164). Our results suggest that while native conformational ensembles are
likely to yield good binding conformations on a global scale, small-scale structural adap-
tions at the binding interface seem to occur that are specifically caused by interactions
with the binding partner.

5.2 Designing ubiquitin mutants to influence the binding
behaviour

In chapter 3 I observed, that the pincer mode of ubiquitin is characteristically restricted
when it is bound to different binding partners. In chapter 4, I intended to use this
knowledge to selectively change the binding affinity of ubiquitin to certain binding
partners by changing its population along this mode. Experimentally verified examples
(152, 153) indicate that this can be achieved by mutations of residues that are not part
of the binding interface of ubiquitin but of its hydrophobic core.

A protocol based on non-equilibrium free energy simulations was developed to es-
timate free energy differences between the two pincer mode states of different mutants
in an effective way, allowing us to screen a total of 112 point mutations. For fifteen
of these, the screening protocol returned promising values, eleven of which could be
validated using a more extensive equilibrium free energy method. Considering the re-
strictions on computation time that are necessary to efficiently screen a large number
of mutations, it can be expected that some results are not precise, as could also be seen
in outliers in zero-cycles calculated with the method (section 4.2.3). Of the remaining
eleven candidates that showed a clear preference for either the open or the closed state
of ubiquitin, I introduced six into complexes that have been shown to to restrict ubiq-
uitin dynamics to one of these states. It was expected, that an incompatible pairing of
mutant and binding partner, that is a mutant shifted to the open state with a binding
partner that restricts wild type ubiquitin to the closed state and vice versa, would
destabilise the complex. Of twelve such pairings, this expectation was clearly fulfilled
for eight, with a significant average decrease of binding affinity compared mutants that
were introduced into compatible complexes. Of the remaining four pairings, two in-
volve the binding partner dsk2. Wild type ubiquitin bound in this complex seems to
be slightly less restricted to the open conformation than in complex with UCH-L3 (the
binding partner in 1xd3).
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5. DISCUSSION

I calculated changes in binding free energy up to 18.4 kJ mol−1. Published values for
Binding affinities of ubiquitin complexes range from 1690 µM to 2.8 µM, which (accord-
ing to equation 1.2) corresponds to binding free energies from ∆GD = −15.9 kJ mol−1

to ∆GD = −31.9 kJ mol−1. The calculated changes in binding free energy for some
of the mutants found in chapter 4 are of similar magnitude and hence should severely
influence the binding behaviour of the mutants. In general, while the complexes used
in 4 do not spontaneously switch between states in 10x100ns MD simulations, there is
no information on how energetically unfavourable the other state really is, or if there
are alternative binding modes that play a role for the mutant.

As seen in figure 4.11, the dynamics of the mutants seems to be determined by the
binding partner in most cases, which requires a substantial shift in the population dis-
tribution along the pincer mode. In terms of the applicability of the different binding
models, this would increase the role of induced fit effects in the case of incompatible
mutant-complex pairs. However, as shown in figure 4.10, this change is in most cases
connected to a significant decrease in binding affinity, indicating that the conforma-
tional flexibility of ubiquitin and its ability to bind by conformational selection are an
important contribution to its function as they enable it to bind to a variety of binding
partners.

5.3 Outlook

The results described in chapter 4 still have to be considered work in progress and
further studies on the topic will be necessary to validate and better understand the
results. We were able to identify several candidates of ubiquitin mutants selective for
one of the pincer mode states, which should significantly influence binding behaviour.
First attempts to validate this have had some promising but also some unexpected
results - further investigations of the effects of binding should prove useful. in addition,
experiments to verify the predicted changes in binding affinity for various mutants have
been planned.

A topic of ongoing research are the mechanisms by which receptors select for dif-
ferent configurations of polyubiquitin chains (53). Recently published structures of
such polybiquitin chains without and with binding partners have provided first insights
into these mechanisms, but to our knowledge the influence of protein dynamics in this
context has not been extensively investigated.

Over the course of this project, methods have been developed that are also applica-
ble beyond its scope. The different applications of partial least squares discrimination
analysis (PLS-DA) discussed in chapter 3 should be useful in many cases where struc-
tural differences between structural ensembles are of interest. The FGTI/CGI protocol
described in chapter 4 could be applicable to a number of protein engineering problems
where the goal is a shift in population along a generalised coordinate.
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