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Chapter 1

Introduction

For a complete description of biological systems it is essential to know the function of their
compounds. Thus, to understand ongoing processes in living organisms one has to determine
the role of involved molecules in the first place. The behaviour of a biomolecule in question
depends on its structure. Therefore, in theoretical biophysics atomic structure determination
is of great importance.

Furthermore, without the information about atomic positions, it is impossible to perform
molecular dynamics simulations [32], which are a powerful tool helping to understand the
processes present in living organisms.

The main experimental method used for obtaining structural information about bio-
molecules is x-ray crystallography, which provides high resolution data. However, there are
also some limitations of this technique. The most important obstacle, which has not been
overcome yet, is the need of a crystalline specimen. In fact, only about 60% of all biomolecules
can be crystallized [27]. Others, like some membrane proteins, do not form crystals because
of the repulsive interactions between the hydrophobic and hydrophilic residues. And yet, it
is important to understand the functions of the proteins embedded in the cell membranes of
living organisms. Furthermore, crystallization and purification processes are sometimes labo-
rious, and have low efficiency. The other limitation of the x-ray crystallography is the phase
problem. Only the amplitude of the Fourier transform of the electron density function, also
called the molecular transform, is measured. Additionally, the recorded diffraction pattern
consists of discrete Bragg peaks resulting in an insufficient sampling in the reciprocal space.
Thus, to calculate the electron density map, one has to deal with an underdetermined system
due to the lack of the phase information. This problem, however, can be solved for instance
by replacing some of the atoms with heavy ones and calculating the Patterson function [6].
Furthermore, tracing chemical reactions requires determining atomic positions within short
time intervals. In x-ray crystallography a resolution in picoseconds range has been achieved
for monitoring biomolecules [28].

Application of x-ray free electron (XFEL) lasers in single molecule experiments is ex-
pected to overcome the aforementioned problems of x-ray crystallography. With the XFEL it
is possible to achieve ultra short pulses of high intensity in the hard x-rays regime. Recently,
a hard-x-ray FEL generating a femtoseconds long pulse at Linac Coherent Light Source fa-
cility has been reported operational [33]. Another similar facility is under construction in
Hamburg and should be completed by the end of 2013. In the planned single molecule
diffraction experiments, a stream of hydrated particles will enter the x-ray beam at a rate
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6 CHAPTER 1. INTRODUCTION

of one molecule per pulse [12]. The molecules will be injected by applying electrospraying
techniques. Since molecule orientation will be random, it will be necessary to determine the
orientation corresponding to each obtained diffraction image. While in x-ray crystallography
low intensity radiation (the intensity of XFEL pulses is approximately 106 higher than the
synchrotron-radiation pulses) is distributed among many molecules located upon a lattice, in
XFEL experiments extremely high doses will be absorbed by a single molecule. This means,
each atom of the target molecule will absorb multiple photons within the duration of a single
pulse. Thus, due to ionization effects, the electron density of the irradiated molecule will
undergo changes and result in Coulomb explosion. Hence the pulse width should be possibly
short, such that the explosion of the molecule will take place after the exposure. Because
the electron density sample undergoes damage within the duration of the pulse, it influences
the recorded diffraction image [15, 33]. Therefore, exposure times in femtoseconds range are
essential to record the diffraction pattern before the initial structure suffers severely from
ionization effects due to very high dose. The ultra high intensity per XFEL pulse is believed
to result in a sufficient number of elastically scattered photons on a single molecule to recon-
struct the electron density function. Further, the diffraction pattern is continuous due to the
lack of translational symmetry in single molecules, in contrast to crystals, and thus it will be
possible to oversample the reconstructed molecular transform. Hence, phases can be deter-
mined from the measured intensities by using iterative phasing algorithms [8, 20, 21, 26, 30].
Achieving pulse lengths in the femtoseconds regime is also expected to enable acquisition of
time-resolved structural information, which can be applied to tracing enzymatic reactions [24].

Yet it is impossible to perform the reconstruction of the molecular transform from a
single diffraction pattern. Firstly, despite the high intensity of the XFEL beam, a very low
number of photons will be registered in a single diffraction pattern. In literature a prediction
for a 500 kD molecule gives a value of about 4·10−2 per pixel for mean photon count in the high
resolution part [30]. As a result, diffraction patterns of molecules with small scattering cross
sections will be affected by a low signal to noise ratio. Secondly, a single diffraction pattern
provides only partial information about the molecule, as the detector plane corresponds only
to a selected area on a certain Ewald sphere. Therefore, it is necessary to record a series of
patterns from differently oriented molecules to obtain complete information about the object
in the 3D reciprocal space. Since particles can rotate freely, their random orientation has to
be extracted from the gathered scattering data. A method for achieving that is studied in
this work. Estimation of the orientation in the reconstruction process results in additional
error. Hence, to reduce the noise, averaging over many diffraction patterns is required.

A suitable method for the reconstruction purposes should thus be able to handle both
sparse and noisy data. In their paper, Huldt et al. [16], have proposed the ’common line’
orientation determination method based on the fact that two Ewald spheres, corresponding
to diffraction patterns recorded on the detector plane, intersect in the reciprocal space creating
a common curve. Locating the common line in any three diffraction patterns is sufficient to
determine the relative orientations of the Ewald spheres. Because of the low photon count the
images have to be averaged first. Huldt et al. have proposed to group the diffraction patterns
by evaluating the cross correlation function between any two of them. However, Shneerson
et al. in their numerical study of a scattering experiment for a chignolin molecule [30] have
shown that the ’common line’ method fails already at mean photon count of about 10 per
pixel, which is three orders of magnitude higher than the predicted values. At very low
numbers of registered photons, as expected in the XFEL experiments, it will be impossible
to locate the common curves in the obtained diffraction patterns.
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Figure 1.1: To reconstruct the molecular transform of a molecule its orientation has to be
extracted from diffraction patterns consisting of very few photons.

A Bayesian based method for determining the orientations has been introduced by
Fung et al. [11], in which generative topographic mapping is used to determine a maximum
likelihood manifold in the orientational space. A clear advantage of that approach is the
fact that the only input required, apart from the diffraction patterns, is the dimensionality
of the orientational space. However, averaging of the diffraction patterns within determined
orientation classes might be considered as a drawback. Assigning a weight to orientations
allows better sampling of the reconstructed object in the reciprocal space.

Another approach to structure determination from the single molecule XFEL scattering
experiments has been proposed by Saldin et al. [27]. The authors suggest it is not necessary
to determine the orientations of single diffraction patterns to perform the reconstruction of
the irradiated molecule. They have retrieved a molecular shape by computing a spherical
harmonic expansion of a 3D object in the reciprocal space from cross-correlations between
scattering images. More structural details might be obtained by applying that method for two
molecules with similar structures, one of them known. However, the authors do not specify
how much more detailed the extracted information is, as compared to the low resolution
general molecular shape.
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In this work I will introduce a rigorous statistical approach to reconstruction of the
structure of single molecules in the XFEL scattering experiments. This approach is similar
in spirit to the one developed for single molecule FRET experiments [29], which by applying
Bayes’ theorem enables high resolution reconstruction of distance trajectories from very few
recorded photons. In this project three methods for structure determination from single
molecule x-ray scattering experiments are introduced. In two of those methods Bayes’ theorem
is applied to extract the orientation information from diffraction images, and is used to locate
the corresponding Ewald spheres so as to perform the reconstruction of the 3D object in the
reciprocal space. Those methods, further referred to as ’maximum likelihood’ and ’Bayes’
methods, require a model structure as an input. The third method, derived from the other
two Bayesian methods mentioned before, is a Monte Carlo approach to determine the tertiary
structure of polypeptides knowing their primary structure. In fact, the two methods requiring
a model structure serve with some modifications as a subroutine for the MC based method.
Additionally, the influence of the noise on the performance of the methods, and values of
input parameters, such as number of incident photons, required for a reliable reconstruction,
are investigated in a numerical experiment.



Chapter 2

Theory

This section covers theoretical concepts of my work. In particular, I want to emphasize
those elements of both x-ray scattering theory and Bayesian analysis applied in this project.
Further, I introduce two methods for orientation determination and a Monte Carlo approach
to structure determination, all of them based on Bayes’ theorem.

2.1 X-ray free electron laser

Free electron lasers emit a beam of coherent electromagnetic radiation in a broad spectrum of
wavelengths and of high energy. In an FEL the lasing medium is a relativistic electron beam
passing through the periodic magnetic field of a magnetic structure called an undulator.

In the simplest case, an FEL uses a very long undulator generating a sinusoidal magnetic
field, with a wavelength λ0, perpendicular to the beam axis. The Lorentz transform of the
magnetic field of the undulator from the observers to the electron frame of reference yields a
plane electromagnetic wave with frequency γc/λ0, where γ is the electron energy expressed in
units of electron rest mass [2]. Thus, the electron oscillations enforced by the magnetic field
generate radiation. In the so called low-gain regime, in which the radiation field is almost
constant, the energy exchange between the electrons and the radiation field E is described
by

dε

dt
= −eve ·E, (2.1)

where ε is the electron energy and ve is the electron velocity [9]. The energy exchange reaches
optimum value for wavelengths close to undulator resonance

λ =
λ0

2γ2
(1 + 0.5K2), (2.2)

where K = eBλ0/2πmc is the undulator parameter [2, 9].
The acceleration and deceleration of the electron by the electromagnetic field results in a

periodic velocity modulation, with a period corresponding to the wavelength λ. The velocity
modulation further leads to the density modulation of the beam. This gives rise to more
coherent electron radiation and exponential growth of the intensity (up to a saturation level).

9



10 CHAPTER 2. THEORY

2.2 X-ray scattering

As for any electromagnetic wave, the propagation of x-rays can be described with the general
formula

E(r, t) = E0e
i(2πk̂·r/λ−ωt+ϕ) (2.3)

where E(r,t) is the electric field, k̂ is the unit wavevector in the propagation direction, ω is
the angular frequency and ϕ is the phase. For x-rays, typical wavelengths range from 0.1 Å
to 100 Å.

X-ray photons interact with matter in several ways. In the photoelectric effect an ab-
sorbed photon causes ejection of an electron, causing unstable electronic configuration. At
1 Å wavelength, the photoelectric cross section of a carbon atom is approximately 10 times
larger than the elastic scattering cross section. Hence, biomolecules exposed to the XFEL
beam undergo Coulomb explosion as the result of knocking off the electrons in the photo-
electric effect [25]. Another possible event is the inelastic (or Compton) scattering, during
which an x-ray photon transfers some of its momentum to a bound electron, and thus, the
photon energy decreases while its wavelength increases. The third type of interaction, which
is the relevant one in this work, is the elastic scattering. In that case, the photon energy is
maintained, and only the direction of the momentum is changed.

In the elastic scattering electrons of the irradiated molecule become the source of sec-
ondary waves. Differences in relative electron positions lead to differences in optical path
length, hence an interference pattern is recorded on a detector.

Figure 2.1: Geometry of a simplified scattering experiment: spatial displacement of 2 electrons
gives rise to optical path difference r · (k̂s − k̂i).
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Because the electrons in a sample are delocalized, it is essential to make use of the concept
of electron density function. Structure factor is then given by

F (∆k) =
∫∫∫

ρ(r)e2πi∆k·rdV, (2.4)

which for N atoms, located at positions rn, is equivalent to

F (∆k) =
N∑

n=1

fn(∆k)e2πi∆k·rn , (2.5)

where fn are atomic scattering factors [6]. The scattered intensity recorded on the detector
is defined as I(∆k) = F (∆k)F ∗(∆k). For a real valued electron density function F (∆k) =
F ∗(−∆k) holds, thus the intensity distribution in the k-space reveals central symmetry, which
is an important feature of x-ray imaging. In order to obtain the total scattered intensity, one
has to include additional factor given by the Thomson formula, which relates the secondary
(scattered) waves intensity to the incident wave

I(θ) = I0r
2
e

1 + cos22θ
2a2

, (2.6)

where I0 is the incident beam intensity, a is the distance from the object to a point on the
detector, re is the classical electron radius and θ is the scattering angle.

In the XFEL experiments, both the intensity of the incident pulse and the electron
density function of the specimen are time dependent, the latter one as a result of radiation
damage done by the incident beam. Thus, the registered intensity in such an experiment is
given by

I(∆k) = r2e
1 + cos22θ

2a2

∞∫
−∞

I0(t)
∣∣∣∣∫∫∫

ρ(r, t)e2πi∆k·rdV
∣∣∣∣2 dt. (2.7)

The time evolution of the electron density was simulated for a carbon atom [15] assuming
different pulse lengths. While average number of electrons in the K shell decreases only
slightly with time, the loss of L shell electrons happens abruptly especially for longer pulses.
Therefore, it was suggested [15] to compute the structure factor as

F (∆k) =
N∑

n=1

∑
j

f (j)
n (∆k)e2πi∆k·rn , (2.8)

where f (j)
n is the atomic scattering factor of the n-th atom in the j-th electron configuration.

For analysis of real diffraction images such a model would be the crudest possible approx-
imation. In this project, however, for both generation and analysis of diffraction patterns,
the electron density changes within the duration of the XFEL pulse were neglected, i.e. the
intensity distribution was computed as squared modulus of the Fourier transform of time
independent electron density.
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2.3 Ewald spheres

An Ewald sphere is a geometrical construction from the incident and scattered wave vectors
(ki and ks ). In case of the elastic scattering both vectors have a length of 2π/λ, where λ
is the wavelength, thus their difference, i.e the scattering vector ∆k, has to be located on a
sphere with a radius of 2π/λ.

To each pixel on the detector plane corresponds a scattered wave vector, hence by knowing
the incident wave vector, it is possible to calculate the scattered vector, and map the pixels to
points on an Ewald sphere. Because of limited surface of the detector a recorded diffraction
pattern contains only partial information about the corresponding Ewald sphere.

Different orientations of the irradiated molecule in the real space are equivalent to rota-
tions of the wave vectors, and of the Ewald spheres accordingly, hence, to reconstruct the 3D
Fourier transform of the electron density one has to map the diffraction images, obtained for
different orientation of the molecule, to the corresponding Ewald spheres and superimpose
them in the reciprocal space.

Figure 2.2: Pixels on the detector plane correspond to a part of an Ewald sphere determined
by the incident (ki) and the scattered (ks) wave vectors. Superposition of many differently
oriented Ewald spheres is essential to reconstruct a 3D object in the reciprocal space.

2.4 Bayesian analysis

The presented here derivation of Bayes theorem was taken from W. M. Bolstad’s book [3].
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Assuming a set of n disjoint events B1, . . . , Bn whose union has a probability of one, and
an observable event A, the total probability of A is given by

P (A) =
n∑

i=1

P (A ∩Bi). (2.9)

Further, assuming that both prior P (Bi) and conditional probabilities P (A|Bi) are known,
the expression (2.9) can be rewritten as follows:

P (A) =
n∑

i=1

P (A|Bi) · P (Bi). (2.10)

By combining the usual formula for conditional probability of Bi given A P (Bi|A) = P (A∩Bi)
P (A)

with (2.10), one obtains the Bayes’ theorem, which states that

P (Bi|A) =
P (A|Bi) · P (Bi)∑n
i=1 P (A|Bi) · P (Bi)

. (2.11)

In other words, this theorem is used to revise prior beliefs about an event basing on the
evidence gained from an experiment. The events B1, . . . , Bn are not observed directly in
a given experiment, yet one can assign prior probabilities, which reflect beliefs about the
occurrence of those events. The conditional probability P (A|Bi) is also called the likelihood
of the event Bi, which is equivalent to a weighting function of Bi for the event A to be
observed in the experiment. According to Bayes’ theorem, the posterior probability P (Bi|A)
combines the beliefs prior to the experiment with updated beliefs after registering event A,
thus containing entire information about the sample.

In the continuous case for observable x and a parameter θ belonging to the parameter
space Θ, equation (2.11) becomes

π(θ|x) =
f(x|θ) · π(θ)∫

Θ f(x|θ) · π(θ)dθ
. (2.12)

For a given x, the integral in the denominator is a constant, thus the Bayes’ theorem can be
written as a proportionality

π(θ|x) ∝ f(x|θ) · π(θ). (2.13)

This can be further simplified by assuming π(θ) to be uniformly distributed i.e. using the
noninformative prior

π(θ|x) ∝ f(x|θ). (2.14)

In this project I assume uniform distribution of the orientation, being the estimated param-
eter, for there is no reason why some orientations of the molecule entering the beam would
be preferred to the others.
An advantage of Bayesian analysis is that it can be efficiently applied to small samples [1].

The main objective of many experiments is to find an estimate of the parameter θ basing
on the posterior distribution. The easiest possible solution is finding, per analogy to the
classical maximal likelihood method, the so called generalized maximum likelihood estimate
of θ, being the largest mode of π(θ|x). This should yield satisfactory results for single mode
distributions with narrow peaks, but in general, one should consider using other methods
that make use of the entire information contained in the posterior probability distribution.
In this work I compared the point estimate approach with use of the posterior probability
distribution as a weighting function.
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2.5 Posterior probability calculation

To estimate the orientation of a molecule that produced certain diffraction pattern, one has
to compute the posterior probability distribution first. Assuming a uniform distribution of
the orientations the simplified version of Bayes’ theorem applies

π(Θi|Xi) ∝ f(Xi|Θi), (2.15)

where Θi = (θi, ψi, ϕi) is the orientation of the i-th molecule entering the beam, Xi ={
(x(l)

i , y
(l)
i )

}
, l = l(i) denotes the i-th diffraction pattern, i.e. a set of positions of l recorded

photons. An intuitive way to calculate the likelihood f(Xi|Θi) is to treat intensity distri-
butions corresponding to different orientations as probability distributions and express the
probability of detecting photons at a certain pixel by taking the value of the intensity respec-
tively

f(Xi|Θi) ∝
l(i)∏
l=1

IΘ(∆k(x(l)
i , y

(l)
i )), (2.16)

where by IΘ is denoted the intensity distribution from a molecule oriented according to Θi.
The likelihood function, in this case, is a measure how well a given diffraction pattern overlaps
with an intensity distribution for a certain orientation.

2.6 Reconstruction methods

The posterior probability distribution determined for each diffraction pattern is further used
to perform the reconstruction of the Fourier transformed electron density in the 3D k-space. In
the reconstruction process the wavevectors are rotated (corresponding to the orientation of the
molecule that produced certain diffraction pattern), so the result is the molecular transform
of the electron density of the molecule in the reference frame. The rotated fragments of the
Ewald spheres cover the 3D k-space, if the sampling of the Euler angles is fine enough. I
have studied two possibilities of using the information contained in the posterior probability
distribution for purposes of the reconstruction.

2.6.1 ’Maximum likelihood’ method

The simplest reconstruction procedure is conducted as follows. The first step is to calculate for
each diffraction pattern the posterior probability distribution using eq. (2.16) and (2.15), and
estimate the Euler angles by locating the maximum of the posterior probability distribution.
Having done that, for each detector pixel the scattering vector is computed and rotated
according to the estimated angles. It is equivalent to locating the corresponding Ewald sphere
in the 3D k-space. To reduce the noise in the reconstructed object, histogram averaging is
performed. This is done by updating the reconstructed intensity value, corresponding to the
rotated scattering vector, by the number of photons registered at the pixel, to which the
scattering vector points, and incrementing the counter of the intensity entries.

The disadvantage of this method is the fact that it only uses part of the information
contained in the posterior probability distribution, thus it is vulnerable to errors resulting
from the posterior distribution maxima dislocation. A high level of both shot and background
noise causes a shift of the position of the maximum with respect to the true orientation, hence
the information about correct orientation is lost in this reconstruction method.
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Figure 2.3: Flow chart of the ’maximum likelihood’ method

2.6.2 ’Bayes’ method

An improvement to the afore described reconstruction approach is achieved by using whole
information contained in the posterior distribution function. The first step, calculating the
posterior distribution for each diffraction pattern, is the same as in the ’maximum likelihood’
method. The resulting posterior probability distribution is then used as a weighting function

W (Θ) = π(Θ|Xi)]/πmax, (2.17)

which assigns the value 1 to the maximum of the posterior probability distribution. Then, for
each detector pixel the scattering vector is computed and rotated according to each possible
combination of Euler angles, so that all orientations, for which the posterior probability distri-
bution was computed, are sampled. The reconstructed intensity values corresponding to the
rotated scattering vector is updated by the number of photons multiplied by the orientation
weight, and the counter of intensity entries is incremented by the weighting function value.

The weighted histogram averaging based method is less vulnerable to the disturbances
in the posterior probability distribution caused by the shot and background noise, compared
to the simple histogram averaging (’maximum likelihood’) method. Even if not with the
maximum probability, the true orientation is still taken into account during the reconstruction.

2.7 Phase retrieval

The reconstructed object in the 3D k-space carries only information about the amplitude of
the Fourier transform of the electron density function (i.e. I(∆k) = |F (∆k)|2). Even though,
it is possible to retrive the phase set iteratively from given intensity distribution.
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Figure 2.4: Flow chart of the ’Bayes’ method

Several approaches basing on Fineup’s algorithm [10] have been proposed for solving the
phase problem in the x-ray scattering experiments. All of them [8, 20, 21, 30] are based on
applying constraints to the real and reciprocal space and switch between them by means of
the Fourier transform. One starts with a randomly guessed phase set, which is iteratively
updated, such that the resulting electron density is positive within a finite support and zero
otherwise. It is important to choose the finite support size that allows oversampling. The
oversampling condition is fulfilled by choosing the volume with nonnegative electron density,
such that its ratio to the total volume is greater than 2 [20].

2.8 De novo structure determination

The afore described methods require a model of the molecule as input data, whilst the ultimate
goal of the x-ray structure determination is to reconstruct the electron density map without
prior knowledge about the molecule structure. Here, I reformulate the structure determination
problem. If one wants to determine relative orientation of protein subunits, whose structure is
known, then the possible course of action is to generate an ensemble of potential conformations
and apply Bayes’ formulas, to find the most probable conformation with respect to given
diffraction images.

The likelihood of observing diffraction pattern Xi =
{
(x(l)

i , y
(l)
i )

}
, l = l(i), being a set of

positions of l recorded photons, given structure Sj =
{
(r(j)

1 , . . . , r(j)
N

}
, being a set of N atomic

positions, and orientation of the j-th structure corresponding to the i-th diffraction pattern
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Θ(j)
i = (θ(j)

i , ψ
(j)
i , ϕ

(j)
i ) is expressed as

f
(
Xi|Sj ,Θ

(j)
i

)
=

l(i)∏
l=1

I
(
R(θ(j)

i , ψ
(j)
i , ϕ

(j)
i )∆k(x(l)

i , y
(l)
i ), Sj

)
, (2.18)

where I(∆k, Sj) =
∣∣∣∫∫∫ ∑N

m=1 ame
−(r−r

(j)
m )2/(2σ2

m)e2πi∆k·rdV
∣∣∣2 is the intensity value for scat-

tering vector ∆k and structure Sj , similar as in eq. (2.7). Probabilities f
(
Xi|Sj ,Θ

(j)
i

)
are

independent, thus the probability of registering a set of diffraction patterns {Xi} is given by
a product of those

f
(
{Xi}|Sj , {Θ(j)

i }
)

=
∏

i

f
(
Xi|Sj ,Θ

(j)
i

)
. (2.19)

Assuming uniform distributions of orientations and structures, Bayesian theorem yields fol-
lowing formula for the posterior probability

π
(
Sj , {Θ(j)

i }|{Xi}
)
∝

∏
i

f
(
Xi|Sj ,Θ

(j)
i

)
. (2.20)

By integrating that expression with respect to Θ(j)
i one obtains the posterior probability

distribution of a structure

π
(
Sj |{Xi}

)
∝

∏
i

∫∫∫
f
(
Xi|Sj , θ

(j)
i , ψ

(j)
i , ϕ

(j)
i

)
sin θ(j)

i dθ(j)
i dψ(j)

i dϕ(j)
i . (2.21)

Evaluation of the probability distribution for different structures is thus a way to choose the
most probable (with respect to the provided diffraction patterns) structure from a given set
of conformers.

By applying aforementioned approach in a Monte Carlo simulation, it is possible to
determine the tertiary structure of polypeptides basing on the primary structure and the
diffraction patterns obtained from the experiment. Starting structure, i.e. one with a random
set of dihedral angles, is modified each step according to new set of dihedral angles. For each
step the posterior probability of the structure πj = π

(
Sj |{Xi}

)
is computed from formula

2.21 and used in the Metropolis criterion [19]. Appointing energy to the probability of the j-th
structure Ej = −kBT lnπj by introducing virtual temperature T, and plugging the energy

term in the Metropolis criterion, the proposed structure is accepted if ξ < e
− ∆E

kBT = πj

πj−1

holds, where ξ is a random number from I(0,1). The outcome of this procedure is a canonical
ensemble of structures, from which the average structure is further obtained.
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Chapter 3

Materials and methods

Because no single biomolecule XFEL scattering data has been available up to now, the
proposed methods had to be tested on synthetic data. Thus, in this section I first describe
how the future XFEL scattering experiments were simulated. Consequently, I applied the
three methods introduced in the previous section to the simulated data, and determined the
accuracy of the obtained reconstruction as a function of number of incident photons, level of
background noise, and number of provided diffraction patterns.

3.1 Molecules used in the numerical experiment

In order to additionally test the impact of symmetry of a molecule on results of the proposed
methods, I decided to use benzene molecule. However, for the utmost part of my project,
I used a glutathione molecule, which reveals no symmetry at all. This tripeptide, being a
ligand, is a step towards proteins that will be used in the single molecule XFEL scattering
experiments. Because of its small scattering cross section, the glutathione is a suitable can-
didate for investigating the influence of the background noise on the reconstruction methods
performance. Also the fact that it consists of three amino acids makes it a good choice for
the test molecule as a Monte Carlo based structure prediction approach.

3.2 Simulation of the x-ray scattering

The goal of the x-ray scattering experiments is localization of atoms of the irradiated molecule,
thus at that level of details it is sufficient to model the electron density as a sum of Gaussian
functions centered at the atomic positions

ρ(r) =
∑

i

aie
− (r−ri)

2

σ2
i (3.1)

where σi is the atom radius and coefficients ai are chosen so that the integration of the
Gaussian function yields the number of electrons. With the electron density function given
by a sum of Gaussians, the Fourier transform is computed analytically

F (∆k) = F(ρ(r)) =
∑

i

aiσ
3
i e

j(∆k·ri) · e−∆k2σ2
i /2 (3.2)
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Figure 3.1: Rod shaped glutathione molecule. Following colour encoding is used: blue -
nitrogen, green - carbon, red - oxygen, white - hydrogen, yellow - sulfur

To create an intensity distribution ensemble needed for further use, the orientational
space is sampled with a 10 degrees step for each of the Euler angles. For any given orien-
tation of the molecule, the intensity value for each pixel is calculated by determining the
corresponding scattering vector from the geometric relations (see fig 3.2).

Figure 3.2: Geometry of the scattering experiment. ∆k is calculated from geometric relations
given the pixel coordinates on the detector plane and the distance between the sample and
the detector.

The intensity value is computed from equation (2.7) using the time independent electron
density function and treating the integrated intensity of the incident beam as a parameter. I
have chosen 1 Å wavelength for the incident radiation. In order to take the orientation of the
molecule into account, one has rotate the Ewald sphere corresponding to a given intensity
distribution, i.e. to calculate ∆k′ = R∆k, where R is the rotation matrix corresponding to
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the orientation of the molecule given by the Euler angles.
The actual interaction between the x-ray radiation and the matter is of stochastic nature.

Therefore, the number of photons registered by the detector in a single experiment will deviate
from the intensity value calculated from (2.7). This is called either photon or shot noise and
follows the Poisson distribution, hence, to mimic the experiment, the photon count n for a
given pixel is determined from

p(n,∆k) =
[I(∆k)]n

n!
e−I(∆k). (3.3)

Such patterns recorded on the detector plane I call the diffraction patterns in distinction
from the intensity distributions. It is convenient to think of the diffraction pattern as a set
of coordinates of recorded photons on the detector plane.

To mimic the background noise, which is also present in the experiments, an arbitrary
number of photons uniformly distributed on the detector is added to the generated diffraction
pattern.

3.3 Random numbers

It is essential to use a reliable random number generator in order to generate the diffraction
patterns for randomly oriented molecules, so as to mimic the real XFEL experiments. The
reconstruction procedure requires a high amount of diffraction patterns to average the noise
out, therefore, a pseudo random numbers sequence appropriate for such a simulation should
have possibly longest period and exhibit low correlations. Thus, I used the Gnu Scientific
Library [13] implementation of the ’Mersenne twister’ algorithm [18] which has a period of
219937 − 1 and is equally distributed in 632 dimensions.

3.4 Random orientations

Single molecules entering the XFEL beam are expected to be oriented randomly, follow-
ing a uniform distribution. For Euler angles the invariant probability density is given by
g(θ, ψ, ϕ) = (8π)−1sin(θ) [22], where the Euler angles are in xzx notation [4]. Therefore, to
generate Euler angles resulting in uniformly distributed orientations, ψ and ϕ are drawn from
uniform distribution I[0, 2π], and θ = arccos(z), where z is a random number from uniform
distribution I[−1, 1].

3.5 Reconstruction methods

In posterior probability calculations evaluating the product of intensities for higher numbers
of scattered photons causes underflows. To avoid that it is necessary to compute the natural
logarithm of posterior probability

ln[π(Θi|Xi)] = const ·
l(i)∑
l=1

ln[IΘ(∆k(x(l)
i , y

(l)
i ))]. (3.4)

Thus the weighting function in the ’Bayes’ reconstruction method becomes
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ln[W (Θ)] = ln[π(Θ|Xi)]− ln[πmax], (3.5)

The posterior probability distribution is initially sampled with a 10◦ step. To reduce the
computational cost of mapping the points from the diffraction pattern to the 3D reciprocal
space, instead of doing that for each possible orientation of the molecule, one can introduce a
threshold value for the posterior probability, above which the mapping is performed. In that
way only significant regions around the maxima in posterior probability region are taken into
account. In order to achieve more accurate orientation estimate those regions are subsampled
with a finer step. When the global maximum is located, the area around the maximum is
subsampled with a step of 2◦. The vicinity of the ’coarse sampling’ maximum is defined
by the probability ratio threshold πfine(Θ|Xi)/πcoarse

max ≥ 10−4. In the ’maximum likelihood’
approach the position of the ’fine sampling’ maximum is used as the orientation estimate,
whereas in the ’Bayes’ method all probability values above the threshold are used as the
weighting function ln[W fine(Θ)] = ln[πfine(Θ|Xi)]− ln[πfine

max ].

3.6 Phase retrieval

In this project, to retrieve phases I used a slightly modified version of the algorithm proposed
by Miao et al. [20]. Before applying the algorithm to the reconstructed 3D molecular trans-
form, the intensity values at k and -k are averaged, such that Friedel’s law I(k) = I(−k),
is satisfied, further a random phase set is generated. Afterwards, the fast Fourier transform
from FFTW library [17] is applied to the data set in order to switch between the real and
the reciprocal space. The finite support area in the real space is selected as a cube, with
an edge twice the length of the radius of gyration (for glutathione molecule Rg = 4.5Å ),
centered at the origin. The negative values of electron density inside the support have their
sign changed [26], instead of setting them close to zero [20], because ’charge flipping’ was
claimed to improve the convergence of the algorithm [27].

3.7 Accuracy measure

One possibility to measure the accuracy of the orientation determination is to calculate the
distance between two rotations. Matrix representation of a rotation by Euler angles belongs
to the Lie group of orthogonal transformations, denoted by SO(3). The distance function in
SO(3) is expressed by Riemannian metrics

dR(R1, R2) =
1√
2
‖ Log(RT

1R2 ‖F , (3.6)

where ‖ · ‖F denotes Frobenius norm. The distance between two rotations can be
interpreted as the arc-length of the shortest geodesic curve connecting rotations R1 and
R2 [23]. The principal logarithm for a matrix R in SO(3) is computed from Rodrigues’
formula

Log(R) =
{

0 if θ = 0
θ

2 sin θ (R−RT ) if θ 6= 0
(3.7)
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where θ = arccos[0.5(trR−1)] and |θ| < π is the rotation angle. In case θ = π the outcome
of the Rodrigues’ formula is undefined. The Frobenius norm of the logarithm, however, is
equal to π.

Rotating an Ewald sphere corresponding to a diffraction pattern according to different
orientations in the ’Bayes’ method gives rise to a question about its effect on the resolution of
the electron density map. As the estimate of the resolution I take the mean distance between
the orientation corresponding to the posterior maximum and surrounding orientations, mul-
tiplied by the radius of gyration of the molecule. The mean distance between orientations is
computed by bootstrap sampling [7] from the posterior distribution for diffraction patterns
corresponding to the same orientation of the molecule.

3.8 De novo structure determination

To generate random structures of the reference glutathione tripeptide I change the dihedral
angles in the glycine and cysteine residues. The glutamic acid, which is bonded to the cysteine
in an unusual way, is left intact.

Figure 3.3: Four dihedral angles that are changed to generate different conformations of the
tripeptide

A new set of dihedral angles is obtained from a Gaussian distribution with the mean
equal to the values of last accepted angles and an arbitrarily chosen standard deviation. To
prevent the method from being trapped in a local minimum of the energy landscape, simulated
annealing [5] is applied. By introducing a virtual temperature ratio Tr = Ta/Tb, Metropolis
criterion is given by

ξ < e
(ln πj−ln πj−1)kBTa

kBTb =
( πj

πj−1

)Tr

. (3.8)

Hence starting with a low value of Tr initially improves the sampling. Each MC step the
temperature ratio grows exponentially until it asymptotically reaches 1, by that time the
system should have reached the global minimum of the energy landscape. The annealing
scheme used in this project is given by Tr(j) = 1− eln(1−T0)−jτ , where j denotes the MC step,
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T0 = 0.001 is the starting ratio, τ = 0.002 is the time constant. Values of those parameters
were adjusted heuristically.
To additionally improve the sampling, the value of the standard deviation (starting value of
π/10) of the Gaussian distribution of the dihedral angles is halved when the acceptance ratio
drops below a chosen threshold (0.01).



Chapter 4

Results

In this section results of the numerical study of single molecule x-ray scattering are pre-
sented. Influence of molecule symmetry and of noise on the posterior probability distribution
is shown. Here I will also provide a comparison of performance of proposed reconstruction
methods, estimate the reconstructed electron density resolution dependence on incident beam
intensity, and demonstrate the outcome of the MC approach to structure prediction.

4.1 Intensity distributions

Intensity distributions play a crucial role in the proposed molecule orientation determination
method as they appear in the Bayes’ formula. Therefore, it is essential that different oriented
molecules should produce distinguishable intensity distributions. Hence, in the first stage
of the project I investigated the intensity distributions obtained for two different molecules,
benzene and glutathione.

As can be seen in figure 4.1, intensity distributions for planar and symmetric molecules,
like benzene, are hardly distinct for different orientations. For each of the presented orienta-
tions, the intensity distributions are two dimensional Gaussians differing in the tilt of their
axes with respect to the frame of reference of the screen, and in their widths. Changes in the
θ angle, being the angle between the aromatic ring plane and the incident beam, are trace-
able within the intensity distributions, as they clearly correspond to the tilt of the Gaussians.
However, the changes in remaining two angles, which are reflected in different widths of the
Gaussians, do not seem to be distinctive, as for different ψ and ϕ combinations one obtains
similar distributions (e.g. the ones for θ = 60◦, ψ = ϕ = 0◦, and θ = 60◦, ψ = 30◦, ϕ = 90◦).
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Figure 4.1: Intensity distributions recorded on the detector plane for different orientation
of benzene molecule. In the upper left corner is the distribution obtained for the reference
orientation, i.e the plane of the benzene ring is parallel to the incident X-ray beam.

Since the glutathione molecule reveals no symmetry, neither is it planar nor linear, one
might expect the intensity distributions to be more distinguishable than in the case of benzene.
Indeed, as shown in figure 4.2, nonzero values of ψ and ϕ angles are associated with speckles
accompanying the global, Gaussian shaped, intensity maximum, and thus contributing to the
uniqueness of the intensity distribution. On the other hand, the changes in the θ angle do not
always lead to the same tilt of the Gaussian for different ψ and ϕ angles. This, however, should
not influence the distinction between the intensity distributions for different orientations, as
the afore mentioned speckles seem to give rise to the differences in the first place.

The distinction between the intensity distributions for different orientations has a direct
influence on the posterior probability landscape. Judging by shown intensity distributions,
one might expect that the probability distributions have a more pronounced maximum for
glutathione compared to benzene. In the latter case one would additionally expect to observe
several maxima corresponding to equivalent structures due to the rotational symmetry of the
aromatic ring.
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Figure 4.2: Intensity distributions recorded on the detector plane for different orientation of
glutathione molecule. In the upper left corner is the distribution obtained for the reference
orientation, i.e the molecule is parallel to the incident X-ray beam.

4.2 Posterior probability distributions

The accuracy in estimating the orientation of a molecule, based on the obtained diffraction
pattern, depends on the sharpness of the posterior probability distribution maximum. This,
according to the formula 2.16, is influenced both by the uniqueness of the intensity distri-
butions for different orientations and the number of scattered photons. The shape of the
posterior probability distribution is also affected by the presence of Poisson shot noise and
the background noise.

The influence of the shape of the molecule on the intensity distributions, and thereby on
the posterior probability distribution, is seen in the example of the benzene molecule.
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Figure 4.3: Slice at θ = 30◦ through the posterior probability distribution for benzene molecule
oriented as follows: θ = 30◦, ψ = 30◦, ϕ = 0◦. Calculated for 500,000 scattered photons
registered on a 121 x 121 pixel detector.

The symmetry of the benzene ring clearly affects the shape of the posterior probability
distribution. That influence is manifested by the four maxima spaced at 60◦ along the ϕ axis.
Furthermore, the landscape along that axis is relatively flat, making accurate estimation of
the orientation questionable. Hence, to avoid loss of generality in testing the performance of
proposed method the rest of research was carried out using the unsymmetrical tripeptide.

Using the glutathione molecule I intended to investigate the influence of noise on the
posterior probability distribution. The lack of symmetry clearly influences the shape of the
posterior probability distribution. Unlike for the benzene molecule, in case of the tripeptide
there is a well pronounced maximum in obtained landscape, the single peak is sharp within
the selected ψϕ-plane, which is easily seen in the linear scale plot. Despite only about 280
scattered photons, ψ and ϕ coordinates of the maximum in presented slice (θ was set to the
true value) agree with the true orientation. However, the height of the maximum being less
than 1 (posterior probability was normalized using Chebyshev norm) indicates that the global
maximum is located beyond the selected plane. This deviation of global maximum location
with respect to the true orientation is caused by Poisson shot noise in the recorded diffraction
pattern. The presence of the shot noise also effects the widening of the peak around the
posterior probability maximum.
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Figure 4.4: Slice at θ = 73◦ through the posterior probability distribution for glutathione
molecule oriented as follows: θ = 73◦, ψ = 52◦, ϕ = 34◦. Calculated for 280 scattered photons
registered on a 121 x 121 pixel detector.

Adding 10% background noise, with respect to the number of elastically scattered pho-
tons, to the registered diffraction pattern changes the position of the global maximum in the
posterior probability distribution. The height of the local maximum on the selected slice is
one order of magnitude lower than in the case with Poisson noise only. This indicates that
not only is the global maximum shifted with respect to the true orientation, but also the true
orientation is either not taken into account during the reconstruction process at all, or a very
low weight is assigned to it. Further, due to the background noise, the local maximum in the
selected plane is slightly displaced relative to the true orientation as well.

The nonzero width of the peak in the 3D posterior probability landscape, caused by the
presence of noise, means that in the weighted average reconstruction method each diffraction
pattern is mapped to several Ewald spheres corresponding to different orientations. Thereby a
question regarding the influence of the scattered photons count on the peak width and on the
resolution of reconstructed electron density arises. To answer that question I have performed
bootstrap sampling from posterior distributions for a certain orientation, and computed the
mean peak width for 50 diffraction patterns corresponding to the same orientation.
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Figure 4.5: Estimate of the mean peak width and resolution for a single diffraction pattern
at different levels of background noise. Points are artificially shifted for a clearer view.

As expected, increasing number of incident photons causes narrowing of the peak in the
posterior probability landscape. At mean scattered photon count starting from about 500 per
image, a mean peak width, comparable to the error estimation of orientation determination
reported by Fung et al. [11], is achieved. The background noise does not seem to influence
the shape of the dependence of mean peak width on the photon count.

4.3 Performance of the reconstruction methods

As seen in the previously presented posterior probability landscapes, the presence of the noise
causes dislocation of the peak with respect to the true orientation, additionally the peak has
a nonzero width. Thus one might expect the ’maximum likelihood’ method perform worse
than the ’Bayes’ method.

Conducted simulations prove that assumption right (see figure 4.7). While both pro-
posed methods reconstruct the molecular transform well in the low wave vectors regime, the
’maximum likelihood’ method fails in the high k-vectors regime. Since only the high k-values
regions carry high resolution information about the electron density, electron density func-
tion reconstructed with the ’Bayes’ method is better resolved. In the high k-values regions of
the reconstruction profile of the ’maximum likelihood’ method intervals with zero value are
present, whereas corresponding intervals of the reference profile have nonzero values, which
leads to structural information loss. In the ’Bayes’ method no such regions are present, be-
cause due to assigning a weight to different orientations for a single diffraction image a better
coverage of the reciprocal space with Ewald spheres is achieved.
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Figure 4.6: Profiles of reconstructed Fourier transformed electron density along kx axis. Cal-
culated for 20,000 diffraction images containing on average about 280 scattered photons per
picture. The upper two profiles were reconstructed from diffraction images containing Poisson
shot noise only.

Inclusion of the background noise is manifested in the high k-values regions by a vertical
shift of the baseline of reconstruction profile with respect to the reference. Despite that shift,
at background noise level of 10% (relative to the mean scattered photon count), the shape
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of the reference profile is still recognizable in the reconstructed profile. With 50 % level,
however, the background noise causes too much distortion for the high resolution structural
information to be retrieved from the reconstructed molecular transform.

The profiles of reconstructed molecular transform are helpful for understanding the re-
sults of electron density retrieval. The well reconstructed low k-values regions (both methods
with Poisson noise only) contribute to the good agreement of the overall shape of the elec-
tron density. The loss of high resolution structural information in the ’maximum likelihood’
method becomes evident in worse resolved details in the retrieved electron density, as com-
pared to the ’Bayes’ method.

Figure 4.7: Comparison of retrieved electron density. Left side: Poisson noise only; right side:
10% background noise.

With added background noise reconstruction of the electron density becomes problematic.
Subtracting a heuristically chosen number from the reconstructed molecular transform is
required prior to application of phase retrieval algorithm, so as to reduce the vertical shift
shown in the profiles in the k-space. Even at the level of 10%, the background noise is not
averaged out in the reconstructed molecular transform, so that it also distorts the retrieved
electron density. It is still possible to recognize the overall shape of the molecule, but part of
the detailed information is lost. The ’maximum likelihood’ method is more vulnerable to loss
of the high resolution structural information.
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4.4 De novo structure prediction

Several factors have an impact on the outcome of the MC based structure prediction method.
Such parameters as intensity of the incident beam and number of provided diffraction images
influence the posterior probability distribution of a structure given a set of diffraction images.
With increasing number of included images the most probable structure gets closer to the
reference. I have performed several simulations, and the presented results were obtained for
400 diffraction images with mean photon count of abut 280 photons per picture, being the
optimal values yielding satisfactory outcome.

With fixed dihedral angles within the glutamic acid residue of the glutathione molecule,
the posterior probability, or the energy, landscape is a 4D one. It is rugged and steep. Figure
4.8 shows a 2D slice of energy landscape close to the global minimum. With two dihedrals
fixed to optimal values, an energy barrier is present in the shown landscape. It might be
possible for a MC simulation to get trapped in the low energy region for values of ϕ2, ψ2

around (78◦,−20◦). The steepness of the landscape increases with the number of provided
diffraction images. Depending on the starting structure the simulation might get trapped in
a local energy minimum. I have observed such a behaviour for a starting structure ’far’ from
the reference, i.e. with a root mean square deviation (RMSD) of 2.15 Å.

Figure 4.8: Energy landscape as a function of the dihedral angles in the cysteine residue (see
Figure 3.3). The global minimum is not shown.

However, starting from structures ’close’ to the reference (with RMSD values of about
1.45 Å) results in a prompt convergence. Two MC runs with different starting structures have
yielded almost identical end structures after about 1,600 MC steps (40 accepted MC steps).
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The resulting structure matched closely to the reference one, with a RMSD value of 0.8 Å.

Figure 4.9: Two MC runs with a total length of 1,600 MC steps for random starting structures.
Both of them converge quickly to almost the same end structure.
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Figure 4.10: Comparison of RMSD aligned structures: blue - reference, red - final structure
from MC simulation (RMSD value of 0.8 Å).
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Chapter 5

Conclusions

In this project a Bayesian based approach to structure reconstruction from single
molecule scattering data has been studied. The ’maximum likelihood’ and ’Bayes’ methods,
both requiring a model input structure, are fundamental to the MC-based method, which
finds the most probable structure. A reconstruction method is required to handle sparse and
noisy diffraction patterns. This study shows that it is possible to recover the structure of a
biomolecule from diffraction images with very low photon count and affected by Poisson and
background noise.

The ’maximum likelihood’ and ’Bayes’ methods average the provided set of the diffrac-
tion pattern in the 3D reciprocal space by determining the orientation of the molecule for
each of the diffraction patterns. The ’maximum likelihood’ method uses the position of the
maximum of the posterior distribution function as the orientation estimate, thus it is vulner-
able to information loss. The ’Bayes’ method, in contrast, treats the posterior probability
distribution as a weighting function for the orientations, as a result the high resolution regions
in the reciprocal space are better sampled, compared to the ’maximum likelihood’ method.

I have observed that the shape of the posterior probability landscape is influenced by
several factors. Rotational symmetry of molecules is manifested in the landscape by the
presence of multiple maxima corresponding to the equivalent orientations. Additionally, the
landscape is shallower compared to the one obtained for non symmetric molecules. The shape
of the posterior probability landscape is also affected by the number of registered photons
and the level of noise. While with increasing numbers of photons the peak of the distribution
becomes narrower, for nerly infinite numbers of incident photons the posterior probability
distribution resembles a delta function centered at the true orientation, the presence of the
background noise causes dislocation and broadening of the peak. For numbers of scattered
photons used in this numerical study, which were still larger than the ones one could expect
for such small molecules in the real XFEL experiments, the Poisson shot noise alone caused
broadening and dislocation of the global maximum, and including background noise enhanced
that effect. Unlike the ’maximum likelihood’ method, the ’Bayes’ method reconstructs the
molecular transform without any structural information loss, though it is sensitive to the
background noise. However, using a larger number of diffraction patterns might reduce the
background noise due to better averaging. On the other hand, structure reconstruction of
molecules with larger scattering cross sections will not be affected by the background noise,
thus applying the ’Bayes’ method should yield satisfactory results.

Both ’Bayes’ and ’maximum likelihood’ methods require a model structure to generate
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the ensemble of intensity distributions necessary to compute the posterior probability distri-
bution. In this project the same structure was used for generating the diffraction patterns and
as the model structure for the reconstruction methods. An interesting question, which has
not been answered here, is how much the model structure can vary from the true structure so
that the output of the reconstruction method is still acceptable. An answer to that question
will explain weather the ’Bayes’ method can be used as a structure refinement tool.

The MC approach to structure determination was derived from the two other methods.
Its goal is not determining explicitly the orientation for each diffraction pattern, but instead
searching for the most probable structure given a set of diffraction images. Thus it does
not require a model structure. However, it has to be provided with fragments with known
internal structure, so as to determine their relative orientation. For simple polypeptides these
fragments can be single amino acids, or subunits in case of larger proteins.

The energy landscape, whose dimensionality depends on the number of angles needed
for description of the entire structure, is steep and rugged, thus sampling problems may
arise. Whilst starting from conformations close to the reference structure enables recovering
the structure, in other cases simulation might become trapped in a local energy minimum.
Therefore, one might consider applying replica exchange [14, 31] to improve the convergence
of this method. An important parameter influencing the energy landscape is the number of
included diffraction patterns. It has to be chosen carefully, too small causes a large differ-
ence between the most probable and the reference structure, whereas too large unnecessarily
prolongs the computation time of a single MC step.

The outcome of the ’Bayes’ reconstruction method is the molecular transform, thus the
atomic positions have to be computed from the retrieved electron density. Using the phase
retrieval algorithm gives rise to an additional bias. Unlike the ’Bayes’ method, the MC based
structure retrieval yields explicit atomic structure, hence it doesn’t suffer from phase retrieval
errors.

The computational effort of the ’Bayes’ method scales with the number of diffraction
patterns, their size and the sampling step size of the posterior probability distribution. The
number of atoms, however, does not influence much the computational time, because the
Fourier transform of the electron density of the model molecule is computed only once at the
beginning. Since in each MC step the electron density of the proposed structure is Fourier-
transformed, the computational time of the MC based method scales with the number of
atoms.

Use of proposed approaches depends on the formulation of the structure determination
problem. The ’Bayes’ approach could be used for structure refinement, whereas the MC
structure determination method might be used for determining the relative orientation of
fragments of biomolecules. B conducting numerical experiments, I have shown that those
methods are capable of working with sparse and noisy data. However, the performance of the
methods needs to be improved.
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