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Chapter 1

Introduction

Proteins perform most of the essential processes in living organisms [1]. Each

protein is suited for one special task, like energy conversion, stabilization of

tissues, or sensory functions. The speci�c function of a protein is tightly

linked to its three dimensional shape. Therefore, the understanding of the

forces that help to create and maintain the shape of proteins will increase

our knowledge of their ability to perform di�erent tasks.

The three dimensional structure of proteins is established in a process

called protein folding. A protein folds from a randomly shaped amino acid

chain into its native structure in a milliseconds to seconds timescale by min-

imizing its free energy. Until now, it is not known how protein folding takes

place.

A method to investigate the underlying folding mechanism is to selectively

unfold proteins under an external force. By doing so, the energy landscape

which governs folding dynamics is explored by inverting the folding process.

One method that allows the unfolding of single proteins is the use of

atomic force microscopy (AFM). In the last years unfolding experiments on
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many di�erent proteins have been carried out. A special form of AFM un-

folding experiments has been performed in the groups of Hermann Gaub

at the University of Munich and in the group of Daniel Müller at the Max

Planck Institute of Molecular Cell Biology and Genetics in Dresden. In their

experiments, enforced unfolding was carried out on the membrane protein

bacteriorhodopsin [2, 3, 4, 5, 6, 7, 8, 9], which was the �rst time that single

membrane proteins were extracted from their anchoring membrane.

Bacteriorhodpsin [10] is a helical integral membrane protein from the ar-

chaea species halobacterium salinarum, that converts sunlight into a proton

gradient. The protein has become a model system for the investigation of

membrane proteins over the last years. Its natural environment are mem-

brane patches known as purple membrane, a hexagonal structure formed of

circular bacteriorhodpsin trimers and surrounding lipid molecules.

The unfolding experiments on bacteriorhodopsin showed that the single

proteins are strongly anchored in the membrane. Furthermore, the order of

unfolding events was found to be determined by the order of the helices in

the peptide chain. Closer analysis revealed that single residues, referred to

as unfolding barriers, govern the stability of the protein. These unfolding

barriers provide hints to the internal stability of the protein.

In this work, force probe molecular dynamics (FPMD) simulations [11]

that resemble these experiments are presented. Starting from a simulation

system with an explicit solvent and lipid bilayer environment, unfolding sim-

ulations towards the cytoplasmic and towards the extracellular side using

various pulling velocities were performed.

The aim of this work was to obtain unfolding force pro�les, to investigate
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the unfolding pathway, and to compare unfolding barriers derived from the

AFM experiments with those derived from the simulations.

This work is structured as following. In chapter 2, the biological and

physical principles necessary to understand the work are explained together

with a short description of the AFM experiments. The method of molecular

dynamics simulations and FPMD simulations is the topic of chapter 3.

The methods and steps necessary to perform this work are described in

chapter 4. In this chapter also introduces newly developed methods.

In chapter 5, the results are presented and discussed. After an analysis

of the unfolding forces, the peak forces from the AFM experiments and the

simulations are compared. This is followed by an extensive investigation of

the unfolding pathway extracted from the simulations, together with an as-

signment to the unfolding forces. Furthermore, a closer look is taken at the

role of the interaction energies in the simulations. Next, the unfolding bar-

riers resulting from the AFM experiments are compared with the unfolding

barriers derived from the simulations. The last part of this chapter analyses

the behaviour of the protein under a non-moving pulling potential, allowing

to explore the e�ects of the non-equlibrium state created by the very fast

spring movement.

The results are summarized and discussed in a wider context in chapter 6.
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Chapter 2

Biological and Physical

Fundamentals

2.1 Proteins

Proteins are macromolecules, present in all living organisms. Nearly all func-

tions essential for living are performed by proteins. They serve for example

as structural proteins to build various tissues, as ion transporters, as chan-

nels for the transport of small molecules, or as enzymes to catalyze chemical

reactions.

The size of a protein is measured by its molecular weight, which is given

in the unit Dalton (Da). One Dalton is nearly equal to the weight of one

hydrogen atom (1 Da = 1.661 · 10−27 kg). The weight of typical proteins is

in the range of 50 kDa. The largest known protein in the human body, the

muscle protein titin, has a weight of 3000 kDa.

Proteins are linear polymers consisting of 20 di�erent amino acids. All

amino acids have the same backbone, consisting of one nitrogen and two
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carbon atoms. The chemical and physical properties of each amino acid are

determined by its side chain, which is connected to the Cα atom. Two amino

acids can be connected by a chemical bond, the so called peptide bond. Short

amino acid oligomers are also called peptides (�gure 2.1).

The structure of proteins is described by four di�erent levels. The primary

structure of a protein is its amino acid sequence, which is coded in DNA or

RNA. Each protein is identi�ed by its primary structure.

Short amino acid segments can arrange into recurring local structure el-

ements, referred to as secondary structure. Secondary structure elements

include for example α-helices, β-sheets, and random coils. Both α-helices

and β-sheets are de�ned by stabilizing hydrogen bonds involving the protein

backbone. Amino acid side chains do not contribute to secondary structure

elements. α-helices (�gure 2.2 A) are regular spiral staircase like structures.

A hydrogen bond is formed between the Cβ=O group from residue n and

the N-H group from residue n + 4. Each helix turn consists of 3.6 residues,

leading to an average angle of 100◦ per residue. The side chain atoms are

oriented towards the helix outside. β-sheets (�gure 2.2 B) are similarly stabi-

lized by hydrogen bonds between the Cβ=O and the N-H group. But unlike

α-helices, β-sheets are formed by two adjacent peptide chains rather than

one single chain. According to the orientation of the two strands relative to

each other, parallel and anti-parallel β-sheets are distinguished.

Proteins arrange into a well-de�ned spatial shape termed tertiary struc-

ture, de�ned by their primary structure, in a process called protein folding.

With only few exceptions, the folded protein has a minimal free energy G.

Unlike the secondary structure, the tertiary structure is not mainly stabilized
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Figure 2.1: A sample peptide consiting of �ve di�erent amino acids. Backbone

atoms are drawn as spheres. The order of the residues from left to right is Glycine-

Lysin-Histidine-Alanine-Tyrosine.

Figure 2.2: Secondary structure elements. Backbone atoms are shown in a stick

representation. Hydrogen bonds appear as dotted blue lines. A: α-helix B: β-sheet
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by hydrogen bonds inside the protein backbone, but also by van-der-Waals

forces, by electrostatic forces, and by the hydrophobic e�ect. Additionally,

side chain atoms are involved in the folding process. Even other molecules

than amino acids or ions can contribute to the tertiary structure of a protein.

For functional purposes, folded proteins sometimes form larger assemblies.

These structures of several folded proteins are called quarternary structure.

The association forces are, as for the tertiary structure, van-der-Waals forces,

electrostatic forces, and the hydrophobic e�ect.

2.2 Biological Membranes and Membrane Pro-

teins

Biological membranes are barriers between a cell and the outside or between

di�erent compartments within a cell. The two main components of mem-

branes are lipid molecules, which are arranged as a bilayer, and proteins that

are incorporated within the lipid bilayer. The mass ratio of lipid molecules

to proteins ranges between 1:4 and 4:1. The single molecules of a membrane

are not covalently bound, but rather associate via van-der-Waals and electro-

static forces and under the in�uence of the hydrophobic e�ect. The two sides

of a membrane always di�er from each other, which allows a clear distinction

between the inner and outer side.

Lipid molecules (�gure 2.3 A) form the basis of every membrane. They

consist of a polar head group and one or more apolar tails. In water, lipid

molecules form compact structures. Due to the hydrophobic e�ect, the ap-

olar tails aggregate such that the polar head groups face the polar water
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environment. The simplest form of such a complex is a micelle (�gure 2.3

B). This arrangement is unfavourable due to the ine�ective packing of the

rather thick tails. A common structure is a bilayer (�gure 2.3 C), where lipid

molecules form a thin �lm of 5 to 10 nm thickness.

The speci�c properties of a membrane is determined by its membrane pro-

teins. Membrane proteins can be divided in two subclasses, peripheral mem-

brane proteins and integral membrane proteins. Integral membrane proteins

are fully incorporated in a membrane, whereas the main part of peripheral

membrane proteins is outside the membrane and only the small anchor part

is within the membrane.

The lipid bilayer and the membrane proteins act like a two-dimensional

liquid. This behavior was �rst investigated by Singer and Nicolson and was

called �uid mosaic model [12]. The model suggests that membrane proteins

are free to di�use in the membrane area, and tilting relative to the membrane

normal is very unlikely and only possible under energy consumption.

An interesting type of integral membrane proteins are helical membrane

proteins. These proteins consist of multiple membrane spanning α-helices,

which are connected via loops. An easy way to detect membrane spanning

helices is a hydrophobicity plot [13]. First, the di�erence in free energy that

is necessary to move an amino acid from a lipid bilayer environment to water

is determined. In the next step, the free energy changes are plotted over

the residue number by grouping 20 amino acids together. The grouping is

carried out by summing up the free energy changes of 20 amino acids (from

n to n + 20). This sum is then plotted for each residue index n. Membrane

spanning helices appear in the plot as values above +84 kJ/mol. A sample
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Figure 2.3: Structure and arrangements of lipid molecules. A: All-atom represen-

tation of a lipid molecules. Green atoms are carbon, white ones are hydrogen,

and red ones are oxygen. B: Schematic representaion of a micelle. C: Schematic

representation of a lipid bilayer.
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Figure 2.4: Hydrophobocity plot for bacteriorhodopsin. Values above the green

line indicate trans-membrane α-helices.

plot for the helical membrane protein bacteriorhodopsin is given in �gure 2.4.

The folding of helical membrane proteins can be described by the two-

stage model proposed by Popot and Engelman [14]. This model suggests

that in the �rst step the trans-membrane α-helices fold independently. The

second step consists of the aggregation of the single helices, resulting in the

�nal tertiary structure.

Both methods use a rather heuristic approach for the description of mem-

brane proteins. It would be more interesting, however, to explore membrane

protein behaviour by a physical point of view. This can be done by inverse

folding via AFM and FPMD, as described in more detail in the results.

12



2.3 Bacteriorhodopsin and the Purple Mem-

brane

The integral membrane protein bacteriorhodopsin is a light-driven proton

pump, found in the archaea species halobacterium salinarum. The protein

consists of seven membrane spanning α-helices, forming an arc (�gure 2.5

A). In the protein core a chromophore, called retinal, is buried.

Bacteriorhodopsin converts green light (500 − 650 nm wavelength) into

a proton gradient by light-driven proton transfer from the cytoplasmic side

to the extracellular side. The proton transfer is initiated by a light induced

isomerisation of the retinal. This isomerisation starts a reaction cascade, in

which the protein undergoes several conformational changes.

Bacteriorhodopsin is located in membrane patches known as purple mem-

brane (�gure 2.6). The purple membrane is a 2D-crystal consisting of bac-

teriorhodopsin and lipid molecules in a weight ratio of 4 : 1. Three bacteri-

orhodopsin proteins build a cylindrical structure forming a hexagonal lattice

with adjacent lipid molecules. The purple membrane is known to be remark-

ably stable.

2.4 Atomic Force Microscopy

2.4.1 Principle

Various techniques exist which allow the investigation of materials at the

atomic level. These include x-ray di�raction, scanning tunnel microscopy

(STM) or electron microscopy. Another very simple yet e�ective method is
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Figure 2.5: Ribbon diagram of bacteriorhodopsin. A: Protein monomer (side view).

The retinal is drawn in a stick representation. B: Top view of a bacteriorhodopsin

trimer from the cytoplasmic side.

Figure 2.6: AFM picture of the purple membrane. The irregular shape outlines a

trimer. In the center of the circle a single protein is denoted. The bar in the lower

left shows a reference distance (10 nm). Taken from ref [2].

atomic force microscopy (AFM), which was invented by Binnig, Quate, and

Gerber in 1986 (�gure 2.7) [15].

The main component of an AFM is a cantilever with a very sharp tip

which ends up in only a few atoms. Like in a STM, a sample is investigated by

a scanning process, where the tip is moved across the sample. This movement

is carried out by piezo crystals, which also allow vertical displacement of the

cantilever.

The de�ection ∆x of the cantilever is induced by a force F which is given
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Figure 2.7: Schematic picture of an AFM. Green: sample, the tip of the cantilever

scans the sample surface, the de�ection of the cantilever is measured with the help

of the re�ected laser beam via a photo diode

by Hooke's law

F = −k ·∆x, (2.1)

where k is the spring constant of the cantilever. The de�ection is measured by

a light beam that is re�ected on the cantilever. The total height information

is given by the sum of cantilever de�ection and the vertical position from the

piezo crystal elongation.

AFM images of a sample can be created in di�erent ways. In constant

height mode the distance between the cantilever and the sample is kept �xed

during scanning. The surface information is inferred from the cantilever de-

�ection. The advantage of this method is that a regulation of the cantilever-

sample distance is not needed, but due to possible destruction of the sample,

this method is only applied to �at or hard samples. In constant force mode

the cantilever-sample distance is constantly adopted to achieve a constant

force. This scanning mode is slower than constant height mode but it has
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the advantage that the risk of damaging the sample is lower.

A di�erent approach is used in tapping mode. Here, the cantilever is

oscillated through an external force, where the frequency is slightly above the

resonant frequency. The tip touches the sample at each oscillation maximum.

Interactions between the tip and the sample result in a change in frequency

and amplitude, which is measured. This method is useful for soft surfaces

like biological samples.

For this work, the interesting application of AFM is the measurement of

force-de�ection curves. Here, the tip is linked to a molecule. By moving

the cantilever, the molecule is exposed to a force which can be measured

by the cantilever de�ection. In this way, forces in the range of few pN can

be applied and measured. With AFM biological samples can not only be

imaged, but also manipulated. One application is the enforced unfolding

of single proteins. In those experiments, a linker molecules is linked to the

AFM tip and attached to a strand of DNA or a protein. By moving the

cantilever with constant velocity, the biological sample is exposed to a force

and unfolds. The forces during the enforced unfolding of the sample can be

measured.

2.4.2 Enforced Unfolding of Bacteriorhodopsin via AFM

In recent experiments in the group of Hermann Gaub at the University of

Munich, single bacteriorhodopsin proteins were extracted from the purple

membrane using AFM [2, 8]. A pulling force of some 100 pN was applied

to enforce unfolding. The force pro�les from these experiments showed four

characteristic peaks (�gure 2.8). After extraction of one protein, a hole was
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Figure 2.8: Results from the AFM experiments. A: Several single unfolding force

pro�les. The arrows on top point to the mean postitions of the force peaks. B:

Overlayed force pro�les. Three peaks can be clearly identi�ed. Taken from [2].

left in the purple membrane. The remaining proteins kept their initial posi-

tions in the protein/lipid matrix.

By �tting a worm-like-chain (WLC) force-extension curve to each peak

(�gure 2.8 B), the length of the unfolded peptide chain was determined,

implying that the protein unfolds helix-wise in a linear order.

Further examination of the force pro�les yielded residues that act as un-

folding barriers. These residues show a particulary strong resistance against

unfolding forces and therefore provide insight in the mechanical stability of

the protein.

The aim of this work is to reproduce these experiments by FPMD simula-

tions. This way, observables not accessible via AFM can be explored, like the
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actual unfolding pathway or the atomic behaviour of the unfolding barriers.

The atomic description of the unfolding process accessible with FPMD helps

to increase the understanding og the AFM experiments.

2.5 Unbinding Forces

Although AFM experiments and FPMD simulations cover the same unfolding

events, the unfolding velocities from both methods di�er by six orders of

magnitude. Accordingly, the unbinding forces di�er by several orders of

magnitude. To draw quantitative conclusions from comparing unbinding

forces obtained from both methods, a method developed by Heymann and

Grubmüller [16] is used in this work.

This method suggests that unfolding forces from di�erent pulling veloci-

ties v can be extrapolated using a total force

F (v) = Ffrict(v) + Fact(v), (2.2)

where Ffrict(v) is a velocity dependent friction force and Fact(v) is a velocity

dependent force used for the crossing of a free energy barrier.

The �nal equation is given by

F (v) = γv +
kBT

L
ln

(
v

k0∆L

)
, (2.3)

where γ is a friction coe�cient, kB the Boltzmann constant, T the temper-

ature, L the unfolding length, k0 the spontaneous dissociation rate, and ∆L

the scatter of the unfolding length.
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Chapter 3

Molecular Dynamics Simulations

3.1 Principles

Molecular dynamics (MD) simulations describe atomic motions in large mo-

lecular systems. This method calculates all atomic positions depending on

inter- and intramolecular forces for a given time range. A interesting �eld of

application for MD is the description of protein motions. Here, MD simula-

tions are able to provide atomistic insight in biological processes, that are in

many cases otherwise not accessible.

An exact description of the motions of atoms is given by the time-depen-

dent Schrödinger equation. But already for a helium atom it is not possible

to �nd an analytical solution. Numerical solutions are only feasible for up

to 10 atoms. Therefore, to date an explicit quantum mechanical description

for large molecules is not possible. For larger systems, molecular dynamics

simulations can be employed. To reduce the computational e�ort, three ap-

proximations are made. The �rst approximation is the Born-Oppenheimer

approximation. This approximation rests on the fact that the mass of elec-
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trons and nuclei di�ers by several orders of magnitude. Accordingly, electrons

move much faster than nuclei. Thus, the motion of electrons and nuclei can be

described seperately, allowing to consider the nuclei positions as quasistatic.

This approximation results in a time-independent Schrödinger equation for

the electron positions. Therefore, an e�ective time-dependent potential for

the atom motions is given, which only depends on the position on the nuclei.

The second approximation is the use of a force �eld for the description of

inter- and intramolecular energies (�gure 3.1). A force �eld is composed of

energy terms describing interactions between selected atoms. These energy

terms include bond stretching, bond angles, extraplanar and dihedral an-

gles, coulombic interactions, van-der-Waals interactions, and Pauli repulsion

(�gure 3.1). All these terms are described with mathematically simple ex-

pressions (xn, 1/xn, or cos x). The parameters (equilibrium constants, Pauli

radii, partial charges, etc.) are derived from quantum mechanical calcula-

tions and experiments. The parameters sets are adjusted, such that they

reproduce the relevant physical observables.

As a third approximation, the motions of all nuclei positions ri are de-

scribed classicly by Newtons's equation of motion

mi
d2ri(t)

dt2
= −∇iV (r1, . . . , rN) , (3.1)

where i is the atom index, N the number of atoms, t the time, mi the mass

of atom i, and V the force �eld. The use of a classical description instead of

a quantum mechanical description is justi�ed as long as quantum e�ects are

not needed for the description of the system.

Because the resulting equations of motion are not analytically solvable,

numerical integration is used to calculate the atom postions as a function

20



Figure 3.1: Single energy terms in a MD force �eld. Picture taken from reference

[17].

of time. Accordingly, all atom positions are calculated at every integration

time step ∆t from previous positions and velocities. This time step has to

be much smaller than one period of the fastest �uctuations in the system.

The calculation of the position r and the velocitiy v of an atom is calcu-

lated in this work using the leap-frog algorithm [18]:

v

(
t +

∆t

2

)
= v

(
t− ∆t

2

)
+

F(t)

m
∆t and (3.2)

r (t + ∆t) = r(t) + v

(
t +

∆t

2

)
∆t, (3.3)

where F is the force acting on the atom.
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3.2 Computational Details

In an MD simluation only a limited number of atoms can be described.

Therefore, the considered system size is limited and artefacts may occur.

To avoid artefacts due to the �nite system size or surfaces, periodic bound-

ary conditions were used in this work.

To this end, the atoms of the system are put into a space-�lling box,

which is surrounded by translated copies of itself (�gure 3.2). Thus, surface

e�ects were avoided, but artefacts may be induced when molecules interact

with their copies. To avoid those interactions, a su�ciently large system size

was chosen.

Figure 3.2: Principle of periodic boundaries conditions shown in two dimensions.

The simulation system (the green box in the middle) is surrounded by copies of

itself.

Because living organisms and therefore proteins exist in an environment

with small changing temperature and pressure, these parameters have to be

close to a constant value in order to reproduce the natural environment.

In the case of temperature, the velocities of the atoms were adjusted to
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keep a reference temperature T0. To this end a Berendsen thermostat [19]

was employed, a method which resembles a heat bath. In each time step all

velocities were scaled by

λ =

√
1 +

∆t

τ

(
T0

T
− 1

)
, (3.4)

where τ is a time constant and T is the instaneous kinetic temperature of

the system.

Pressure coupling to a reference pressure P0 was obtained by a Berendsen

barostat [19]. Similar to the Berendsen thermostat, the lengths of the box

vectors of the simulation system were rescaled by a factor

µ = 1− ∆t

3τ
κ (P0 − P ) (3.5)

with a time constant τ and a compressibility κ.

For a large system, direct calculation of interaction energies is compu-

tationally very expensive. To reduce the computational e�ort, interactions

at long-range distances were treated di�erently from short-range distances.

Short-range interactions below a cut-o� distance of 1 nm were calculated

directly via the given energy terms. For long ranges, Lennard-Jones interac-

tions above the cut-o� distance were not calculated in this work, and elec-

trostatic interactions were calculated with particle mesh Ewald summation

(PME) [20, 21].
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3.3 Force Probe Molecular Dynamics

The main goal of this work was to simulate AFM unfolding experiments.

This was done by Force probe molecular dynamics [11] (FPMD) simulations.

FPMD simulations are a method to interfere with and control atomic motions

in a MD simulation. An atom is selected and probed by applying a force F

on it (�gure 3.3).

A moving AFM cantilever is described by a pulling potential Vpull that

acts on a selected atom. The pulling potential moves with constant velocity

v in pulling direction. A description of the pulling potential is given by

Vpull(z, t) = k
2
(z − z0 − vt)2 , (3.6)

where t is the time, k the width of the potential (equivalent to the spring

constant of the cantilever), z the position of the subjected atom, and z0 the

initial spring position. The force F acting on the pulled atom is given by

F (z, t) = −k(z − z0 − vt). (3.7)

The resulting forces depend on the chosen spring constant as well as on the

pulling velocity.
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Figure 3.3: Schematic representation of the FPMD principle. The three images

show a time development, starting from the upper image. A ligand molecule (drawn

in yellow) is pulled out of the protein (drawn in red). The spring symbolizes the

force acting on the ligand. A stretched spring indicates a high force. Taken from

ref [11]
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Chapter 4

Methods

4.1 System Set-up

As a starting structure, the bacteriorhodopsin x-ray structure (Protein Data

Bank model 1QHJ) [22] was used. Three inner residues not resolved in the x-

ray structure (MET163, ARG227, and GLU232) were modelled using Whatif

[23]. Missing terminal residues (1-4 and 233-248) were not taken into ac-

count. The native trimer conformation was created by applying the symme-

try operations given in reference [22]. A model for a POPC lipid membrane

patch, kindly provided by Peter Tieleman (http://moose.bio.ucalgary.

ca/index.php?page=Downloads) was placed to surround the proteins follow-

ing the procedure described in reference [24]. Water molecules and sodium

and chloride ions according to the physiological salt concentration of archaea

(300 mM) were added using the programs genbox and genion from the GRO-

MACS simulation suite [25]. This way a solvent layer of 5 nm thickness was

placed on top of the system.

Subsequently, energy minimization of 150 steps was performed using
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steepest descent. Three equilibration runs with increasingly relaxed har-

monic position restraints were performed. First, for 200 ps restraints with a

force constant of k = 1000 kJ mol−1 nm−2 were applied to all non-hydrogen

atoms. Subsequently, for 1 ns only the protein restraints were kept. Finally, a

free equilibration run of 3.5 ns was performed without any position restraints.

To leave su�cient room for the extracted and unfolded peptide, we added

further 5 nm of water with 300 mM ions on top of the system, accumulating

to a total water layer of 10 nm. This enlarged system was equilibrated for

further 500 ps.

A 2× 2 trimer system (�gure 4.1) was then constructed by placing three

copies of the trimer system according to the the crystal symmetry. The full

simulation system thus contained 12 monomers. Despite the signi�cantly

increased computational e�ort, we considered such a large system essential

to avoid self-contact of the trimers due to the periodic boundaries, which

would likely cause artefacts for the extraction of a monomer.

This full system was equilibrated for another 500 ps and used as the start-

ing structure for all subsequent cytoplasmic pulling simulations described

below. For pulling towards the extracellular side, the 10 nm water layer was

placed at the opposite side of the system as described above, and the whole

system was rotated by 180◦ around the x-axis, such that the same pulling di-

rection (positive z-direction) could be used for both systems. Both simulation

systems comprised 236 124 atoms, with a box size of 12.16×12.16×15.32 nm3.

Pulling simulations with various pulling velocities were carried out for

each of the two systems as summarized in table 4.1.
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Figure 4.1: The simulation system. Proteins are shown in green, lipid molecules

in yellow, and water molecules in red. The simulation box is drawn as green lines.

A: side view of the system. B: top view of the system.

4.2 Simulation Set-up

All simulations were carried out using the software package GROMACS 3.3.

Proteins, and the sodium and chloride ions were described with the OPLS

all-atom force �eld [26]. For water the TIP4P water model [27] was employed.

Lipid molecules were described with a uni�ed atom model using parameters

taken from reference [28] and modi�ed to match the OPLS force �eld. Partial

charges for the retinal were taken from reference [29]. All other force �eld

parameters were converted into the OPLS force �eld according to reference

[29].

Simulations were run in the NPT ensemble. Temperature coupling at

T = 300 K was performed using a Berendsen thermostat [19] with a relax-

ation time constant τ = 0.1 ps. Pressure was kept constant at p = 1 bar

using semiisotropic pressure coupling. The box size was kept constant in

x- and y-direction, i.e., within the membrane plane, preserving the area of
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the membrane in these directions. In contrast, the box size in z-direction

was free to adopt to pressure changes. A compressibility of 4.5 · 10−5 bar−1

and a relaxation time constant τp = 1.0 ps were chosen. Long range electro-

static interactions beyond 1.0 nm were calculated using particle mesh Ewald

summation [20, 21]. A grid dimension of 0.12 nm and fourth order b-spline

interpolation was used. Short range electrostatic interactions were calcu-

lated by direct summation. For Lennard-Jones interactions a cut-o� length

of 1.0 nm was chosen. The lengths of bonds involving hydrogen atoms were

constrained using LINCS [30]. An integration time step of 2 fs was used.

4.3 FPMD Simulations

Force probe simulations were carried out for extraction towards both sides,

the cytoplasmic and the extracellular side. In each of these simulations the Cα

carbon atom of the C- and N-termini (�gure 4.2), respectively, was subjected

to a harmonic pulling potential Vpull, which was moved with constant velocity

in z-direction away from the membrane, parallel to the membrane normal,

Vpull(t) = 1
2
k (zCα(t)− zSpring,0 − vt)2 , (4.1)

where k = 500 kJ mol−1 nm−2 is the spring constant, zCα(t) is the z-position

of the respective Cα atom, zSpring,0 the z-coordinate of the initial spring posi-

tion, and v is the pulling velocity. Unlike the usual FPMD approach, here the

spring position was calculated in absolute coordinates rather than relative to

a reference atom. No position restraints were applied to the system.

Aiming at extracting and unfolding of a complete bacteriorhodopsin mo-

nomer, the fully extended polypeptide chain would be much too long to
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Figure 4.2: Cartoon representation of bacteriorhodopsin. Atoms which were sub-

jected to a pulling potential are marked with spheres. The red sphere shows the

C-terminus and the blue one the N-terminus. Helices A to G are indicated.

�t into a reasonably sized simulation box. To keep the simulation system

computationally tractible, we repeatedly cut o� those unfolded parts of the

protein that had moved su�ciently far away from the membrane to render

interaction with the membrane negligible. Accordingly, whenever the pulled

Cα atom reached a distance of 1 nm to the system border, the unfolding

simulation was interrupted and extracted residues that were more than 1 nm

above the membrane in z-direction were removed.

The resulting solvent gaps were �lled with water molecules, and ions

were added or removed to maintain the system uncharged. Subsequently,

new termini were built, the system was energy minimized, and equilibrated

for 20 ps with position restraints on the heavy atoms of the protein and on

all lipid atoms.

The force probe unfolding simulation was resumed with a force Fnew equal

to the force Fold applied at the time of interruption. From equation (4.1) and
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F = −∇V , this was achieved by a suitably chosen new spring position,

k · (zSpring,new − zCα,new) = k · (zSpring,old − zCα,old), (4.2)

implying zSpring,new = zCα,new + zSpring,old − zCα,old. (4.3)

The spring constant was kept unchanged during the simulation. The whole

procedure was iterated until the protein was completely extracted.

pulling velocity in nm/ps length of pulling simulation in ns

cytoplasmic side extracellular side

0.001 78.000 -

0.005 16.340 16.400

0.01 8.370 8 .200

0.02 4.395 4 .214

0.05 1.765 1 .752

Table 4.1: Summary of pulling velocity and length of the force probe simulations

carried out.

4.4 Interrupted FPMD Simulations

Compared to the millisecond experimental time scale, unfolding is enforced

to proceed very fast in our simulations due to the limited time scale of MD.

As a consequence, during pulling the system is not likely to be as close to

equilibrium as in the experiment. To determine how far the protein is away

from equilibrium and thus to better connect to experiment, we studied relax-

ation motions of the protein under the in�uence of a static pulling potential.
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Figure 4.3: Snapshots of the partially unfolded proteins. A: 300 ps, B: 600 ps

Two snapshots of the trajectory from the pulling towards the cytoplasmic

side with pulling velocity v = 0.02 nm/ps were used. The �rst one (�gure

4.3A) was taken at 300 ps (6 nm spring elongation), where helix G was half

unfolded. The second one (�gure 4.3B) was taken at 800 ps (16 nm spring

elongation), where helix F was half unfolded. For each of the cases a 20 ns

FPMD simulation with v = 0.0 nm/ps with static spring position was re-

sumed.

4.5 Data Analysis

4.5.1 RMSD and dRMSD

Beside the coordinates and velocities of the atoms, further obsevables are

root mean square deviation (RMSD) and root mean square deviation of atom

distances (dRMSD). In this work, these two observables are employed to

examine structure deviations.

RMSD values show overall structural changes of a protein and are given
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by

RMSD(t) =

√√√√ 1

N

N∑
i=1

[
(xi(t)− xi(0))2 + (yi(t)− yi(0))2 + (zi(t)− zi(0))2],

(4.4)

where t is the time, xi, yi, and zi are the coordinates of the examined struc-

ture, and N is the number of atoms. In many cases, as a �rst step before

caluclating the RMSD, the structure at time t is translated and rotated to

match best with the reference structure. The RMSD is sensitive to small

structural changes and therefore a good indicator for beginning unfolding

events. If the investigated structure is in a stable state, the RMSD stays

stable.

The dRMSD indicates the changes of the distance rij(t) between all pos-

sible pairs of atoms i and j at a given time t in reference to the starting

structure, according to

dRMSD(t) =

√
1

2N(N − 1)

∑
i6=j

(rij(t)− rij(0))2. (4.5)

dRMSD values of α-helices show a steady increase upon a loss of secondary

structure. Stable states with half unfolded helices moving as a whole, would

cause RMSD values to be unstable, while dRMSD curves remain stable.

4.5.2 Formulas

For each of the simulations, the pulling force excerted onto the respective

atom subjected to the pulling potential,

−∇V = −k · (zSpring − zCα) , (4.6)
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was calculated and recorded every picosecond. Hydrogen bond energies were

estimated according to [31],

EHB = −1
2
· (50 · 103kJ/mol) · e−36∆s. (4.7)

Here, ∆s denotes the donor-acceptor distance in nm.

4.5.3 Determining the Position of Unfolding Barriers

During the enforced unfolding certain residues are able to resist external force

in a stronger way than others. We will refer to these residues, which permit

the investigation of the stability of the protein, as unfolding barriers.

In the AFM experiments, the position of the unfolding barriers of bacte-

riorhodopsin were determined by �tting a worm-like-chain force curve to the

force pro�les and identifying those residues that cause the force peaks. In

contrast, our approach is based on the trajectory of the unfolding protein.

To this end, a snapshot of the unfolded protein was taken for every time

frame. From these snapshots the deviations of the positions of the Cα-atoms

from the starting structure in z-direction were determined and plotted over

the residue index.

As an illustration, �gure 4.4 shows a partly unfolded helix with a cor-

resonding ∆z-plot. As can be seen, the folded part remains near ∆z ≈ 0 nm,

whereas the unfolded part is indenti�ed by a steeo rise in ∆z. The transition

point between the folded and the unfolded part of the protein is assumed to

be determined by the kink in the ∆z-plot. Unfolding barriers are de�ned

as transition points, which occurs over a longer time and therefore are more

frequent.
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Figure 4.4: Explanation of the ∆z-plot. A: Snapshot of a partially unfolded helix,

B: corresponding ∆z-plot for the whole protein. Grey regions in the protein picture

correspond to black points in the plot. Red regions in both plots depict the unfolded

part.

The analysis of these curves, described below, rests on a number of as-

sumptions, which are ful�lled here for the unfolding of bacteriorhodopsin:

• Enforced unfolding takes place in one direction, here the z-direction

• Unfolding occurs in a sequential order, one helix after the other

• Remaining folded parts of the protein do not perform signi�cant trans-

lational or rotational movements

• Unfolded parts form a stretched rod-like peptide chain

• The transition point between the folded and the unfolded part is sharp

The unfolded part corresponds to a linear increase in the ∆z-plot, starting

with the transition point. By combining these two facts, transition points
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were determined in this work by identifying the linearly increasing parts in

the ∆z-plots through a line �tting algorithm.

To this end, �rst the complete data set with starting residue N0 = 1

was taken. Next, a line �t was calculated via linear regression. Each line

�t yielded a slope m and a slope error σm. The relative slope error σm/m

together with the number of the �rst considered residue was stored. As a next

step, the starting residue was discarded, and another line �t was calculated

between the second residue and the last residue. This procedure was repeated

until only three residues were left.

The line �t belonging to the minimal σm/m corresponds to the unfolded

part of the protein, since only the linearly increasing part in the ∆z-plot is

taken into account and residues belonging to the folded part of the protein

were not considered. Therefore, the residue belonging to the minimal σm/m

denotes the transition point. A schematic illustration of the algorithm is

presented in �gure 4.5. The corresponding σm/m values are plotted in �gure

4.6.

This algorithm yields a time-development of transition points, from which

histograms were created. From these histograms, the most frequent transi-

tion points were de�ned as unfolding barriers.
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Figure 4.5: Illustration of the linear regression method. The circles depict the

transition point. Di�erent subsets are drawn as points in di�erent colors. The

x-axis denotes the residue index, the y-axis the �rst residue of the drawn subset,

and the z-axis the ∆z values. The lines are the regression lines for each subset.

Figure 4.6: σm/m plotted as a function of the �rst residue. The data set is the

same as in �gure 4.5. The minimum position can be clearly seen.
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Chapter 5

Results

Several unfolding simulations where a complete bacteriorhodopsin monomer

was extracted and unfolded from the purple membrane were carried out. Sim-

ulations of both pulling directions, towards the cytoplasmic and towards the

extracellular side, were conducted using di�erent pulling velocities for each

side (summarized in table 4.1). Unless otherwise mentioned, all presented re-

sults were obtained from the simulation with pulling velocity v = 0.005 nm/ps

towards the cytoplasmic side.

5.1 Forces

Figure 5.1 shows force pro�les from pulling simulations towards the cytoplas-

mic and towards the extracellular side, respectively, at di�erent speeds. Both

plots show the applied unfolding force as a function of spring position. Each

force curve depicts a di�erent pulling speed and starts with F = 0 pN. As

can be seen, all force pro�les from one pulling direction are relatively similar,

independent of the pulling velocity. In particular each curve exhibits four
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Figure 5.1: Force pro�les from the FPMD simulations. All recorded force pro�les

from the pulling towards the cytoplasmic side (left plot) and towards the extra-

cellular side (right plot) are shown. In the upper right corner of each curve the

pulling velocity is given. All force pro�les start with F = 0pN.

separate force peaks. Some of these peaks split up into two subpeaks, like,

e.g., the �rst and the third peak when pulling towards the cytoplasmic side.

As must be expected, the height of the force peaks increased with pulling

velocity, whereas the positions of the peaks remained similar for all pulling

velocities, indicating that the unfolding pathways are also similar.

For comparison, �gure 5.2 shows several measured AFM force pro�les

(data from Gaub and co-workers [8]). The forces were recorded using a

pulling velocity of 1.4 · 10−6m/s, six orders of magntidue slower than in the

simulations. Like in the MD force pro�les, several distinct peaks can be seen

for each curve. Upon overlaying all available force curves, Gaub and co-
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Figure 5.2: Several example force curves from the AFM experiments. The zero

force values of each curve are marked on the y-axis.

workers [2] obtained a superposition of all force pro�les which also revealed

four force peaks, similar to the MD force pro�les. The main di�erence be-

tween the AFM and the FPMD force pro�les were the heights of the single

force peaks, which were due to the higher pulling velocities in the FPMD

simulations.

For a more quantitative comparison of the forces we plotted the four

peak forces from the AFM experiments and the simulations over the applied

pulling velocities and �tted according to

Fmax(v) = γv + const ln(v/v0) (5.1)
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Figure 5.3: Comparison of velocity dependent peak forces from AFM experiments

and FPMD simulations. AFM peak forces are plotted as circles and FPMD peak

forces are plotted as triangles, respectively. The black line is the force �t according

to equation 5.1.

[16], where γ is a friction coe�cient (�gure 5.3).

The �t was in good agreement with the di�erent peak forces. However,

the slope of the �tted curve at velocities the AFM regime was to steep.

There are two possible explanations for the negative forces. First, the model

proposed by Heymann and Grubmüller may not be suitable to describe the

unfolding forces occuring during the extraction of one bacteriorhodopsin mo-

nomer. This model deals with the crossing of one free energy barrier, which

is appropriate for single activation events, like the unbinding of a ligand from

a protein. Bacteriorhodopsin, however, is a closely packed helical structure

and it is likely, that the unfolding of the protein implies the crossing of sev-
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eral free energy barriers. Second, the unfolding pathway of the protein � and

therefore also the occuring forces � in the AFM experiments may be di�erent

from that observed in the simulations. The only way to prove this would be

FPMD simulations with even slower pulling velocities.
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5.2 Unfolding Pathway

In the AFM experiments one single protein was extracted from the purple

membrane. After extraction of that protein, the remaining purple membrane

stayed intact without any distortions. To test to which extent the extraction

a�ected the adjacent monomers, �gure 5.4 shows the root mean square de-

viations (RMSD) of the backbone atoms of each of the eleven non-extracted

proteins in our simulation system.

All RMSD curves did not show strong deviations and stayed below 0.2 nm,

which is in the range of normal �uctuations for proteins. Distorted proteins

would have had higher a RMSD. These values indicate that the non-extracted

proteins were not altered directly by the force applied to the extrated pro-

tein, which is remarkable, because no position restraints were applied to the

system. It is a good indicator that our model system resembles the original

purple membrane, because in the AFM experiments the purple membrane

also stayed intact during extraction.

To investigate the unfolding pathway, we examined the structural changes

of the single helices during extraction. To this end, the root mean square

deviations of atom distances (dRMSD) of the backbone atoms of each helix

were determined separately (�gure 5.5).

dRMSD values near 0 nm correspond to an intact helical structure, where-

as the steep increase seen in each of the curves indicates a loss of secondary

structure. For each helix a sudden change from zero values to increased

values was seen in the dRMSD curves, thus marking the onset of unfolding.

The successive single unfolding events were separated from each other with

no visible overlap. Hence, each helix unfolded independently, and sequently
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Figure 5.4: RMSD values of the backbone atoms of each of the eleven remaining

proteins. The values were taken from the FPMD simulation with pulling velocity

v = 0.05 nm/ps towards the cytoplasmic side.

(Helix G → Helix F → . . .→ Helix A).

Our results suggest that at least at the fast MD timescale, the seven

trans-membrane helices of bacteriorhodopsin behave as independent folding

units. This is in accordance with the two-stage model proposed by Popot and

Engelman [14], where trans-membrane α-helices are described as autonomous

stable folding domains. The model describes the folding process of membrane

proteins consisting of trans-membrane α-helices in two independent steps.
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Figure 5.5: dRMSD values of the backbone atoms of each of the seven trans-

membrane α-helices during unfolding. The values were taken from the FPMD

simulation with pulling velocity v = 0.05 nm/ps towards the cytoplasmic side.

The �rst stage consists of the formation of single membrane-spanning α-

helices, which are not yet connected to each other. The second stage of

the process is the aggregation of these helices. This process is moderated

by peptide links connecting helices, van-der-Waals forces between helices,

van-der-Waals forces between helices and lipid molecules, polar interactions

between helices, or hydrogen bonds between helices.

To gain further insight into the unfolding and extraction of the helices,

the Coulombic and van-der-Waals energies of interaction between the seven

helices and selected parts of the system were calculated. These interactions

included (i) interactions of the atoms within a helix, (ii) interactions between

one helix and the other helices of the protein, (iii) interactions between each
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helix and the lipid molecules in the membrane, and (iv) interactions between

each helix and the non-extraced proteins.

First, we examined the di�erences of the interaction energy at the start-

ing time and the energy at the end of the simulation for the four types of

interaction (i-iv). Each column in �gure 5.6 shows the sum of the respective

energy di�erences over all helices. The energy of the interaction between one

helix and the other helices within the protein was calculated according to

Etotal =
1

2

∑
i6=j

E(helix i, helix j), (5.2)

where E(helix i, helix j) denotes the energies of interaction between helix i

and helix j.

The largest individual energy contribution to the change in energy was

caused by the interactions of the atoms within each helix. Nevertheless, the

sum of the other three contributions was larger. Hence, in the purple mem-

brane it is energetically preferable for the protein to unfold its helices one

by one rather than unfolding several helices at the same time. Considering

solely the coulombic energy changes, most interestingly, the largest contri-

bution was provided by the interaction within the helices.

These energy calculations can only provide a rough estimate of the en-

ergetics during extraction. First, the role of the water environment was

neglected in our estimate. Furtermore, a more qualitative analysis would

also require the calculation of free energy changes.

As a next step, we determined the time development of the overall energy

changes for all seven helices (�gure 5.7). Again, the di�erences between the

start and the end value were determined. The interaction between the consid-

ered helix and the lipid molecules as well as the non-extracted proteins were
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Figure 5.6: Di�erent interaction energies regarding the seven trans-membrane α-

helices. Columns show the di�erence of the interaction energy at the starting time

and at the end of the simulation for the considered types of interactions.

summed up (�gure 5.7, black areas named "purple membrane"). Grey ar-

eas show the interaction between the considered helix and the non-extracted

helices, and hatched areas show the interactions of the atoms within each

helix.

The interaction between one helix and the other helices was calculated

di�erent from the previous approach employed for �gure 5.6. Here, only

helices that remain in the membrane during extraction of the considered

helix were taken into account. For example, for helix D the interactions with

helices A, B, and C were calculated, but not interactions with helices E, F,

and G. This is also the reason why for helix A interactions with other helices

were not calculated.
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Figure 5.7: Time development of energy regarding the seven trans-membrane α-

helices. All curves show the sum of the changes in interaction energies for the

considered helix and are split up accoring to the contribution of the single interac-

tion types.
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In general, the total energy changes for helices resulting in a force mini-

mum during extraction (B, D, and F) in the force pro�les were smaller than

for helices resulting in a force maximum (A, C, E, and G). The only exception

was helix C, where the energy change was of the order of the values from the

helices resulting in a force minima.

All energy curves had a similar shape. Before the unfolding of a helix, its

energy values stayed stable. During extraction the energy increased until it

reached its maximal value. The unfolding of a helix did not lead to energy

changes for the remaining helices, which further corroborates the helix-wise

unfolding of the protein independent of the state of the other helices.

To study the unfolding of single helices, the snapshots presented in �gure

5.8 cover the unfolding of helices G and F during the pulling towards the

cytoplasmic side. The corresponding forces are shown in �gure 5.9. Unfolding

of these helices serves as a representative example for the unfolding of all

seven helices of the protein. All other helices unfolded in a similar fashion.

The unfolding snapshots reveal that the helices unfold in a spiral-like

fashion. Helix G unfolded from top to bottom (�gure 5.8 A to C). During

unfolding the force increased and reached its maximal value once the helix

was completely unfolded (�gure 5.9, �rst three circles). Helix F unfolded in

the opposite direction (bottom to top, see �gure 5.8 D to F) and accordingly

the force dropped during the unfolding and reached its mimimal value when

the helix had lost all secondary structure. The last part of helix F was kinked

and moved out into the bulk water where it further unfolded (�gure 5.8 E).

The �rst three helix pairs (GF, ED, and BC) all unfolded in this fashion

and pairwise induced a force maximum followed by a minimum during un-
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Figure 5.8: Unfolding and extraction of helices G and F. Snapshots during un-

folding. Snapshot times are given in the lower right corner of each picture. The

colors represent secondary structure elements of the crystal structure [22]. Red

corresponds to α-helices, blue to β-sheets, and green to loops.
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Figure 5.9: The main plot shows the force pro�le covering the time of snapshots

in �gure (5.8 A to F). The red circles denote the time of the snapshots. The inset

shows the complete force pro�le where the black part corresponds to the main plot.

folding. The last helix (helix A) induced a force maximum on its own. This

behaviour was observed in all unfolding simulations. For the pulling towards

the extracellular side the process was similar, except that the order of the

helix pairs was reversed (AB, CD, EF, and G as single peak).

The two subpeaks in the force pro�les resulting from pulling towards

the cytoplasmic side (see �gure 5.1, �rst and third maximum) can also be

interpreted at atomic level. The �rst subpeak is correlated to the extraction

of the retinal out of the protein core caused by the unfolding of helix G (�gure

5.10). The second subpeak arised when the unfolded β-sheets were moved

through the lipid bilayer after the unfolding of helix C (�gure 5.11).
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Figure 5.10: First sub peak from the pulling towards the cytoplasmic side. (A-D)

Snapshots during unfolding. The retinal is drawn in a stick representation. (E)

The main plot shows the force pro�le covering the time of pictures (A-D). Rest like

in �gure 5.8.
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Figure 5.11: Second sub peak from the pulling towards the cytoplasmic side. (A-D)

Snapshots during unfolding. Lipid molecules are drawn in a stick representation

and in yellow. Residues interacting with lipid molecules are also drawn in a stick

representation. (E) The main plot shows the force pro�le covering the time of

pictures (A-D). Rest like in �gure 5.8.
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5.3 Positions of Unfolding Barriers

Apart from the large scale structural changes visble in the snapshots, in-

vestigation of transition points together with a more detailed examination

of the unfolding process also allows insights into the mechanical stability of

the protein. Transition points were determined for the pulling simulations

with pulling velocities 0.005 nm/ps, 0.01 nm/ps, 0.02 nm/ps, and 0.05 nm/ps

for both pulling directions, summing up to 8 data sets. Each histogram of

transition points from each data set was normalized to 1. Then, the four

normalized data sets from each pulling direction were summed up and the

resulting data set was also normalized to 1 (�gure 5.12 top and bottom). The

results from both pulling directions revealed a few dominant peaks, indicat-

ing residues that resist unfolding with a high probability. These dominant

peaks were de�ned as unfolding barriers (plotted in black in �gure 5.12 for a

better visualisation).

As can be seen, the unfolding barriers from the pulling towards the cyto-

plasmic side are preferentially located at the borders of the helices. Unfold-

ing barriers within the helices correspond to a kink where helices were moved

partially out of the membrane (see �gure 5.8E).

Using a di�erent approach, unfolding barriers were also determined from

the AFM experiments. There, unfolding barriers were determined by �tting

a worm-like-chain model force-extension curve

Fwlc =
kBT

p

(
1

4(1− x/L)2
− 1

4
+

x

L

)
(5.3)

[32] to the superposition of the force pro�les with force Fwlc, Boltzmann

constant kB, temperature T , persistence length p, extension x, and length of

the peptide chain L. The only free parameter is the length L of the peptide
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Figure 5.12: Histogram of the occurence of transition points. The upper plot shows

the distribution from the pulling towards the cytoplasmic and the lower plot shows

the distribution from the pulling towards the extracellular side. Dominant peaks

are plotted black. Helix regions for helices A-G are marked with grey bars.
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chain. It is possible to infer the position of an unfolding barrier in the peptide

chain from the length L.

To test whether the location of the unfolding barriers determined in the

AFM experiments and the simulations agree with each other, �gure 5.13

shows the positions of the unfolding barriers resulting from both methods.

Unfolding barriers derived from both AFM experiments and simulations are

plotted as �lled symbols.

For the pulling towards the cytoplasmic side, three matches were found:

Asp104, Tyr133, and Pro200. For the extracellular pulling direction �ve

matches are visible: Gln75, Ala81, Ala103, Pro165, and Trp189. The other

unfolding barriers from both pulling directions show no correlation.

Despite the large di�erence in pulling velocities, in both AFM exper-

iments and FPMD simulations matching unfolding barriers can be found.

The matching unfolding barriers therefore represent important regions in the

energy landscape of the protein.
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Figure 5.13: Comparison between unfolding barriers from AFM experiments and

FPMD simulations. The black line connects the z-positions of the Cα-atoms of all

residues. Unfolding barriers are plotted as circles (AFM experiments [8]) or tri-

angles (FPMD simulations). Filled symbols indicate matching unfolding barriers.

The grey bars denote helix regions.
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5.4 Interrupted Pulling

The results from the AFM experiments suggested that two helices unfold

simultaneously during extraction of one bacteriorhodopsin monomer. This

unfolding pathway is not observed in the MD simulations. One reason for

this observation may be the very slow AFM pulling velocities. On an MD

timescale, these movements are quasi-eqilibrium.

Although the previous results elucidate the dynamics of the unfolding

process, it is impossible to draw conclusions about how far the protein was

away from equilibrium during extraction. Further insight into the protein

behaviour is provided by simulations with an interrupted spring movement.

In such a situation, the relaxation of the protein towards equilibrium can be

studied.

The main results from both simulations are shown in �gure 5.14 (6 nm

spring elongation, helix G partially unfolded) and �gure 5.15 (16 nm spring

elongation, helix F partially unfolded). In both �gures the forces (�gure 5.14

A, C and 5.15A, C) and the dRMSD values of the partially unfolded helices

(�gure 5.14 B, D and 5.15B, D) are shown. In both cases, di�erent phases

can be distinguished in the time development of these observables.

During the �rst phase (start until beginning of grey region) the forces and

dRMSD values were subjected to strong and very fast changes. Subsequently,

a short relaxation period was visible (grey area in �gure 5.14 and 5.15), which

can be described as a drift period. In this period, the forces and dRMSD

values showed a damping behaviour. In the next phase (end of grey region

until end of plots) no changes in the protein conformation were visble and

the forces �uctuated around a constant value.
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Figure 5.14: Results for the simulation with interrupted spring movement at 6 nm

spring position. The grey bars denote the region of major changes. (A, C) Force

pro�le. (B, D) dRMSD values of the backbone atoms of helix G. (E) Interaction

energy (Coulomb and van-der-Waals) between helix G and the other six helices.
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Figure 5.15: Results for the simulation with interrupted spring movement at 16 nm

spring position.
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In the �rst simulation (helix G partially unfolded, spring position 6 nm,

�gure 5.14) the drift phase lasted 2 ns. Here, the force change was followed

by sudden energy changes (see grey area in �gure 5.14 E). The retinal was

moved out of the protein core. Subsequently, helix G was shifted in pulling

direction and in this way lost contact to the other helices (snapshots are

shown in �gure 5.16). As a consequence, the interaction energy between helix

G and the other helices increased. The drift time in the second simulation

lasted 9 ns (�gure 5.15), and no key event during unfolding was visible.

The forces acting on the protein after 20 ns simulation were signi�cant

smaller than the forces at the beginning of the simulations. For these large

force di�erences, two reason are possible.

The �rst reason may be a large friction force occuring due the fast move-

ment of the peptide chain. An instantaneous missing of a friction force would

explain the very fast force changes in the �rst 100 ps in both simulations.

The second reason may be that the applied force is too strong to be

captured through conformational changes within the protein. This situation

can be compared to a driven oscillator after switching o� the external force.

In that case, the oscillating system starts to perform damped motions, like

the ones visible during the drift phase.

The forces acting on the protein at the end of the 20 ns simulations are

necessary to keep the protein in its enforced conformation. The unfolding

pathway did not di�er from that with a moving spring. Like in the nor-

mal FPMD simulations, folded helices remained stable and only the already

partially unfolded helices were further unfolded.
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Figure 5.16: Snapshots from the simulation with interrupted spring movement at

6 nm spring position. The cyan snapshot was taken at 1 ns, and the red snapshot

was taken at 3 ns. The retinal is drawn in a stick representation.
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Chapter 6

Summary

In this work, force probe molecular dynamics simulations of the enforced

unfolding of the membrane protein bacteriorhodopsin are presented. The

project was inspired by AFM unfolding experiments of this protein, which

were recently carried out in the groups of Hermann Gaub in Munich and

Daniel Müller in Dresden.

The goal of this work was to simulate AFM measurements using MD

techniques, to compare the results with the experiments, and to gain further

insight into the enforced unfolding process at an atomic level. The realisation

and analysis of this work required the development and implementation of

several new methods.

Several unfolding simulations were carried out on bacteriorhodopsin. The

protein was unfolded from both ends, using di�erent pulling velocities. A new

method was developed to allow the complete unfolding of the large protein,

while at the same time keeping the computational e�ort tractible. During

the extraction, the protein was truncated repeatedly and the pulling process

was continued with the shorter peptide chain. All simulations resulted in the
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complete extraction of the protein.

In our simulations the anchoring membrane stayed stable during extrac-

tion, as observed in the AFM experiments. The corresponding force pro�les

showed four signi�cant peaks and also resembled the results obtained in the

AFM measurements. Thus, the simulations were able to describe the AFM

experiments.

From the simulation trajectories, it was possible to determine the unfold-

ing pathway of the protein. In all FPMD simulations the protein unfolded

helix-wise. This �nding di�ers from the unfolding pathway that was inferred

from the AFM experiments [2, 3, 4, 5, 6, 7, 8, 9]. The di�erent pathway could

be due to the much faster pulling velocities in the simulations. However, an

estimation of the energies of interaction within the membrane system further

corroborated a helix-wise unfolding. The unfolding pathway, resulting from

the simulations, was correlated with the force pro�les, allowing additionally

to interpret subpeaks in the force pro�les at an atomistic level.

The locations of unfolding barriers, stable residues within the protein,

were determined using a new method developed in this work. Despite large

di�erences in pulling velocities, some locations of the unfolding barriers from

the AFM experiments were reproduced in the simulations. These residues

were Asp104, Tyr133, and Pro200 when pulling towards the cytoplasmic

side, and residues Gln75, Ala81, Ala103, Pro165, and Trp189 when pulling

towards the extracellular side.

To explore how far the unfolded protein had moved away from equilib-

rium, simulations with a static spring position were carried out. In this

way, the slow movement of an AFM cantilever was imitated. The results
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showed that the protein was far away from an equilibrium state during the

unfolding simulations. Nevertheless it is still possible to deduce equilibrium

information from a su�ciently large set of non-equilibrium data, like shown

by Jarzynski [33].

Alltogether it was shown in this work, that AFM experiments enforc-

ing the unfolding of bacteriorhodopsin could be successfully reprodcued by

FPMD simulations. This method can not only be used to reproduce AFM

experiments, but also allows further insight into the unfolding pathway of

the protein under an externally applied force at an atomic level. Snapshots

taken from the trajectories give information about intermediate unfolding

states. The stability of the protein can be further examined by the location

of unfolding barriers, which were determined and compared to the locations

of unfolding barriers from the AFM measurements.
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