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Chapter 1

Introduction

Electron transfer is a key element of the bioenergetics of the respi-

ratory and photosynthetic organisms. It allows external sources of energy

like solar radiation or highly reduced inorganic compounds to be utilized by

the living organism. At the same time it makes possible the full oxidation

of the organic compounds, produced by the photosynthetic organisms, by

the subsequent members of the food chain, thus playing a crucial role in the

energy flow within ecosystems.

However, despite its great importance, due to the complexity of the

protein systems responsible for the electron transfer, as well as the fast rates

and the non-equilibrium effects in this process, it is very difficult to obtain

experimentally all of its structural, dynamical and thermodynamic aspects.

Although the electrode potentials among the redox pairs are known from ex-

periment, the different interactions that give rise to these potentials are far

from being completely characterized. In order to fully understand the nature

of the strong electrostatic interactions and the large shifts of the electrostatic

potentials, created by the subsequent oxidation and reduction of the electron

carriers, it is important that we go in atomistic details.
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Changing of the redox state of the carriers, takes place in the low di-

electric environment of the protein, which in many cases is embedded in

hydrophobic membrane. This leads to significant shift of the electrostatic

potential, which in turn, will result in strong interaction with the ionizable

groups of the protein. Free energy calculation methods developed in all atom

MD simulations, offer a powerful tool for quantitative estimation of these in-

teractions, while at the same time provide correct dynamical description of

the system as well. However, for correct treatment of the electrostatic inter-

actions in protein, one needs to know the protonation state of the titratable

groups of the protein. The protonation state at a given pH will be de-

termined by the individual pKa of each group in its specific environment.

Unfortunately, in the established force fields, used in MD simulations, the

protonation state of the titratable residues is assigned at the beginning of

the simulation and it is not change during its course. Thus, changes in the

protonation pattern of the protein, that would occur upon electron transfer,

will not be accounted in standard MD simulation. Moreover, the electron

transfer events are related to generating pH shifts in the environment, and

often such systems function in pH regions below or above seven. In that

case the protonation state of the acidic and basic residues is ether guessed or

taken from experiment. However, experimental data for microscopic pKa de-

termination, is very sparse. Most of the experimentally available pKa values

are obtained via NMR [39], but for large proteins, assigning the hydrogen

atoms in the structure, in order to determine the protonation state, becomes

very involved in NMR experiments.

For that reason, in this work we aim at using a new method, previously

developed in our group [7], of a dynamic protonation explicit solvent MD,

which allows for constant pH MD of titratable sites in proteins, for evaluation
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of the protonation effect on the electron transfer. Thus by calculating the

difference of the proton occupation for each titratable site for a given redox

state, the response of the protein environment on the electron tranfer event,

can be evaluated.

Similar studies have been carried with other theoretical approaches and

the relation between the electron transfer and pKa shifts has been partly

elucidated. The most commonly used methods for pKa calculations rely on

continuum electrostatics models such as Poisson-Boltzmann(PB) or Gener-

alized Born(GB) [1], [2], [3] or implicit solvent molecular dynamics [4], [5],

[6].

The PB models treat the protein as a low dielectric environment in

which fixed charges are distributed. Then the protein is solvated in the high

dielectric environment of the solvent, in which distribution of movable ions

is implicitly modelled. The resulting potential of the two distributions of

charges is then solved on a grid. This potential is used to calculate the free

energy of a protonation or deprotonation event, which is treated as a fixed

charge appearing or disappearing in the low dielectric of the protein. The

first drawback of this method is that the hydrogen bonding effect is not in-

cluded in the model, which can be crucial for the correct treatment of the

proton and its interaction with the surrounding environment. The second

drawback is that the entropy effects, that come from the dynamics of the

protein and the solvent are not included in the free energy estimation of the

protonation event and this might give a wrong pKa estimation.

The GB methods rely on calculation of the Born energy, or the inter-

action of the protonatable group with the field it creates, which depends on

the dielectric of the environment. Thus the shift of the Born energy, due to

transferring the protonation event, in the low dielectric environment of the
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protein can be calculated. Additionally the interactions with all the other

groups and partial charges are included as a separate term. This approach

suffers from the same disadvantages as the one mentioned above for PB mod-

els.

In implicit solvent MD, the movement of the particles is propagated in

a similar way to the one in explicit solvent MD, but the solvent molecules

are not included in the simulation. Their effect is modelled, by correcting

the forces acting on the atoms, by a term in the force field, corresponding

to the Born energy that will come from interaction with the solvent. In this

method, protonation is also treated dynamically and the dynamics of the

protein is also included. The lack of solvent ensures faster sampling of the

protonation space, but it neglects the changes of the entropy of the solu-

tion during protonation or deprotonation as well as the hydrogen bonding

between the titration sites and the solvent.

The constant pH MD method, used in this work, is based on an ap-

proach similar to the one described above but the solvent molecules are

treated explicitly. The great advantage of this implementation is that inter-

actions with the water molecules and the ions in the solution are treated with

atomistic details. Thus, significant contributions such as hydrogen bonding,

salt bridge formation between ions and titratable residues as well as entropy

of the solvent molecules are also included in our model.

The drawback in the explicit solvent case is that not only the pro-

tein configurational space has to be sufficiently sampled, but also the solvent

one, and therefore the sampling has to be much longer. In order to see a

transition from protonated to deprotonated state or vice versa, not only the

protein, but also the solution has to be in a thermodynamically favourable

configuration to accommodate the change of the charge. However, due to
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the fact that structurally, the protonation is guided mainly by the side chain

orientation, if there is no large scale conformational change in the protein,

the equilibration of the protonation state is relatively fast.

For all of the reasons described above, our method of constant pH MD,

includes important contributions of the proton-coupled electron transfer in

the model of electron transfer proteins. The dynamic protonation states and

the explicit treatment of the solvent are an important prerequisite for accu-

rate pKa calculation, hence, correct electrostatic treatment of the electron

transfer.

The system, that we selected for initial study of the response of the

protein environment to the change of the redox state of the electron carriers,

was Cytochrome C from Rhodopseudomonas viridis. Its electron carrier is a

heme group, whose iron is ligated by a histidine and metionine residues from

the protein. The iron can be in two redox states, and thus the heme group

switches between charge 0 in reduced and +1 in oxidized state. The heme

is buried in the low dielectric environment of the protein core. In this case,

the change of the charge upon redox reaction, will have a significant effect

on the electrostatic potential on the titratable groups. The resulting shift in

their pKa’s will provide quantitative measure of the response of the protein

environment on the electron transfer.

Moreover, the small size, of 107 amino acids and the fact that the titrat-

able residues have relatively high solvent exposure, ensures fast sampling of

the dynamic and protonation configuration space of the protein. This makes

Cytochrome C, a good starting case, to study the protonation effect of the

ionizable residues on the electron transfer, using explicit solvent constant pH

MD.

In order to validate our method, we selected two prototypic proteins,
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Cardiotoxin V from Naja naja atra [40] [42] [39] and Murine Epidermal

Growth Factor [9] [38] [39]. Each of the two proteins was chosen to test

a particular issue: first, how accurately the force field models the dynamics

and second how accurately it models the electrostatics of the protein.

The Cardiotoxin is a relatively rigid protein and its pKa’s will depend

mainly on the charge interactions among the titratable sites and the partial

charges of the environment, without too many conformational changes that

would otherwise be additional test parameter for the correct titration. The

protein has only three acidic residues whose pKa’s vary and deviate con-

siderably from their solution values and thus it is a very suitable test case

for evaluation of the force field ability to correctly represent the elctrostatic

interactions in proteins.

The Epidermal Growth Factor is a very serious challenge for pKa cal-

culation, due to its large flexibility and unstructured C-terminus. The latter

requires a lot of sampling with MD methods and it is difficult to evaluate

with continuum electrostatics. The difficulty, when using continuum models,

is due to the fact that parts of the protein are unstructured and there is no

proper averaged X-ray structure, on which these models rely.

The NMR ensemble for this protein consists of 16 structures and in or-

der to additionally enhance the sampling, all of them were used for titration.

As an additional test, we performed titration simulations of an artifi-

cial pentapeptide, which was synthesized and then experimentally titrated

by the NMR Department at the Max Planck Institute for Biophysical Chem-

istry Göttingen, lead by Prof Christian Griesinger. The peptide consists of

two terminal glycines followed by two histidines and an alanine residue in

the middle. The C and N termini of the peptide are not capped and their

charge can interact with the two histidine residues. This and the fact that
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both titratable residues are identical is a good test case for correct evaluation

of a pKa shift, due to closeness to two different interacting partners - C or N

terminus.

The structure of the thesis is as follows: In Chapter 2, after a short

description of MD and some background for pKa and free energy calculation

techniques, the constant pH MD method is described. In the same chap-

ter, are also provided current solutions for some methodological problems,

like neutralization of the charge in the simulation box due to protonation

or deprotonation, using four state model to describe residues, with two pro-

tonatable sites, the barrier potential used to keep the system in on average

completely protonated or deprotonated state etc. In Chapter 3, a description

of the results of the titration of the peptide and the prototypic proteins is

provided, including the simulation setup and the results from methods, used

to estimate the structural convergence of the titrated systems. The results

and the discussion of the simulation of Cytochrome C at pH 5 in the two

redox states are given in Chapter 4. Short summary and conclusions are

provided in Chapter 5.
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Chapter 2

Theory and Methods

2.1 Molecular dynamics

The atomistic details of many biological processes provide deeper insight in

the mechanism of their work. Techniques such as X-ray crystallography and

NMR are a powerful tools for atomic resolution structure determination of

biomolecules. However, they produce limited number of molecular structures

and the information of the dynamics of the systems is little. These structures

however, can be used in molecular dynamics (MD) simulations, which allows

studying the structural rearrangement of biological molecules as a function

of time in atomistic details. The approach is based on calculating the force

acting on each atom with respect to the potential energy of interaction with

all other atoms:

mi

d2ri(t)

dt2
= ∇iV(r1, ..., rN) (2.1)

where mi is the mass of the i -th particle and V is the potential energy which

is function of the position of all of the particles of the system r. The potential

V can be calculated using quantum mechanics, however due to the size of

the system that will be computationally too expensive. For that reason, the
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potential used in MD simulations is a sum of analytical functions treating

the interactions among the particles classically - Fig 2.1.

These potentials are the force field which models the interaction prop-

Figure 2.1: The four bonded and two non-bonded interactions in a force field

(picture taken from ref. [13]). V B is the potential energy of bond vibration

between the atom i and the atom to which it is chemically linked, V W is the

potential energy of the vibration of the angle formed with two other atoms,

V D is the potential energy in a dihedral twisting, V E is the potential energy

due to the displacement of an aromatic carbon atom from the plane of the

aromatic ring, V C and V LJ are the Coulomb and Lennard-Jones potentials

between atom i and atom j.

erties of the real atomic system. As shown on Fig 2.1, the force field includes

terms that describe the properties of bonds and angles of chemically linked
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atoms as well as non-bonded interactions like Coulomb and Lennard-Jones

potentials.

All of the parameters of a force field have been optimized to represent

consistently the physical properties of the biomolecular systems and there

are number of force fields which are used in standard MD simulations. More

detailed information on the force fields is provided later in this chapter.

Once the force acting on each atom is calculated, the Newtonian equa-

tions of motion are used to propagate their movement. However since in the

case of many-body system the equations of motion can not be solved ana-

lytically, they are solved numerically with discrete time step using specific

integrating algorithms (see Section simulation details).

2.2 pKa calculations of an acid in solution

The process of acid dissociation is given by:

AH −→ A− +H+ (2.2)

where AH is an acid, A− is the conjugated base and H+ is the proton. In

this case the equilibrium constant usually designated as Ka is measure for

the strength of the acid and it is defined as:

Ka =

[

A−

][

H+
]

[

AH
] (2.3)

However since the equilibrium constant can very many orders of magnitude

for different acids, the negative decimal logarithm (pKa) is often used:

pKa = − lg

[

A−

]

[

AH
] + pH (2.4)

where pH is the negative decimal logarithm of the concentration of the pro-

tons and it is measure for the acidity of the environment. This formulation
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is known as the Henderson-Hasselbalch equation and is used to calculate the

ratio of protonated and deprotonated species for a given pH.

Eq 2.4 is correct only if there is one type of acid in solution. However

in protein, ionizable amino acid residues interact with each other and often

their behaviour is described more accurately by Hill equation:

lg

[

A−

]

[

AH
] = n(pKa − pH) (2.5)

where n is the Hill coefficient and it is measure of the cooperativity of the

system: n < 1 indicating negative cooperativity and n > 1 positive cooper-

ativity.

The equilibrium constant, of a chemical reaction, depends on its free

energy. The relationship between the standard free energy of deprotonation

and the pKa of the acid, is given by:

∆Go = −2.3RTpKa (2.6)

the 2.3 prefactor is due to the convention of the natural to decimal loga-

rithms. Then from 2.4 and 2.6, the free energy difference of the system being

protonated or deprotonated at a given pH is given by:

∆G = −2.3RTpKa + 2.3RTpH (2.7)

and for the pKa, one obtains:

pKa = −
∆G

2.3RT
+ pH (2.8)

As it can be seen the pKa, or the measure for the affinity of the conjugated

base for the proton, is given by the free energy of deprotonation for the given

pH and the pH at which the process takes place. In order to obtain the pKa,

one must calculate the free energy of deprotonation. This free energy can be
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calculated using methods developed to work with MD simulations. A short

description of the most frequently used, and particularly the ones used in

this work, is provided in the next subsection

2.3 Free Energy calculation of deprotonation

of an amino acid in MD simulation

As mentioned in the previous subsection, the free energy of deprotonation

is at the base of calculating the ratio of protonated and deprotonated form

of an acid at given pH. MD simulations are a tool to generate ensemble of

configurations of the system of deprotonating acid in water which are used

with statistical methods to calculate the free energy of the process.

For that purpose, statistical thermodynamics offers powerful tools for

theoretical calculation of absolute free energy of a system with given param-

eters (pressure, volume, temperature and given number of particles), which

are based on the properties of the ensemble of configurations of particles

when the system is in the given conditions. However, in practise, due to

the large size of the configuration space, the absolute free energy can not

be calculated in MD generated ensembles and only a relative free energy is

calculated. Biologically most relevant ensemble is the one generated with

constant pressure P, temperature T and number of particles N. The free en-

ergy of such an ensemble is called the Gibbs free energy and in its absolute

value is given by:

G = −kT lnZ (2.9)

where Z is the partition function of the ensemble and is defined as:

Z =

∫

exp

(

−H(r,p)− pV

kT

)

d(r,p, V ) (2.10)
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where H is the Hamiltonian of the system and represent its total energy,

which is determined by the postions of all the particles r (the potential

energy) and their momentum p (the kinetic energy). Since the volume is not

constant p dV is the volume work upon expansion of the system with volume

dV but as long as the temperature and the density of the particles are kept

fixed, the volume work would average out in time. From Eq 2.9, the free

energy difference between the two different Hamiltonians of the system i.e.

protonated or deprotonated state is given as:

∆G = kT lnZB − kT lnZA (2.11)

= kT ln
ZB

ZA

(2.12)

where ZA is the partition function in protonated state A and ZB is the par-

tition function in the deprotonated state B. However as already mentioned,

since the integrals in the partition functions run over the full configuration

space of the system they can not be calculated in practice and therefore the

Zwanzig formula [20] is usually used where only the Boltzmann weighted dif-

ference between the two Hamiltonians is taken and the relative free energy

between the two states is calculated:

∆G = −kT ln

〈

exp

(

HB(r,p)−HA(r,p)

kT

)〉

A

(2.13)

This method is known as Free Energy Perturbation and its main disadvan-

tage is its slow convergence, due to the fact that the difference between the

two Hamiltonians is in exponent and high energy states, which have big con-

tribution to the overall partitioning, will be sampled very badly due to their

low probability. In an alternative approach not the averaged difference be-

tween the weighted Hamiltonians is calculated but rather the average of the

derivative of a blending Hamiltonian H:

H = (1− λ)HA + λHB (2.14)
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where λ is the reaction coordinate going from 0 to 1, is calculated with

respect to λ . The derivative is then integrated over the reaction coordinate

to obtain the free energy along it:

∆G =

∫ λ=1

λ=0

〈

dH

dλ

〉

λ

dλ (2.15)

This method is called Thermodynamic Integration (TI) [21] and it can be

done slowly with gradual change of λ parameter from 0 to 1 in every MD

step also known as Slow Growth Thermodynamic Integration or it can be

done with discrete steps in which λ is kept fixed:

∆G =
N
∑

i=0

〈

dH

dλ

〉

λi

∆λ (2.16)

which is known as Discrete Thermodynamic Integration. The main problem

of the slow growth TI is that the system is never in equilibrium due to

the constant change of λ. That is why for better convergence, the discrete

thermodynamic integration is used provide there are enough λ points taken

between the two states. [25].

2.4 pKa calculation of ionizable groups in pro-

teins using constant pH MD

Due to their spacial proximity in protein, charged amino acid residues inter-

act with each other and their pKa values inside the protein might be very

different from those in solution. The protonation state of all titratable amino

acids determines the spatial distribution of the electrostatic potential in the

protein, which is crucial for ligand binding, protein-protein interaction and

protein folding. Moreover for residues located in the active site of enzymes,
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the correct protonation state is essential in order the catalytic act to take

place.

Unfortunately in standard MD simulations, the protonation state is as-

signed at the beginning of the simulation and change of the protonation that

would occur upon conformational change or interaction with other ionizable

groups is not accounted.

If one wants to calculate the protonation state of a given group it is

necessary that the interactions with all other groups are taken into account.

Due to the fact that in protein all groups are in spacial proximity and they

interact with each other, their free energy of deprotonation hence their pKa,

will depend on the pKa of all other groups, they interact with. So for the

free energy of deprotonation of a given group i one writes:

∆Gi = −RT ln
〈xi〉

1− 〈xi〉
(2.17)

where 〈xi〉 is the partial occupancy of the proton of that group and is defined

as:

〈xi〉 =

∑2N

n=1 x
n
i exp(−Gn/RT )

∑2N

n=1 exp(−Gn/RT )
(2.18)

were N is the number of groups, 〈xni 〉 is 1 or 0 depending if group i is proto-

nated or deprotonated in configuration n and Gn is the free energy of state

n. It is clear that calculation of deprotonation free energy with such an ap-

proach would give combinatorial explosion and therefore the method we used

in this work [7], treats every reaction coordinate of every titratable group as

virtual path between two states - protonated and deprotontaed, along which

a virtual particle with mass m and speed v can move. Then the force acting

on that particle is given by:

F = −
dH(λ)

dλ
(2.19)
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where H is the Hamiltionian from Eq 2.14 and λ is the reaction coordinate.

If one considers n reaction coordinates, one writes:

Fλi
= −

∂H(λ)

∂λi

(2.20)

Thus, all of the λ particles are treated as normal particle in MD simulation

and their movement is propagated simultaneously. This approach circum-

vents the necessity for combinatorial calculation of the free energy of depro-

tonation of all titratable groups. Furthermore, the method allows dynamic

treatment of the protonation state and a given group can switch from proto-

nated to deprotonated state depending on its environment during simulation.

The restriction to travel between 0 and 1 is achieved by introducing

special circular coordinate on which a virtual θ particle is moving. The force

acting on that particle is the one that is actually calculated and its movement

is then projected onto the λ coordinate Fig.2.2 [7] according to:

λ = 0.5 + r cos(θ) (2.21)

To prevent the λ particle from staying too long in the non-physical inter-

mediate states of the 0 ÷ 1 interval, an energetic barrier is applied centered

at λ = 0.5 which forces the λ particle to go to fully protonated or fully de-

protonated state. The properties and height of the barrier are discussed in

greater details later in this chapter.

A particular issue of the dynamic protonation approach described so

far is the fact that free energy of a chemical reaction, such as deprotonation

can not be calculated in MD simulation. The reason is that in the established

force fields used today, there is no term that account for formation or break-

age of a chemical bond, which happens during titration of a group. So to

calculate the free energy of such a process in protein, one needs an estimation
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Figure 2.2: Projection of the dynamics of the θ particle on the lambda coor-

dinate. Picture taken from ref. [7].

of the error introduced by the force field. For that reason, the solution ex-

perimental value for the free energy of deprotonation (or the pKa) of a model

compound, similar to the amino acid residue that will be titrated, is required.

The solution deprotonation free energy for the same model compound is then

calculated in MD simulation. The difference between the experimental and

simulation value will give the error introduced by the force field - Fig.2.3.

Assuming the same error will be made in protein, one can correct for it and

get the right value of the free energy of deprotonation. Thus:

∆∆G = ∆Gsim
model −∆Gexp

model (2.22)

where ∆∆G is the error in the free energy calculation introduced by the

force field and it is then added to ∆Gsim
protein to correct for the free energy of

deprotonation in the protein.

In the present work, the experimental pKa values for the titratable

residues in solution, will be referred as reference pKa’s. Their values are

known and are discussed in greater details in Section 2.5.

All of the simulations, performed to obtain the free energy of deproto-

22



Prot− AH
∆Gsim

protein

Prot−A− +H+

AH
∆Gsim

model A− +H+

AH
∆G

exp

model
A− +H+

Figure 2.3: The thermodynamic cycle describing the error correction for the

force field

nation of the model compound in solution, for the force field error correction,

will be referred in this work as parametrization simulations or calibrations.

The contribution to the free energy from the pH, at which one wants

to simulates, is also added according to Eq. 2.7. Then the main contribution

for the behaviour of the group at the given pH, comes from the electrostatics

of the protein which is presumably modelled correctly by the force field.

2.5 Construction of the model compounds and

the titratable amino acids in the protein

There are three types of residues, modelled in this thesis. First group includes

acidic residues with carboxyl group - aspartate, glutamte and the propionic

side chains of the heme group. In the second is the histidine residue, having

imidazole ring as a functional group and in the third is the tyrosine residue

with a phenolic functional group.
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Figure 2.4: Isomerization of the carboxyl group

2.5.1 Residues with Carboxyl titratable group

As shown in Fig 2.4, the carboxyl group have two oxygen atoms, each of which

can be protonated. However, in the established force fields the proton is fixed

to one of the oxygens and if the interactions between the functional group

and the protein environment would be more suitable for the other oxygen to

protonate, one may never see this in the MD simulation. This will lead to

shift of the free energy of deprotonation and incorrect pKa estimation. To

solve this problem, we introduced a new chimeric “carboxyl” group, which

has two protonated oxygens but only one of the hydrogen atoms carries

a charge. Moreover, besides the protonation/deprotonation coordinate, we

also introduced a second reaction coordinate, which switches the charge of

the hydrogen from one oxygen to the other as depicted in Fig 2.5. Thus each

titratable site, containing a carboxyl group, is treated with a four state model,

which gives a closer representation to the behaviour of the real chemical

compound.

The estimation of the force filed error for the switching coordinate

is done in the same way as for the protonation one. However, since now

there are two oxygen atoms, that can undergo protonation, the reference pKa

for the model compound should also change to give the right correction for

each separate oxygen. If Ka1 and Ka2 are the two microscopic equilibrium

constants, which is the ratio of protonated/deprotonated species for each

oxygen, then the macroscopic equilibrium constant for the whole group is
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λ

λ

Figure 2.5: The four state model of residue with carboxyl group. The titrat-

ing coordinate is depicted in black arrow and the switching one - in red

given as:

pKa = lg(10pKa1 + 10pKa2) (2.23)

In case where both microscopic pKa’s are the same, as in the case of a

carboxyl group, one writes:

pKa = pKa1,2 + lg 2 (2.24)

During titration or switching between the two oxygens, only the charge

of the atoms of the group change. All of the bonded and Lennard-Jones pa-

rameters are kept unchanged.

In this work, we used 3.95 as reference macroscopic pKa value for as-
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partate residues and 4.4 for glutamate and the propionic sidechains of the

heme [23] [24].

2.5.2 Histidine

Histidine has an imidazole wring as a functional group which has two nitrogen

atoms and again both of them can be protonated Fig.2.6.

λ

λ

Figure 2.6: The four state model of histidine. The titrating coordinate is

depicted in black arrow and the switching one - in red

The scheme of the model is similar to the one used for carboxyl groups,

again with two coordinates - switching and titrating. However, since the link

to the backbone is at carbon which is closer to one of the nitrogens, their

microscopic pKa’s are different. The relation between the microscopic pKa’s

of the two nitrogen atoms and the macroscopic pKa of the whole group is
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given as:

pKa = − lg(10−pKa1 + 10−pKa2) (2.25)

where pKa1 and pKa2 are the two microscopic pKa’s of the two nitrogens.

Analogous to the carboxyl group, again neither the bond nor the Lennard-

Jones parameters are changed during the simulation.

The macroscopic reference pKa value used for the histidine residue was

6.38 [22].

2.5.3 Tyrosine

The tyrosine residues have a phenolic -OH group which can deprotonate.

Since there is only single oxygen atom, on which the proton is located, a two

state model was used. The used reference pKa value was 9.6 [23]

2.5.4 Model compounds

As described in Section 2.4, in order to perform constant pH MD simula-

tions, one needs to calculate the fee energy of deprotonation in solution, of

a model compound, similar to the amino acid which will be titrated. This

value will be compared with the reference value for the amino acid and the

error introduced by the force field will be obtained.

The model compound should be as similar to an amino acid residue

in protein as possible. However, if the amino acid that will be titrated is

used for the free energy of deprotonation in solution, it will have negative

and positive charge for its C and N termini respectively. That configuration

is very different from the one in protein, where the amino acid’s termini are

bound in peptide bonds with the neighbouring amino acids.

In all of the proteins simulated in this work, there were no titratable
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amino acids at the C on N terminus that would have COO− or NH+
3 charged

groups. Therefore the model compounds, used to parametrize the ionizable

groups of all proteins, are the same amino acids as the one in protein, but

with acetyl and methylamine caps for the N and C-terminus respectively.

Thus the compound will be neutral, and will model best the residues linked

to the polypeptide chain.

For both - the model compounds and the amino acids in the protein, the

charge of atoms of the backbone was not changed. This was done, because

of the different scaling of the electrostatic interactions in the force field, for

atoms that are chemically linked, up to the fourth neighbour. If the backbone

atoms are also included in parametrization, then their electrostatic interac-

tions with the adjacent amino acids will be modelled wrong in protein due

to the scaling of the Coulomb potentials. It is very difficult to obtain quan-

titative measurement of this effect and estimate its contribution to the free

energy of deprotonation. Therefore the charges of the backbone atoms were

kept unchanged.

Unfortunately that approach can not be applied for the model com-

pound of the propionic side chains of the heme group. In that case, butyric

acid was used as a model compound, but the charges were fit in such a way,

so that there is no change in the end -CH3 group upon deprotonation. Its

carbon atom in protein will be the link to the heme ring, and for that rea-

son its charge was kept unchanged and with the same value as in protein.

Even so, for some of the aliphatic atoms of the side chains, the Coulomb

interactions will be screened. However, the largest shift of charges upon de-

protonation is that of the carboxyl group atoms. The distance between them

and the iron and nitrogen atoms, where most significant part of the charge

of heme molecule is localized, is larger then four bonds. In that case, the
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interactions between them are treated without scaling. Thus the Coulomb

interactions between the propionic side chain and the heme group will be

modelled reasonably well.

2.6 Keeping the simulation box neutral upon

protonation or deprotonation

2.6.1 The change of the ionic strength

Due to change of the charge of ionizable groups during constant pH MD

simulation the box, in which it is running, becomes charged. In the case of

periodic boundary conditions, in which all of the simulations were performed

(See Section 2.10.3), that would lead to endless summation of the potential

of the charge through the periodic images. As a result endless forces would

be generated on the charged atoms. If such a simulation setup is made in

standard MD simulations, the contribution from the charge is artificially cor-

rected and the charge of the box is set back to zero. However this approach

gives secondary artefacts and its effect on the system is not completely un-

derstood. To solve the problem, we coupled each of the titration sites with

a water molecule that can be charged in direction opposite to the one of the

amino acid it is coupled to. If an ionizable group charges negatively, the

water molecule becomes positively charged.

However since the neutral water molecule becomes charged, that changes

the ionic strength of the solution. The free energy of an ion will be different

in solutions with different concentrations and the concentration in the simu-

lation box will vary upon ionization of the titratable residues.

Quantitatively this effect will be determined by the activity coefficients
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of the positive and negative ions in the solution:

a = γ
±
c (2.26)

where a is the activity, c is the concentration of the ion species in the solution

and γ is the activity coefficient of the positive (γ+) or negative (γ
−
) ions,

which is a measure for the deviation of the solution from the ideality. The

activity coefficient depends mainly on the ionic strength of the solution and

its contribution to the free energy of the ions in the solution is given as:

G = Gideal +RT ln γ+γ− (2.27)

where Gideal is the free energy of the ions in solution with such a high dilution

that the γ coefficient equals 1 and there is no difference between activity and

concentration.

Thus change of the ionic strength would lead to change of the activity

coefficients and the free energy of deprotonation. Unfortunately, this de-

pendence can be estimated from general considerations only for very diluted

solutions. For that reason, the effect of different ion concentration on the

free energy of deprotonation was systematically tested and the results are

provided in Section 3.1.1.

2.6.2 Restraing the coupled water molecules and the

entropy change due to the restraining potential

If the coupled water molecules come too close to the protein or to each other,

then the free energy of deprotonation of the residue they are coupled to will

differ from the one calculated in the calibration simulation. In order to

assure that the coupled water molecules and the protein atoms have enough

screening solution among them, they were placed as far as possible from each
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other, and their movement was restrained with harmonic potential.

However, if the volume, accessible for the waters, is different in the

calibration simulations and in the constant pH MD simulations, that will

gives rise to different entropy contributions in both cases. The available

volume for the water molecules in harmonic restraining potential is given by:

V =
√

(2π)3σ1σ2σ3 (2.28)

where the σ’s are the eigenvalues of the three by three covariance matrix

of the spacial distribution of the restrained water molecule. Then the con-

tribution to the free energy coming from the volume confinement is given

by:

∆G =
RT

2
ln

(

σ2;1σ2;2σ2;3

σ1;1σ1;2σ1;3

)

(2.29)

where the first lower indices indicate the different simulations with different

spring constants of the restraining harmonic potential and the second indices

indicate the three different eigenvalues.

The entropy effect of the restraining potential was tested in a number of

simulations, and the results are provided in Section 3.1.2

2.6.3 Distance between the titrating site and the cou-

pled water molecule

Since the simulation box needs to be kept neutral during parametrization

as well as during the constant pH MD, the amino acid residue that was

parametrized or titrated was in both case coupled to a water molecule. In

all of the parametrization simulations the two partners were placed as far

as possible to diminish their interaction. However, in constant pH MD sim-

ulation with a protein, there will be as many coupled water molecules as
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titrating sites. Then the distance between the site and the coupled water

molecules will be different for every group, hence different from the one in

the calibration simulations. To estimate the effect of the distance between

the titrating site and the coupled molecule on the free energy of deproto-

nation, we performed number of free energy simulations. The results are

provided in Section 3.1.3.

2.7 Barrier potential

If the lambda particle stays too long in intermediate states, that will result in

wrong average charge of the atoms of the titrating amino acids, hence wrong

dynamics and wrong behaviour of the protein. In order to prevent that, a

repulsive barrier potential is applied with its highest point at λ = 0.5 and its

lowest points toward the two ends of the lambda interval.

The form of the potential should be such, that it doesn’t perturb the

two Hamiltonians at the end states and thus preserves the free energy dif-

ference between them. The form of the potential used for all of the protein

simulation in the current thesis is shown on Fig 2.7.

As it can be seen, the potential is applied only for states with λ >0.1

and λ <0.9. Thus, there is no energy contribution to the force field at the

two ends of the lambda coordinate, which are used for the pKa calculation

(see next Section).

Unfortunately due to its form, in some cases there might be stabiliza-

tion in states close to λ =0.1 or λ =0.9. Additional effort is still made to

further adjust the width and the zero potential intervals in order to solve

this problem.

32



0 0.2 0.4 0.6 0.8 1
Lambda coordinate

0

1

2

3

4

5

B
ar

ri
er

 H
ei

gh
t 

(K
J/

m
ol

)

Form of the barrier potential

Figure 2.7: The form of the barrier potential

2.8 pKa calculations

To obtain the pKa of a given group in protein one needs to perform a number

of simulations at different pH points. From the simulations, the trajectory

of the lambda particle is obtained (see Fig 2.8). State 0 corresponds to pro-

tonated and 1 to deprotonated amino acid and only the time lambda particle

spends below 0.1 and above 0.9 were considered for the pKa calculation. As

a criterion for what is the minimal acceptable time that should be spent by a

titrating group at the end states, we considered 70 % or above to be the time

in which a group should be at states with lambda coordinate larger then 0.9

or smaller then 0.1. Based on the number of transition and the time spent

at either protonated or deprotonated state, one obtains the average value of
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Figure 2.8: Trajectory of a lambda particle during simulation

lambda for that particular pH and the error of the estimation.

The method used for that purpose is described in [7]. It makes use

of Poisson fit of the distribution of the rate constants of the two processes

- protonation and deprotonation (Fig 2.9), to calculate the probability dis-

tribution of lambda. However, since from simulation one obtains only the

number of transitions for the given time and given rate constant, the Bays

Theorem was used to inverse probability conditions and obtain the proba-

bility of the rate constants given certain number of transitions in the time

interval. Thus the probability of a certain combination of rate constants is

given by:

p(k0, k1|n0, n1) =
T n0+1
0 T n1+1

1

n0!n1!
kn0

0 kn1

1 exp[−T0k0 − T1k1] (2.30)
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where p is the conditional probability, k0 and k1 are the rate constants of a

0 → 1 and 1 → 0 processes respectively, n0 is the number of deprotonation

transitions and n1 is the number of protonation transitions, T0 and T1 are

the time spent in protonated and deprotonated state respectively.

In order to calculate p(k0, k1|n0, n1), an initial guess for the rate con-

stants, calculated as the number of transition over the time, is made. Then,

the probability of the rate constants, from 0 up to 20 times larger then the

original estimation, are calculated with a 1000 point resolution according to

Eq. 2.30. A result of such calculation is shown on Fig. 2.9.

The average value of lambda depends on the two rate constants and its

value is given as:

〈λ〉 =
k0

k0 + k1
(2.31)

From 2.30 and 2.31 it follows that:

〈λ〉 =

∫

∞

0

∫

∞

0

p(k0, k1|n0, n1)
k0

k0 + k1
dk0 dk1 (2.32)

Once the probability distribution of the rate constants is calculated

according to Eq. 2.30 the average lambda and its probabilty distribution is

calculated according Eq. 2.31 and 2.32.

In order to obtain the errors of the lambda distribution, we integrated

the area below the probability curve, and took the lambda values that lie

at 2.5 and 97.5 percent of the area, to be the lower and upper bound of the

error respectively. After the probability distribution of lambda and the error

estimation for each pH point are known (Fig 2.10), 10000 random points are

taken from the lambda distribution for every pH value and are then used

to build 20000 Henderson-Hasselbalch fits. These fits are used to calculate

the probability distribution of the pKa of the given group - Fig 2.10. The

same criterion, used for the error estimation below the probability curve of

the lambda distribution, is used to calculate the error of the pKa as well.
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Figure 2.9: The distribution of the two rate constants. Since we only need

their ratio, the units on the axes of the constants are relative as every time

step in the simulation is considered as 1 and the overall times in Eq. 2.30

are sums of the number of steps.

2.9 Principal component analysis

In order to track the dynamics of the overall structure of the protein, one

needs a method to reduce the dimensionality of the observed 3N-dimensional

system, where N is the number of the atoms, and focus only on the large

conformational changes during simulation. Such a method is the Principal

Component Analysis [34][35], which rely on constructing a covariance matrix

C, from the coordinates of all atom positions x, averaged over the simulation
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Figure 2.10: A single Henderson-Hasselbalch fit of the average lambda values

and the error, based on the lambda distribution for each pH point (left) and

the probability distribution of the pKa’s based on 20000 fits within the error

of the lambda distribution for each pH point (right)

length:

C = 〈(xi − x̄)(xi − x̄)T 〉 (2.33)

When the matrix is diagonalized, one obtains the collective deviation form

the averaged position of the atoms in the eigenvectors of the matrix. The

eigenvectors related to the largest eigenvalues describe the large-scale motion

of the protein. When the trajectory of the atom movement is projected onto

the eigenvectors, one obtains the different states through which the system

migrates during simulation.

Similar to atom positions, protonation states of titratable residues in

protein, may also change in collective manner. Therefore similar approach

was used to track the overall protonation state of Cytochrome C. However,

instead of atom coordinates, we uses lambda coordinates to construct the

covariance matrix.
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2.10 Simulation details

2.10.1 Integrating algorithm and time step

The equations of motion for a multi-body system can not be solved analyti-

cally. For that reason, the movement of the atoms in force field simulations,

is calculated numerically, with a discrete time step, using different integrat-

ing algorithms. In this work, the leap frog algorithm [14] is used, in which

the velocity v and the position r of any atom i are calculated for each time

step ∆t from their previous values according to:

vi

(

t +
∆t

2

)

= vi

(

t−
∆t

2

)

+
Fi(t)

mi

∆t (2.34)

ri(t+∆t) = ri(t) + vi

(

t+
∆t

2

)

∆t, (2.35)

where Fi is the force acting on atom i at time t.

The size of the time step is determined by the fastest degree of freedom,

which is usually the vibration of the chemical bond between the atoms. In

order to use longer time steps hence access longer simulation times, the bond

vibrations were removed and the lengths of the chemical bonds were fixed

using the LINCS constraint algorithm [15]. Additionally, the hydrogen atoms

were converted to virtual sites, which is their masses were merged to the

heavy atoms they are linked to, and their positions during the simulation

were geometrically calculated [19].

With that set up, we were able to use a time step of 4 femtoseconds,

for all of the simulations in the present work.

2.10.2 Force field

As mentioned in the molecular dynamics subsection, there are a number of

established force fields which are used in MD simulations. Some of them are
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empirical (OPLS, GROMOS) and are parametrized to represent correctly

macroscopic observables like free energy of solvation, diffusion constants etc.

Others such as the AMBER series are quantum based. Their great advan-

tage is in their flexibility when a new compound needs to be parametrized

for force field simulations.

All of the work in the current thesis is done using AMBER99sb [16]

force field, with its port to GROMACS [17] [18], and the SPCE water model

[28]. Its choice was motivated by the requirement new chemical compounds

to be easily parametrized and used in simulation. Thus charges of molecules

and model compounds that are not part of the force field, such as the hy-

pothetical positively charged water molecule or the charges of deprotonated

tyrosine residue, were calculated ab initio with Gaussian 03 [26]. Some of the

parameters of the amino acid residues, already existing in the force field, have

been altered and some new residues and atom types have been introduced to

describe the four-state model of the carboxyl functional group. Furthermore,

new bond parameters and atom types for the reduced and oxidized form of

the heme group were added[27].

2.10.3 Periodic boundary conditions

In order to prevent introducing of surface tension, molecular dynamics simu-

lations are performed under periodic boundary conditions i.e. the simulation

box is surrounded by its mirror images in all directions. The interactions

and the particles, crossing the borders are translated through the box as in a

crystal lattice. However, if the water molecules coupled to the titrating sites

are placed only considering the other coupled waters or the protein in the

same simulation box, they will come in immediate contact with their mirror

images. That is why during their original placing, not only the distances
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among the coupled molecules and the protein atoms are calculated, but also

their periodic images are considered - Fig.2.11.

Figure 2.11: The simulation box with its periodic images, the coupled water

molecules from the box are colored in blue and their periodic images in red

2.10.4 Thermostat

Only limited number of atoms can be included in a MD simulation. For that

reason, the temperature of the system has to be maintained additionally

with different thermostat algorithms. The thermostat used to maintain the

temperature of the atoms in the simulation box in this work, was the so

called Nosè-Hoover[29][30] thermostat. It is based on addition of a friction

term that couples the system to a thermal bath and the equation of motion
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become:
d2ri

dt2
=

Fi

mi

− ξ
dri

dt
(2.36)

where ξ is a dynamic friction parameter with own equation of motion:

dξ

dt
=

1

Q
(T − T0) (2.37)

where the difference between the reference temperature T0 and the current

temperatute T is used as a potential gradient in the integrating algorithms.

The Q parameter depends on the strength of the coupling to the heat bath

and its components are input parameters to the simulation.

The lambda particles are also coupled to heat bath, but in order prevent

heat flow from the lambda space to the real space, they are each coupled

to individual heat baths. The thermostat used for their coupling is the so

called Andersen thermostat[31] and it generates Maxwell-Boltzmann velocity

distribution in the time, by correcting the speed of the lambda particle, using

Monte-Carlo method [32][7].

2.11 Software

All of the free energy calculations, needed for parametrization or testing

in this work were performed with discrete thermodynamic integration in

GROMACS-3.3.3 software package [25]. The constant pH MD simulations

were performed with module for constant pH MD in GROMACS-3.3.3[7].

Charges of not parametrized protonation states of the compounds were per-

formed with Gaussian 03[26]. The PCA of the atoms was done again with the

GROMACS-3.3.3 software package [25] and the one for the lambda particles

- with Matlab 7.12.0.635 c©1994-2012 The MathWorks, Inc. The images of

protein structures were generated with pymol[33] and edited with GIMP c©.

All of the graphs were generated with Xmgrace c©and Gnuplot c©.
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Chapter 3

Method tests results and test

systems for method accuracy

estimation

3.1 Method tests results

3.1.1 The effect of the ionic strength

As discussed in Theory and Methods Chapter, when a water molecule charges

in order to compensate for change of the charge of a titratable residue in the

protein, that leads to change of the ionic strength of the solution. This shift

may influence the activity coefficients of the ions, hence the free energy of

deprotonation.

In order to evaluate the dependence of the free energy of deprotona-

tion on the ionic strength, we performed a number of free energy calculations

with different salt concentrations. However, since the ions also need time to

equilibrate their distribution, the simulations were performed with different
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lengths in order to estimate the relaxation time of the system as well. The

results are shown in Fig.3.1.

As it can be seen, in the longer time simulations the dependence on

Figure 3.1: The dependence of free energy of deprotonation on the salt con-

sternation. The free energy method used was discreet thermodynamic inte-

gration and the different series illustrate the different simulation lengths for

each lambda point

the salt concentration is not very strong. Change of the concentration from

0.1 to 0.15 mol/l, which corresponds to change of 11 positive and 11 negative

ions gives no noticeable difference in the free energy of deprotonation. Phys-

iological concentration of 0.15 mol/l was used in all of the constant pH MD

simulations and appearance of up to 6 charged molecules in the case of the

Epidermal Growth Factor or 3 in the case of Cardiotoxin V will not have a

significant effect on the free energy of deprotonation of the titratable groups.

43



To mimic fully the effect of a deprotonating group in the case of Cy-

tochrome C, an amino acid was deprotonated in simulation where 17 Na+

ions were fixed and the simulation was performed with 11 Na+ and 28 Cl−

movable ions. The deprotonating amino acid was coupled to a water molecule

that charges during simulation, thus brining the total positive charges in solu-

tion to 18 as would be the number of coupled water molecules in cytochrome

C. The difference in the free energy between this setup and the one of having

only 24 Na+ and 24 Cl− (0.15 mol/l for the box size) is approximately 0.5

KJ/mol. This difference is negligible and it will not have big effect on the

pKa of the ionizable groups during constant pH MD.

However, the series of simulations shown on Fig.3.1 also indicate that

there is a certain time needed for ions to sample correctly the simulation box.

They all started from the same configurations for the given ion concentra-

tions and as it can be seen, most of them required more then 20 nanoseconds

to equilibrate. Therefore all of the calibration simulations were done with

discrete thermodynamic integration, with a 40 nanosecond sampling window

per lambda point.

3.1.2 Entropy effect of the restraining potential

In order to prevent coupled water molecules from coming too close to the

titrating sites they were coupled to, their motion was restrained with a three

dimensional harmonic potential. However, that way, the allowed volume

for the water molecule is limited. To estimate the effect of the restraining,

we performed a number of free energy simulations in which we charged a

water molecule, which was restrained with harmonic potentials with different

spring constants. In order to confirm the proper sampling of the allowed

configuration space for the water molecule, we calculated its distribution
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Figure 3.2: The distribution of the restrained water molecule on the X coor-

dinate of the simulation box during the free energy simulation. Here again

the discrete thermodynamic integration is used and the distribution plotted

is the one of the first lambda point with protonated water molecule. The

distribution is similar to the one where the water is completely deprotonated

during the free energy simulation and the results are shown in Fig.3.2 and

Table 3.1.

As it can be seen, the Gaussian distribution, which is the result of the

underlying harmonic restraining potential, is well converged and the water

molecules have sampled their available volume properly. From Table 3.1 it
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Table 3.1: The free energy of deprotonation with different spring constants

Spring constant(KJ/nm2mol) Volume(nm3) Free energy (KJ/mol)

20 0.2945 -322.6

50 0.1656 -322.433

100 0.0293 -322.57

can be seen that if the available volume for the water molecules is constant

during the simulation, there is no difference in free energy in the simulations

with different spring constants. However when in an alternative simulation

(data not plotted) the spring constant was changed from 20 KJ/nm2mol

to 50 KJ/nm2mol, without changing the charge, the free energy of that

process was 3.37 ± 0.034 KJ/mol, which agrees with the theoretical value

of 3.4 KJ/mol calculated according to Eq. 2.29. This shows that there will

be contribution to the free energy of deprotonation or protonation only if

the allowed volume for the coupled water molecules is changing during the

simulation. This is another reason for restraining their movement to certain

volume and position.

3.1.3 Distance between the titrating site and the cou-

pled water molecule

Different distance during the parametrisation simulation and during the con-

stant pH MD simulations may give rise to difference in the free energy of

deprotonation in both cases. In order to estimate this effect, we performed

number of free energy simulations, in which the two partners were placed at

different distances. The results are summarized on Fig.3.3 and Table 3.2.

As it can bee seen the dependence of the free energy on the distance is
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Figure 3.3: The dependence of the gradient of the free energy of deprotona-

tion with respect to the reaction coordinate on the distance between the two

coupled sites

Table 3.2: The free energy of deprotonation with different distances between the

two coupled sites

Distance (nm) Free energy (KJ/mol)

1 nm -425.260 ± 0.148

1.5 nm -426.178 ± 0.168

2 nm -426.746 ± 0.149

4 nm -427.065 ± 0.13
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relatively small. Although the slope of the derivative of the free energy with

respect to the reaction coordinate changes, after integration, the values of

the free energy for the whole process are close. Above 1 nanometer distance

they are within 1 KJ/mol.

However, the difference in the slope will lead to wrong free energy cor-

rection of the intermediate states. That is to say, if the two coupled molecules

are placed closer to each other in constant pH MD than during calibration,

that will create an energy minimum in the intermediate states. According

to Fig.3.3, the smaller the distance the deeper the minimum. This effect

can be seen on Fig.3.4 with the two extreme cases where parametrization

was done at 4 nanometer distance and then two simulations were performed

placing the two molecules at the same distance of 4 nanometers and then

1 nanometer at pH=pKa. At this pH point, half of time lambda particle

should spend in deprotonated state and half in protonated or in other words

the average lambda value should be 0.5. Due to the preservation of the free

energy when distance changes, the average value in both cases is close to 0.5

but with significant stabilization of the middle states when the two molecules

are closer. Since the free energy is preserved, this problem is easily solved by

the hight of the barrier potential, which in cases of stabilization of the inter-

mediate states can be increased to obtaining again the correct distribution.

The shortest distance at which coupled water molecule and any protein atom

are placed in the present work was 1.6 nanometers.
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Figure 3.4: The lambda particle behaviour in two simulations with different

distance between the titration site and the coupled water molecule. On

the upper plot the distance is 4 nanometers, the same as in the calibration

simulation and on the lower one is 1 nanometer. The lambda coordinate goes

from 0 - protonated to 1 - deprotonated state. The time is in picoseconds.

3.2 Method accuracy estimation

3.2.1 Epidermal Growth Factor

Structure and Function

The Murine Epidermal Growth Factor is a small, 53 amino acid protein

which act as an intercellular signaling molecule with mitogenic activity and
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is believed to play role in the wound healing process[36]. It is composed of

three antiparallel β sheets and a hairpin loop close to the C-terminus - Fig

3.5. The overall structure is stabilized by three disulphide bridges and it

has a very flexible C-terminus. The structure is solved by NMR[37] and the

structural ensemble consists of sixteen members.

Figure 3.5: The NMR ensemble of the Epidermal Growth Factor with the

positions of its acidic residues plotted on the first structure

Constant pH MD Simulation Setup

The protein has 6 acidic ionizable groups that were included in the titration

- Fig 3.5. The pH region that was titrated started from pH=1.5 and ended

at pH=6, with a step of 0.25 pH units at the regions close to the pKa of

the titrating groups and 0.5 pH units at the end of the interval. Each of

the 16 structures was titrated as the length for each pH point simulation

was approximately 7 nanoseconds. The charge of the titrating residues was

neutralized by coupling them to water molecules, which charge in opposite
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directions (as described in Theory and Methods Chapter). The rotation and

translation of the center of mass of the protein was removed to insure that

protein doesn’t come close to any of the coupled water molecules responsible

for the neutralization of the system.

Estimation of the structural convergence

The two residues GLU 51 and ASP 46, that are located in the unstructured

C-terminus, are challenge for a pKa calculation since their structure space

needs a lot of sampling. In order to improve the sampling we took all of the

structures of the NMR ensemble and titrate them separately concatenating

the lambda trajectories afterwords. However, since the NMR ensemble is

not representative for the protein behaviour and the structures inside are

not Boltzmann-weighted, we performed a PCA on the atomic positions of

the C-terminus in the constant pH MD and included the NMR ensemble in

the analysis.

Furthermore, due to some implementation issues, the constant pH MD

module[7] is much more expensive then the regular MD. For that reason,

we simulated the protein with the two titratable residues in the flexible C-

terminus, with all possible combination of them being protonated and de-

protonated in free MD simulations, and included them in the PCA.

Data analysis and Results

The constant pH MD simulations from all 16 structures and all pH points,

have united length of 1.58 microseconds. Each free MD simulation, rep-

resenting given fixed protonation state, has a length of approximately 240

nanoseconds. The free MD trajectories were projected on the eigenvectors of

the covariance matrix of the united constant pH MD simulations through all
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pH regions and then overlaid, together with the lambda simulations them-

selves. The average structure used, for building the covariance matrix, was

generated by fitting the more rigid part of the protein and averaging only the

structure of the flexible C-terminus. After diagonalization of the matrix, the

eigenvectors of the flexible region were used to project its dynamics during

simulation - Fig.3.6.

The experimental pKa values for the protein are known from NMR

experiments[38] [39], and the ones we calculated theoretically are based on

Henderson-Hasselbalch fitting as described in the Theory and Methods Chap-

ter. A Henderson-Hasselbalch fit to the average occupancy of lambda at each

pH point is shown on Fig. 3.7. As a control to justify using of the Henderson-

Hasselbalch equation, which assumes no cooperative effect between the sites,

we did a single Hill equation fit as well as Henderson-Hasselbalch fit on the

averaged lambda for each pH point. The difference between the estimated

pKa’s, with the two different fits, was less then 0.05 pKa units and the co-

operativity coefficient was between 0.6 and 0.7. These results suggest that

the Henderson-Hasselbalch model can be used without significant loss of ac-

curacy, and since it is computationally much more efficient, it was used for

this protein. The comparison between the calculated pKa values and the

experimental ones[38][39] is given in Table 3.3

Discussion

In general, most of the groups through their titration satisfy the condition

that their lambda particle be with coordinates smaller then 0.1 or larger then

0.9 more then 70 % of the time. However, due to the specific form of the
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Figure 3.6: The projection of the atomic position trajectory onto the first

and the second eigenvector of the covariance matrix, generated from the

united trajectories of the titration of the sixteen structures from the NMR

ensemble in all pH regions. With black is represented the united constant

pH MD trajectory , in red is the simulation with both ASP 46 and GLU 51

deprotonated, in green is the simulation where they were both protonated,

in blue - ASP 46 is deprotonated and GLU 51 protonated, in yellow ASP 46

is protonated and GLU 51 deprotonated and in brown is the projection of

the NMR ensemble.

barrier some of the groups for given pH points, show stabilization of their

lambda particle close to 0.1 and 0.9 as in the worse case, the average drops

between 60 % and 70 %. As already mentioned above, we are currently work-

ing to solve this problem mainly via adjusting the barrier hight as well as its
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Figure 3.7: The fitted Henderson-Hasselbalch curves of the average lambda

occupancy for the six titratable residues of the Epidermal Growth Factor

width and form.

From the PCA plot it can be seen, that the NMR ensemble is located

close to the middle of the phase space of the flexible region and it covers a

significant part of it. Thus, it is a good starting point to enhance the struc-

tural sampling. On the other hand, the constant pH MD simulations cover

the entire region of the faster free MD with fixed protonation states. This

suggests that the computational issues of a single trajectory in the constant

pH MD code is partly compensated by the different starting structures and

the small pH interval which also provides better structural statistics.

The calculated pKa values, agree fairly with the experimental data

and the largest deviation of 0.65 pKa units, found in ASP 46, is sufficiently

low. One possible reason for the deviation is the insufficient sampling of the
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Table 3.3: Comparison between experimental and theoretical data for Epidermal

Growth Factor

Const pH MD experiment(NMR)

ASP 11 3.6 +0.07 -0.06 3.9

GLU 24 3.6 +0.12 -0.1 4.1

ASP 27 3.8 +0.08 -0.07 4.0

ASP 40 3.5 +0.09 -0.08 3.6

ASP 46 3.15 +0.07 -0.07 3.8

GLU 51 3.7 +0.08 -0.07 4.0

fluctuating C-terminus. Although GLU 51 shows better agreement with ex-

periment, despite its location in even more unstructured region, its complete

exposure to water provides faster sampling. ASP 46 interacts closer with the

other regions of the protein and it requires longer simulation times to equili-

brate. Another explanation would suggest a too strong interaction with the

located nearby positive arginine residues and a possible flaw in the forcefield

describing their correct sidechain dynamics, leading to incorrect electrostatic

interactions.

3.2.2 Cardiotoxin V

Structure and Function

The cardiotoxin family are proteins which are found in snake venom. Al-

though most of them have hemolytic activity, Cardiotoxin V from Naja naja

atra does not show depolarization or lysis of red blood cells[40]. Instead it

induces aggregation and fusion of sphingomyelin vesicles[41] and its toxicity

is mostly neurological.
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The structure of the protein is solved by NMR [40]. It consists of 62

amino acid residues and it is has four disulphide bridges. The bridges sta-

bilize a core with no definitive structure, from which antiparallel β strands

form a β-sheet - Fig.3.8.

Figure 3.8: The structure of Cardiotoxin V with its three acidic residues

Simulation Setup

The Cardiotoxin V has three acidic residues that were used for titration -

Fig.3.8. Furthermore it contains 13 positively charged residues at the acidic

pH region and a very high net charge. Thus it is a system with very strong

electrostatic interactions and interesting case for constant pH MD.

All of the three titrated residues were coupled to a water molecule to

neutralize the charge change during titration. Again the translation and

rotation of the center of mass was removed to avoid protein coming too close

to the coupled water molecules. The titration simulations were performed

similar to the scheme described for the Epidermal Growth Factor. The were

five titrations each starting from pH=1 up to pH=6. The length of each
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simulation was approximately 12 nanoseconds. For the overall titration of

each group, the lambda trajectories were concatenated for the given pH point.

Data analysis and Results

A Henderson-Hasselbalch fit of the average occupancy of lambda for each

pH point is shown on Fig.3.9. The experimental pKa values of the titrated

residues are obtained from NMR experiments [42][39] and their comparison

with the calculated values is shown in Table 3.4.

For all three residues, the Hill coefficient, from the Hill equation fit

of the average occupancy of lambda, for each pH point, are in the range

0.7÷0.9. The difference between the pKa values calculated with them and

the one calculated via Henderson-Hasselbalch fit are negligible.
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Figure 3.9: The fitted Henderson-Hasselbalch curves of the average lambda

occupancy for the three titratable residues of Cardiotoxin V
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Table 3.4: Comparison between experimental and theoretical data for Car-

diotoxin V

Const pH MD experiment(NMR)

GLU 17 3.8 +0.07 -0.06 4

ASP 42 3.6 +0.08 -0.07 4.1

ASP 59 2.3 +0.1 -0.1 2.3

The low pKa value of ASP 59 is most probably due to the closeness of LYS

2 and LYS 60 as also suggested by [42]. In order to estimate if the pKa shift

is due to closeness of oppositely charged residues, the distance among all

acidic and basic residues was calculated. On Fig.3.10 is shown the averaged

distance of the oxygen and nitrogen atoms of all charged residues at two

extreme pH points: pH 6, where all titrating sites are deprotonated and pH

2 where only ASP 56 is partly deprotonated. The spacial distribution of the

titrated amino acids is shown on Fig.3.11.

Discussion

The microscopic treatment of the electrostatic interactions and the atom

charges optimized for the specific force field, seems to give a good represen-

tation of the actual electrostatics of the protein even in such highly charged

system. The electrostatic interactions are modelled correctly, and the result

is a good agreement between experiment and theory.

Additionally, the relative structural stability of Cardiotoxin V and the

fast sampling of the conformational space of the protein is another reasons

for the good convergence and the good agreement between experimental and
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Figure 3.10: The average distance in nanometers (color coded) between the

oxygen and nitrogen atoms of the charged groups at pH 2(upper graph) and

pH 6 (lower graph) of Cardiotoxin V. The number of the atoms, included

for the calculation, is shown on the first x -axis and y-axis, the second x -axis

depicts the titrating residues and the second y-axis represents the positively

charged residues which comes in close contact to the titrating sites.
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Figure 3.11: The distribution of ionizable residues of Cardiotoxin V. In red

are the acidic residues which were titrated and in blue are the positive at

acidic pH LYS, ARG and HIS. The residues that were described above are

labelled accordingly

theoretical data.

From Fig 3.10 one can see that the closest positive residue to GLU 17

and ASP 42 is LYS 19 and at the same time ASP 59 is in close proximity

with two positively charged resides - LYS 2 and LYS 60. As it can be seen

the distance doesn’t significantly change in the whole titrating range and the

interaction with the two positive charges can explain the pKa shift of ASP

59. On the other hand the both negative GLU 17 and ASP 42 have only one

positive LYS in proximity and that can explains why their pKa’s are close

to their solution values.
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3.2.3 The Gly-His-Ala-His-Gly pentapeptide

Structure and Properties

The histidine residues are the most challenging ones for simulation since not

only do they have two atoms that can be protonated, but these two atoms

have different affinities toward proton hence different pKa’s. Therefore, they

require longer sampling in order the switching coordinate to equilibrate, since

one of its states will be visited much more rarely then the other.

In order to test our model, a synthetic pentapeptide containing two his-

tidine residues was ordered and commercially synthesised for an NMR titra-

tion experiment. The later is carried with collaboration with Prof. Christian

Griesinger’s NMR II Department of Max Planck institute for Biophysical

Chemistry. Similarly to the proteins described above, we performed constant

pH MD simulation and the results are to be compared with experiment, when

the experimental data is available.

The sequence of the peptide consists of two flanking glycine residues,

followed by the two titrating histidine residues and an alanine residue in the

middle - Fig.3.12. The C and N termini are synthesised charged, without

Figure 3.12: The structure of the pentapeptide
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methyl caps. This was done due to experimental issues on one hand and

the opportunity to estimate the influence of the two opposite charges on the

pKa’s of the two histidine residues on the other.

Simulation Setup

Each of the two titrating residues was coupled to a water molecule like in the

protein simulation described above. To prevent the peptide of coming too

close to the coupled water molecule, a harmonic restraining potential was

applied to the C-α carbon atom of the central alanine residue. Since the

potential is applied to only one atom this should not effect the sampling of

its conformational space.

There were two titration performed, starting from pH 4 to pH 8 with

0.25 pH unit step at the pH regions close to the solution pKa of histidine and

1 pH unit step at the far ends of the interval. The length in each separate

simulation was approximately 17 nanoseconds.

Data analysis and Results

Due to its small size and therefore large flexibility, the peptide may need

long simulation time to sample properly its conformational space. Similar

approach, as the one described for estimation the coverage of the configura-

tion phase space of the Epidermal Growth Factor, was implemented here as

well. Each histidine in the peptide has two nitrogen atoms in its imidazole

ring that can protonate. Since they are not symmetric, there are overall four

different sites that can undergo protonation. All possible combinations of

protonated and deprotonated nitrogen atoms were simulated with the faster

free MD. Then their atomic trajectories were concatenated and projected

onto the eigenvectors of the atom positions covariance matrix of the united
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trajectory in all pH points of the constant pH MD. Their projection as well as

the projection of the united constant pH MD simulation is shown on Fig.3.13.

The pKa’s of the two histidine residues were calculated again with the

Figure 3.13: The projection of the atomic position trajectory of all combi-

nations of fix protonation state free MD simulations (black) and the united

constant pH MD simulations (red) on the first two eigenvectors of the atomic

position covariance matrix of the constant pH MD simulations. On the right

and top of the projection plot, are shown the probability distributions of a

given trajectory projection onto the eigenvector.

approach described in the Theory and Methods Chapter. The Hill coeffi-

cients of the Hill equation fit to the average occupancy of lambda at each

pH point are close to 1 and the difference of pKa’s calculated with them and
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calculated via Henderson-Hasselbalch fits are negligible. The results from

the Henderson-Hasselbalch fits of the average lambda occupancy for each pH

point and the calculated pKa values are shown on Fig.3.14 and Table 3.5.

Table 3.5: Theoretical pKa values of the pentapeptide

Const pH MD experiment(NMR)

N-term His 5.7 +0.1 -0.09 -

C-term His 6.2 +0.08 -0.07 -

Figure 3.14: The fitted Henderson-Hasselbalch curves of the average lambda

occupancy of the two histidine residues and Henderson-Hasselbalch curve of

the reference pKa in solution
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Discussion

The first observation one can make is the down-shift of the pKa’s of both

residues with respect to their reference values of 6.38 - Fig.3.14. This can be

explained by the fact that there are two positive charges that have to appear

next to each other in order to protonate both residues. The electrostatic

repulsion makes this process unfavourable. The pKa of the N-terminus histi-

dine is shifted more then the one of the C-terminus histidine and that can be

explained with the stabilization effect of the negative charge of the carboxyl

group on the residue.

Another interesting fact seen from the simulation is that despite the

two residues interact (seen from the pKa shift), their titration can still be

described reasonably well by Henderson-Hasselbalch curves. The Hill equa-

tion fits that were done on the average lambda for each pH point are close

to 1 and the pKa values are practically the same with the one obtained from

Henderson-Hasselbalch fits. In practise this means that the two groups see

each other only through their averaged electrostatics and their interaction is

not directly co- or anti- correlated.
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Chapter 4

Cytochrome C

4.1 Structure and Function

Cytochrome C from Rhodopseudomonas viridis is a small, globular, 107

amino acid protein that play a key role in the bacterial photosynthesis, car-

ried by this specie. The photosynthesis type in this microorganism is a cyclic

type and the electrons, which are transported through the reaction center

during photosynthesis, are recycled back to it as shown on Fig.4.1. The ex-

citation energy, of the absorbed light, is transferred to the located close to

the periplasmic side of the plasma membrane special chlorophyll pair. There

it causes shift of the chlorophyll’s electrode potential, allowing subsequent

oxidation from the next electron carriers located closer the cytosol side of

the membrane. After that, the electrons reduce quinone to quinol molecules

taking protons from the cytosol. The quinol molequles are transferred as

neutral species through the membrane and oxidized by Cytochrome bc1 com-

plex releasing the protons on the periplasmic side of the plasma membrane.

The result of this proton transfer is a proton gradient across the membrane

and an elecric field created by this gradient. This electric field drives the
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Figure 4.1: The scheme of the bacterial photosynthesis of Rhodopseudomonas

viridis [43].

protons back to the cytosol side of the membrane and this flow is utilized

from the ATP-synthase complex to convert ADP and inorganic phosphate to

ATP. The electrons from the oxidation of the quinol molecules are recycled

back to the reaction center by Cytochrome C, which is subsequently reduced

and oxidized in the process.

Both structures of reduced[45] and oxidized[46] cytochrome C are solved

by X-Ray crystallography and are shown on Fig 4.2. The structural differ-

ences between the two forms are very small and some significant deviations

in the two structures can be seen only in the side chain orientation of GLU

65 and ARG 68. However, the authors of the two models suggest that the

differences in the orientation of the side chains of amino acids, located near

the surface, are due to their large flexibility and the uncertainty of electron

density interpretation in these cases. They do not necessary have physiolog-

ical meaning.
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Figure 4.2: The structural difference between the reduced (green) and the

oxidized (cyan) forms of cytochrome C (left) and the underlined GLU 65 and

ARG 68 (right)

The electron carrying moiety of the cytochrome is a heme group type

C, with iron center ligated by the sulphur atom of a methionine residue and

a nitrogen atom of a histidine residue. Another two chemical bonds, with

two cysteine residues, link the tetrapyrrole ring to the protein as shown on

Fig.4.3. The heme has also two propionic side chains that carry two carboxyl

functional groups. Upon oxidation and reduction the iron changes from Fe2+

to Fe3+ form, as the charge is delocalized in the tetrapyrrole ring.
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Figure 4.3: The heme group and its chemical bonds with residues from the

protein moiety of Cytochrome C

4.2 Force Field of the HEME

The charges as well as the bond parameters of the heme group in both re-

duced and oxidized form, are not part of the standard Amber99sb force field,

used for the current work. The charges for the heme group, the ligated his-

tidine and methionine as well as the chemically linked cysteine were taken

from[47] - Fig.4.5. and adapted to Amber99sb so that they give whole charge

of the amino acids forming chemical bonds with the heme.

However for titrating the Propionic side chains (Fig.4.4) they had to

be considered as separate residues that can undergo protonation. Since the

charges of the respective atoms in the reduced and oxidized form are very

similar, we took the average of them for the deprotonated form and adapted

the charges from a protonated glutamate i.e. glutamic acid, from the Am-
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Figure 4.4: Charges of the heme and the chemically linked to it amino acids

as originally calculated in [47]

ber99sb force field, for the protonated form. A small amount of charge, that

is left due to the fact that difference between the charge of protonated and

deprotonated form has to be exactly one, was added to the carbon atoms of

the tetrapyrrole ring they were linked to, observing that there is no change

of the sign of this atom’s charge.

The reference pKa value for the propionic side chains was also the one

used for glutamate, and similar to glutamate, the four state model was used

to simulate the carboxyl group.
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The used force field parameters of the chemical bonds of the heme were

the one calculated in [48] and their porting in Amber99sb was the one made

by the authors of [44].

4.3 Protonation state of the titratable groups

of Cytochrom C in reduced and oxidized

state

The free energy of deprotonation of each titratable group in the protein will

depend on the electrostatic field created by all of the charges in the protein.

In the case of cytochrome C, there is a change of the the charge upon oxi-

dation of the heme group, which is located in the low dielectric core of the

protein. The shift of the electrostatic potential, on each protonatable group

due to that process, can be enough to cause a shift of the deprotonation free

energy and hence the protonation state of that particular group. Then the

overall protonation pattern of the protein would rearrange in such a way so

that it minimizes the effect of the oxidation. Thus the shift of the free en-

ergy of oxidation, or in other words the shift of the electrode potential of the

heme, due to the protein environment and its titratable sites, can be a crucial

player in the thermodynamics of the electron transfer. In previous studies,

such an effect has been shown in the reaction center of Rhodopseudomonas

viridis, where a charge dislocation from the special pair of chlorophylls to

the next carrier - pheophytine, cases a large shift of the pKa of Tyr L162,

allowing it to deprotonate and thus stabilize the charge of the special pair of

chlorophylls after photo-oxidation [44].

In order to investigate the change of the protonation state of the titrat-
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able groups upon oxidation, we performed constant pH MD simulations on

both reduced and oxidized forms of the protein at pH 5. The acidic environ-

ment was chosen as in a time of ongoing photosynthesis, due to the proton

pumping, the pH will be lower on the periplasmic side of the membrane, were

cytochrome C functions.

4.4 Simulation Details and Setup

Constant pH MD simulations of both forms, reduced and oxidized were per-

formed using the respective X-ray structures. All acidic residues including

the propionic side chains of the heme, as well as the one histidine and three

tyrosine residues were included in the simulation. Tyrosine residues although,

basic with pKa 9.6 [23] were considered as well, due their special location in

the protein. All three of them are located within the hydrophobic core and

TYR 66 is very close to the heme group. This may lead to large shifts of their

pKa’s upon charge dislocation as shown in [44]. Since tyrosine has a hydroxyl

functional group, there is only one oxygen that can undergo deprotonation.

Therefore only a two state model was used to simulate the behaviour of the

residue. All other acidic residues and the histidine, were modelled by the

four state model as described in the Theory and Methods Chapter.

The overall simulation setup of the system can be seen on Fig.4.5.

Again, all titration coordinates were coupled to restrained water molecules

to keep the overall charge of the system neutral. There were 19 groups that

were included in the simulation and 19 coupled water molecules. The clos-

est distance among interacting partners, such as protein atoms and coupled

water molecules, as well as their periodic images, was larger than 15Å. As

shown in earlier in this chapter, this will not lead to large differences in the
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Figure 4.5: The constant pH MD simulation setup of Cytochrome C. The

protein and the coupled water molecules in the simulation box.

free energy of deprotonation, due to the different distance between the cou-

pled partners in the parametrization and the constant pH MD simulations.

For each of the two oxidation states, ten separate simulations were

performed with length ranging from 4 to 8 nanoseconds. Thus, the over-

all length of simulations for each form was approximately 70 nanoseconds

and all of the analysis was performed on the concatenated trajectory of the

respective form.
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4.5 Data Analysis and Results

The first observation from the trajectories of lambda particles, is the overall

shift down of the pKa’s of almost all acidic groups. The reference value for

the pKa’s of 3.95 for ASP [23] [24] and 4.4 for GLU [23] [24], should give rela-

tively high protonation fraction for GLU and noticeable for ASP. If following

HendersonHasselbalch behaviour the deprotonated form of the ASP residues

should be only ten times more populated and the protonated GLU ones only

four. However, almost no population of the protonated form was observed for

most of the residues in both the oxidized and the reduced form, except GLU

43 and ASP 92. This effect can be explained by the presence of large number

of postive lysine and arginine residues in the protein. Another interesting

observation is the quite high population of deprotonated fraction of HIS 38

at such a low pH. For better characterization of the protonation behaviour,

a PCA analysis (Fig.4.6) on the lambda coordinates of the titratable groups

was performed. As it can be seen from the plot, the overall protonation

pattern of the protein is guided mainly by the behaviour of three residues -

GLU 43, ASP 92 and HIS 38. On Fig.4.7, the transitions among the states

in the PCA can be seen in projection of the current state protonation vector

on to the first and second protonation eigenvector as a function of time. The

large number of transitions among the states is an indicator for reasonable

sampling of the free energy landscape of the system. Fig 4.8 shows the in-

dividual protonation-deprotonation behaviour of the three groups. Each of

them has sampled both states, and as it can be seen there has been large

number of transitions even if one of states is much more favourable than the

other.
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Figure 4.6: The PCA plot of the lambda particle coordinates. First two

eigenvectors of the covariance matrix of the lambda trajectories represent

the deprotonation - protonation of HIS 38 (first eigenvector) and GLU 43,

ASP 92 (second eigenvector)

4.6 Discussion

Fig.4.8 shows that the individual deprotonation-protonation ratios of the

three residues, that undergo transitions is not changed. However, from the

PCA plot on Fig.4.7, it can be seen that there is a change of the occupancy of

the different collective protonation states in the reduced and oxidized form of

the protein. In both them, most populated state is the one with protonated

HIS 38 and deprotonated ASP 92 and GLU 43. Although its occupancy is

almost the same in both forms, the population of all the others is changed.

A particular interest is the state with protonated ASP 92 and GLU 43 and

deprotonated HIS 38, which is completely unpopulated in the oxidized form.
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Figure 4.7: Projection of the protonation vector of the reduced(blue) and

oxidized(red) form of Cytochrome C onto the first and the second eigenvector

of the covariance matrix of the lambda coordinates of the reduced form of

the protein.

The significance of these shifts is to be estimated quantitatively, by free en-

ergy calculations with thermodynamic cycle, in which the protein is oxidized

with and without change of the protonation pattern.

The large number of positive residues and their electrostatic interac-

tion can explain the low occupancy of the deprotonated forms of the acidic

residues, despite the relatively low pH at which the simulations were per-

formed. This suggests that in some regions with high density of positively

charged residues, there might be a drop in the pKa of the basic residues and

especially lysine. In Poisson-Boltzmann calculation (data not shown) LYS
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Figure 4.8: The trajectories of the lambda particles of the three transiting

residues in the reduced (blue) and the oxidized (red) form.

24 has pKa close to the pH region, in which the simulations were performed.

Therefore it is possible to deprotonate and thus facilitates the protonation

of some of the acidic residues. To test that, further simulations will be per-

formed with carefully selected basic and acidic residues.
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Chapter 5

Conclusions

Theoretical pKa calculations of ionizable groups in proteins is challenging

task and despite the great advance made in the field, there are still systems

for which the existing approaches are not sufficiently accurate. Molecular

dynamics simulations, although being able to give atomistic details for the

dynamics of biological macromolecules, rely on force field description of the

interactions among the particles, which assigns fixed protonation states of

all titratable groups. However, due to possible incorrect assignment at the

beginning of the simulation or due to conformational change in the protein,

the fixed protonation state may not represent the electrostatic properties of

system correctly. Furthermore there are cases in which given protonation

state triggers response in the protein molecule [49], which would be never

seen if the wrong protonation state is assigned beforehand.

The primary goal of this work was the implementation of explicit sol-

vent molecular dynamics approach for calculating protonation behaviour of

ionizable groups in electron transfer proteins. Additionally, the dynamics

and the electrostatics of our model, were tested on protein systems with the

according properties and the experimentally known pKa values agree fairly
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with the data obtained from our simulations. The average deviation from

the experimental values was 0.3 pKa units with largest difference of 0.65

pKa units. The latter was found in the flexible C-terminus region of the

Murine Epidermal Growth Factor. The pKa value we calculated in this case

is shifted down with respect to experiment, and that can be attributed to

metastable initial states of the titrated ASP residue, interacting with nearby

ARG residues in some of the initial structures. Thus, long simulation time

would be necessary to leave that state and this leads to insufficient sampling.

Unfortunately, the current implementation of the λ-dynamics approach

is still very expensive. The force acting on each λ-particle has to be calcu-

lated. That leads to as many calculation of the derivative of the particles’

Hamiltonians with respect to their reaction coordinates, as many group there

are. Thus, the performance scales down linearly, with the number of groups

included for constant pH MD. Partial solution to that problem is already

available[50] and it based on calculating the derivative of each lambda on

a separate CPU. However, for this approach, a large number of well scaling

CPUs is required.

Much more effective approach, requires new way of calculating the

long-ranged electrostatic interactions. Such an implementation will make

the speed of the constant pH MD independent on the number of groups, and

its performance should be as fast as regular free energy calculation. However,

this approach is technically much more difficult for realisation and would re-

quire much longer time to be implemented.

The importance of efficient sampling, can be seen in the case of the

Cardiotoxin V system. The protein has only three titratable residues and

thus its constant pH MD simulation is much more efficient. The results show

good agreement with experiment, and particularly for ASP 59 whose value in
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protein is 1.6 pKa units lower then its reference value. It seems that the elec-

trostatics of the force field models correctly the interactions among charged

atoms and the low pKa value of this residue is estimated reasonably well.

Since the results for the two test proteins were in fair agreement with

experiment, the next step in testing our method, would be to predict pKa

values of a system that then can be experimentally titrated. That was the

primary intention behind the simulation of the synthetic Gly-His-Ala-His-

Gly pentapeptide. As it can be seen from the sequence, the two histidine

residues are located closely and will interact with each other. Thus, this

is an important control system, in which we can test the accuracy of our

calculations in the most complicated residue, with two titrating sites, with

different pKa values. The calculated pKa’s are shifted down from their refer-

ence values due to the appearance of two positive charges next to each other.

In that sense, the behaviour of the system is as one can expect. When the

experimental results are available, they will be valuable control case for the

method.

After the method was tested it was implemented in the primary goal

of this work, namely electron transfer proteins. The interest in that area was

motivated from the importance of the electron transfer as it is at the base of

energy conversion in the living systems and thus is one of most fundamen-

tal processes in the biosphere. Due to the large charge change in the low

dielectric environment of the protein, the protonation state of the ionizable

groups around the electron carriers will have large impact on the thermody-

namics of the process. To address some of these questions, we implemented

our method on relatively simple redox system namely soluble Cytochrome C

from Rhodopseudomonas viridis.

The results show large number of transitions between protonated and
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deprotonated state in most of the residues, even if they don’t spend much

time in the state that is unfavourable for them. From that one can assume

that the free energy landscape is sampled well and the protonation pattern

is equilibrated. This can be seen also in the significant number of transition

among the different states found in the PCA. The most interesting obser-

vation that can be made, from the data available so far, is that despite the

average protonation of the residues contributing mostly to the protonation

behaviour of the protein are not changed in the two forms, their collective

response is. That suggests that the protein environment is responding col-

lectively to the oxidation. For further estimation of this effect, free energy

calculations in thermodynamic cycle build on different redox states and dif-

ferent protonation patterns can be used.

Methods, that rely on continuum electrostatics models, have been

most widely used for pKa calculation in the field of molecular modelling.

Despite their success in many cases, they rely on static models and do not

provide dynamic description of the modelled system.

Molecular dynamics on the other hand, is a powerful tool to study the

structural changes of the protein with atomistic details. However, the fixed

charges of the ionizable residues in MD, can not describe correctly the change

of their protonation in the course of the simulation.

For that reason, a dynamic protonation state models have been im-

plemented in implicit solvent MD. However, the implicit treatment of the

solvent, misses important interactions and entropy contributions from the

solvent molecules.

In this work, for the first time, we applied explicit solvent constant pH
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MD method in protein simulations. The method was first tested on small

prototypic proteins with experimentally known pKa values. The results from

their titration indicate, that our method, based on explicit solvent force filed

representations of the systems, models the dynamics and electrostatics of

the titratable residues with sufficient accuracy, to allow dynamic treatment

of their protonation state. With this approach, it is now possible to obtain

more reliable information on both, the atomic and protonation configuration

space.

Electron transfer, as one of the most fundamental processes in nature,

has been modelled extensively. Due to the fact, that shifts in the charge

distribution, is its main feature, many studies have been carried, using con-

tinuum electrostatics approaches. However, it has been shown, that the

dynamics and particularly the frequency of vibration of specific residues is

crucial for the electron transfer process[51].

Moreover, hydrogen bonding and explicit treatment of the solvent are

often important for correct estimation of the charge interactions in protein,

which are crucial in proton coupled electro transfer. These contributions

however, are not included in continuum electrostatic models.

With explicit solvent constant pH MD, we include in the model of elec-

tron transfer both of the features - dynamics of the system with atomistic

details, as well as dynamic protonation states, to account for the interactions

between the electron carriers and the ionizable groups in the protein. Thus,

we brought two of the most important characteristics of the electron transfer

in one model.

However, despite the good agreement with the experimental data and

fast convergence in the case of cytochrome C, the systems that were simu-

lated were relatively small with ionizable resudes exposed in solution. For
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larger systems, with residues located in the interior of the proteins, longer

simulation times are needed for a structural reorganization to take place.

Therefore, in order to have correct sampling in those cases, a better tech-

nical implementation of the constant pH MD code is required. Such im-

plementation is possible and there are solutions currently developed in our

Department of Theoretical and Computational Biophysics.
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