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Abstract

Properties of biomolecules are often investigated using Molecular Dynamics

(MD) simulations whereby atoms and molecules interact for a period of time,

thus revealing the time dependent behavior of the system. Whereas the atom

positions of the starting structures for such MD runs are usually derived from

X-ray crystallography or NMR experiments, properties such as charges or

bonds are specified in so called topologies fitted to the starting structure.

During classical MD simulations such a predefined topology is not altered

during the complete simulation run. Inherently this requires the protonation

states of all titratable groups in bio molecules, e.g. glutamic acid, histidine,

lysin etc., to remain unchanged during the full simulation. In this thesis we

apply and extend a novel method, so called λ-dynamics, to allow topology

switching between different protonation states as a dynamical process. Hereby

two Hamiltonians are defined in advance reflecting the protonated and un-

protonated configuration. The newly introduced parameter λ is a switching

parameter on a linear interpolation of those Hamiltonians treated as a virtual

dynamical particle. The forces acting on λ are derived from the derivative of

the free energy landscape δG
δλ

. Hydration free energies for deprotonation are

included by empirically altering the energy landscape in G. By accounting for

the pH dependence of the hydration free energy in the energy landscape cor-

rection, constant pH simulations can be achieved. In an extended version of

this method multiple titratable groups can be treated independently to allow

molecular dynamics simulations of typical peptides and proteins.
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Chapter 1

Introduction

Most, if not all, biochemical processes on the molecular level are triggered and

mediated by proteins. To understand the qualitative and quantitative prop-

erties of such processes, the structure, function and process dynamics of the

biomolecules have to be investigated. With structural data, e.g. from NMR

or X-ray crystallography experiments, an atomistic computer model of the

biomolecules involved can be generated. The model system’s time dependent

behavior is then computed by allowing the atoms and molecules to interact

for a period of time. Such Molecular Dynamics simulations (MD) have be-

come more common and successful in the last years, not only due to increasing

computational resources, but also due to new atomistic models. Although an

increasing number of atoms can be modeled, and even combined Quantum

Mechanical / Molecular Mechanical (QMMM) [LC03] [RSC05] methods are

routinely used today, the simulation of larger systems at a fixed and arbitrar-

ily chosen pH value comprises an active field of research. However, stability

and function of proteins strongly depends on the local protonation states of

titratable groups, e.g. glutamic acids or histidines, which is governed by the

environmental pH ([MGGM+85], [Per78], [War79] and [BMP97]).

In standard MD simulations a single topology, describing a fixed construct of

atoms and their interactions is used and protonation states are constant during

an entire simulation. The pH is hereby only taken into account by generating a

starting structure with the most probable protonation arrangement for a given

pH. Biological function based on local environmental effects e.g. by closing a

reactive site followed by a redistribution of protons, can therefore only be simu-

lated inaccurately in classical MD simulations. It is, hence, necessary to extend

the classical MD approach to allow simulations at a given pH, reproducing the
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correct average protonation probabilities, while allowing proton reordering by

dynamical topology changes.

Nevertheless, performing such constant pH simulations is a relatively new

achievement. In 1994 Mertz and Pettitt [MP94] simulated acetic acid by creat-

ing a potential function interpolation between the protonated and the depro-

tonated state over a variable ξ. The general setup is similar to the Hamiltonian

interpolation over a twofold Hamiltonian describing an acid’s state in the pro-

tonated and the deprotonated form as used e.g. in free energy calculations

(2.8). The Hamiltonian is extended to reflect the pH dependency by coupling

the potentials for each end state to a chemical potential influenced by the pH.

From the chosen chemical potential difference the equilibrium value for the in-

terpolating variable ξ (or extend of reaction) is calculated. ξ is then compared

with the experimental titration curve to calibrate the interpolation potential.

By setting the ξ variable the correct protonation state is achieved over the

simulation, effectively running at constant pH.

In 1997 Sham, Chu and Warshel [SCW97] used the method of protein dipoles

Langevin dipoles (PDLD) treating the protein relaxation in the microscopic

framework of the linear response approximation. By the response from the

local environment they derived the change in the protonation state. Thus,

local effects are much better represented than in a continuum treatment of the

electrostatic energies in a macromolecule.

More recent approaches can be generally divided into two main sections: The

first set of approaches consists of techniques combining Molecular Dynamics

(MD) and Monte Carlo (MC) simulations for sampling the protonation re-

action coordinate. In the MD/MC simulations all atoms are calculated using

MD and the protonation state represented by the corresponding charges and

interaction terms is controlled via MC. The major differences between a var-

ious constant pH implementations is the choice of solvent representation and

the calculation of the free energy change (∆G) with respect to the switch in

protonation state. This ∆G is then used to make the Metropolis [MRR+53]

decision, whether the new protonation state is accepted or rejected.

Bürgi et al. [BKvG02] use an explicit solvent model and calculate the free

energy difference by a short (10ps) thermodynamic integration (TI) run at

each MC step. Performing the TI is very costly in computational resource re-

quirements and, moreover, short TI calculations are likely to encounter severe

problems in more complex systems due to non-valid equilibrium assumptions.

Another approach by Baptista [BMP97] [BTS02] uses static pKa calculations
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based on an implicit Poisson-Boltzmann (PB) model. Antosiewicz et al. [Ant08]

and Dlugosz [DA04] extended this model further using continuum electrostat-

ics for implicit solvent simulations. Mongan et al. [MCM04] [MC05] used MC as

well, but with a Generalized Born (GB) [DCK04] implicit solvent. A common

disadvantage to all MD/MC hybrid simulation methods is the high computa-

tional cost either to perform an additional TI for every MC step or to solve the

PB or GB equations. Additionally a very fast change in protonation could lead

to unforeseeable artifacts during the MD simulation or to a possible failure due

to problems in the non-bonded interactions.

In contrast to MD/MC simulations, the techniques presented by Börjesson and

Hünenberger [BH01] with explicit solvent and Lee et al. [LJI04] with implicit

solvent, dynamically change the protonation state on a continuous titration

coordinate in a way similar to the approach of Mertz and Pettitt [MP94].

They circumvent the problem of instantaneous protonation state switches and

observe more stable simulations. The method of Lee et al. is based on the

λ-dynamics [KI96] approach, whereby the coupling variable λ interpolating

between the Hamiltonians describing the two end states is treated as a parti-

cle with a virtual mass. This particle is moving in the free energy landscape

between the two end states at λ = 0 and λ = 1. The theory of λ-dynamics

will be outlined in more detail in the theory and methods Chapter 2. Addi-

tionally in this continuous pH molecular dynamics method (CPHMD) Lee et

al. utilize an artificial barrier to create an end state favorable environment in

λ-space. The CPHMD method is extend by Khandogin et al. [KB05] to cope

with proton tautomerism as can be found e.g. in histidines by using multi-

dimensional λ-variables as virtual particles. This approach was described to

accurately model experimental titration curves for simple amino-acids and is

therefore a justified candidate for a transfer to the widely used and highly opti-

mized GROMACS [BvdSvD95], [HKvdSL08], [LHvdS01], [SLH+05] Molecular

Dynamics modeling package.

Nearly all of the previously proposed methods use implicit solvent models

which, provide an elegant interface to model external environmental influences

on the relevant titratable groups. The implementation of constant pH simula-

tions including explicit solvent based on λ-dynamics requires nontrivial changes

in the MD algorithms.

This thesis presents an extended λ-dynamics approach to accurately perform

constant pH simulations with explicit solvent of systems including multiple

titratable groups. The method is then applied to small test systems consisting
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of one to three titratable groups to simulate titration curve experiments.



Chapter 2

Theory and methods

To increase the simulation length and allow larger system sizes including more

atoms in molecular dynamics simulations, some approximations, also relevant

for later constant pH modifications, are made. The most fundamental one is the

classical treatment of atoms, which allows the description of atomic movement

by solving Newton’s equations of motion. Instead of calculating the potential

at each step during the simulation, a simplified potential V is used:

mi
δ2ri

δt2
= Fi (2.1)

Fi = −δV

δri

, (2.2)

whereby mi is the mass, ri the position and Fi the force on atom i. These

equations are solved simultaneously in small time steps (0.5fs to 2fs), which

are smaller than the fastest fluctuations in the system, using the Leap-Frog

[HGE74] algorithm,

v

(
t +

∆t

2

)
= v

(
t− ∆t

2

)
+

F(t)

m
∆t (2.3)

r

(
t +

∆t

2

)
= r(t) + v

(
t +

∆t

2

)
∆t. (2.4)

The classical approach implicitly requires additional assumptions: In the Born-

Oppenheimer approximation the motion of the electrons can be described in-

dependently from the nuclei due to several orders of magnitude difference in

mass and velocity. Therefore, the Schrödinger equation as the most general

description separates into a time independent part for the electrons and the

previously mentioned time dependent potential function V for nuclei motion.

In all force fields, V is a fit to the quantum mechanical ground state energy.
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Figure 2.1: Energy terms describing the force field potential. The left column

depicts the atomistic interaction and angular constructions. It is followed by

the potential description for each interaction and the right column illustrates

the term graphically.

Figure 2.1 illustrates the inter- and intramolecular energies including separated

terms for bond stretching potentials, bond angles, extraplanar angles, dihedral,

Coulomb pair interaction and van der Waals interaction as force field’s building

blocks.

2.1 Free energy difference

For constant pH simulations the energy difference ∆G between the protonated

and deprotonated state enables one to calculate e.g. the pKa shift of an amino

acid transferred from water to a protein. Yet, calculating free energies ∆G from

MD simulations using force fields is not straightforward. This is mainly due

to weaknesses in the force field model not describing the quantum mechanical

effects in bond forming and electron distribution. The harmonic approximation

for bonded interactions as shown in Figure 2.1 is not very accurate for vanishing
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or newly created particles and does not describe stretched bonds. But most

problematic is the modeling of the bonds as harmonic springs with zero energy

at the equilibrium length. The inner energies of the molecules influenced by

the electrons forming bonds between the atoms are therefore not correctly

modeled. By this simplified treatment an offset, different for each molecule, is

introduced making the calculation of absolute free energies inapplicable.

Considering a simple proton transfer from an hydronium to an ammonium in

vacuum is modeled, the reaction

NH3 + H3O
+ −→ NH+

4 + H2O (2.5)

is modeled with large separation (50nm distance) between the hydronium and

the NH3 so that no interaction influences the free energy analysis. By quan-

tum mechanical calculations performed with the GAUSSIAN [FTS+] software,

the enthalpy difference between the NH3 and the NH+
4 is calculated to be

∆G = −879, 7kJ/mol which is in the range of the hydration free energy of a

proton of around ≈ 260kcal/mol = 1088kJ/mol [TTB+98]. However, in the

molecular mechanical simulation where all quantum mechanical effects con-

cerning electrons are ignored a free energy difference of ∆G = 0.0013kJ/mol,

which is small compared to the inaccuracy of free energy calculation methods,

is calculated in such simulations as Figure 2.2 illustrates.

The complete change of inner energy U cannot be calculated as force fields ig-

nore electron influences. The only contribution to the free energy in simulations

is the non-bonded interactions e.g. from surrounding water molecules.

Due to this offset problem of inner energy changes in the force fields, free

energies are typically calculated as relative differences via a thermodynamical

cycle. Figure 2.3 illustrates a typical cycle describing the deprotonation of an

acid in water and in the protein. This thermodynamical cycle yields meaningful

energy differences as the force field introduces the same offset error to all

required branches of the cycle, thus canceling each other out. Following

∆∆G = ∆G2−∆G1 = ∆G4−∆G3 (2.6)

either the calculation of ∆G1 and ∆G2 or the calculation of ∆G3 and ∆G4 is

required. ∆∆G expresses the acid’s pKa shift due to the protein environment.

This method of calculating pKa shifts was first proposed by Warshel et al. in

[WSK85].
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Figure 2.2: δG/δλ for a free energy perturbation of 5000ps, whereby λ is con-

tinuously switched from λ = 0 to λ = 1. The λ-dependence expressed in δG/δλ

is barely recognizable and integrates to a ∆G smaller than the error of the FEP

method.
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Figure 2.3: Thermodynamical cycle to calculate pKa shifts. An amino acid is

placed in water and in protein environment. By evaluating ∆G1 and ∆G2, the

relative difference between the protonated and the deprotonated state can be

calculated.

To calculate free energy differences and to evaluate the branches of the thermo-

dynamical cycle in MD simulations either Umbrella Sampling [TV77] or Free

Energy Perturbation (FEP) is used. FEP is based on the Zwanzig [Zwa54]

equation

∆G(A → B) = GB −GA = kBT ln

〈
exp

{
−EB − EA

kBT

}〉
A

(2.7)

which gives the free energy difference between state A and state B.

To realize the perturbation, an interpolated Hamiltonian is used to describe

the system. The Hamiltonian of state A is added to the Hamiltonian of state

B using a weighting parameter λ, whereby the system is in state A for λ = 0

and in state B for λ = 1. The simplest interpolation is linear with λ = 0 → 1:

H(λ) = HA · (1− λ) + HB · λ, (2.8)

although also other pathways or different functional forms for various force

field are possible.

By adding up infinitively small perturbations the energy difference can then

be calculated by integrating over λ, such as:
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∆G = GB −GA =

∫ 1

0

δH

δλ
δλ. (2.9)

It is important to note that the interpolation pathway is completely arbitrary

and has no physical meaning except for the end states. The difference in states

could be e.g. a proton distribution, an additional group, an ion created in

water etc. A typical problem with the linear Hamiltonian interpolation for

charge transfer is a strong barrier potential between both states raised by the

artificial interpolation pathway by vanishing one charge and creating a new

charge at another position. This is not a realistic representation of the real

quantum-mechanical behavior whereby the proton is following a path with

different “hops” in between the end states.

2.2 λ-dynamics

Another approach using the Hamiltonian interpolation 2.8 was proposed by

Kong et al. [KI96]: Instead of controlling λ and integrating over the free energy

landscape’s derivative, λ is used as a virtual particle defined by a fictitious

constant mass m unequal zero, a position coordinate λ in the interval [0 : 1]

and a velocity v = δλ/δt acting in λ space. This is expressed by an extended

Hamiltonian:

Hextended(λi) = Hpart(λi) +
n∑

i=1

mi

2
λ̇2

i + U∗(λi) (2.10)

A λ-dependent potential term U∗(λi) will serve as an umbrella or biasing poten-

tial to limit the range of λi (see [KI96]). The Hpart(λi) represents a partitioned

Hamiltonian of the general form

Hpart(λi) = HR(λi) + HP (λi) + HEnv (2.11)

with HR and HP being the Hamiltonians describing the reactant and product

state of the perturbed atoms.

In contrast to normal free energy perturbation, the quantity δH
δλ

is not used to

compute the free energy difference ∆G, but is used as a driving force for the

virtual λ-particle. The forces acting on the λ-particle are consequently defined

as:
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Fλi
= − 1

mi

δG

δλi

(2.12)

The λ-coordinate is not a reaction coordinate as it does not correspond to a

physical mechanism. However, only the end points represent thermodynamical

states thus the actual pathway over the interpolated states is irrelevant.

This λ-dynamics approach allows to switch dynamically between two pre-

defined topologies. By applying λ-dynamics on a topology set e.g. representing

an unprotonated and a protonated amino acid, the system can dynamically

adapt to the environmentally favored protonation state. The λ-particle gov-

erned by the free energy landscape of the system would feel forces directing it

to the energetically optimal state.

2.3 Single branch free energy calculations

The virtual λ particle moves on the free energy landscape between two sys-

tems and therefore requires a correct description of the free energy differences

between these systems. But, as outlined before, free energy calculations based

on MD simulations using force fields can only yield free energy differences cal-

culating a thermodynamical cycle where the branches compared encounter the

same offset effects.

To circumvent this offset problem, empirical data is used as a replacement for

the second branch in the thermodynamical cycle effectively compensating the

incorrect force field description of electrons and corresponding minimal bond

energies. After applying these corrections to the force field, the λ-dynamics will

reproduce the correct statistical weights for the product and reactant states.

This ratio between protonated and deprotonated acid is pH dependent which

is included in the corrections as well.

For the theoretical analysis the thermodynamical cycle depicted in Figure 2.4 is

used: If one is interested in an amino acid’s pKa shift expressed by a difference

in free energy τ , one usually performs a free energy perturbation to derive

∆Gprot and a second FEP to derive ∆Gref . This allows the computation of the

protein environment’s influence τ on the ratio of protonated and deprotonated

acid (the pKa shift) by calculating τ = ∆∆G = ∆Gprot −∆Gref .

The calculation is valid, because all other branches are canceling out each other

except for τ . This can be easily seen following the red arrows traversing the
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Figure 2.4: Fundamental thermodynamical cycle for λ-dynamics calculations

at constant pH in the ∆Gprot branch. It is related to the classical cycle depicted

in Figure 2.3 but extending it for the vacuum description. Walking through the

cycle following the red arrows also yields ∆Gprot and as will be shown, directly

correspond to ∆Gref plus the energy difference τ from the environment. A

key concept for constant pH simulations is the separation of the hydration

free energy ∆Ghyd
H+ (emphasized in blue) of the proton from the remaining

contributions during deprotonation. This pH dependent hydration free energy

(∆Ghyd
H+) is altered to allow simulations at different pH.
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thermodynamical cycle (Figure 2.4).

1. The first step is the transfer of the protonated acid (AH) from the protein

environment to the vacuum state. The energy difference between these

states is −
(
∆Ghyd

AH + τ1

)
representing the energy that was required to

first hydrate the protonated acid and τ1 to embed it in the protein.

2. In the next step the protonated acid is solvated in water which requires

an energy of ∆Ghyd
AH .

3. In the water environment the acid deprotonates yielding an unprotonated

acid (A−) and a solvated hydrogen (H+).

4. Transferring the deprotonated acid back into vacuum and dehydrating

the proton includes two energy contributions: ∆Ghyd
A− for the acid and

−
(
∆Ghyd

H+

)
for the hydrogen.

5. The final step is the transfer of the deprotonated acid from vacuum

back to the protein environment requiring an energy of ∆Ghyd
A− + τ2. τ2

describes the influence of the protein compared to the water reference

system. The energy required to solvate the hydrogen ∆Ghyd
H+ is assumed

to not depend on any protein environment but on the pH what is true for

dilute solutions. Only the processes highlighted in Figure 2.4 by the blue

box contribute to the pH dependency and are therefore split off from the

rest of the system.

The following equation expresses the calculation of ∆Gprot with the discussed

thermodynamical cycle Figure 2.4:

∆Gprot = −
(
∆Ghyd

AH + τ1

)
+ ∆Ghyd

AH + ∆Gref− (2.13)

∆Ghyd
A− +

(
−∆Ghyd

H+

)
+
(
∆Ghyd

A− + τ2

)
+ ∆Ghyd

H+

with τ = τ2 − τ1:

∆Gprot = −τ1 + ∆Gref + τ2 = ∆Gref + τ (2.14)

In the simulation no hydrogen solvating in the water box is modeled but the

pH dependent effect of ∆Ghyd
H+ on the free energy difference ∆Ghyd

A− +τ2+∆Ghyd
H+

is accounted for by an analytical correction function.
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Although τ1 and τ2 are not known in advance a free λ-dynamics simulation

can be performed to evaluate ∆Gprot. The protein environmental effects τ1 and

τ2 are influencing the deprotonation of the acid by τ = τ2 − τ1 compared to

∆Gref . The force field offset errors originating from neglecting the electrons

in the bond descriptions are identically introduced in both branches of the

simulation: In calculating ∆Gref and in calculating ∆Gprot.

2.4 Free energy modifications for a single

titratable group

Correcting the free energy landscape by empirical data requires a set of addi-

tional parameters to reproduce the correct ∆Gprot from single branch simula-

tions. By deriving these parameters and correction functions from the calcu-

lation of ∆Gref the cycle can be closed and the correct free energy difference

between the end states depending on a given pH is computed.

The first step is the separation of the hydrogen’s solvation free energy ∆Ghyd
H+

from the rest of the deprotonation process. It is assumed, that only this term

has a dependency of pH. This can be obtained from the experimental stan-

dard reaction free energy describing the solvation of the hydrogen and the

deprotonation free energy of the amino acid expressed in the pKa:

∆Gexp = kBT (pKa − pH) ln(10) (2.15)

Thus, the proton disappears from the box during the deprotonation step and

is accounted for by computing the hydration free energy analytically via a

function κ(λ, pH) which can be used to model the pH influence on the system.

Because only the end state free energies at λ = 0 and λ = 1 are physically

relevant, a simple linear function can be chosen:

κ(λ, pH) = c(pH)λ (2.16)

whereby c(pH) is a constant depending on a given pH value. κ(λ, pH) can be

calculated from equation 2.15 which can be expressed as

∆Gexp = κ(λ = 1, pH)− κ(λ = 0, pH) (2.17)

⇒ κ(λ, pH) = ln(10) · kBT (pKa − pH) · λ (2.18)



CHAPTER 2. THEORY AND METHODS 21

The second step is the treatment of the force field offset errors by a function

f(λ) reproducing the correct free energy landscape expressed by

∆Gexp = ∆Gref + κ(λ, pH) + f(λ). (2.19)

Physically relevant are only the end states and f(λ) must correct for the dif-

ference in free energy ∆Gref . Additionally, a flat energy landscape would be

most favorable by introducing any barriers at unknown positions affecting

transitions rates between λ = 0 and λ = 1 states. To generate such a flat

energy landscape not only the energy difference ∆Gref must be known but the

functional form of the λ dependence as well.

With Linear Response Theory [CP88] [HMV78] Simonson outlines [Sim02] that

dielectric response of a solvated protein to a perturbed charge is linear which

yields to a parabolic free energy functional form. The response is related to

the equilibrium fluctuations (which are assumed to be gaussian) of the unper-

turbed system. A perturbing charge density λpp contributes therefore to the

Hamiltonian by

∆H = −λf ·P (2.20)

whereby f is the field raised by pp and E = −4πP describes the field due to the

remaining charge density P. With δP = P−〈P〉0 and 〈δP〉λ as the Boltzmann

average over the perturbed system, the response can be explained as the mean

microscopic density of polarization charge induced by the perturbing field λf .

Overall the free energy derivative is linear with respect to λf [Sim02]:

δG

δλ
=

〈
δ∆H

δλ

〉
λ

= −f · 〈P〉λ (2.21)

= −f〈P〉0 − λf · af(1 + O(β∆H)) (2.22)

with β = 1/kBT and O(..) representing quantities of first order or more in

β∆H. If the fluctuations are gaussian, which can be assumed for most systems

[Sim02] higher orders are zero and the free energy derivative is linear. The

expression a is a dielectric susceptibility operator not depending on λ.

With a linear derivative the free energy is of parabolic form. Influences of

the environment or systems of higher complexity will create non-parabolic
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free energy landscapes which can be nevertheless handled by the parabolic

compensation due to the relevance of the end states only.

The function f(λ) is in the parabolic compensation approach derived from a

reference thermodynamic integration run resulting in a linear regression for

δG/δλ, e.g. δGref/δλ = a + b · λ.

To make the energy landscape plain and compensate for the force field artifacts

the correction function f(λ) is chosen as:

δf

δλ
= a1 + b1λ = −a + (−b)λ (2.23)

⇒ f(λ) = −a1λ−
1

2
b1λ

2 (2.24)

so that a1 = −a and b1 = −b. Without the κ(λ, pH) function ∆Gexp = ∆Gref +

f(λ = 1) results now into a plain energy landscape which would correspond to

a pKa = pH simulation reflected by κ(λ, pH = pKa) = 0 ∀λ.

For the simulation the new δGcorrect
prot /δλ is calculated as

δGcorrect
prot

δλ
=

δGprot

δλ
+

δκ

δλ
+

δf

δλ
(2.25)

δGcorrect
prot

δλ
=

δGprot

δλ
+ ln(10) · kBT (pKa − pH) + a1 + b1λ (2.26)

By the experimentally determined pKa value the κ(λ, pH) function represents

- together with the force field artifact compensating function f(λ) - the second

branch of the thermodynamical cycle (∆Gref in Figure 2.4).

2.5 Generalization to multiple titratable

groups

Extending the single λ-dynamics approach to multiple (n) λ-coordinates re-

quires independent interpolation for each λ-coordinate. This is expressed with

an extended Hamiltonian similar to equation 2.10:

Hext =
n∑

i=1

(
(1− λi)H

i
Reactant + λiH

i
Product

)
+

n∑
i=1

mi

2
λ̇2

i + Henv (2.27)

whereby H i
Reactant (H i

Product) is the Hamiltonian describing the reactant (prod-

uct) groups for the λ-coordinate i. The environmental Hamiltonian Henv is
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split off. The same notation is implicitly used before in Equation 2.8 because

the linear interpolation in a single λ-coordinate reads as follows:

Hext = (1− λ)HA + λHB (2.28)

= ((1− λ)(HReactant + Henv) + λ(HProduct + Henv)) (2.29)

= (1− λ)HReactant + λHProduct + Henv (2.30)

With the linear Hamiltonian interpolation also the Coulomb interaction be-

tween two atoms i and j of which charge varies with λi and λj is linear:

Vc =
f

εrrij

[(
(1− λi)q

A
i + λiq

B
i

) (
(1− λj)q

A
j + λjq

B
j

)]
(2.31)

Coulomb forces are sufficient to describe interactions in our approach, because

we do not relate any van der Waals parameter to the variable proton in the

titratable group. The forces driving the system along λi and λj are:

− δV

δλi

∣∣∣∣
λj

= − f

εrrij

[(
qB
i − qA

i

) (
(1− λj) qA

j + λjq
B
j

) ∣∣∣∣
λj

]
(2.32)

− δV

δλj

∣∣∣∣
λi

= − f

εrrij

[(
qB
j − qA

j

) (
(1− λi) qA

i + λiq
B
i

) ∣∣∣∣
λj

]
(2.33)

with f = 1
4πε0

. In the simulation the forces on each λ are computed consecu-

tively while keeping the remaining λ values constant. This treatment as con-

stant values allows a straightforward implementation with low computational

complexity.

2.6 Including an additional barrier potential

An additional barrier potential U(λ) of height h which optimizes the transitions

between the states at λ = 0 and λ = 1 and reduces the times the λ-particle

stays in between the end states is added. The Hamiltonian can be extended

again to

Hext =
n∑

i=1

(
(1− λi)H

i
Reactant + λiH

i
Product

)
+

n∑
i=1

mi

2
λ̇2

i +
n∑

i=1

U(λi) + Henv.

(2.34)
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Figure 2.5: Barrier potential of 2.5 kJ/mol. The barrier is applied to the free

energy landscape and not altering the thermodynamically relevant end states.

The barrier should not effect the end states and should act as a simple linear

function in the ∆G space so it is defined as:

U(λ) = −1

2
c · λ +

1

2
c · λ2 (2.35)

With

c =
2h

λ2 − λ
(2.36)

follows for the barrier height at λ = 0.5

c = −8 · h (2.37)

Therefore the barrier is expressed by:

U(λ) = 4h · λ− 4h · λ2 (2.38)

⇒ δU

δλ
= 4h− 8hλ (2.39)

as illustrated in Figure 2.5 for h = 2.5kJ/mol.

The final calculation for the ∆Gcorrect
prot is done by:
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δGcorrect
prot

δλ
=

δGprot

δλ
+ ln(10) · kBT (pKa − pH) + a1 + b1λ + 4h− 8hλ (2.40)

This approach can even be extended to an dynamical barrier height adap-

tion. Hereby the last n transitions are observed and the average time τ between

the transitions is calculated. If τ is larger than a previously given control vari-

able ξ, the barrier is lowered to optimize sampling and allow more transitions.

If τ is smaller than ξ the barrier is increased again to lower rate of transitions.

This method could be used to achieve realistic transition rates if the average

time between transitions ξ is much smaller than the total simulation time.

But even if this is not the case, the adaptive barrier potential can optimize

sampling by allowing the λ-particle to move away from an end state where it

was hold by a too strong barrier potential.

2.7 Technical constraining of the sampling

space

Performing extended λ-dynamics simulations requires additional constrain-

ment of the space λ can sample. The following three requirements are crucial

for a physically correct λ-dynamics run:

1. The transition rates should be under control

2. Interpolated states describing unphysical configurations e.g. at λ = 0.5

should be minimized

3. The λ-particle should be constrained to the interval [0 : 1] and do not

be allowed to sample energetically favored but unphysical states e.g. at

λ = 4.

While items 1 and 2 can be solved using an additional barrier of appropriate

height, item 3 requires an additional solution. A typical problematic scenario

could be the following: The system consist of one protonated glutamic acid

surrounded by a high amount of NA+ ions and the topologies are distinct only

in the protonation state of the acid. In reality the glutamic acid would quickly

deprotonate and the total charge in the system would not change significantly.

With an unconstrained λ the glutamic acid could provide a negative charge

large enough to compensate for all positive ions in the system.
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Figure 2.6: θ-dynamics as constrainment solution. By projecting the forces

−δV/δλ to θ-space the MD is actually performed on the circle and λ is calcu-

lated via λ = r cos(θ) + 0.5 by projecting it back.

To circumvent moving over the defined end states and sampling of unphysical

states, λ is re-defined as a circular projection from a newly introduced variable

θ. λ is expressed by λ = rcos(θ) + 0.5 as shown in Figure 2.6. By this modifi-

cation the actual MD simulation is performed in theta-space with θ being the

new dynamical variable. λ is reduced to the projection of θ to the Hamiltonian

interpolation axis.

The forces acting on λ have to be projected to the circle as well. The new

Leap-Frog algorithm (see 2.3) reads as

Fθ = −δV

δθ
= −δV

δλ

δλ

δθ
= +

δV

δλ
r sin(θ) (2.41)

vθ

(
t +

∆t

2

)
= vθ

(
t− ∆t

2

)
+

Fθ(t)

mθ

∆t (2.42)

θ

(
t +

∆t

2

)
= θ(t) + vθ

(
t +

∆t

2

)
∆t. (2.43)

The final λ update reads as

λ(t + ∆t) = rcos (θ(t + ∆t)) + 0.5. (2.44)

2.7.1 Entropic potential by circular projection

By using such a circular projection while calculating and updating λ, an ad-

ditional underlying entropic term is introduced which can be calculated as

follows:
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Figure 2.7: Calculation of the state density by calculating dθ in an element

dλdy of the circle.

It is assumed that the particle moving on the circular space is influenced by

an external potential V e.g. originating from the particle’s environment in the

simulation. Hereby it is important to note that holds V (θ) = V (−θ) which

reduces the problem to calculating the entropic effects of a half-circle.

The entropic contribution originates from the different number of states sepa-

rated by dθ in a fragment dλ depending on the position as illustrated in Figure

2.7. This could also be expressed as the density in a fragment dλ. At λ = 0

and λ = 1 the density reaches its maximum while λ = 0.5 is least occupied.

States around the endpoints λ = 0 and λ = 1 are therefore entropically fa-

vored. The density of states gθ can be described with the Boltzmann inverse

[Sop96] [RPMP03] by

gθdθ = exp(−βV (θ))dθ (2.45)

with β = 1/kBT as the inverse temperature. From the definition of λ the

expression for dθ can be derived:

λ =
1

2
+

1

2
cos(θ) (2.46)

θ = arccos(2λ− 1) (2.47)

⇒ dθ = − dλ√
λ(1− λ)

(2.48)

To calculate the free energy contribution F (λ) = −kBT ln(gλ), the average

distribution function gλ is required:
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gλdλ = gθ(λ)
dθ

dλ
dλ = − exp(−βV (arccos(2λ− 1)))

dλ√
λ(1− λ)

(2.49)

⇒ F (λ) = −kBT ln(gλ) = −kBT ln

(
exp(−βV (arccos(2λ− 1))√

λ(1− λ)

)
(2.50)

= −kBT
[
−βV (arccos(2λ− 1)) + ln(

√
λ(1− λ))

]
(2.51)

= −kBT

[
−βV (arccos(2λ− 1)) +

1

2
ln(λ(1− λ))

]
(2.52)

If there is even no external potential (V (θ) = 0), the free energy surface influ-

encing the λ-particle is given with respect to the following entropic term:

F (λ) = −kBT
1

2
ln(λ(1− λ)) (2.53)

Figure 2.8 is showing a plot of the free energy landscape originating from the

entropic term. As can be seen, both end states are not changed with respect to

each other. Nevertheless, a potential of a few kJ/mol is created by the circular

projection favoring the end states which is a desired probability of the extended

λ-dynamics approach. Even with the parabolic compensation function f(λ) the

free energy landscape is not perfectly flat when using the circular constraining.

Figure 2.9 underlines the influence of additional potential from the circle. The

end states are significantly stabilized.

2.8 Heat bath considerations

During the simulation the λ-particle is coupled to a heat bath first to prevent

energy building up in the λ-space that could be transferred to the real system

and second to allow the particle to have a minimal velocity.

In general there is a set of possible heat baths and coupling algorithms avail-

able:

If the virtual particle is coupled to the heat bath of the system energy

can flow from the λ depending virtual space to the real space which would lead

to artifacts in the long run. Nevertheless changing the system by e.g. creating

charge or moving charge from one position to another is always conjuncted with

transferring energy from or to the system. It is assumed that this modification
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Figure 2.8: Helmholtz free energy potential affecting the λ-particle due to

entropic effects without any overlaying external potential V (λ)

occurs slow enough to allow the thermostat to absorb or deliver sufficient en-

ergy and to keep the system in equilibrium. In fact, proper parameter selection

and implementation should allow the system to fulfill the overall assumption of

performing molecular dynamics simulations in a thermodynamical equilibrium.

To minimize energy transfer into or from the system a separate heat bath

for the virtual λ was chosen. Having only one particle in the heat bath is

more complex for the thermostat than having a large number because no en-

sembles can be generated and e.g. no averaging is possible. If only one particle

is in the heat bath and this particle is kept at a constant temperature using

the Berendsen thermostat [BPvG+84] (see Appendix as well), the particles

velocity is scaled down every coupled step to the velocity defined as a tem-

perature in the thermostat. The system is not able to stabilize in a favorable

position but the λ-particle moves out with constant velocity.

Instead an Andersen thermostat [And80] was chosen, which is proven to

generate correct velocity distributions and correct thermodynamical ensembles

but was not designed to be used with only one particle. Nevertheless, select-

ing a new velocity from a gaussian distribution allows the system to oscillate
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Figure 2.9: Derivative of the free energy surface. The end points are significan-

tely stabilized.

around the favored position and no large momentum can be build up destroy-

ing small local environmental influences. By using the Andersen thermostat

the λ particle is sampling the protonation space by a Monte-Carlo run.

2.9 Error estimation

The analysis of a constant pH simulation often requires to derive the ratio of

protonated and deprotonated acid. This is expressed by the average over all λ

in time < λ >. As a trajectory, the λ variables depend on the previous so one

measures a series of dependent points. This is taken into account by evaluating

the autocorrelation function yielding the time τ in which the autocorrelation

function has declined to 1/e. With the standard deviation σ the error can be

calculated as

err =
σ√
T/τ

(2.54)

whereby T is the total length of the simulation and T/τ is the number of

independent blocks.
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Parameter analysis

The λ-dynamics code has some fundamental parameters not touched by any

constant pH approach or later modifications of the code. The mass of the

virtual particle can be set for each run, the same holds for the heat bath

temperature, the coupling parameter and the starting λ. In this chapter the

influence of these various parameters on the development of λ over time is

analyzed and evaluated using a simple molecule as a test system.

3.1 The test system setup

The test system shown in Figure 3.1 consists of an aromatic ring as found e.g.

in Histidine and two additional dummy atoms (depicted in purple in Figure

3.1). The dummy atoms are fixed point charges only having Coulomb exiinter-

action with the rest of the system. They are fixed in the plane of three defined

atoms and keeps therefore its position relative to the aromatic ring. The pro-

tonatable sites of the imidazole side chains correspond to a configuration with

a protonation of γ1 (HISA) and a protonation of ε2 (HISB).

By setting charges of +0.3e and −0.3e on the second dummy (and vice versa) a

well defined potential can be applied to the freely moving charge and the system

can switch between HISA and HISB to adapt to the charge configuration set.



32 3.2 Temperature and temperature coupling

Figure 3.1: The test system setup consisting of an aromatic ring with additional

dummy atoms (purple)

3.2 Temperature and temperature coupling

As noted in the Section 2.8 the heat bath is realized using a separate Andersen

thermostat [And80] for controlling the λ particle alone. The temperature in-

fluences the sampling properties of the system: By using higher temperatures

on the one hand sampling of the the free energy surface is increased but on the

other hand fast and frequent protonation state changes are generating other

problems as high energy transfer to the system and the danger of bringing the

system out of equilibrium. To exclude such problems the temperature is always

chosen to be the identical to the systems temperature.

3.3 Mass

The virtual particle’s mass determines via its inertia how fast the system reacts

on fluctuations and how much energy is required to overcome potential barriers.

The first analysis performed was on the effect of increasing mass in the test

system. The simulations were started at λ = 0 in a configuration favoring

the other protonation state at λ = 1. Therefore it is expected that the system

quickly reacts on the applied force and evolves to the correct protonation state.

As shown in Fig. 3.2 an increasing mass slows down the reaction and smoothes

the movement of the virtual particle λ.
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Figure 3.2: λ-development for different masses in a strong potential

3.4 Correlation between mass and tempera-

ture coupling

The behavior of the system and the influence of the mass is strongly related

to the thermocoupling shown above. The more often the virtual particle’s

velocity is updated by the thermostat, the less important is the mass due

to the destruction of inertia at each coupling event.

If there is only loose thermocoupling to the heat bath, energy exchange with the

heat bath could not take place and in an isolated system the λ particle would

harmonically swing on the circle around the end point (here λ = 1) without

damping. Figure 3.3 illustrates this behavior with a probability of connecting

to the heat bath of p = 0.002 each step. If the λ-controlled group is embedded

into a larger protein structure as e.g. a Histidine in a large biomolecule, energy

transfer to the environment damps the oscillation of the λ-particle around the

end point but increases the energies of the surrounding atoms.

Temperature coupling ten times more often (around every 10th step) than

in Fig. 3.2 destroys the momentum of the virtual particle more often so the
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with very loose coupling

development into a certain direction is slowed down as shown in Fig. 3.4.

As was shown loose coupling (τ very small) allows the λ-particle to build up

momentum and sample more space but will also produces harmonic oscillation

around an end-point due to the circular constrainment construction. Strong

coupling changes any momentum and transform the MD simulation in λ-space

to a pure Monte-Carlo run.

3.5 Starting λ dependency

For a stable λ-dynamics based MD simulation the starting value of λ should be

irrelevant after a certain equilibration time. As can be seen in Fig. 3.5 the test

system with simple steep potential gradient evolves quickly into the correct

state. If additional barriers would be imposed the system could stay longer in

the beginning state.
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3.6 Barrier height

The barrier separating both end-states should be high enough to allow suffi-

cient sampling of the end-states (e.g. λ in 90% of the time around 0 or 1) and

low enough to allow transitions from one to the other state. It would be best

if the average time the λ-particle stays at one end-state and the transitions

rates between both states would reflect correct experimental measurable val-

ues. Due to the fact that NMR shows typical protonation/de-protonation times

in a range of µs to ms, sampling in MD simulations would be very bad while

running only a few ns with such high barriers. Therefore the barrier is reduced

to few kJ/mol to allow the system to change protonation state more often and

optimize sampling of λ. An optimal algorithm to determine the barrier height

or even let the the barrier height dynamically change is under development.

3.7 Summary

To allow a stable λ-dynamics simulation, the parameters must be chosen to

not destroy the required properties as regular transitions, fast reaction on local

environment changes and minimal energy transfer to the rest of the system.

By selecting the temperature for the λ-particle’s heat bath identical to the

temperature of the complete system, the energy transfer is minimized. As was

shown the influences of the mass and the temperature coupling are highly

related. Overall the total energy of the virtual particle should be low to reduce

again the energy transferable to the local environment. This can be reached by

selecting a small mass and relatively strong coupling. The parameters used for

all following simulations if not stated otherwise are shown in Table 3.1. The

barrier height is highly system dependent. For a good analysis of a simulation

using the λ-dynamics approach, every run should be controlled whether the

virtual particle leaves it’s starting state. As a starting value 2.5kJ/mol is

chosen following [LJI04]. Additionally there should be some well observable

transitions from one state to the other to ensure full sampling of the λ space.
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Parameter Starting value

Temperature coupling: ν 4

Temperature of the λ-particle 300K

Mass 5u

Barrier height 2.5kJ/mol

Starting λ irrelevant

Table 3.1: Values for the various parameters introduced by the technical re-

alization of the λ-dynamics. These build a starting set for simulations with

unknown energy landscapes.
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Chapter 4

Results 1 - Single amino acid

The λ-dynamics controlled switching between two protonation states of a single

amino acid allows a proof of principle and gives a first insight into which

parameters are required and how they affect the λ-particle’s behavior.

Glutamic acid as shown in Figure 4.1 was chosen to be parameterized and

analyzed. Glutamic acid (3-letter coding GLU, 1-letter coding E) is a neuro-

transmitter and a standard building block for proteins. It is often added to

casual food or fast food as a flavor enhancer. Due to its simplicity glutamic

acid is a suitable test candidate for the extended λ-dynamics algorithms.

Glutamic acid has a pKa of 4.25 and therefore a titration curve as depicted in

Figure 4.2.

4.1 Parametrization system setup

The system consists of a glutamic acid including the standard amino-acid back-

bone. There are three titratable sites:The backbone and the symetric COO-

group, so the hydrogen can bind to any of the two oxygens. Parallelly per-

formed analysis have shown that simulating only the side chain, the functional

group COOH, result in similar values for the free energy difference between

the protonated and the deprotonated state. Therefore the acid is modeled with

only one titratable site to reduce complexity and placed in a dodecahedral box

(see Appendix) filled with 4231 water molecules. The system was energy min-

imized in 400 steps and equilibrated for 1 ns which should be sufficient for

a system with such low conformational complexity. Energy minimization and

the water equilibration were performed with position restrains on the amino
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Figure 4.1: Glutamic acid in its protonated form with neutral end groups (N-

terminus: NH2, C-terminus: COOH).
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Figure 4.2: Theoretical titration curve for glutamic acid with experimentally

determined pKa of 4.25. The fraction of deprotonated acid α is calculated from

the pKa by α = 1
10pKa−pH+1

.
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Direction Reg. const. ( kJ
mol·λ) Reg. coeff. ( kJ

mol·λ2 ) ∆G ( kJ
mol

)

Forward 98.596± 0.0529 −633.2± 0.092 −218.00± 0.1

Backward −53.94± 0.0530 +633.0± 0.092 −218.44± 0.1

Table 4.1: Results of linear regressions on the δG/δλ data generated by free

energy perturbations and the corresponding free energy difference calculated

by integrating over λ.

acid. The topology consists of the protonated GLUH structure in state A and

the deprotonated form GLU in state B. Due to the different protonation states

a total charge shift of −1e was introduced between the two topologies. This

total charge difference is not yet accounted for, so the systems reaction is de-

pending on the long range charge interaction scheme (e.g. Cutoff, Reaction

Field, Particle Mesh Ewald). All following simulations were performed using

the ReactionField method and the GROMOS96 53A6 forcefield.

4.1.1 Free energy

The free energy landscape between the two physically relevant end states was

analyzed by thermodynamic integration based on 21 discrete steps with 5ns

simulation time each. Additionally a 5ns slow growth simulation was performed

and convergence was analyzed. Due to the simplicity of the system equilibra-

tion times are extremely short and the 5ns multi-conformational TI shows no

significant differences (< 0.5kJ/mol) in ∆G after 500ps or 5ns. The results

for the 5ns slow growth forward and backward simulations are illustrated in

Table 4.1 and the δG/δλ data from this simulation is shown in Figure 4.3:

The error in free energies calculated with FEP methods is usually derived by

performing the simulation forward and backward and analyzing the hysteresis.

The error corresponds to the difference in forward and backward free energies.

With a free energy difference of ∆GForward − ∆GBackward = 0.44kJ/mol the

error is below the systematical error of every FEP analysis. It can be therefore

stated that a 5ns simulation is sufficient to accurately measure the underlying

free energy surface for a glutamic acid in water so that the following regression

function is accepted as a basis for further calculations:

δG

δλ
= 98.59

kJ

mol
− 633.2

kJ

mol
· λ (4.1)
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Figure 4.3: Free Energy Perturbation simulations forward and backward, each

5ns. The linear behavior as predicted by Linear Response Theory (see 2.4) can

be seen.
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It is necessary to stress out the fact that a sufficient box size is mandatory for

obtaining reasonable results. A simple glutamic acid in a water box including

2000 water molecules was found to not suffice. From up to around 3000 water

molecules in a box (tests until 30000 water molecules) the same values for ∆G

is obtained which is converged. FEP convergence is shown by the very small

difference in the slow growth FEP of only 0.44 kJ/mol.

4.1.2 Constructing the experimental energy landscape

With the regression derived from the free energy perturbation, f(λ) (2.23) can

directly be computed to

δf(λ)

δλ
= −98.59

kJ

mol
+ 633.2

kJ

mol
· λ (4.2)

Now κ(λ, pH) needs to be calculated which yields following equation 2.18 for

glutamic acid with pKa = 4.25:

δκ(pH, λ)

δλ
= 2.3 · kBT (4.25− pH) (4.3)

4.2 Glutamic acid titration curve

The first test for reproducing the correct experimental free energy landscape

is the calculation of glutamic acid’s titration curve. Constant pH simulations

with 500ps equilibration time and 4500ps simulation time were performed for

9 points between pH = 1.0 and pH = 9.0. For each simulation the average λ

over the last 4500ps was computed and the error was estimated as outlined in

Section 2.9. Figure 4.4 shows the simulated titration curve (red) compared to

the theoretical curve (green). On the one hand the error estimation function

seems to underestimate the error and on the other hand the sampling is not too

good. After 5ns simulation time the theoretical titration curve is qualitatively

reproduced (especially the sigmoidal behavior) but some points e.g. at pH =

5.25 and pH = 5.75 are quite far off.

For better sampling of the end states at pH = 1 and pH = 9 increasing the

radius of the λ-particles constrainment circle could be a helpful option. By
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Figure 4.4: Titration curve for glutamic acid in a water box.
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Figure 4.5: Titration curve for glutamic acid in a water box. The radius for

the circular projection was increased from r = 0.50 to r = 0.55

thermal fluctuations λ could otherwise never stabilize at the correct values of

≈ 0 and ≈ 1 but will always stay a bit above and below these values.

As can be seen in Figure 4.5 the end states around λ = 0 and λ = 1 are

better reached at a radius of r = 0.55 instead of r = 0.50. For the following

simulations always a radius of r = 0.55 is used.

4.2.1 Statistics

To enhance the sampling by increased simulation time and more computa-

tional resources can be achieved by two different approaches. Performing one

simulation much longer to derive better statistics or to start multiple simula-

tions from the same starting structure simply by changing the starting velocity

distribution for all atoms. In Figure 4.6 a single 30ns run (green) is compared

to the averaged titration curve (red) over six independent 5ns simulations.

Especially in the critical area around pH ≈ pKa the simulated titration curve

is reproducing the theoretical curve more accurately.
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Figure 4.6: Titration curve for glutamic acid in a water box for the average of 6

independent 5ns runs compared to the titration curve based on one simulation

of 30ns
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Figure 4.7: Titration curves of six independent λ-trajectories in the same sys-

tem with the only difference in the starting velocity generator’s seed

As can be seen in Figure 4.7 the quality of the titration curve reproduction

is different for identical runs of 5ns whereby only the seed for the random

number generator used in generating the Maxwell-Boltzmann starting velocity

distribution was changed. Trajectory 4 is far off and fluctuates while trajectory

3 qualitatively describes the theoretical titration curve quite well. The most

heavy fluctuations are around the pH equal to pKa region where the total

energy landscape is quite flat, which is expected. As the finally averaged curve

in Figure 4.6 shows, satisfying agreement with the theoretical curve, it can

be concluded that for a good titration curve experiment multiple simulations

should be run for each point at constant pH.

Another observation is the high fraction of deprotonated acid for pH lower

than the pKa. Especially around pH=3.25 and pH=3.75 this effect is found

in all six λ-trajectories. A potential reason to this aberrant behavior is the

barrier of 2.5kJ/mol allowing some fluctuation around the end points. The

fluctuations underline the difficulties in choosing an optimal barrier height for

optimal sampling: On the one hand the barrier is not low enough to allow reg-
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ular transitions (see Figure 4.9) and on the other hand it is not high enough

to prevent the λ-particle from fluctuating heavily around the end state. Figure

4.8 shows a histogram giving the percentage of time λ is sampling a given

interpolation area and Figure 4.9 depicts the λ-trajectory in time. As Figure

4.9 illustrates, only 4 transitions take place during the 5ns long simulation.

Increasing the barrier height therefore requires a substantial increase in sim-

ulation length as well to be able to observe some transitions. On the other

hand decreasing the barrier height could even lead to a sampling improvement

but will increase the overall time the system is in an unphysical interpolated

state. A possible solution to improve sampling without decreasing the end state

population could be the application of an adaptive barrier. As illustrated in

Section 2.6 the barrier lowers while the λ-particle is around λ = 0 or λ = 1 and

increases when too many transitions occur and/or the system stays too long in

between both end states. A detailed evaluation and analysis of the parameters

involved, as e.g. the thresholds when to lower or raise the barrier, is still under

development.
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Figure 4.8: Distribution of λ in a simulation at pH=3.25. On the y-axis the time

(in percent of total simulation time) the λ-particle stays in the specified region

is given. Especially the region from 0.1 to 0.3 is important for the deviation

from the theoretical titration curve.
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Figure 4.9: λ-trajectory for one glutamic acid in a simulation at constant pH

of 3.25. The λ-particle fluctuates heavily around the end state at λ=0 but only

4 transitions can be observed.



Chapter 5

Results 2 - peptide:

oligoglutamic acid

In the following subsections different systems including two or more glutamic

acids are presented and the interactions between multiple titratable groups are

analyzed.

All simulations were performed after energy minimization and 500ps equilibra-

tion time. Each titration curve was calculated in a 5ns long simulation for 12

distinct pH values. The detailed simulation parameters and methods used in all

simulations are tabulated in 5.1. Position restrains are used in all simulations

to prevent the system from forming e.g. salt-bridges.

For comparison, a theoretical titration curve was calculated as well. These

theoretical curves are constructed by simply multiplying a single amino acid’s

titration curve with the number of acids and do not represent any experimental

data. Nevertheless, influences of the peptide environment are highligthed.

5.1 Duplicated parametrization system

For the first simulation of multiple titratable groups a very simple test system

was chosen: The system used in the single glutamic acid analysis as illustrated

in Section 4.1 was copied in one direction, effectively doubling the box size and

introducing a second glutamic acid. Figure 5.1 depicts the original box and

Figure 5.2 shows the new system as a copy of the box in one dimension. At the

start of the simulation both glutamic acids are protonated. Each acid is coupled

to a single λ-variable and both λ-variables are propagated independent. The
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Parameter/Method Value)

Simulation length 5ns

Timestep 2fs

Long range Coulomb ReactionField

Solvent representation Explicit

System temperature 300K

λ temperature 300K

Mass mλ 5u

λ-dynamics additonal barrier height 2.5kJ/mol

Table 5.1: Parameters and methods used in all simulations

Figure 5.1: Parametrization system from Section 4.1

behavior of the two acids is very similar to the behavior of the single glutamic as

described before. This shows that the code allows the computation of multiple

titratable states.

Five simulations of 5ns each have been performed for 12 different pH values

between 1 and 9. Overall, after averaging at every pH value these simulations

yield a titration curve as depicted in Figure 5.3. The theoretical titration curve

is qualitatively reproduced although the values at pH 3.25 and pH 3.75 are sig-

nificantly above the theoretically expected values. As outlined before, a higher

barrier height and a significantly longer simulation might allow approaching

the theoretical titration curve in the critical pH region as well.
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Figure 5.2: Comparison system constructed by copying the parametrization

box in x direction.
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Figure 5.3: Titration curves of the two independent glutamic acids. The acids

are position restrained and cannot interact with each other. Therefore each acid

should react on the pH without being influenced by other titratable groups and

the sum of both fractions of deprotonated acid should approach the theoretical

curve for two glutamic acids.
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Figure 5.4: Test peptide including two glutamic acids and neutral alanines

(AEAEA)

5.2 Test peptide (2 glutamic acids)

After applying the λ-dynamics approach to two independent, distantly located

amino acids the interaction of two neighboring acids is analyzed. The second

test system (AEAEA) is a peptide with two glutamic acids and three alanine

as depicted in Figure 5.4. The terminal groups are neutral and the position of

all heavy atoms are restrained.

The titration curves shown in Figure 5.5 were calculated based on three inde-

pendent runs at 12 distinct pH values. It can be seen that all titration curves are

more linear and do not show a strong sigmoidal behavior. Figure 5.6 depicts the

combined titration curve calculated by averaging over the independent runs.

Compared to the titration curve of the two separated acids as shown in Figure

5.3 a distinct variation is observed around pH=4.25. As Figure 5.6 supports,

a plateau is forming around a pH = pKa. A hypothesis for the stabilization of

protonation is the influence of the second glutamic acid: While one glutamic

acid is deprotonating, the relative pKa of the other acid shifts due to the

charge of up to −1e imposed by the deprotonated acid. Overall, a higher pH is

required to deprotonate the acids due to the effects of the local environment.

Figures 5.7 and Figures 5.8 depict the distribution of λ for the first and the
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Figure 5.5: Titration curves for 3 independent simulations of two glutamic

acids in the AEAEA peptide.

second glutamic acid in time at pH = pKa. The first acid, illustrated in the

red histogram and the red trajectory in Figure 5.9, is as often found in the

protonated as in the deprotonated state, which is expected at pH = pKa. The

second glutamic acid, however, is heavily influenced by the first one. Instead

of an equal population of the protonated and the deprotonated state, it is

remaining in the protonated configuration (see histogram in Figure 5.8). The

trajectory highlighted in blue in Figure 5.9 illustrates the effect of the first (red)

glutamic acid. The degree of deprotonation is the higher the more protonated

the first acid is (see peaks around 0.3ns, 1.2ns, 1.7ns and 3.4ns). To rule out

a potential artifact in the implementation places priority on the first glutamic

acid, the order of the residues in the peptide was reversed which did not alter

the results.

5.3 Test peptide (3 glutamic acids)

The third test system extends the second system by an additional glutamic

acid. Three glutamic acids are embedded between two alanine forming a simple
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Figure 5.6: The total fraction of deprotonated glutamic acids in the AEAEA

peptide, averaged over 3 independent runs of 5ns each.

peptide as illustrated in Figure 5.10. Again a series of titration curve simu-

lations is performed to analyze the influence of pH on the overall fraction of

deprotonated acid.

Figure 5.11 depicts the titration curves of the test peptide for each of the

simulations performed. The curves are again differently shaped compared to

the runs simulating one or two glutamic acids. All three curves show a pKa

shift at around pH = 4.25 and around pH = 4.75. The plateaus forming can

be seen best in the averaged titration curve shown in Figure 5.12.

It can be assumed that the plateaus are again results of a pKa shift originated

by the deprotonation of the surrounding amino acids as seen before in the

peptide with two glutamic acids. If a single amino acids would be simulated

around pH = 4.25 the probability to be found in the deprotonated state is

0.5. In the three glutamic acid peptide, each glutamic acid is under the influ-

ence of neighboring charges and if the first glutamic acid deprotonates around

pH = 4.0 to pH = 4.25 the local environment stabilizes the protonated state

for the remaining glutamic acids. Therefore the total fraction of deprotonated

glutamic acid does not change with increasing pH until the pH is high enough
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Figure 5.7: Distribution of λ for the first glutamic acid in a constant pH sim-

ulation at pH 4.25. The end states around λ = 0 and λ = 1 are equally

populated.
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Figure 5.8: Distribtuion of λ for the second glutamic acid at constant pH of

4.25. The ratio between protonated (λ = 0) and deprotonated acid (λ = 1) is

suggesting an influence of the first glutamic acid. Instead of equally populating

the end states the deprotonated state is favored.
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Time (ns)

λ
λ

Figure 5.9: Trajectory of the λ-particle for the two glutamic acid. The first glu-

tamic acid (red curve) is interacting with the second (blue curve) as the second

can only deprotonates while the first is protonated, e.g. at 0.3ns, 1.2ns,1.7ns,

3.5ns and 4.4ns.
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Figure 5.10: Test peptide with three directly attached glutamic acids sur-

rounded by alanines
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Figure 5.11: Titration curves of three runs of the three glutamic acid peptide.
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Figure 5.12: Combined titration curve over 3 runs of a three glutamic acid

peptide.

that the protonation of a second glutamic acid becomes favorable. This condi-

tion is found to be around pH = 4.75.

Figure 5.13 supports this argument by three λ-trajectories showing the λ-

development over time for each glutamic acid of one run (number 2) at pH =

4.25. As can be seen the protonation states of Glu2 (blue curve) and Glu3

(brown curve) are heavily correlated. If Glu2 deprotonates Glu3 is protonates

again (e.g. at 0.9ns and 1.7ns). However, Glu1 is most of the simulation time in

the protonated state which indicates the stabilization of this state at pH = 4.25

by the remaining two glutamic acids and their averaged charge of ≈ −1e.

Figure 5.14 depicts the titration curve for this Glu1 and underlines an untypical

ratio of ≈ 0.2 protonated and deprotonated acid around pH = 4.25 where a

ratio of ≈ 0.5 is expected on the basis of a single glutamic acid. Additionally

the curve for higher pH seems to be slightly shifted by half a pKa unit.

The combined titration curve (Figure 5.12) shows a third stabilized section

around a pH = 5.75. This could be related to a stabilization of glutamic acid as

before. However, this interesting observation was not further investigated yet.

Alternatively the effect could be due to statistical error, which are significantly
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higher in the peptide simulations as compared to isolated gluatmic acids as

shown in Figures 5.5 and 4.7.
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Figure 5.13: The λ-trajectories for the 3 glutamic acids embedded in the pep-

tide in run 2 at a constant pH = pKa.
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Figure 5.14: Titration curve for Glu1 in run 2. The low probability for depro-

tonation around pH = 4.25 indicates an influence by the remaining glutamic

acids.



Chapter 6

Summary

In this thesis an extended λ-dynamics approach allowing constant pH simu-

lations was presented. While in classical molecular dynamics simulations the

protonation states of all titratable groups have to be defined in advance, the

protonation states of such groups are included as an additional coordinate that

is dynamically updated. This dynamical updating is achieved by coupling two

Hamiltonians describing the protonated and deprotonated state of the whole

system via a coupling parameter λ. By assinging a mass and velocity to λ

a virtual particle is introduced on which MD can be performed. The forces

governing the dynamics of the λ-particle are the gradient of the free energy

landscape with respect to λ. Constant pH simulations are then achieved by

additionally accounting for the pH dependent hydration free energy of the

vanishing proton to correct the free energy landscape.

Correction to the free energy landscape were required due to the force field

offset error: The force field representation of bonds is not correctly modeling

the quantum mechanical effects of bond formation as minimal energies stored

in the bonds, but simply uses a harmonic approximation with zero minimal

energy. Usually this does not impose any problems because free energy cal-

culations are performed using a thermodynamical cycle, so only relative free

energy differences are computed between branches that have the same force

field error. Our approach allows the calculation of a single branch in the ther-

modynamical cycle by λ-dynamics. The force field offset errors are corrected

using precalculated reference data provided as a parameter to the simulation.

After compensating for the force field effects the pH dependence was included

by adding to the free energy landscape a function κ which includes the influ-

ences of the hydration free energy of the proton.
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The method was implemented into the GROMACS MD simulation software

and supports multiple titratable groups. Currently only glutamic acid was

parameterized but other amino acids such as lysin or aspartic acid can be sim-

ulated as well by providing the corresponding parameters. Yet, the simulation

of histidine is still under development due to the complexity of multiple titrat-

able sites sharing the same atoms. A solution to this problem could be the

definition of multidimensional λ particles.

A first test scenario for the constant pH simulations was the simulation of an

isolated glutamic acid in a water box at different pH. By performing 12 runs

at different pH values of 5ns each, a titration curve was derived by computing

the average extent of protonation for each simulation. The sigmoidal behavior

of the theoretical titration curve was qualitatively reproduced. Additionally it

was shown, that best results were achieved by performing a series of simulations

for each pH value with different starting velocity distributions.

As a next step, titration curves of systems including multiple titratable sites

were calculated. The titration curve of a peptide with two glutamic acid showed

the formation of a plateau where the relative pKa of the second glutamic acid

increased due to the charge imposed by the deprotonated first glutamic acid.

The same effect could be observed in a peptide containing three glutamic

acids directly attached to each other. Two plateaus were formed and a de-

tailed analysis of the individual protonation curves showed the influence of the

surrounding glutamic acids. Typically, two glutamic acids interact with each

other by having in average one deprotonated and the other protonated while

the third acid stays most of the time in the protonated state due to the charge

imposed by the other two.

Current limitations are twofold. On the one hand residues with more than

one titratable site are more difficult to model, as the sites can not be treated

independently. The case of Histidine is therefore not yet solved but the use of

multidimensional λ particles seems to be a promising approach. On the other

hand the technical implementation in the GROMACS software could be greatly

improved. The implementation was done introducing as little code changes as

possible but the performance is not optimal. Especially the neighbor searching

which has to be performed at each step for each group can be optimized to

be calculated only every tenth step which in itself’s fastens the simulation by

one order of magnitude. Additionally all forces are calculated anew for each

λ depending group, but it would suffice to only calculate the δG/δλ at each

step which would also lead to a speed gain of around an order of magnitude,
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if multiple titratable groups are simulated.

In comparison to other methods allowing constant pH simulations, the pre-

sented approach has a series of advantages. After parameterizing the different

titratable groups once, no additional effort is required to perform a constant

pH simulation and a “black box” usage is possible. The results achievable with

the method are encouraging and the additional computational costs are theo-

retically minimal. After an optimization the computational costs are below the

operations required to simulate a few additional water molecules. While hybrid

MC/MD simulations require additional free energy calculations or other com-

plex analysis to determine the most probable protonation state, the method

presented here is only introducing one more degree of freedom to the system for

each titratable group. Compared to the constant pH method presented by Lee

et al. [LJI04] the capability of treating explicit solvent has to be highlighted.

The future development will be the analysis and implementation of mul-

tidimensional λ to allow the treatment of e.g. histidine. Additionally the

parametrization of all amino-acids in different force fields is required to dis-

tribute the software and to allow a wide application. With further technical

optimizations the additional computational costs can be minimized allowing

constant pH simulation to become a standard procedure when performing MD

simulations.
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Chapter 7

Appendix

Periodic boundary conditions

All atoms simulated in a MD simulation are contained in a box which is a cubic

box in the simplest case. To overcome the boundary problem of treating atoms

leaving the box or forces acting behind the box, periodic boundary conditions

are introduced. Hereby the box is in all dimensions surrounded copies of itself

as illustrated in Figure 7.1 and atoms leaving the box on one side will appear

immediately on the other side.

In some simulations this is very helpful, e.g. in simulating a membrane which

has then no arbitrary borders, but in others, for example protein or small

system simulations, this can lead to unwanted artifacts by the molecule seeing

itself although this was not intended. If an isolated system should be analyzed,

choosing a sufficient box size is important to overcome these often not easy

to find errors. Additionally the geometrical shape can be optimized to achieve

high distances to the image of the protein itself while not being required to

Figure 7.1: Periodic boundary conditions in two dimensions for a triclinic box

(Figure from [SLH01])
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Figure 7.2: The rhombic dodecahedron and a truncated octahedron (Figure

from [SLH01])

simulate too many water molecules.

The simple cubic box has for a spherical molecule with a maximal interaction

distance d1 superfluously water-filled corners. For such simulation setups the

rhombic dodecahedron as illustrated in Figure 7.2 is optimal: It uses with the

same d1 only 71% of the size and saves therefore about 29% of CPU-time. For

the final simulation the image distance d should be d > d1.

Thermo- and barostats

To be able to simulate at constant temperature or pressure (e.g. to simulate

an NPT ensemble) these thermodynamical properties need to be maintained

by a thermo- or barostat.

Berendsen thermostat

The Berendsen-Thermostat [BPvG+84] couples the system to an infinite exter-

nal heat bath with temperature Tref . The heat flow into or out of the system

is implemented by scaling the velocities with a factor λ given by:

λ =

[
1 +

∆t

τT

{
Tref

T (t− ∆t
2

)
− 1

}]1/2

(7.1)

The parameter τT is a temperature coupling parameter that translates to τ =

2cvτT /Ndfk for the exponential temperature deviation with constant τ :

dT

dt
=

Tref − T

τ
(7.2)
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cv is the total heat capacity of the system, k is the Boltzmann’s constant and

Ndf the number of degrees of freedom.

Andersen thermostat

The Andersen Thermostat [And80] (for a detailed analysis on extended prop-

erties see [WD08]) couples a system to a reference heat bath by selecting new

velocities from a Maxwellian velocity distribution. The updating is governed

by a coupling parameter τ determining the collision frequency. In every cou-

pling step the velocity is updated if a random number ran from an uniform

distribution holds ran ≤ τ · dt.

This behavior mimics collisions of the system’s atoms with atoms from the heat

bath and reproduces an exact Maxwell-Boltzmann distribution independent of

the value of the collision frequency τ (see [FS96]). By doing so, the momentum

is not conserved and simulating dynamics is difficult due to the fact, that

consequently the mean square displacement as a function of time changes for

different collision frequencies.

Berendsen barostat

Analogously to the thermostat the pressure is scaled in the Berendsen Barostat

[BPvG+84] accordingly to
dP

dt
=

Pref −P

τP

(7.3)

which reflects the coupling of system pressure to a ’pressure bath’ realized by

scaling the coordinates and box vectors every step.

Free energy calculations

Slow-growth

The standard way in GROMACS to perform free energy calculation is to use

slow-growth methods. The system is hereby perturbed slowly from state A to

state B. Slowness is important to ensure that every state is thermodynami-

cally equilibrated. If that requirement is fulfilled, the process is reversible and

a simulation from B to A yields the same results except for the sign. There-

fore analysis of the hysteresis is the building block for most slow-growth error
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estimates. If the simulation fulfills these requirements integrating over δG/δλ

over δλ yields ∆G.

∆G = GB
(p,T ) −GA

(p,T ) =

∫ 1

0

δH

δλ N,p,T ;λ
δλ (7.4)

Multiple conformation TI

While in Slow-Growth one simulation is performed changing the λ in such small

steps that equilibrium is assumed, the thermodynamic integration of multiple

conformation consists of a set of single simulations. Hereby the interval [0 : 1]

is divided into N parts (e.g. 20) and for each λ a separate simulation of for

example shorter length is performed. A linear regression over the averaged

dGdλ values allows the final integration to derive ∆G. Usually the first part of

the simulation is dropped for equilibration purposes whereby the equilibration

time depends heavily on the system’s complexity. An error estimation can be

done using block averaging algorithms which separate the coupled δG/δλ in

uncoupled blocks of minimal size so that standard error estimators as standard

deviation can be applied over the block’s averaged values.

Gibb’s free energy instead of Helmholtz free en-

ergy

Often the for chemists generally more useful Gibb’s free enthalpy G instead of

the Helmholtz free energy F is computed in free energy calculations. Whereas

F is related to an equilibrium MD simulation generating an N, V, T ensemble

with constant atom numbers, constant volume and constant temperature, the

Gibb’s free enthalpy G is related to the N, p, T ensemble under constant pres-

sure instead of volume. For the purpose of MD simulations F and G will be

used interchangeable for the following reasoning:

G = U + p · V − T · S = F + p · V (7.5)

dG = dF + dp · V + p · dV = dF + 0 + p · dV ≈ dF (7.6)
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The term p · dV is usually negligible due to the very small influence of pres-

sure scaling resulting in volume changes (see [SLH01]). The growth of a water

molecule from nothing in a bath of 1000 water molecules would produce an

additional pressure of 22 bar and would result to an energy correction of −20

J/mol. Keeping in mind that errors in such free energy calculations are usu-

ally between 5 kJ/mol and 10 kJ/mol an influence of −20 J/mol is orders of

magnitudes below the simulation’s accuracy.


