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1
Chapter 1

Introduction

Proteins are biological linear heteropolymeric macromolecules composed from unbranched
chains of amino acids. From a chemical point of view, proteins are a rather homogeneous
class of molecules. However, despite the relatively low number of 20 different monomeric
units, they are characterized by a seemingly endless variability of structure and function.
In fact, their versatility stands strikingly out in comparison with other types of biologically
important molecules such as carbohydrates, lipids, or nucleic acids making them nature’s
choice for performing most difficult duties in every single living cell on Earth. For
example, they fulfill tasks as different as cell statics (building blocks in coats of viruses,
in epidermal keratin, and collagen in bones and cartilage), transport and storage of other
(macro-)molecules and electrons, signalling between cells and organs (hormones), support
of the immune system (antibodies), conversion of chemical into mechanical energy (in
muscles), control of cell membrane thoroughfares for other molecules and ions, regulation
of gene expression, regulation of gene transcription, and chaperoning other proteins whilst
they obtain their folded structure. To describe this versatility, Lesk [1] noted that “In
the drama of life on a molecular scale, proteins are where the action is.”

Accordingly, for a whole lot of scientific disciplines, proteins are fascinating objects to
study, both from academic and practical considerations. For example, material science
is interested in the extraordinary combination of stability and flexibility of spider silk
or collagen proteins, engineering strives to imitate properties of proteins as molecular
nanomotors, and medicine is interested in proteins due to the fact that protein malfunction
causes a considerable number of diseases, e.g. mutations are the reason for some types
of cancer, protein aggregation is responsible for neurodegenerative disorders including
Huntington, Alzheimer, Creutzfeld-Jacob, or motor neuron disease. Understanding
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1 Introduction
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Figure 1.1: Exponential growth of the three-dimensional structures available in the Protein
Data Base (PDB). Purple: Total number of entries; blue: number of yearly
added entries (source: pdb.org)

protein function is also essential for rational drug design aiming at finding means of
interrupting essential protein function of pathogens such as HIV, SARS, Hepatitis, etc.,
or at the bacterial ribosome.

Apart from these practical considerations, it is interesting to learn about how such
versatile molecular machines as proteins work, and why. This interest is reflected by the
exponential growth of solved spatial structures of proteins deposited in the Protein Data
Base (PDB). Starting with 13 structures in 1976, the number of entries will reach 50000
this year (see Fig. 1.1) doubling the number of records approximately every three years.

The structural information deposited there is a prerequisite for the understanding of
protein function, albeit not always a sufficient one. In many cases protein function is
inheritly linked to protein dynamics, apart from obvious cases where proteins are mere
scaffolds for cells. For many other cases, protein function is impeded when protein motion
is restricted. For example, observations of the temperature dependence of crystallographic
B-factors indicate predominantly restricted motion below temperatures where enzyme
activity is abolished, the so-called glass transition temperature [2].

Compared to structural information, our knowledge of protein dynamics is still rather
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fragmentary. To a large extent this is due to the fact that the most common method
for structure determination – X-ray diffraction [3, 4] – provides no direct information
on dynamics, as B-factors and missing electron density do not allow to distinguish
between static and dynamic disorder. The other common method for protein structure
determination, nuclear magnetic resonance (NMR) [5, 6], likewise mostly assumes the
molecules to be rigid bodies. Time-resolved X-ray diffraction [7, 8] allows picosecond
dynamic resolution, but is, due to the tremendous experimental complexity, as yet rarely
used. Time-resolved NMR techniques have also made remarkable progress and are based
on measurement of relaxation parameters [9–11], chemical shift averaging and backbone
proton exchange rates, which can be made independently of structure determination
and give direct information on protein motion. A variety of spectroscopic methods
that can also monitor protein dynamics, albeit not in atomic detail, include neutron
scattering [12, 13], fluorescence transfer and depolarization, depolarized light scattering,
electron paramagnetic resonance (EPR), resonance Raman and Mössbauer spectroscopy
and time-resolved Fourier transform infrared spectroscopy (trFTIR) [14–16]. At the
single-molecule level, the atomic force microscopy-based “mechanical triangulation” has
been recently shown to measure sub-nanometer interatomic distances [17].

With the exception of time-resolved X-ray diffraction, those experiments are often
difficult to interpret at the atomic level. Here, atomistic computer simulations contribute
to the detailed understanding of molecular mechanisms. In this thesis, classical molecular
dynamics (MD, for details see Chapter 2) has been used, an atomistic simulation method,
which treats each atom as a point mass and describes the interaction between atoms
by simple force terms. Trajectories are obtained by integrating Newton’s equations of
motion. The large number of pair-wise interactions to be evaluated and the short time
steps required by the fastest motions (such as bond and angle vibrations) lead to very
high computational effort. This currently limits MD to system sizes of about a million
atoms and to timescales of several hundred nanoseconds.

Most relevant biological processes, such as gating of ion channels, allosteric signalling,
ligand binding, molecular recognition, etc., in contrast, occur at longer timescales and are
thus, in principle, out of reach of current MD simulations. This is true despite numerous
efforts to speed up calculations, i.e. multistep methods [18–23], fast multipole methods
[24–27], and Ewald summation techniques [28]. Also, the use of constraints is popular to
allow for larger step sizes [29–31]. Processes beyond the microsecond limit are still only
accessible by special enhanced sampling techniques, which, unfortunately, result in loss of
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1 Introduction

dynamical information and often of thermodynamic accuracy as well [32]. This results in,
among others, difficulties concerning compare simulation results with experimental data.
One simulation technique, force-probe molecular dynamics (FPMD) [33] stands out in
this respect, since it allows to enforce configurational rearrangement of proteins and at
the same time closely mimic the corresponding experimental setups, namely atomic force
microscopy (AFM) [34–36]. This technique was used in Chapter 3 and will be discussed
in some more detail in the methods section Chapter 2. If the reaction coordinate is not a
priori clear (like it is in, e.g., muscle proteins), however, FPMD is difficult to apply.

This is the case in allosterically regulated proteins. Allosteric regulation is widely
used in biological systems as an effective mechanism to control protein activity [37–40]
by transmitting information across long distances within the protein. Allostery is so
called because it involves the binding of a ligand at one site of the protein causing
a change of affinity or catalytic efficiency at a far distant site. While allostery has
been subject to extensive research efforts for more than 40 years, the mechanisms
underlying the communication between distant sites and energetically couple them
remain largely elusive [39, 41]. The classical view tends to explain allostery in terms
of discrete configurational rearrangements that eventually result in a different mean
structure [42, 43]. In a thermodynamic framework, this view emphasizes the enthalpic
contributions (i.e. change of mean structure), whereas it neglects changes in dynamic
fluctuations around this average structure (i.e. entropic contributions). In contrast,
allosteric processes could, in principle, proceed through changes in protein dynamics
without any change of mean structure whatsoever [44]. Recent experiments for the
catabolite activator protein (CAPN) have suggested such an exclusively entropic effect
[41] but could not be verified by subsequent studies [45]. Most allosteric proteins probably
follow a mixture of these two effects, but a clear physical picture is lacking so far.

To a large extent this is due to the fact that most studies have focused on the comparison
between liganded and unliganded end states. However, no single structural view will
reveal an allosteric mechanism, since without information on intermediate states no
examination of the allosteric pathways can be made. Accordingly, the intermediate states
are what must be in the main focus of examination. These, however, cannot be isolated in
positively cooperative proteins, since their singly liganded states are too poorly populated.
In contrast, negatively cooperative systems allow, in principle, for the characterization of
intermediate states [46, 47], but data on those is as yet even rarer than for the positively
cooperative systems. Computer simulations are in principle apt to significantly contribute
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to the field since, here, intermediate states can be selectively focused on.
Two main points, however, have to be considered major obstacles for successful

application of computer simulations in this field. First, allosteric proteins are typically
oligomers with high molecular weights, meaning that the number of particles to be
simulated is large and the computational expense is similarly large. Second, the timescale
at which allosteric regulation works is typically on the order of milliseconds to seconds
and, thus, far out of reach of standard MD.

Aims of this thesis

The principal interest of this work is to explore the driving forces behind protein regulation
by means of molecular dynamics simulations. In Chapter 3, the force-induced activation
of titin kinase (TK) is examined by means of force-probe MD. The simulation results
are linked to experimental atomic force microscopy results and provide a distinct picture
of how force exerted on TK by contraction of the muscle it is embedded in results in
enzymatic activation. As a prerequisite for the accurate description of the entropic
contributions of allosteric regulation processes, in Chapters 4–6, a new method for the
estimation of configurational entropy is developed. Eventually, in Chapter 7, the allosteric
regulation of Leishmania mexicana pyruvate kinase is examined.

Force-induced activation of titin kinase

The giant muscle protein titin is one of the three main parts of the basic contractile
machinery of muscles, the sarcomere. It is so called because of its size of approximately
3 MDa, the largest protein known to date. It spans half of the sarcomere from the Z-disk
to the M-band connecting the other two parts of the sarcomere, actin and myosin, and
guaranteeing the resting elasticity of the muscle [48, 49] by realigning the muscle filaments
and restoring the sarcomere length after muscle contraction. On the M-band side of titin,
a serine/threonine protein kinase domain (TK) is located, the only catalytic domain of
titin. This catalytic domain is unusual in the sense that, in contrast to most other kinases,
titin kinase is autoinhibited by its C-terminal regulatory tail which blocks the active
site. TK activation, thus, must be preceded by release of autoinhibition. From previous
molecular dynamics simulations, it is known that force exerted on TK might induce
release of autoinhibition [50]. Despite further evidence by subsequent experiments [51, 52],
definite proof of mechanical activation rather than mere partial unfolding upon force
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1 Introduction

exertion was hitherto lacking. Chapter 3 presents results of a combined experimental and
theoretical effort to elucidate the mechanisms underlying TK regulation. The focus here
is on the molecular dynamics simulations, which helped to interprete the accompanying
single-molecule force spectroscopy and enzymatic experiments.

The independent subspace approach for the estimation of the absolute

configurational entropy of macromolecules

Both entropies S and Gibbs free energies G (or A for Helmholtz free energies, depending on
the ensemble) are fundamental quantities in statistical mechanics with eminent importance
in biological processes. While G is a criterion of directionality in all chemical processes,
in the field of structural biology it is essential for studying of, e.g., protein-protein
and protein-ligand interactions, enzymatic reactions, or transport through membranes.
S is a measure of order and the main driving force behind many of the biologically
relevant phenomena including protein folding and other processes driven by hydrophobic
forces. Both quantities are difficult to obtain from computer simulations and, therefore,
considerable attention has been devoted in the past 50 years to developing new methods
addressing this issue [53? –55]. In many cases, however, either efficiency or accuracy
or both are unsatisfactory. In particular, the computation of configurational entropies
which is needed for, e.g., the description of protein regulation, mostly relies on the
quasi-harmonic approximation [56, 57], which does not include proper description of non-
linear and higher-order correlations. In Chapters 4–6, a new method is developed which
accurately includes those crucial correlations into the description of the configurational
entropies of macromolecules.

Allosteric regulation of L. mexicana pyruvate kinase

The allosterically regulated pyruvate kinase (PYK) it a large 2000-residue homotetrameric
enzyme which catalyzes the final step of the glycolysis transforming phosphoenol pyruvate
(PEP) to pyruvate. The activity of this enzyme shows positive cooperativity both
homotropically (i.e., upon binding of the substrate PEP itself) and heterotropically
upon binding the allosteric activator fructose-bisphosphate. Despite extensive enzymatic,
crystallographic and mutagenesis studies, the mechanism of allosteric PYK regulation is
largely elusive. It is not known, how binding of an allosteric activator triggers changes in
neighbouring subunits’ catalytic sites more than 10 nm away. l.mexicana PYK is the only

6



isoform which has been crystallised in both inactive T and active R-state. As elaborated
in Chapter 7, we examined the dynamics underlying the allosteric PYK regulation at
the atomic level using extensive MD simulations in explicit solvent. The large size
of this enzyme (the simulation system with explicit solvent comprised about 500, 000
atoms) and the fact that allosteric signals are typically very subtle rendered this project
computationally quite challenging.
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2
Chapter 2

Theory, Methods, and Concepts

This chapter sketches the methodological framework of this thesis. Subdivided into
seven parts it comprises summaries of classical molecular dynamics simulations, enforced
molecular dynamics, free energy calculations, and dimension reduction techniques such
as principal component analyis (PCA). It is not intended to exhaustively account for all
details, but rather to provide sufficient background to understand the results. Fore more
detailed accounts, see recent reviews [58] and relevant text books [59, 60].

2.1 Molecular dynamics

Molecular dynamics (MD) simulations rely on numerical integrations of Newton’s equa-
tions of motions in order to describe the time evolution of a molecular system. It is
the only established method which is hitherto able to accurately account for both the
high complexity of proteins consisting of up to a million atoms and the relatively long
time scales underlying their functional dynamics. This is achieved by incorporating three
drastic approximations to the exact time-dependent Schrödinger equation which are
described below.

Born-Oppenheimer Approximation

An exact description of the dynamics of any atomic system is provided by the time-
dependent Schrödinger equation

i~
∂ψ

∂t
= Hψ ,

9



2 Theory, Methods, and Concepts

where H is the Hamilton operator, i.e. the sum of kinetic and potential energy operators,
ψ is the wavefunction, and ~ = h/2π with Planck’s constant h. The wave function
ψ is a function of the positions of both nuclei and electrons. The Born-Oppenheimer
approximation [61] aims at separating the fast electronic degrees of freedom from the slow
nuclear ones, i.e. it assumes that the electrons instantaneously follow the slow nuclear
motion. The electronic wave function ψe, consequently, depends only parametrically on
the nuclear coordinates, and the total wave function can be separated into an electronic
and a nuclear part,

ψtot(R, r) = ψn(R)ψe(R; r),

where R = (R1,R2, . . . ,RN ) and r = (r1, r2, . . . , rK) denote the coordinates of the N
nuclei and K electrons, respectively. The Schrödinger equation then splits into two parts, a
time-dependent Schrödinger equation of the motion of the nuclei, and a time-independent
Schrödinger equation for the electronic problem,

Heψe = Eeψe,

where He is the electronic Hamiltonian and Ee is the ground state energy, which para-
metrically depends on the nuclear positions R. Solving this time-independent part, one
obtains the potential energy hyper surface V (R), the potential of the fast electrons in
which the slow nuclei move.

Classical Dynamics

The motion of the nuclei in this potential energy surface V (R) is described by the time-
dependent Schrödinger equation for the nuclear dynamics, which, however, cannot be
computed for a macromolecular system with thousands of atoms. Classical MD assumes
that Newton’s equations of motion provide a sufficiently accurate description

mi
d2Ri(t)
dt2

= −∇iV (R1,R2, . . . ,RN ), or

miai = Fi,

where Ri and mi are position and mass of nucleus i, respectively. The force Fi acting
on nucleus i determines its acceleration ai, which in turn results in a change of position
and velocity within a given discrete time step ∆t. This time step has to be chosen small

10



2.1 Molecular dynamics
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Figure 2.1: Illustration of the components of a typical molecular mechanics force field as
well as a sketch of their functional form as explained in Eq. 2.1.

compared to the fastest motions in the system. Bond and angle vibrations involving
hydrogen atoms occur at a femtosecond timescale restricting the time step to about 1 fs.
A number of algorithms allowing larger time steps by constraining bond length has been
devised. In this work, the LINCS algorithm [31] and a time step of 2 fs has been chosen.
Newtons’s equations of motion were computed via the leap-frog modification of the Verlet
algorithm [62],

R(t+ ∆t) = R(t) + v
(
t+

1
2

∆t
)

∆t

v
(
t+

1
2

∆t
)

= v
(
t− 1

2
∆t
)

+ a(t)∆t,

where the current position R(t) and the accelerations a(t) are stored together with the
mid-step velocities v(t−∆t/2).

Force Fields

The two above approximations are the basis of the Quantum mechanics molecular
dynamics methods [59], which obtain the potential V (R) and its gradient by solving the
time-independent Schrödinger equation for the electronic degrees of freedom. For the
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2 Theory, Methods, and Concepts

large number of electrons present in proteins this is impossible. A third approximation
is required to address this problem. The potential V (R) is approximated as a sum of
simple energy terms

V =
∑

bonds i

V i
b +

∑
bond angles j

V i
a +

∑
impropers k

V k
imp

+
∑

dihedrals l

V l
D +

∑
pairs α,β

(
V α,β
q + V α,β

LJ

)
, (2.1)

where the bonded energy terms are defined to be either harmonic (Vb, Va, Vimp) or cosine
functions (VD), and the non-bonded terms are based on physical laws (Vq, VLJ),respectively.
Accordingly,

V =
∑

bonds i

ki
2

(li − li,0)2 +
∑

bond angles j

kj
2

(θj − θj,0)2

+
∑

impropers k

kk
2

(ζk − ζk,0)2

+
∑

dihedrals l

Vl
2

(1 + cos (nω − γ))

+
∑

pairsα,β

qαqβ
4πε0ε1Rα,β

+ 4εα,β

[
σ12
α,β

R12
α,β

−
σ6
α,β

R6
α,β

]
.

Force-field parameters for the bonded interactions include the equilibrium bond length
li,0, bond angles θj,0, force constants k, as well as multiplicity n, torsional barrier height
Vl and phase γ of the dihedral angles l. Non-bonded interactions are parameterized
in terms of partial charges qα for Coulomb interactions as well as the repulsion and
attraction coefficients, σ12 and σ6, of the Lennard-Jones potential which represents
van-der-Waals attraction and Pauli repulsion, respectively. For computational efficiency,
many-body effects are usually not explicitly considered, which entails quadratic scaling
of the computational cost with the number of particles.

Different force field have been developed, which differ in the number of terms in Eq. 2.1,
the exact functional form as well as the parameters. In this thesis, the OPLS force field
[63, 64] was used for biomolecules. Different versions of GROMOS [65] united atom force
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2.1 Molecular dynamics

fields were employed for some test cases described in Chapters 4–6. While the former
treats all atoms explicitly, the latter merge aliphatic, non-polar hydrogen atoms with
the carbons they are bound to. The resulting CH, CH2 and CH3 groups are treated as
a single particle, with properly adjusted mass, charge, and Lennard-Jones parameters.
Other popular force fields include AMBER [66], CHARMM [67] and MM3 [68]. All
aforementioned force fields have in common that they have been developed for proteins
on the basis of their smallest subunits, amino acids.

Parameters incorporated into a particular force field are usually obtained set-wise
by iteratively fitting to experimental data and quantum-chemical calculations until the
whole set of parameters fulfills the optimization requirements. This means that any
single parameter differs slightly from its original value. Consequently, including new,
hitherto unrepresented molecules into the force-field can be a cumbersome task, because
in principle the force field as a whole would have to be reconsidered. Yet this is usually
not done since the disadvantages in form of time-consumption by far outweight the
benefits. Accordingly, the force field parameters needed for ligands in Chapters 3 and
7 were obtained by adopting similar molecules’ parameters complemented by quantum
chemical calculations without reparametrization of the whole force field.

Simulation details

Periodic boundaries All protein simulations in this thesis were simulated in explicit
water. To avoid artifacts stemming from boundaries such as evaporation, surface tension,
or preferred orientations of the molecules close to the boundaries, periodic boundaries
were used in all cases. Periodic boundaries are achieved by infinitely replicating the
simulation box and, for the force calculations, including interactions of each particle into
account only with its peers within the ’mother-box’ or the nearest-image. This way the
simulation box does not have any surface. However, new artifacts can emerge because the
macromolecules can also interact with their mirror image due to long-range electrostatic
interactions. These periodicity artifacts can be minimized by choosing the box size large
enough. Different box shapes, e.g. cubic, triclinic, truncated octahedron or dodecahedron,
allow to optimally fit proteins inside thereby keeping protein-protein distances sufficiently
large whilst also minimizing the number of solvent molecules. In this thesis, box sizes
were chosen such that the minimal protein-border distance was 1 nm.
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2 Theory, Methods, and Concepts

Thermostats In principle, solving the Newtonian equations conserves the total energy
of the system and one, consequently, obtains a NVE ensemble. However, a molecular
system of the size typically studied with MD simulations inevitably exchanges energy with
its surroundings. This energy exchange is introduced into the simulation by connecting
to a thermostat, i.e. coupling the system to a heat bath of reference temperature T0.
Here, the very robust Berendsen thermostat [69] has been employed which introduces
temperature conservation by rescaling the velocities in every step with

v′ = v

√
1 +

∆t
τT

(
T0

T
− 1
)
,

where ∆t is the integration time step and τT is the coupling constant defining the coupling
strength. If not noted otherwise, this was set to 0.1 ps.

Barostats Biological systems are mostly subjected to constant pressure rather than con-
stant volume, i.e. NPT ensembles are required. In addition to temperature conservation,
therefore, pressure coupling was also introduced in form of the Berendsen barostat [69]
which rescales coordinates in every step. Modifying the box size slightly in every step it
thereby guarantees constant pressure thoughout the simulation.

Computational efficiency Further means purely for the sake of increased computational
efficiency have been applied; most important are constraint algorithms (e.g., LINCS [31]
for hydrogen bonds and SETTLE [30] for water models) and special handling of non-
bonded interactions. These are the most expensive part of the force calculations. Even
though multi-body interactions were not explicitly considered during the computations,
the sum of the last term in Eq. 2.1 requires N2 single computations for the N atoms of
the system. A very straightforward way of reducing this number is ignoring all neighbors
beyond a certain cut-off, typically in the range of 1.0 to 1.4 nm [67]. While this is justified
for the fast decaying Lennard-Jones potential (which decreases with r−6) severe artefacts
have been reported for the slowly (r−1) decaying Coulomb interactions [70].

The grid-based Ewald summation [71] overcomes this problem by splitting the elec-
trostatics into two parts. The part within the cut-off is computed directly, and the
long-range interactions outside the cut-off are computed in reciprocal space. Further
improvement is achieved by the Particle Mesh Ewald (PME) summation, which employs
fast Fourier transformations for the computation of the reciprocal sum [72] and scales
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2.2 Stochastic dynamics

with N logN . PME has been used wherever possible thoughout the works in this thesis.

2.2 Stochastic dynamics

Stochastic dynamics adds friction and a noise term to the Newtonian equations

mi
d2Ri(t)
dt2

= −miξi
dRi(t)
dt

+ Fi (R) + R̊i(t),

where ξi is a friction constant and the stochastic random force R̊i(t) is assumed to be
a stationary Gaussian random variable with zero mean and to have no correlation with
prior velocities or with the systematic force, i.e. 〈R̊i(t)R̊j(t+ ∆t)〉 = 2miξikBTδijδ(t).
Here, 〈. . . 〉 denotes the ensemble average, kB is the Boltzmann constant and δ is the Dirac
delta function. Stochastic dynamics is particularily useful for simulations of systems
in vacuum to mimic the forces exerted by the solvent on the molecule. In this thesis,
stochastic dynamics has been used for the generation of thermodynamic integration
(TI) reference ensembles of small test systems whose configurational entropies were
subsequently computed with the method developed in Chapter 5.

2.3 Force-probe MD

Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) is widely used as a single-molecule experiment. A typical
experimental setup is illustrated in Fig. 2.2. Here, the molecule under investigation is
fixed between the surface on one side and an AFM-tip attached to a flexible cantilever
on the other side. Moving the surface downwards exerts a pulling force on the examined
molecule which is measured by the cantilever as a function of the surface displacement.
The resulting force profile is read as a fingerprint of the mechanical stability of the
molecule from which unfolding pathways to be inferred. As a single-molecule experiment,
it provides information on single events rather than merely ensemble averaged values
obtained from bulk experiments. In this respect it is easier to relate MD simulation
results to AFM experiments than it is to bulk experiments, since in these, single molecule
information is not available. The downside of AFM, however, is the fact that atomic
interpretation of the observed force profiles is not readily at hand. Here, computer
simulations can constitute useful complements.
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2 Theory, Methods, and Concepts

Figure 2.2: Illustration of a typical atomic force microscopy (AFM) setup [73]: Top: A
molecule (here titin kinase, which was examined in detail in Chapter 3) is
attached via a linker to the surface on one side and to a cantilever with
AFM tip on the other side. The surface is then slowly moved downwards
exerting a force on the examined molecule. The cantilever measures this force
as a function of the surface displacement. Bottom: A saw-tooth pattern is
typically recorded for the unfolding of proteins. The abrupt drops following
the maxima correspond to rupture/unfolding forces. The contour Li length
of each unfolding event i is obtained by fitting each peak separately with a
worm-like chain model [74].
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2.4 Essential dynamics

Simulation setup

With classical MD, protein dynamics can now be routinely examined provided the process
of interest occurs on the nano- to microsecond timescale or faster. Many biological
phenomena studied in this thesis, such as allosteric protein regulation or force-induced
unfolding, are considerably slower and thus out of reach for standard MD. Force-probe
MD (FPMD) [75] circumvents this problem by applying external forces to parts of the
protein. This way, the system is driven along a pre-defined pulling coordinate and energy
barriers are more easily overcome (cf. Fig. 2.3). One or more atoms i are being subjected
to a harmonic spring potential,

Vspring,i(t) = k0 (zi(t)− zspring,i(t))
2 ,

where k0 is the force constant of the spring, zi(t) the position of the centre-of-mass (COM)
of the pulled atoms, and zspring,i the position of the spring. The spring is then moved
with constant velocity v in pulling direction zspring,i(t) = zi(0) + vt. The pulled atoms
are then subject to an additional force,

Fi = k0 (zi(t)− zspring,i(t)) .

FPMD is particularily apt to complement experiments which exert forces on single
molecules such as atomic force microscopy (AFM) experiments discussed above or
magnetic/optical tweezers. It has been shown to be a valuable tool for the interpretation
of experimental data [76]. Among other cases, it has helped to explain questions of
carbohydrate stiffness [77], ligand unbinding from proteins [75], or partial force-induced
protein unfolding [50]. In Chapter 3, the force-induced unfolding of titin kinase is
examined with this technique and compared to AFM experiments.

2.4 Essential dynamics

In cases where the reaction coordinate is a priori unclear, force probe MD is not an
appropriate option to enforce slow processes. In those cases, such as allosteric regulation
(7), we resorted to essential dynamics sampling (ED sampling). In ED simulations, the
system is being driven along a reaction coordinate defined by one or more collective modes
observed during a free dynamics simulation. These collective modes, or essential modes,
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Figure 2.3: Decrease of transition barriers by AFM or FPMD. The additional force Fext

accelerates a transition along the reaction coordinate z (which is at the same
time the pulling direction) by lowering the free energy barrier from ∆G 6= to
∆G 6=v .

are usually being obtained by Principal Component Analysis (PCA). PCA diagonalizes the
covariance and obtains linearily uncorrelated eigenvectors plus corresponding eigenvalue,
which indicates the amplitude of the collective motion along that particular eigenvector.
PCA is discussed in more detail in Section 2.6.

Fig. 2.4 illustrates the basic idea of ED sampling. A set of eigenvectors is defined as
essential subspace where the position of the system shall be manipulated, i.e. enhanced
sampling is desired. Each of these eigenvectors can be subject to one of the available
algorithms along the selected eigenvectors (7.10). The system is then required to fulfill
distance constraints along the essential modes assigned to a particular algorithm. Modes
orthogonal to the essential subspace are left completely unperturbed and can equilibrate
during the simulation. In Chapter 7, essential dynamics was used as a relatively soft way
of driving the allosteric enzyme pyruvate kinase from inactive to active configurations.

2.5 Free energy calculations

Differences of the free energies ∆G and entropies ∆S of two states A and B are commonly
calculated by thermodynamic integration (TI) over physical quantities such as energy,
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a b c

d e

Figure 2.4: Principles of Essential Dynamics sampling. Black arrows: accepted steps, red:
corrected steps, green: rejected steps. a, radius contraction. The distance
from the target (centre circle) is required not to increase. Steps away from the
target are rejected (red) and set to a constant radius position as illustrated
with the dashed lines; b: fixed linear expansion, radfix. Starting from the
centre, the radius has to increase by a predefined distance in each step. Steps
not fulfilling the distance constraints (red arrows) are set according to the
dashed lines; c: Acceptance radius expansion, radacc. Like radfix, except that
the increment size is not fixed and steps into the wrong direction are merely
rejected and the step is started again; d: linear expansion along a predefined
direction (to the right) with predefined step size, linfix. Steps in the wrong
direction (green) are being rejected (crossed); e: same as d, except that the
step size is variable.

temperature or specific heat, or alchemical parameters.

In principle, both free energy differences and absolute free energies can be obtained;
the latter requires a reference state B whose absolute free energy is known, such as an
ideal gas. For this thesis, this was done using a parameter λ to simulate the transition
between small molecules (state A with λ = 0) and non-interacting particles in harmonic
wells (state B with λ = 1), whose absolute free energy was known. The free energy
difference is then obtained according to

∆G =
� 1

0

〈
∂H (R, λ)

∂λ

〉
λ

dλ,

where the total Hamiltonian of the system at any particular λ-value is H = (1− λ)HB +
λHA. Here, one assumes the simulations at any intermediate λ to be in equilibrium.
This can either be achieved by using the slow growth method [54] with sufficiently slow
transition time or, as it was done in this thesis, discrete TI with system at N different,
logarithmically spaced, λ-values computed in N separate simulations.
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2 Theory, Methods, and Concepts

2.6 Principal Component Analysis

Principal component analysis (PCA) [78] is a simple, non-parametric technique to reduce
complex data to lower dimension revealing the underlying simplified structure, if any. It
is an invaluable tool in a wide variety of fields including neuroscience, data compression,
computer vision/pattern recognition, data visualization, exploratory data analysis and
image processing [79]. Depending on the field, it is also called discrete Karhunen-Loève
transform (KLT) [80], Hotelling transform, proper orthogonal decomposition (POD),
quasi-harmonic analyis [56, 81–83], or singular value decomposition [84–87].

2.6.1 Theory of Principal Component Analyis

Here, the basic ideas of PCA, together with underlying assumptions and resulting
limitations, are shortly reviewed. Generally, the goal of PCA is to find the coordinate
system that best re-expresses the original data, where best means maximum signal at
minimal noise under a few assumptions.

Applied to an ensemble of M protein structures
{
r(k)
}
k=1,...,M

, where r = (r1, . . . , rN )
denotes the positions of the N atoms in three-dimensional space, PCA aims at finding
unit vectors ai such that the projections pi = ai (r− 〈r〉) of the structural ensemble on
this particular unit vector exhibits maximum variance σ = (r− 〈r〉). These unit vectors
ai are then called principal modes, the projections pi principal components. The principal
components are retrieved by transforming the covariance matrix C of atomic fluctuations
with elements Cij = 〈(ri − 〈ri〉) (ri − 〈ri〉)T 〉. C contains two kinds of information: (i)
the diagonal terms indicate interesting dynamics (noise) if the values are big (small) and
(ii) the off-diagonal terms indicate high (low) redundancy if the values are high (low).
PCA, consequently, diagonalizes C,

TTCT = diag (λ1, . . . , λ3N ) , whereλ1 ≥ λ2 ≥ · · · ≥ λ3N ,

obtaining the desired principal modes and the principal components, which are just
the columns of the transformation matrix T and p = TT (r− 〈r〉) respectively.

2.6.2 Assumptions and Limitations

The underlying assumptions in this procedure are fourfold. First, PCA restricts the solu-
tion space drastically by considering only linear combinations of the original basis.Second,
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it is assumed that mean and variance entirely describe the probability distribution. The
only class of probability distributions that are fully described by these first two moments
are Gaussian distributions. Applied to biomolecules, the modes which (almost) fulfill
this assumption are called (quasi-)harmonic. The assumption, however, means that PCA
breaks down for non-Gaussian distributed data. Third, it is assumed that the most
interesting, principal, basis vectors are those in which the system expresses the highest
variance. Fourth, the basis vectors are supposed to be orthogonal. This straightforward
assumption renders the problem soluable with linear algebra decomposition techniques.

PCA has been shown to be useful in the context of theoretical biophysics. It has,
for example, been shown that indeed protein dynamics is governed by a few degrees of
freedom. In fact, as much as 90% of atomic displacement can be described by only 5-10%
of collective coordinates, which also describe most of the functional dynamics of proteins
[88, 89]. This has led to the concept of the essential subspace which has been the main
target of enhanced sampling techniques [90–92] (one of which presented in Section 2.4)
and models of protein dynamics [91, 93, 94]. Hence, the maximum variance assumption
of PCA appears to be mostly justified.

The assumption of Gaussian-shaped densities has some justification, too. This is a
consequence of the Central Limit Theorem, which states that any distribution of arithmetic
means of random samples taken from any finite-variance distribution is Gaussian, if
the number of samples is large enough [95]. Unfortunately, particularily the essential
subspace is where the Gaussian assumption discussed above does often not hold, since the
high-amplitude modes express highly anharmonic behaviour [89, 96]. PCA modes, thus,
fall into two classes: essential modes with high-amplitude are normally badly described
by a Gaussian, whereas non-essential modes with small amplitude are well described by
a Gaussian.

2.7 Full Correlation Analysis

The goal of Full Correlation Analysis (FCA) [97] is the same as for PCA. Like PCA,
it aims at finding a new set of uncorrelated basis vectors; however, FCA abandons all
the assumptions of PCA except for linearity, and tries to find a coordinate system that
satisfies the most general kind of non-correlation, statistical independence.

The concept of indepence roots in information theory. Two random vectors yi and yj

are called independent if knowledge of the value of yi does not give information of the
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Figure 2.5: Relation between joint probability distributions (upper left), marginal distri-
butions (upper right and lower left) and the product of marginal distributions
(lower right). The entropy estimated by multiplication of the marginal PDFs
is always larger than or equal to the joint entropy.
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value of yj , and vice versa. The vectors yi and yj are independent if and only if the joint
probabilty density function (pdf) of yi and yj can be factorized,

ρ(yi, y2) = ρi(yi)ρj(yj), (2.2)

where the marginal pdf (cf. Fig. 2.5) of yi,

ρi(yi) =
�
ρ (yi, yj) dyj . (2.3)

A whole series of methods akin to Independent Component Analysis employing slightly
different approaches to find statistically independent basis vectors has been developed
[98–104]. FCA can be viewed as a specialized ICA-like tranformation method with
algorithms optimized for the application to computer generated atomistic ensembles.
Specifically, it finds an orthogonal coordinate transformation T of the M -snapshot
ensemble R =

{
r(k)
}
k=1,...,M

of 3N cartesian coordinates r = (r1, . . . , r3N ) of the N
particles such that the probability distribution of the resulting coordinates

R′ = TR

can be factorized, i.e. like above

ρ(r′i, r′j) = ρi(r′i)ρj(r
′
j),

for all i and j, i 6= j.
FCA considers mutual information

I(ρ(y)) =
m∑
i=1

S(ρi(yi))− S(ρ(y)) ≥ 0,

as a very natural measure of dependence between variables, where ρi(yi) are the marginal
densities (Eq. 2.3) of the joint density ρ(y) and S is the entropy. The entropy of a random
variable can be seen as the amount of information that the observation of this variable
yields. The more unpredictable (i.e. random) a variable is the larger its entropy. For a
discrete random variable y, the entropy is defined as

S(y) = −
∑
i

p(y = ai) ln p(y = ai),
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2 Theory, Methods, and Concepts

where ai are the possible values of y. In the continuous case, with y being a random
vector with probabilty density ρ(y),

S(y) = −
�
ρ(y) ln ρ(y)dy.

The mutual information I employing this entropy measure is 0 if and only if all the m
distributions are statistically independent. This occurs only if the joint density ρ(y) is
factorizable according to

ρ(y) =
m∏
i=1

ρi(yi)⇔ I(ρ(y)) = 0,

which is a generalisation of two-variable case Eq. 2.2. The mutual information takes, thus,
into account the whole dependence of the variables, and not only linear dependencies like
the covariance PCA and similar methods are based on. Accordingly, I is an excellent
measure for the goodness of the transformation R operated by FCA.

Abandoning most of the simplifying assumptions of PCA and allowing a less con-
strained set of solutions to the problem consequently renders FCA computationally more
demanding than PCA. However FCA has been demonstrated to improve significantly on
the PCA for a wide range of biomolecular systems. In this thesis, it will be used as the
second building block of an three-modular hierarchical method to estimating absolute
configurational entropies of macromolecules (cf. Chapter 4).

24



3
Chapter 3

Force-induced activation of titin

kinase

The first project of this thesis examines the catalytic properties of titin kinase, the
catalytic domain of the muscle protein titin. The study partly presented here is the
outcome of a collaboration and involved atomic force microscopy (AFM) experiments
by Hermann Gaub’s group, LMU München, enzymatics, conducted by Mathias Gautel’s
group, Imperial College, and atomistic molecular dynamics studies carried out by our
group in the Theoretical and Computational Biophysics Department at the MPI for
Biophysical Chemistry. The results presented here are not exclusively my work. The
simulation part of the project was a close collaboration with Lars Schäfer, such that I
only shouldered about half of the data production, data analysis and graphics processing
required for this study. Frauke Gräter contributed the complete-TK simulations.

3.1 Titin and titin kinase

Striated muscles are composed of a series of segments interrupted by bands and disks. The
basic contractile unit of muscles is the sarcomere, the segment between two neighbouring
Z-disks (Z wischenscheibe). Sarcomeres are multiprotein complexes comprising three
major filament systems, thin and thick, and connectin (cf. Fig. 3.1a). The thin filaments
are predominantly composed from the globular protein actin coiled with nebulin filaments.
The thick filament is composed of myosin, a motor protein, which is held in place by
titin (connectin). When a muscle contracts, actin is pulled along myosin towards the
M-band (the centre of the sarcomer). Neither actin nor myosin, which together are called
the myofibril, change length during this process; only due to the increasing overlap of
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3 Force-induced activation of titin kinase

actin and myosin the muscle becomes shorter (sliding filament model). While actin and
myosin can thus be regarded as contracing filaments, titin is the elastic counterpart.
When the muscle stretches, titin generates passive tension by straightening and partial
unfolding restoring the sarcomere length and realigning the muscle filaments after stress
release [105, 106] serving as an adhesion template for the contractile machinery in the
muscle cells. Titin thereby keeps the filaments organized and plays a role in muscle
elasticity[107].

To fulfill its duty, a single titin molecule spans half the length of the sarcomere from
the Z-disks to the M-band (about 1µm) making it the largest protein known to date with
a molecular weight of approximately 3 MDa.1 Titin is composed of a series of covalently
bound domains of the immunoglobulin (Ig) and fibronectin (Fn) classes (Fig. 3.1b) which
vary in sequence and number between different muscle types. Near it’s C-terminus
at the M-band, titin’s only catalytic domain is located, the serine/threonine protein
kinase domain titin kinase (TK). The crystal structure (Fig. 3.1d) shows a two-domain
architecture, the smaller domain (left hand side) being β-sheet rich and the larger domain
(right hand side) containing predominantly α-helices. The catalytic site is situated
between the small and the large domain, where the catalytic residue, Asp127, transfers
the ATP’s phosphate moiety to the protein substrate.

Titin kinase activation is impeded by its C-terminal regulatory tail (red labels βR1,
αR1 and αR2 in Fig. 3.1d)) by a dual autoinhibition mechanism. The αR2 helix of the
autoregulatory tail, first, blocks the ATP binding site and, second, specifically interacts
with the residues crucial for catalysis. TK activation, thus, requires the autoinhibitory tail
to be removed. Whereas TK activation has been shown to occur upon phosphorylation of
Tyr170 and binding of calmodulin to the αR1 helix, calmodulin or other calcium binding
proteins are unable to active TK on their own [109]. Given the exceptional position of
TK close to the compliant M-band, it has been speculated that TK might be activated
by mechanical stress. Indeed, the M-band lattice is deformed only during active muscle
contraction, and is, consequently, the ideal location for detecting the actual workload
on the myofibril [110]. Frauke’s previous force probe molecular dynamics simulations
of the mechanical properties of TK suggested that TK activation might be possible
by mechanical forces [50] and a mechanosensitive signalling complex (signalosome) was
subsequently identified that interacts with an open conformation of TK and seems

1It is interesting to note that titin’s IUPAC name, containing 189, 819 letters, is sometimes stated to be
the longest word in the English language [108].
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3.1 Titin and titin kinase

Figure 3.1: Sarcomeric location and structure of the investigated TK protein construct.
(a) Schematic diagram of the sarcomere showing the transverse Z and M-
bands and actin and myosin filaments, linked by the elastic titin filament. (b)
Domain structure of M-band titin showing the array of structural Ig (green),
Fn3 domains (white), and unique sequences (green lines) surrounding titin
kinase domain (TK) (blue). (c) The titin construct contains the kinase domain
surrounded by Fn3 and Ig domains. ATP binding requires relief of the C-
terminal autoinhibitory tail (blue) from the active site, which can be achieved
by external force. In mechanical single-molecule experiments, the construct is
pulled off the gold support (yellow line) by a cantilever, resulting in a unique
force spectrum when the protein is stretched and domains sequentially unfold.
Analysis of the unfolding force spectrum identifies the peaks shaded in blue as
kinase unfolding peaks; the five unfolding peaks shaded in green correspond
to sequential Ig and Fn domain unfolding. (d) Kinase domain structure, with
the ATP binding site highlighted by the pink arrow and individual secondary
structure elements color-coded. Numbering is from N to C terminus, where
C1 to C10 refer to catalytic core structures, and R1 to R3 (in red) refer to
the regulatory tail (5). The N and C termini are marked.
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to contribute to the adaption of muscle in response to mechanical strain [111]. The
importance of TK in maintaining the turnover of muscle proteins is highlighted by a
point mutation in the human kinase domain that causes a myopathy (muscle weakness
disorder) with failure of load-dependent protein turnover [111].

Previously, no experimental proof was available that TK, and in fact any other force
sensor in muscle [49], is indeed being mechanically activated rather than simply unfolded
by mechanical stress. Previous in-house MD simulations, however, showed that the forces
required to unfold TK are much lower than the forces required to unfold neighbouring
Ig/Fn domains [50] predicting that TK, as required for a force sensor, will be completely
unfolded before other titin domains. It was also shown that before complete unfolding the
autoinhibition is removed, as required for mechanical TK activation. The study presented
in this chapter aimed at finding a proof for these theoretical predictions. To this end,
in a combined experimental and theoretical effort the connection between mechanical
stress exerted on TK and its enzymatic properties was examined. Since it is most difficult
to observe TK action in its natural environment firmly embedded in the contractile
machinery of muscle, we conducted a study on single molecules in isolation. This allowed
to examine the mechanic properties properties of TK in molecular detail using AFM
experiments and MD simulations, the latter of which helped to interprete the AFM
results at the atomic level and correctly predicted the residues crucial for TK catalytics.
Finally, enzymatic measurements were employed to compare the single-molecule results
to properties of the intact sarcomer. This chapter focuses on the MD results and the
directly related AFM experiments. The full study has been published recently [112].

3.2 Simulation details

All simulations were carried out with the Gromacs simulation suite [113, 114], using
the OPLS all-atom force field [64] and periodic boundary conditions. NpT ensembles
were simulated with the protein and solvent coupled separately to a 300 K heat bath
(τT = 0.1 ps) [69]. The systems were isotropically coupled to a pressure bath at 1 bar
(τp = 0.1 ps) [69]. Application of the Lincs [31] and Settle [30] algorithms allowed for an
integration time step of 2 fs. Short-range electrostatic and Lennard-Jones interactions
were calculated within a cut-off of 1.0 nm, and the neighbour list was updated every
10 steps. The particle mesh Ewald (PME) method was used for the long-range electrostatic
interactions [72], with a grid spacing of about 0.12 nm.
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3.2.1 ATP Force Field

The atomic partial charges of ATP used along with the OPLS force field were derived
from quantum chemical calculations. The charges were obtained from B3LYP/6-31+G*
calculations using the CHELPG electrostatic potential fitting scheme [115]. The quantum
chemical calculations were carried out with Gaussian03 [116]. All non-bonded parameters
are given in the appendix A. Bonded parameters were taken from Reference [117].

3.2.2 Generation of Starting Structures

The simulations of the full-length titin kinase (TK) were set up as described in Ref. [50],
with the exception that here the OPLS force field was used (see above).

The starting structures of the truncated TK were obtained from the TK crystal
structure (PDB entry 1TKI, Ref. [109]) in three steps detailed below. First, 33 residues
at the C-terminus comprising the αR1 and αR2 motives of the autoinhibitory tail (ai tail)
were removed from the structure, since they block the ATP binding site. Second, the
ATP ligand was docked into the active site. Third, the ligand-induced conformational
closure of the protein structure was enforced by MD.

Docking of ATP

ATP was docked into the active site of TK using the protein kinase A (PKA, PDB entry
1q24, Ref. [118]) as a homology model. After aligning of the two protein structures, the
ATP and one Mg2+ ion were adopted from PKA. The second Mg2+ ion was added using
the phosphorylase kinase structure as a template (PDB entry 2phk, Ref. [119]), because
it was not resolved in the PKA structure.

Energy Minimization and Equilibration of the Solvent

Prior to the free MD simulations, the systems were solvated with TIP4P water within a
cubic box of 8.5 nm length. Sodium and chloride ions were added (c = 0.15 mol/l), and
the systems were energy minimized for 1000 steps using steepest descent. The solvent
was then equilibrated for 500 ps with positional restraints on the protein heavy atoms
(force constant 1000 kJ mol−1 nm−2).
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Closure of the Active Site

The ligand-induced conformational closure of the protein structure was enforced by means
of essential dynamics MD (see Sec. 2.4). To this end, the closed conformation of the
PKA (1q24) was used as the target structure. First, the two protein structures (TK and
PKA) were aligned. Then, the N-terminal β-hairpin (residues 13-21 in TK) was selected,
and a principal component analysis (PCA) was carried out, yielding one eigenvector that
describes the closing motion. Essential dynamics sampling was then performed, during
which motion along the eigenvector towards the target structure was enforced (radcon
option in EDsampling module [120] of Gromacs). To allow the protein to relax along the
enforced closing motion, the maximal step size along the eigenvector was restricted to a
maximum of 0.05 pm/step, leading to a closed structure within about 1 ns. Subsequently,
the closed structure was simulated for 1 ns with positional restraints on the Cα atoms
(force constant 1000 kJ mol−1 nm−2). Finally, a 1 ns free MD simulation was carried out,
during which no opening motion was observed in the presence of ATP. As a control,
the closed structure was simulated also in the absence of ATP. As expected, significant
re-opening motion was observed. The starting conformation for the force-probe MD
simulations were taken from the final free MD simulations after 1 ns.

In the resulting structure with ATP bound, a salt bridge between Lys36 and the
α-phosphate group of ATP, and interaction between Met34 and the adenine moiety,
respectively, were formed. For the latter, two types of interactions with ATP are seen, a
hydrogen bond between the sulphur atom and the NH2 group of adenine, and, alternatively,
a stacked conformation of the S-CH3 group and the adenine 6-ring. Additional hydrogen
bonds were formed between the β-phosphate of ATP and the N-H backbone of Glu17, as
well as between the hydroxyl groups of the ribose and the carbonyl backbone of Arg15.

3.2.3 Force-Probe MD Simulations

To mimic the AFM experiments, force-probe MD simulations (FPMD) were carried out
as described in methods. The average force at the two springs was monitored during the
simulations, yielding the force profiles shown in Fig. 3.3B.

Prior to the FPMD simulations, the protein was aligned along the pulling direction
(z-axis), and the simulation box was extended along the z-axis to about 20 nm, allowing
for the accommodation of an elongated conformation. Further, water, sodium, and
chloride ions (c = 0.15 mol/l) were added, and the system was energy minimized, followed
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by equilibration for 200 ps with positional restraints on the protein heavy atoms (force
constant 1000 kJ mol−1 nm−2).

To generate statistically independent unfolding trajectories (five trajectories with
and without ATP, respectively), a partially unfolded conformation was selected after
19.2 ns and 20.2 ns of FPMD simulation time with and without ATP, respectively. These
conformations were chosen, because they correspond to minima in the force profiles. The
nitrogen atom of the N-terminus and the carbon atom of the C-terminus, respectively,
were kept fixed with a positional restraint (force constant 1000 kJ mol−1nm−2), and the
systems were equilibrated for 1 ns with free MD. From this trajectory, five equidistant
frames (∆t = 200 ps) were chosen as starting structures for the additional force-probe
simulations.

Simulations were interrupted before any of the springs had crossed the box boundary.
Here, care was taken that, due to the applied periodic boundary conditions, the pulled
termini did not interact with each other. At this point, fully unfolded residues at
both termini were removed, and new termini, water, and ions were added. The FPMD
simulations were then continued after equilibration of the solvent with positional restraints
on the protein heavy atoms (force constant 1000 kJ mol−1nm−2) for 200 ps.

The simulated systems comprised about 180, 000 atoms. The total simulation time
was about 500 ns.

3.2.4 Contour Length Histograms

The plotted contour lengths aim at quantitative comparison between the simulations and
the experiments. Such comparison is complicated by the fact that (a) different pulling
speeds are used, and (b) in the simulations, a stiffer spring has to be used then in the
AFM experiments. To account for these differences, we derived contour length plots from
the force profiles obtained from the MD simulations in three steps. First, prominent force
peaks were selected along the force profiles. Here, only those force peaks j were included
whose height Fmax ,j exceeded a certain threshold. This threshold was defined as

Fmax,j ≥ Fmax,j−1 − kAFM (∆zspring,j −∆zspring,j−1) ,

where kAFM is the effective spring constant of the AFM cantilever and the attached linkers,
and ∆zspring the distance between the two springs attached to the C- and N-terminus,
respectively, and j−1 denotes the force peak preceding peak j. Here, kAFM was estimated
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3 Force-induced activation of titin kinase

as 10 pN/nm, which is an upper limit. This selection procedure mimics the effect of the
soft AFM cantilever, which, in contrast to the force probe simulations, is insensitive
to minor force peaks that immediately follow a larger peak. Second, the number of
unfolded residues Nunf,j and the length of the folded core zfolded,j were determined for
the conformations corresponding to each of these peaks. The contour length lc,j was then
calculated as lc,j = 0.365Nunf,j nm + zfolded. Third, a Gaussian function was assigned to
each of the peaks, weighted by its height Fmax,j :

Gj(lc) = Fmax,j exp

[
−(lc − lc,j)2

2σ2

]
,

with a width σ = 1 nm. The final contour length plot is obtained from the sum of all these
Gaussian functions. As an exception, this procedure was not applied to the force peak
marked with a plus sign in Fig. 3.3B (upper row). Structural analysis shows that peak
arises from transient rupture and reformation of the interactions between Lys-36/Met-34
and ATP, similar to the subsequent ATP peak 2*. From the considerable scatter of
heights seen for peak 2*, we expect that the peak in question is exceptionally pronounced
and, therefore, that the described shadowing effect will not occur in most of the cases.
No other peak showed a similar effect.

To allow comparison with contour histograms derived from AFM experiments, one has
to consider that the AFM measurements were conducted with a full TK that additionally
includes a linker of 23 residues. No structural information was available for this 23-residue
linker between A170 and the catalytic core. In the homologous twitchin kinase, this
sequence wraps around the ATP-binding lobe of the kinase, but makes no contacts with
the autoregulatory domain. We therefore expect this part to affect the relative positions
of the observed unfolding peaks, but not the sequence of local unfolding events at the
C-terminus.

In the MD simulations, either a full-length TK or a truncated TK, i.e., with a part of
the autoinhibitory tail removed, were used. As a reference point for comparison, peak
6 was chosen, which indicates unfolding of Ig-domain “handles” at a fully unfolded TK
(lc = 144.4 nm). The 321 residues of the full TK, or the 289 residues of the truncated
TK would all be unfolded at this point.
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3.3 Results

Experimental reference

The AFM measurements were carried out with a TK construct comprising the protein
kinase domain plus neighbouring Ig/Fn domains as sketched in Fig. 3.1 and shown in
more detail in Fig. 2.2. The resulting forces were recorded with pico-Newton accuracy
and showed a typical saw-tooth pattern as explained in Sec. 2.3.

Typically, a series of five initial low-force peaks (below 50 pN) was followed by up to
five distinct saw-tooth-shaped high-force peaks that correlated exactly with the number
and contour lengths of the flanking Ig/Fn-domains. These low-force peaks, occuring
before Ig/Fn unfolding, stem from unfolding events within the kinase domain. The forces
required for complete unfolding of the TK domain does not exceed 50 pN at 23°C and a
pulling speed of 1µm/s, as predicted from previous MD simulations [50]. From the fact
that the mechanically more stable Ig/Fn domains always unfold after the TK domain it
is obvious that the force acts on all domains in series, such that the kinase domain is
therefore completely stretched before the first Ig/Fn domain unfolds.

Fig. 3.2 shows experimental force profiles obtained with and without ATP. As can be
seen, ATP binding entails an additional force peak (see Fig. 3.2 C, peak 2*). This peak
depends on ATP concentration as well as the time span between binding site opening
and the moment the ATP barrier (peak 2*) is probed. It is, thus, clearly due to ATP
binding[112].

Molecular Mechanism of TK Activation by Force

We used force–probe MD simulations [75, 121] to characterize the force-induced unfolding
of TK at the atomic level and to correlate the structural states with the energy barriers
observed by the single-molecule force spectroscopy experiments. Force–probe molecular
dynamics simulations [75, 121] used the TK x-ray structure [Protein Data Bank entry
1TKI [109]] as the starting structure, with the autoinhibitory tail partly removed (see
Sec. 3.2.2). Two sets of simulations (five each) were carried out for this truncated TK: one
set with an empty binding pocket, and one set with an ATP molecule and magnesium ions
inserted into the (closed) binding pocket. As a control, the autoinhibited complete TK
was also subjected to force–probe MD simulations (see Sec. 3.2.3). As in the experiment,
the two force profiles obtained from the simulations of the truncated TK (Fig. 3.3B Top
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3 Force-induced activation of titin kinase

Figure 3.2: Unfolding profile of TK. (A) External force can open the ATP binding site of
TK by unfolding of the autoinhibitory domain (blue ball). (B) Superimposed
traces of 66 single-molecule unfolding events in TK show a fixed sequence
of unfolding events, numbered 1–5. (C) Mechanically induced ATP binding
leads to a distinctly altered force profile with the appearance of an extra force
peak, 2*, absent in unfolding events in absence of ATP (44 traces).
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3.3 Results

Figure 3.3: Molecular dynamics (MD) simulations of the force-induced unfolding of titin kinase (TK). (a)

Representative unfolding intermediates with the unfolding secondary structure elements colored

according to the scheme in Fig. 1d; the beta-strands unfold pairwise, and colors refer to the

respective N-terminal strand of each pair.(b) Unfolding forces of truncated TK with ATP (upper

row), without ATP (middle row), and of the complete TK (lower row). For the complete TK, two

independent 90 ns simulations were carried out (solid and dashed lines). Starting from a partially

unfolded structure at ˜19 nm, five 26 ns trajectories (thin grey lines) were averaged for both sets

of simulations (thick lines in upper and middle row). Color shaded areas indicate main unfolding

events, which correspond to the colors used in (a) and in Fig. 1d. An additional force peak in

the presence of ATP is predicted (plus-sign and pink-shaded area in upper row). This force peak

(inset) is higher for bound ATP (270 pN) than for an empty binding pocket (188 pN). Due to the

necessarily much faster pulling rates of 0.8 m/s used for the simulations, larger unfolding forces

are seen, which can be related to the experimental loading rates [50] (c) In the force-probe MD

simulations, harmonic springs were attached to the protein and retracted with constant velocity

(lower schematic, ATP shown as red spheres). (c, insets) Representative structures shortly before

(left) and after (right) the ATP force peak. ATP and the two key residues methionine-34 and

lysine-36 are shown in ball-and-stick representation, and the rupture of molecular interactions is

indicated by dotted lines. 35



3 Force-induced activation of titin kinase

and Middle) are largely similar. A notable exception is the more pronounced force peak
seen in the presence of ATP (see Fig. 3.3B Inset) at the position of the measured force
peak 2*.

To allow direct comparison of the unfolding pathways between experiment and simula-
tion, we transformed the force extension traces of Fig. 3.2 into barrier position histograms
[109] and derived the same from our simulations (see Sec. 3.2.4). Figure 3.4 compares
the contour lengths from experiment and MD simulation. The simulations allowed
assigning the ATP peak (peak 2*) to the anchor point Lys36. Thus, 289-36=253 residues
unfold between peaks 2* and 6, which corresponds to a contour length increment of
253x0.365 nm=92 nm. Including the length of the folded core of 5.5 nm, this estimate
yields an lc for peak 2* of 144.4 nm − 92 nm + 5.5 nm = 57.9 nm from the simulations,
in good agreement with the value of 51.6 nm from the AFM.

The above procedure rests on two assumptions. First, we assume that before peak 2*,
all N-terminal residues before Lys36 unfold. In addition, by simulating a truncated TK,
we assume that unfolding of the omitted part of the autoinhibitory tail is uncoupled from
the other unfolding events and precedes peak 2*. Both assumptions are corroborated
by the simulations of the complete TK, where such an unfolding behaviour was indeed
observed (see Fig. 3.3).

The simulations of the complete TK also show that peak 2 can be assigned to the
unfolding of the autoinhibitory tail (Fig. 3.3). Hence, the first part of the contour length
profile shown in the inset of Fig. 4 is based on these simulations. Here, Tyr7 was chosen
as an anchor point, a residue that lies at the beginning of αR1. Following the same
argumentation as outlined above, this choice yields a barrier position for peak 2 of
35.5 nm, in good agreement to the 32.3 nm obtained from the AFM data. We note that,
in contrast to peak 2*, where the anchor point can be easily assigned to the Met34/Lys36
motive, such a detailed assignment is more challenging for peak 2. Here, only a range of
αR1-residues between Glu5 and Asp12 can be specified, thus leading to an uncertainty
in the position of peak 2 of about 1.5 nm.

Figure 3.5 compares the barrier positions obtained from the AFM experiments and the
two independent MD simulations of the complete TK in the absence of ATP (Fig. 3.3B,
lower row). The MD simulations yield positions of peaks 2, 3, 4, and 5 at 35.5 nm,
63.3nm, 80.1 nm, and 86.8 nm, respectively. The corresponding peak positions obtained
from the AFM experiments are 32.3 nm, 61.3 nm, 68.6 nm, and 86.6 nm, respectively.
For the force peaks 2, 3, and 5, the positions obtained from the simulations agree well
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3.3 Results

Figure 3.4: Contour length histograms obtained from single-molecule force spectroscopy
experiments (transformation with QM-WLC and P=0.8 nm) and from MD
simulations (Inset). The folded kinase construct has a length of 25 nm.
The peak positions with (red) and without (black) ATP are similar in both
histograms (dashed lines), except for one additional peak in the presence of
ATP (red peak at ≈51.6 nm). The experimentally determined contour length
increments are, in the absence of ATP, 9.1, 28.6, 7.3, 18.0, 57.9 nm; and, in
the presence of ATP, 9.1, 19.4, 10.1, 7.5, 16.4, 58.3 nm—with an estimated
error of ±2%. The position of the initial peak (24 nm) reflects the mean
length of the TK construct with completely folded domains.

with those obtained from the experiments, taking into account that the former are based
on only two independent simulations. For peak 4, the difference between the simulations
and the experiments is somewhat larger. We speculate that this difference results from
the underlying free energy landscape that, at such partially unfolded conformations,
is shallow and exhibits many barriers of comparable height along various unfolding
directions, such that the pathways followed in the individual trajectories are different.
Such heterogeneity of unfolding pathways is indeed seen from the color-coded unfolding
events in Fig. 3.3B, lower row. A much larger number of trajectories would be required
to thoroughly characterize this region of the energy landscape, which, however, is not the
focus of this work.

In summary, the two histograms agree well both in the presence and absence of ATP
(Fig. 3.4 (dashed lines) and Fig. 3.5), allowing the conclusion that the main unfolding
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3 Force-induced activation of titin kinase

events are correctly described by the simulations.

Next, we investigated which molecular interactions determine the observed force peaks.
For the ATP peak 2*, two strong interactions are seen, a salt bridge from lysine-36 to
the α-phosphate group of ATP, and a contact between methionine-34 and the adenine
moiety of ATP (Fig. 3.3C). Both interactions break irreversibly upon βC3-βC4 rupture,
giving rise to the significantly larger force peak of 270± 39 pN in the simulations with
bound ATP as compared with 188± 13 pN without ATP (Fig. 3B Inset). Notably, in the
AFM experiment, the contour length of 51.6 nm for the ATP peak position (Fig.3.4, peak
2*) also points to a residue close to lysine-36. Moreover, subsequent kinetic experiments
of a mutation of lysine-36 to alanine (K36A) resulted in a dramatic decrease of TK
affinity towards ATP, corroborating the central role of lysine-36 seen in the simulations.
An additional peak is seen at 18 nm for the simulation with ATP present (plus sign in
Fig. 3.3B Top). Here, a force-induced deformation of the N-terminal domain triggers
the transient rupture and reformation of the methionine-34–ATP and lysine-36–ATP
interactions.

Closer structural analysis of our simulations suggests the following sequence of events
(colors in Fig. 3.3A and B, and Fig. 3.4). Peak 1 (Fig. 3.4) is caused by unfolding of
the 23-residue linker at the N terminus of TK, which is not present in the simulations
(see 3.2.2). At peak 2, the autoinhibitory tail is unfolded and removed, rendering the
ATP binding site accessible (region shaded in gray in Fig. 3.3B Bottom). Subsequently,
N-terminal β-sheets βC1-βC2 and βC2-βC3 rupture (regions B and C). For these events,
no force peak is seen in the experiment, because it would fall into the lag time after
force peak 2. Peak 2* described above is dominated by interactions of ATP with the
binding pocket. The truncated construct necessarily lacks part of the autoinhibitory
tail stabilizing the adjacent C-terminal α-helix αR1 in the full-length TK. Accordingly,
αR1 unfolds first in the truncated kinase (Fig. 3.3B Top and Middle, region A) but after
βR1 and αR2 in the autoinhibited kinase (Fig. 3.3B Bottom). Hence, and in agreement
with the complete TK unfolding simulations (Fig. 3.3B Bottom), peaks 3 and 4 are
assigned to unfolding of αC1 and βC4-βC5, respectively (regions D and E). Finally, peak
5 arises from the combined effect of αC2 and αC8 rupture (Fig. 3.3B Bottom). At peak
6, the complete TK is unfolded and stretched. Taking the diameter of the folded TK
into account (5.5 nm), the contour length increment to peak 1 (121 nm) corresponds
to (5.5± 121± 2)nm/0.365 nm= 346± 5 residues, in agreement with the 344 aa of TK
including its N-terminal linker.

38



3.3 Results

Figure 3.5: Barrier positions from AFM experiments and MD simulations in the absence
of ATP. The latter were obtained from the simulations of the complete TK
(321 residues) shown in Fig. 3.3B (lower row). The positions of the force
peaks obtained from the AFM experiments are indicated by the dashed lines.
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3 Force-induced activation of titin kinase

3.4 Discussion

Experimental and simulation results together show that TK can be activated by mechani-
cal stress and, thus, act as a molecular force sensor in the sarcomers of striated muscles. In
the force probe experiments, the activation forces are within the physiological range and,
importantly, lower than the ones unfolding the surrounding titin domains. Small force
imbalances of four to eight myosin motor domains, ≈ 3% of the myosin molecules between
adjacent thick filaments, could thus translate into a physiologically significant signal by
activation of the TK mechanosensor. The molecular dynamics simulations carried out
for this study provided valuable insight into the molecular basis underlying this force
sensor. Using contour plots, we were able to make direct contact with the experimental
force profiles and showed that, despite the neccessarily much higher forces required in the
force-probe simulations, the main events were correctly predicted in the simulation and
that the 2* peak seen in the AFM measurements indeed corresponded to TK interactions
with ATP. Notably, the central residue to this mechanism, Lys-36, which was identified
in the simulations, indeed turned out to be crucial for catalysis; the K36A mutation
subsequently examined was almost devoid of any catalytic activity. The biological impli-
cations of the overall results are manifold and include enhanced understanding of the
consequences of eccentric exercise, and speculations that TK mechano-activation might
constitute a paradigm also for other members of the family of cytoskelatal autoregulated
protein kinases [112].
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4
Chapter 4

Estimating configurational

entropies: The minimally coupled

subspace approach

The work presented here and in the following two chapters was done in close collaboration
with Oliver Lange. None of the work presented in this and the following chapters is
exclusively my work. FCA was developed by Oliver, and its basic concepts are described
in the methods chapter. Oliver also wrote the density estimation program g entropy and
coordinated the project as supervisor-in-charge. I selected the test systems, performed
the simulations, analyzed the data, created the figures and established the third building
block of MCSA, the mutual information expansions introduced later in this chapter and,
in more detail in Chapter 6. This chapter provides an overview on the method and first
applications of all of the modules on biological macromolecules. The density estimation
module and the mutual information expansions are derived and presented in more detail
in the following two chapters.

4.1 Introduction

Entropies are key quantities in physics, chemistry, and biology. While free energy changes
govern the direction of all chemical processes including reaction equilibria, entropy changes
are the underlying driving forces of ligand binding, protein folding or other phenomena
driven by hydrophobic forces. Atomistic simulations, e.g., molecular dynamics, in principle
provide all the information needed for calculating both, free energies and entropies. Yet
calculating entropies from atomistic ensembles {x1, . . . ,xn} of n configurations xi ∈ R3N
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4 Estimating configurational entropies: The minimally coupled subspace approach

of a macromolecule of N atoms remains notoriously difficult. In this chapter, we develop
and apply a method for calculating configurational entropies

Sc ∼ −
�
ρ (x) ln ρ (x) dx, (4.1)

where ρ(x) denotes the configurational probability density ρ(x) = exp(−βV (x))/Zc in
the 3N dimensional configurational space governed by the potential energy V (x). The
fact that N is usually in the order of several hundreds or thousands renders the evaluation
of this integral quite challenging despite a number of attempts [53, 54, 122, 123], which
broadly fall into three classes, (i) special-purpose perturbation type approaches, also
known as thermodynamic integration [124], (ii) step-by-step reconstruction methods, in
particular the scanning procedures introduced by Meirovitch [125, 126], and (iii) direct
approaches which analyse information readily available in standard equilibrium simulation
trajectories [56, 57, 127].

While perturbation approaches provide relatively accurate free energy differences also
for larger systems, accurate entropies are obtained only for smaller molecules. The main
obstacle, which aggravates with system size, is the sampling problem, which severely
limits the accuracy, in particular for explicit solvent models [122]. On the one hand, for
free energy differences, perturbation type approaches exploit cancellation of terms in the
difference of the partition functions of the two states. Thus, it suffices to sample those
degrees of freedom which are affected by the perturbation which are usually few (e.g.
regions around binding sites). If the two states differ substantially, however, sampling
suffers from slow convergence.

For entropy differences, in contrast, the full Hamiltonian contributes to the result,
such that here complete sampling of the full phase space is indeed required [124]. Thus,
perturbation or scanning approaches do not share the same fundamental advantage over
a direct evaluation of the partition sum to obtain entropies as they do for free energy
differences.

Direct approaches, in principle, have additional advantages. First, such methods are,
by construction, independent from finding suitable perturbation pathways between the
states of interest and/or analytical tractable reference states. Furthermore, to gain a
detailed understanding of the molecular mechanisms, one would like to separate various
contributions to the entropy (changes), e.g., side-chain, backbone, or ligands. With direct
methods, all these analyses could be carried out on the same computational ensembles.
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Figure 4.1: Entropy estimates for two selected alkane systems, for dialanine and for the
last β−turn of Protein G. Thermodynamic Integration values (TI ; horizon-
tal solid lines), density estimates without over the whole configurational
space (Direct ; dashed-dotted lines), Full Correlation Analysis (FCA) with
subsequent clustering and density estimation (dotted lines), quasi-harmonic
estimate (QH ; dashed lines) and Mutual Information Expansion values (MIE ;
black circles) were obtained as described in the text. MIE values include
correlation orders 1, 2, and 3, respectively.
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The most widely used direct method is the quasi-harmonic approximation (QH) [56],
which renders the integral Eq. (4.1) separable. Accordingly, the (quasi-) harmonic
entropy Sc,harm =

∑3N
i Sc(i) is given as a sum of entropies Sc(i) of the individual (quasi-

) harmonic modes, which is equivalent to approximating the configurational density
ρ(x) by a multi-variate Gaussian function, ρ(x) = (2π)−3N/2 det A exp

(
−1

2x
TAx

)
with

A−1 = C derived from the covariance matrix [57, 127] C = (n− 1)−1
∑n

i=1 xixT
i .

Using the partition sum of the quantum mechanical oscillator for the entropies Sc(i) of
individual modes, this estimate has been shown to provide a rigorous upper limit of
the true entropy [57]. However, for macromolecules the true configurational entropy is
typically considerably smaller due to coupling of motional modes and anharmonicity,
i.e., multi-modality. Although this problem has already been pointed out quite early
[56, 57], little is known about how large the overestimation actually is. Indeed, model
calculations on systems as the ideal gas [128], Lennard-Jones fluids [128], or small linear
alkane molecules [129], however, reveal drastic differences between the quasi-harmonic
entropy estimates and the actual entropy. For complex macromolecules, this effect must
be expected to be even more pronounced.

4.2 The Minimally Coupled Subspace Approach

Figure 4.1 shows that indeed for various small test systems (alkanes, dialanine and a
complete 14-residue β-turn) the quasi-harmonic approximation severely overestimates
the reference entropy. The reference values were obtained by thermodynamic integration
(TI) gradually perturbing the systems towards an analytically tractable reference state
consisting of non-interacting particles in harmonic wells, as described in methods. Similar
protocols have been used elsewhere [130].

Non-parametric density estimation

Here we develop a direct method consisting of three building blocks that yields improved
upper bounds to the quasi-harmonic approximation. To capture sufficient details of the
configurational density we resort to non-parametric density estimation as the first building
block. The configurational part of the entropy in a d-dimensional space is estimated from
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n configurations according to

Sc =
kB

n

n∑
i=1

ln
nZd (xi) rdi,k
k (xi, ri,k)

,

where k (xi, ri,k) = 〈K (xi, (xi − x) /ri,k)〉x denotes the ensemble average of a locally
adapted kernel function K, whose anisotropy and scaling ri,k depends on the local density
at point xi, and whose L1-measure is denoted by Zd (xi). This formula simplifies to
the well-known k-nearest neighbour entropy (k-NN) by fixing the kernel function to
an (isotropic) sphere whose radius ri,k is chosen such that exactly k configurations
are within the sphere around configuration xi. In this case, Zd is the volume of the
d-dimensional unit sphere. Such k-NN estimators have been shown to be applicable
for up to 10 dimensional configurational space [131]. In contrast, as can be seen in
Fig. 4.1(a–c), locally adapted kernels (c.f. next chaper) yield accurate results even for the
45-dimensional configurational space of dialanine. For the more than 500-dimensional
configurational space of the 14-residue β-turn, however, the ’curse of dimensionality’
[132] renders it impossible to improve on the quasi-harmonic approximation with direct
density estimation alone.

Full Correlation Analysis

Thus, as the second building block of our method, we apply an entropy invariant
transformation T such that the usually highly coupled degrees of freedom separate into
optimally uncoupled subspaces each of which being sufficiently small to render non-
parametric density estimation applicable. As the most straightforward class of entropy
invariant transformations, we consider here linear orthonormal transformations of the
form y = Tx, with det T = 1. More general transformations are explored elsewhere [133].
Here we apply Full Correlation Analysis (FCA) [97] which minimizes mutual information
by considering

H [T] = −kB

`

3N∑
i=1

�
ρ

(1)
i (yi) ln ρ(1)

i (yi) ,

where yi denotes the components of y = Tx and ρ
(1)
i (yi) = `3N−1

�
ρ(y)dyj 6=i the 1-

dimensional marginal density along yi. This procedure minimizes non-linear correlations
of second and higher order [97] and therefore improves on principal component analysis
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(PCA) which only considers linear correlations of second order. For complex macro-
molecules, even for the optimal linear transformation T, considerable correlations between
several degrees of freedom will remain and cannot be neglected. To address this issue, the
FCA modes are subsequently clustered according to the generalized correlation coefficient

rMI,ij =
(

1− exp
[
−2I(2)

i,j

])1/2
,

with the mutual information

I
(2)
i,j = H

(1)
i [T] +H

(1)
j [T]−H(2)

i,j [T]

= −kB

`

�
ρ

(2)
i,j (yi, yj) ln

ρ
(2)
i,j (yi, yj)

ρ
(1)
i (yi) ρ

(1)
j (yj)

between components yi and yj . This is achieved by assigning mode indices j to m clusters
Cs such that all modes with correlation coefficients larger than a certain threshold θ are
assigned to the same cluster. This disjoint clustering defines an approximate factorization
ρ (y) ≈

∏m
s=1 ρ

(ds)
s

(⊗
j∈Cs

yj

)
, where ρ

(ds)
s denotes the generalised ds−dimensional

marginal density along
⊗

j∈Cs
yj . This factorization is approximate in the sense that for

the entropy

S [ρ (y)] =
m∑
s=1

S

ρ(ds)
s

⊗
j∈Cs

yj

+ Sres

[
{Cs}s=1,...,m

]
the residual entropy Sres

[
{Cs}s=1,...,m

]
is small.

Such approximate factorization, of course, neglects the inter-cluster pairwise correla-
tions as well as higher-order correlations. We therefore have to assume that our threshold
criterion also serves to eliminate higher-order correlations between clusters. This assump-
tion is supported by the observation that for the alkanes and dialanine, where θ = 0.025,
Sdir ≈ SFCA (where Sdir is a direct density estimate over the whole configurational space
without further subspace clustering; cf. Fig. 4.1a–c), i.e. that our factorization yields
accurate entropies and Sres is indeed small.
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Mutual Information Expansion (MIE)

However, for larger molecules, the necessarily small threshold typically results in at least
one cluster that is too large (e.g. for the β-turn d1 = 108) for a sufficiently accurate
density estimate. Accordingly, while our factorization does improve the entropy estimate
(c.f. Fig. 4.1d) still Sresidual cannot be neglected anymore. The third building block of
our method addresses this issue by subdividing each oversized cluster into hs disjoint
subclusters D(s)

i of sizes ds1, . . . , d
s
hs
< 15, Cs =

⋃hs
i=1D

(s)
i , irrespective of the necessarily

remaining strong correlations between these . The residual entropy contributions to the
configurational entropy

S [ρ (y)] =
m∑
s=1

hs∑
a=1

S

ρ(ds)
s

 ⊗
j∈D(s)

a

yj




+
m∑
s=1

Sres

[{
D(s)
a

}
a=1,...,hs

]
+ Sres

[
{Cs}s=1,...,m

]

will be drastically increased due to non-neglegible intra-cluster contributions Sres

[{
D

(s)
a

}
a=1,...,hs

]
from all subdivided clusters Cs, where we have omitted the argument ρ in the rightmost
two terms for brevity. We here propose to compute each Sres

[{
D

(s)
a

}
a=1,...,hs

]
via the

mutual information expansion (MIE) as

Sres

[{
D(s)
a

}
a=1,...,hs

]
= −

∑
a<b

I
(ds

a+ds
b)

2 [ρa,ρb] +

∑
a<b<c

I
(ds

a+ds
b+ds

c)
3 [ρa, ρb, ρc]− . . . (−1)hs+1Ihs [ρa, . . . , ρhs ],

where ρa ≡ ρ(da)
(⊗

j∈D(s)
a
yj

)
. Expanding the mutual information terms

I
(
Pk

1 da)
k [ρ1, . . . , ρhs ] =

k∑
a=1

(−1)a+1
∑

i1<···<ia

S[ρi1 , . . . , ρia ],

up to second or third order, respectively, with the right-hand sum running over all possible
permutations {i1, . . . , ia} ∈ {1, . . . , k}, has proven sufficiently accurate in liquid state
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theory [134, 135]. Indeed, for the β-turn, inclusion of the remaining correlations via
this expansion improved the entropy estimate to near agreement with the TI reference
(Fig. 4.1d).

We note that previous attempts to apply MIE to macro-molecular systems have failed
[136, 137] due to combinatorial explosion and slow convergence. Here, this problem is
solved by clustering into < 15-dimensional subspaces which minimizes these correlations
and delays the onset of combinatorial explosion. This criterion also guarantees that even
for the third-order MIE no direct density estimates beyond the critical dimensionality
ds = 40 are required.

Application to Biomolecules

Together, these three building blocks should enable one to calculate configurational
entropies even for larger biomolecules. As an example of biological relevance, the 146-
residue globular protein calmodulin was considered for which scanning or perturbation
methods do not converge. Calmodulin (CaM) is a calcium regulated protein (Fig. 4.2)
which binds up to four calcium ions (yellow) under physiological conditions. Only the
calcium bound structure binds many different peptide binding partners with high affinity.
As no direct interaction of calcium with the peptide binding partnes occurs, lowering the
configurational entropy of the free (but calcium bound) calmodulin has been suggested
as a possible regulation mechanism. To test this idea, we carried out molecular dynamics
(MD) simulations using OPLS-aa full-atom force-field [64] and the TIP4P explicit solvent
model [63]. After 10 ns equilibration at 300 K, started from the 1.0 Å resolution crystal
structure including calcium ions (pdb code 1EXR) [138], the required ensemble was
extracted from a subsequent 78 ns simulation run. Additionally, the structure of the
calcium-free calmodulin was modelled by equilibrating the same crystal structure in
absence of Ca for 80 ns. The good agreement of CaM structures with the calcium-free
NMR ensemble (pdb code 1CFC) [139] corroborates that the relaxation was complete.
A subsequent 88 ns simulation served to generate an equilibrium ensemble. From both
ensembles, entropies were calculated according to the method described above.

FCA was conducted on the first 2500 modes of both systems (Fig. 4.2, indicated as
grey-shaded area), whereas the remaining modes were considered sufficiently close to
harmonic to allow a simple QH-estimate of their entropic contributions. For the calcium-
bound state, sufficiently small subspaces ds < 40 were obtained, and density estimation
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4.2 The Minimally Coupled Subspace Approach

Figure 4.2: Minimally coupled subspace approach (MCSA) entropies for holo (red) and
apo (black) calmodulin (CaM) and comparison with the respective QH esti-
mates. The MCSA scheme was applied to the first 2500 modes (grey area).
FCA: Full correlation analysis was carried out for the first 2500 modes, cor-
related modes were clustered as described in the text, and non-parametric
density estimates were obtained. MIE: Additionally, MIEs (circles) were
applied to this subset for each oversized cluster. QH: For comparison, the
QH estimate is also given. White area: For the remaining high-frequency
modes, the QH estimates were used and added to the MCSA estimates of the
first 2500 modes. QH: QH-estimate, FCA: sum of density estimates of each
minimally coupled subspace.
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was carried out on each of them, thus lowering the total entropy by 0.4 kJ (mol K)−1

compared to the QH estimate. If, nevertheless, MIE (hs = 12) is applied, a similar
behaviour as for the smaller test systems discussed above is seen. In particular, also for
CaM the fact that the 3rd order MIE recovers the FCA value confirms that truncation
after the 3rd term provides accurate entropies also for larger systems. For the calcium-free
state, in contrast, one oversized cluster of 96 modes remains; accordingly, and as expected,
MIE improved the result further by 1.2 kJ (mol K)−1, which is 1.5 kJ (mol K)−1 lower
than the QH approximation.

Both QH and MCSA consistently predicted a marked entropy drop upon calcium
binding. However, MCSA yields a markedly smaller entropy drop of 1.25 kJ (mol K)−1

compared to the QH value of 2.41 kJ (mol K)−1, thus underscoring that inclusion of both
non-linear and higher-order correlations are crucial.

To compare to experiment, we consider calorimetric experiments that report [140]
an entropic gain of 387 ± 30 J (mol K)−1 upon binding of the four calcium ions. This
value includes calcium desolvation and binding contributions of 404 ± 2 J (mol K)−1

leaving a nearly zero contribution of −17± 38 J (mol K)−1 due to protein structure and
dynamics. To compare this value with our calculations, the molecular surface change of
∆MS = −9.85 nm2 needs to be considered, which implies an entropy change [141, 142] of
roughly [143] γ = 96.3 J (mol K)−1nm−2, i.e. ∆Ssolv = 950±240 J (mol K)−1, where the
large error accounts for the large surface fluctuations observed in the simulations. From
our MCSA result, −280± 240 J (mol K)−1 ≈ 0 is obtained, i.e. a nearly complete entropy
cancellation within the error, in agreement with the experiment. This result suggests that
calcium binding causes a substantial but free-energy-neutral transfer of configurational
entropy into solvent entropy, thereby activating CaM for substrate binding. Quite a
different picture would be provided by the QH approximation, which yields an entropy
change of −1460± 240 J (mol K)−1, thereby clearly overestimating the effect of entropy
reduction.

From a different perspective, correcting the calorimentric values by the solvent contribu-
tions, an experimental range of −970±280 J (mol K)−1 is obtained (Fig. 4.2 right), which
favourably compares with the MCSA result of −1250 J (mol K)−1 but not with the QH
value of−2410 J (mol K)−1. A similar factor two overestimation of the QH approximation
is seen for insulin between different protonation states [144].
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Conclusion

We conclude that inclusion of non-linear and higher-order correlations as well as of anhar-
monicities is indispensable for computation of macromolecular configurational entropies.
The method developed here circumvents the curse of dimensionality and accounts for
these effects even for the huge configurational space spanned by proteins. For calmodulin,
our method proved sufficiently accurate to correctly describe the fine-tuned entropy
balance that governs its physiological activation. While the MIE expansion up to third
order proved accurate in the studied systems, convergence issues are discussed in more
detail in Chapter 6. FCA dominates the computational costs, which become demanding
for over 2500 modes. Finally, our approach can serve to decompose the configurational
entropy into individual contributions, e.g. from side chains or the backbone.
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5
Chapter 5

Adaptive kernels for

non-parametric estimation of

configurational entropies of

macromolecules

For accurate entropy calculations of biological macromolecules, it turns out that the
hierarchical approach introduced in the last chapter requires accurate density estimates
for up to 50 dimensions. However, current density estimators have been shown to yield
accurate results for only up to 10 internal degrees of freedom, whereas failure was reported
for a molecular system with 23 internal degrees of freedom[131]. In this chapter, a density
estimator is therefore developed, which can be used in the hierachical approach.

To derive the density estimator, note that the intricate mix of stiff and soft degrees of
freedom [145] typically found in macromolecules such as proteins yields a configurational
density that is threaded, i.e., the density is extended in spatial directions that correspond
to “soft” degrees of freedom, whereas it is confined to thin regions of space in the “stiff”
directions. Accordingly, the established methods which average over isotropic regions
in space will considerably blur this density thread locally perpendicular to the thread.
It will be shown here that non-parametric entropy estimates are considerably improved
by using elliptic kernels which are locally adapted to the threads in the configurational
density. Because, still, the neccessary local averaging will give rise to remaining blurring,
the latter will be corrected for by an empirical correction term parameterized by the
average volume of the used kernel. Finally, generalizing the quasi-harmonic Schlitter
formula [57], the quantum mechanical nature of the stiffest degrees of freedom will be
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accounted for. To this aim, a size limit to each principal axis of the elliptic averaging
kernel is employed here to ensure that each direction in space receives at least a blurring
or uncertainty that prevents the occurrence of negative entropy contributions (see theory
section).

5.1 Theory

5.1.1 Thermodynamic entropy

We first sketch the conceptual framework to clarify notation. The molecular dynamics of
an isolated macromolecule with N atoms is described by the Hamiltonian

H(x,p) =
1
2

3N∑
i=1

p2
i + V (x),

where x and p, are the mass-weighted 3N -dimensional position and momentum vectors,
respectively. Their cartesian components xi and pi are related to the non-mass weighted
components x̃i and p̃i by xi = m

1/2
i x̃i and pi = m

−1/2
i p̃i, respectively, where mi denotes

the mass of the respective atom. The entropy of the system is given by

S =
〈H〉
T

+ kB lnZ,

where the angular brackets 〈.〉 denote an ensemble average, T the temperature, and Z is
the classical partition function

Z =
1
h3N

�
e−βHdpdx ,

with h being Planck’s constant, and β = 1/kBT .

For conservative systems, Z separates into two dimensionless factors, Z = ZpZx, with

Zp =
1
κ3N

(
2π
β

)3N/2

and

Zx =
1
`3N

�
e−βV (x)dx .

Here, we have defined a convenient characteristic length ` = 1 nm u1/2 and, similarly,
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κ = h/`. Accordingly, the entropy of the system falls into a kinetic and a configurational
part,

S = Sp + Sc ,

with

Sp = 3NkB

(
1 + ln 2π/κ2β

)
/2 and (5.1)

Sc =
〈V (x)〉
T

+ kB lnZx .

Using the configurational density ρ (x) = exp (−βV (x)) /Zx we express the configura-
tional entropy as

Sc = − kB

`3N

�
ρ (x) ln ρ (x) dx, (5.2)

which closely resembles Shannon’s information entropy.

5.1.2 Quasi-harmonic approximation

To estimate Sc from a given (finite) ensemble of structures {x} obtained, e.g., from a
molecular dynamics or Monte-Carlo simulation, the quasi-harmonic approximation is
commonly used, where

ρ(x) ≈ ρ̃ (x) = exp
[
−1

2
(x− 〈x〉)TC−1 (x− 〈x〉)

]
,

and C denotes the covariance matrix

C =
〈

(x− 〈x〉) (x− 〈x〉)T
〉
.

In this approximation the configurational density factorises,

ρQH (y) =
3N∏
i=1

ρi (yi) , (5.3)

with marginal densities ρi (yi) ∝ exp
(
−βy2

i /2λi
)
, where y = T (x− 〈x〉) are the principal

coordinates derived from diagonalisation of C, i.e. TTCT = diag (λ1, . . . , λ3N ). Using
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Figure 5.1: Principle of kernel density estimation with Gaussian kernels. Other kernels
were also tested. A, the configurational space density ρ(x) vs the local
kernel approximation at sample points xi, indicated as black dots. B, the
configurational space density is approximated as sum, ρ̂(x), of locally constant
densities of Voronoi cells, ρ̂(xi), around xi.

the orthonormality of T, and combining Eqs. 5.1 and 5.2, the quasi-harmonic entropy
estimate,

SQH =
1
2
kB

3N∑
i=1

ln
[
e2λi
β~2

]
, (5.4)

is obtained.

We note that this estimate holds only for the molecular frame, with rigid body motions
properly removed. Eq. 5.4 has been elegantly generalised to account for the quantum
mechanical nature of the vibration of stiff degrees of freedom [57],

Sqm,harm =
1
2
kB

3N∑
i=1

ln
(

1 +
e2

β~2
λi

)
. (5.5)

This approximation, which will be used below, in particular avoids divergencies for
λi → 0, which is an artifact of the classical treatment, Eq. 5.4.
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5.1.3 Locally adapted non-parametric entropy estimation

We will use this framework to develop a locally adapted non-parametric density estimation
based on the k-nearest neighbour density estimate of n sample points {x} which we will
apply to d ≤ 3N dimensions,

Ŝk =
kB

n

n∑
i=1

ln
nπd/2rdi,k

kΓ
(

1
2d+ 1

)
`d

. (5.6)

Here, ri,k is the Euklidean distance between the sample point xi and its k-nearest neigbour,
and Γ denotes the Gamma function.

The k-NN estimator rests on the straightforward assumption of the local density at
sample point xi

ρk(xi) ≈
k`d

nVd (ri(k))
, (5.7)

where Vd (ri,k) denotes the volume of the d-dimensional sphere with radius ri(k) which is
chosen such that the d-dimensional sphere centered at xi contains k sample points.

5.1.3.1 Soft degrees of freedom

A generalisation of Eq. 5.6 to arbitrary kernel functions K for given k and for each point
xi is obtained by requiring σi,k to be chosen such that

k =
n∑
j=1

K

(
xi − xj
σi,k

)
. (5.8)

This yields a potentially improved local (smoothed) density estimate at xi,

ρ(xi) ≈ ρk (xi) =
k`d

nσdi,kZd
, (5.9)

where Zd = `−d
�
K (x− xi) dx. The probability density distribution ρ(x)is then approx-

imated as a sum of these local densities (Fig. 5.1 B),

ρ (x) ≈ ρ̂ (x) :=
n∑
i=1

θi (x− xi) ρk (xi) ,
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where the Voronoi function θi is unity for all x that are closer to xi than to any other xj ,
i 6= j, and zero otherwise. This approximation dissects the entropy integral, Eq. 5.2,

Sc ≈ −kB

�
ρ̂ (x) ln ρ̂ (x) dx

≈ −kB

n∑
i=1

ln ρ̂ (xi) ,

�
ρ (x) log ρ (x) dx = ρk (x) log ρk (x) /ρk (x) /n

where the volume of the Voronoi cells was assumed to be given by the inverse local
density.

Accordingly, the entropy contribution from the d considered degrees of freedom is
estimated by

Ŝg-NN =
kB

n

n∑
i=1

log
nZdσ

d
i,k

k`d
+

d

3N
Sp, (5.10)

which generalises Eq. 5.6 and, thus, may be denoted in the following as g-NN. The k-NN
formula is recovered by using the rectangular and isotropic kernel function

Kk-NN

(
xi − xj
σi,k

)
=

1 ‖xi − xj‖ ≤ 1

0 otherwise

and setting σi,k = ri,k , since for this kernel Zd = Vd(1).

The Gaussian function framework underlying the quasi-harmonic approach sketched
above suggests to use instead a Gaussian kernel [79]

K (x) = exp
(
−
∥∥x2

∥∥) . (5.11)

However, as illustrated in Fig. 5.2, for such isotropic kernels, the approximation Eq. 5.10
tends to fail for the thin “threads” typically encountered for the configurational density
of biological macromolecules, i.e. where the width of the “thread” is smaller than the
average distance between adjacent sample points (A). To address this issue, we propose
to locally adapt the kernel function to the stiff degrees of freedom using for each xi
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BA

Figure 5.2: Isotropic vs. locally adapted anisotropic kernels. For threaded configurational
space densities (sampled by the black dots), isotropic kernels (A) fail to provide
accurate density approximations. In contrast, locally adapted anisotropic
kernels (B) improve the approximation particularly perpendicular to the
threads.

anisotropic Gaussian kernels (B),

Kloc,gauss (x) = exp
[
−1

2
(x− xi)

T A (x− xi)
]
, (5.12)

with

A−1 = C =
1
k

k∑
i=1

(x− xi) (x− xi)
T ,

given by the covariance matrix C and the sum runs over the k nearest neighbours of xi.
Elliptic hard kernels are obtained analogously

Kloc,ell (x) =

1
∥∥∥(x− xi)

T A (x− xi)
∥∥∥ ≤ 1

0 otherwise
. (5.13)

5.1.3.2 Stiff degrees of freedom — Quantum correction

The locally adapted anisotropic Gaussian kernels naturally define stiff degrees of freedom
in a canonical way. For those, it is possible to obtain physically appropriate quantum
corrections. The classical treatment of the stiff degrees of freedom yields unphysical
entropies by allowing unlimited sharpness of the “threads”. In contrast, the Schlitter
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formula, Eq. 5.5, effectively requires stiff degrees of freedom to assume density distributions
of a minimal width σqm = β~2/e2. Schlitter’s treatment can be generalised to arbitrary
densities by computing the entropy from

ρσ (x) =
�
ρ(x)K(y − x/σqm)dy, (5.14)

rather than from the true density ρ(x), where K(y) denotes a d-variate smoothing kernel
of unit width. Applying this convolution to the quasi-harmonic density Eq. 6.9 with a
Gaussian smoothing kernel K (Eq. 5.11) of width σqm yields a smeared out multivariate
Gaussian density whose widths are given by λi+σqm. Accordingly, one retrieves Schlitter’s
formula, Eq. 5.5.

In contrast to Schlitter’s treatment, our generalisation also holds, e.g. for a bimodal
density of two non-overlapping Gaussian functions,

ρ(x) =
`

2ε

√
1

2π

[
exp

(
−(x− x0)2

2ε2

)
+ exp

(
−(x + x0)2

2ε2

)]
,

with x0 � ε. Convolution according to Eq. 5.14 yields the entropy S (ε) = kB ln 2
for ε→ 0, demonstrating that this generalisation yields meaningful results beyond the
quasi-harmonic approximation.

The smoothing inherent to the locally adapted kernel density estimation simultaneously
provides an approximate and canonical treatment of the stiff degrees of freedom. Accord-
ingly, we restrict the width σj,i of the g-NN smoothing kernel i in the local direction j to
σqm by σj,i,qm = max (σi,j , σqm), where the minimal width is set to

σqm =
π~2β

eZ
2/d
d

,

such that if σi,k = σqm,

Ŝg-NN=
kB

n

n∑
i=1

ln
n

k
.

Thus, Ŝg-NN → 0 for k → n, in the special case that the density is concentrated within a
single region below the quantum resolution limit and Ŝg-NN = kB logM if the density is
distributed equally between M non-overlapping areas in phase space that are all narrower
than the quantum resolution limit.
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5.1.3.3 Empirical Smoothing Correction

A correction for the smoothing of the configurational density implied by the convolution
with the g-NN Gaussian kernel functions within our Gaussian nearest neighbour approx-
imation was derived from Eq. 5.4. Inverting Eq. 5.4 yields an effective width λeff of a
hypothetical isotropic d-dimensional Gaussian density function that would correspond to
a given entropy S,

λeff,qh =
~2β

e2
exp

(
2
dkB

S

)
,

A deviation of the entropy estimated by the g-NN method SgNN from the true entropy
S can thus be expressed as ∆λ = λeff,qh − λeff,gNN. Convolution of a Gaussian density
with a kernel function of width σ results in a density of width λeff,qh + σ. We therefore
assume a functional relationship of ∆λ with the average kernel width σ̄. To test this
hypothesis in high-dimensional space, we generated multi-variate Gaussian densities with
varying widths. The corresponding entropy was computed analytically and compared to
SgNN. We found for the used set of test-functions a good approximation to ∆λ by the
linear relationship ∆λ = mmax (0, σ̄ − σqm) + b, where

m = −1.015× 10−3d+ 0.079

b = −5.4× 10−8d+ 8.5× 10−7 .

Thus, a corrected entropy is given by

Scorr =
dkB

2
ln
[
e2

~2β
(λeff,gNN + ∆λ)

]
.

Because of all functions with given variance, the Gauss function has the largest entropy,
Scorr is guaranteed to provide an upper bound for the true entropy.

5.2 Methods

5.2.1 Simulation setup

The test systems butane to decane and dialanine, which were compared with a thermo-
dynamic integration reference (see below) were set up as follows. Force-field parameter-
izations were obtained from the Dundee Prodrug server [146] based on the GROMOS
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united-atom force field [65]. Stochastic Dynamics simulations were performed using the
molecular simulations package GROMACS [113] in vacuo with friction constant γ set to
10, dielectric constant ε = 1, integration step size of 0.0005 ps and no bond constraints.
Positional restraints were applied to three adjacent terminal heavy atoms.

The coldshock protein (protein database entry 1CSP) was simulated using the OPLS
all atom force field [64] and periodic boundary conditions. NpT ensembles were simulated,
with the protein and solvent coupled separately to a 300-K heat bath (τ = 0.1 ps) [69].
The systems were isotropically coupled to a pressure bath at 1 bar (τ = 1.0 ps) [69].
Application of the Lincs [31] and Settle[30] algorithms allowed for an integration time
step of 2 fs. Short-range electrostatics and Lennard–Jones interactions were calculated
within a cut-off of 1.0 nm, and the neighbour list was updated every 10 steps. The particle
mesh Ewald (PME) method was used for the long-range electrostatic interactions [72],
with a grid spacing of 0.12 nm.

5.2.2 Reference entropies by Thermodynamic Integration

Absolute free energies for the test systems butane to decane and dialanin were calculated
by thermodynamic integration (TI). No reference values were obtained for the cold
shock protein (CSP), because the system is too large for the TI to converge. Simulation
parameters were as discussed above. The TI scheme we have chosen to obtain the
Helmholtz free energy A of the fully interacting particles consists of two phases (also shown
in Fig. 5.3). Harmonic position restraints with a force constant k = 25000 kJ/mol/nm2

were slowly switched on for each atom in the first phase, and in the second phase all
force-field components were gradually switched off. The system then consisted of non-
interacting dummy particles with mass m oscillating in their respective harmonic position
restraint potentials, i.e.,

V =
1
2
k

N∑
j=1

(x− xj)2 .

The free energy of this harmonic system can be obtained analytically,

A0 = −β−1 3
2

N∑
j=1

[
log

(
1

~2β2k̃j

)]
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Particles with interactions

Particles with interactions

in harmonic restraints

Particles without interactions

in harmonic restraints: A
0

DA
1

DA
2

Figure 5.3: Thermodynamic integration scheme used for obtaining reference entropies.
Grey circles depict interacting particles, white circles non-interacting particles,
zig-zags represent chemical bonds, and local harmonic potentials are sketched
as parabolas. Partial charges were removed in a separate step not illustrated
here. A similar scheme has been used by Tyka et al [130].

where k = k̃/mj denotes the mass-weighted force constant. Hence, the thermodynamic
integration yields the absolute free energy

A = A0 −∆A2 −∆A1

and the entropy by S = (A − 〈V 〉)/T , where 〈V 〉 denotes the ensemble average of the
potential energy.

For the TI between the systems given by Vs (start) and Vf (end), 18 intermediate
steps Vi(λ) = λVs + (1− λ)Vf , i = 1, . . . , 18 were used, and the intermediate values of
λi = 0, 1e-6, 5e-6, 1e-5, 5e-4, 1e-4, 1e-3, 1e-2, 2e-2, 3e-2, 5e-2, 7e-2, 9e-2, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1 were distributed unevenly to obtain approximately balanced ∆Ai
values. For each value of λ a trajectory of 125 ns was generated.
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Figure 5.4: Left, synthetic test 2D density whose entropy, 97.8J K−1 mol−1, was computed
numerically by integrating on a grid. Right, 5000 points drawn according to
this density function were used to estimate an entropy of 97.2 J K−1 mol−1.

5.2.3 Efficient implementation

To compute the entropy via g-NN (Eq. 5.10) as described is computationally more
expensive than for k-NN (Eq. 5.6), because to solve Eq. (5.8) until convergence requires
a large number of iterations. Note, however, that the density estimate Eq. 5.9 is for
all practical purposes invariant for small changes of k, because both k and σi,k appear
in Eq. 5.9 and scale similarly. Accordingly, convergence of k to 10% was considered
sufficient to achieve accurate results, thus drastically reducing computational cost to a
level similar to k-NN.

The kd-tree implementation of the nearest neighbour library ANN[147] has been used
for fast look-up of the neighbouring sample points xj with rij < rc.

5.3 Results and Discussion

5.3.1 Example: Simple density distributions

In a first step, our non-parametric entropy estimation was tested with synthetic probability
density distributions whose entropy is accessible either analytically (e.g., Gaussians) or
through grid-based numerical approximation (e.g., densities in 2- and 3- dimensional
space). Figure 5.4 shows one of several test densities which were designed to exhibit
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Figure 5.5: Effect of the empirical smoothing correction described in the text. Top:
Systematic overestimation seen as deviations from the diagonal. Black crosses:
uncorrected values; grey circles: corrected values. Bottom: The same data as
a function of dimensionality.

typical features, e.g. a curved “thread”, also seen in the configurational densities of
macromolecules. All reference entropies were reproduced by the estimator to within
1 J K−1 mol−1 or better (results not shown). A similar test density was studied in three
dimensions, as well as 42-dimensional checkerboard-like densities.

As a more challenging, high-dimensional test, and aiming to assess the empirical
smoothing correction derived above, we considered Gaussian densities ranging from 12 to
42 dimensions. Fig. 5.5a shows reference entropies Sref versus values obtained from our
density estimator, both with (black) and without (grey) empirical smoothing correction.
Fig. 5.5b shows the same data as a function of dimensionality. As can be seen, the
correction improves the obtained entropy values considerably and provides accurate
values independent of dimensionality. In contrast, the uncorrected values systematically
overestimate the entropy with increasing dimension. This overestimation is due to the
smoothing effect described in Section 5.1.3.3, which, due to increased surface effects
aggravates with increasing dimensionality.
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System N ATI H STI Sdir Snc Siso SFCA clust SQH

Butane 4 -34 39.8 184 187 191 201 194 5 217
Pentane 5 -48.4 51.3 249 250 256 281 255 8 307
Hexane 6 -63.6 60.7 311 317 327 373 321 11 404
Heptane 7 -77.1 72.5 374 387 403 476 393 13 499
Octane 8 -95.4 81.3 441 448 469 575 455 15 617
Nonane 9 -111.1 89.5 501 525 553 687 529 19 711
Decane 10 -128.6 101 540 592 598 827 624 21 808

Dialanine 15 -66.4 144.4 527 550 610 — 549 32 893
CSPbb 201 — — — 3081 2717 43 3081

Table 5.1: Detailed test results for all alkanes ethane – decane, dialanine, 12-residue beta
turn and the backbone of a coldshock protein (pdb code 1CSP). Herein: ATI:
absolute free energy from TI (in kJ/mol); H internal energy (in kJ/mol);
STI: absolute configurational entropy obtained from TI (in J/mol/K); Sdir:
direct adaptive kernel density enstimation without any subspace clustering;
Snc: like Sdir but without smoothing correction (cf. methods); Siso: direct
isotropic kernel density estimation without any subspace clustering; SFCA:
sum of density esimates after subspace clustering; clust: size of largest cluster;
SQH : entropy estimate according to quasi-harmonic approximation.

5.3.2 Example: Alkanes

We next applied our estimation method to a number of more realistic molecular test
systems. Here, the accuracy of the estimate may be affected by two sampling effects; first,
insufficient simulation sampling due to unvisited configurational space regions, second,
locally too sparse sampling, which affects the accuracy of the NN density estimates.
These two sampling effects are largely independent; whereas the sparse sampling problem,
also called the “curse of dimensionality” [132], aggravates with increasing dimensionality
and is largely independent of the particular system studied, the simulation sampling
problem will depend on the size of the accessible configurational space as well as the
slowest relaxation times of that system. Consider, for example, a single harmonic well.
Whereas there is no simulation sampling problem for high-dimensional wells, NN-density
estimations will inevitably suffer from sparse sampling for high-dimensional wells — a
problem which, due to the regularisation assumptions, is much less pronounced for the
quasi-harmonic approximation.

As test systems we chose (i) n-alkanes ranging from butane to decane, as a model of
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protein sidechain behavior, and (ii) dialanine, as a minimal model for a protein backbone.
The flexible worm-like shape of alkanes is likely to aggravate the two sampling problems
discussed above sufficiently to explore the limits of our density estimator.

To obtain reference entropy values for these systems, a thermodynamic integration
scheme was used which gradually perturbed the systems towards an analytically tractable
state consisting of non-interacting particles in harmonic wells, as described in methods,
Section 5.2.2. In each case, convergence was reached (data not shown).

The seven n-alkanes ranging from butane to decane were described by a united atom
force-field, such that the systems comprised four to ten atoms, respectively. Fig. 5.6
shows the entropies obtained with density estimation for these systems (cf. also Table 5.1)
as well as the reference obtained by thermodynamic integration and the QH entropy for
comparison. Each of the listed density estimates has been obtained by averaging five
independent trajectories. As can be seen, the QH entropy (dashed line) overestimates
the configurational entropy by a wide margin for all systems (15− 50%). The adaptive
kernel density estimation, in contrast, yielded considerably improved results. For butane
to octane, a deviation below 3 % from reference was achieved. For the largest alkanes
considered, nonane and decane, a slightly reduced accuracy of 5% and 14%, respectively,
was obtained.

It is instructive to consider the density estimation results for the conventional isotropic
kernels, Siso, also listed in Table 5.1. Here, apparently due to the “curse of dimensionality”
[132], drastic overestimates are seen for all alkanes. For butane (12 degrees of freedom)
the entropy is overestimated by 9%, and for decane performs even worse than the QH
approximation.

This result shows that it is the locally adapted anisotropic kernels (ellipsoids rather
than spheres, whose principal axes are determined from the local density by a principal
component analysis, c.f. Methods), which provide the observed accuracy. Anisotropic
kernels according to Eq. 5.13 rather than according to Eq. 5.12 turned out to yield more
accurate results (data for the latter not shown).

As can also be seen in the figure, the smoothing correction, which reverts the inevitable
blurring during the averaging process of the density estimation (cf. Methods), markedly
improved the density estimates.

The inset of Fig. 5.6 highlights the convergence behaviour of the locally adapted kernel
estimates for alkanes with increasing simulation length. Clear convergence is seen for
all alkanes up to octane, i.e. up to 24-dimensional densities. Whereas for these alkanes,
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Figure 5.6: Entropies for the n-alcanes from butane (N=4) to decane (N=10) at 400 K.
The entropies shown correspond to the columns of Table 5.1 and are defined
in the respective caption. The errors of respectively Sdir, Snc, Siso and SFCA

were below 0.23 J mol−1K−1 in all cases and not shown in the figure, since
they are smaller than the symbols. The inset shows the same data as the
relative derivation to the reference TI value, indicating convergence behaviour.

500.000 sample points sufficed for an accurate density estimate, 5.000.000 were required
for nonane, and even more for decane, where sufficient sampling was not reached. In all
cases, four sample points per picosecond simulation time were recorded. Although it is
unclear at this point whether this lack of convergence is due to insufficient sampling of
the simulation or the “curse of dimensionality” due to sparse sampling described above,
the high flexibility of decane suggests the former. In the next section, we will address
this question by considering a less flexible, but larger system.

5.3.3 Example: Di-alanine

Dialanine, as a minimal model of a protein backbone comprising 45 dimensions (15
united atoms), served as our largest test system. The molecule was simulated with
implicit solvent at temperatures 300 K and 400 K using a united-atom force field. Fig. 5.7
shows entropies Sdir and SQH obtained for simulation lengths ranging from 100 ps to
500 ns. The TI reference entropy is shown as a horizontal line. Similarly as seen above
for the alkanes, the QH entropy SQH overestimates the TI reference. Interestingly, and
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in contrast to the other estimates, the QH-estimate increases with the length of the
simulation. As a consequence, the longest trajectory (500 ns) yields the most inaccurate
result with an error of 250%. We attribute this peculiar behaviour to a decreasing quality
of the harmonic approximation with increasing complexity of the sampled configurational
space. In contrast, the entropy obtained with density estimation Sdir converges towards
the correct value with increasing simulation length. For the 500 ns simulation, the TI
reference is reached to within 4.0% for 400 K and 18% for 300 K, respectively.
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Figure 5.7: Calculated dialanine entropies vs. number of used sample points. The entropy
labels shown are those defined in Table 5.1.

Again, density estimates from isotropic kernels provided even worse results than the
QH estimate in all cases. Further, compared to the alkanes, the smoothing correction
improved density estimates to an even larger extent; and the uncorrected estimates
overestimated the reference by 16% for 400 K and 33% for 300 K, respectively.

This result corroborates the previous observation that the achieved accuracy was mainly
due to the locally adapted anisotropic kernels. Moreover, even though the dimension
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of the configurational space of dialanine is almost twice as large as that of nonane, the
obtained accuracy is similar despite the fact that ten times less sample points were
used for dialanine. Apparently, the curse of dimensionality is not yet severe here, thus
underscoring the robustness of the locally adapted anisotropic kernels even for high
dimensionality. A second conclusion is that, as expected, lack of simulation sampling
limited the accuracy of the decane entropy estimates. This interpretation is further
supported by the fact that more accurate estimates are obtained for the high temperature
simulations, which are likely to provide enhanced simulation sampling, but sparser local
sampling. In this sense, alkanes proved to be particular hard test systems.

5.3.4 Application: Coldshock protein

The previous sections established that locally adapted anisotropic kernel density estima-
tion is very well feasible in configurational space of up to 45 dimensions. Although this
is still far from the high dimensionality typically found for biological macromolecules,
it holds the promise to provide the missing building block for a reliable application of
the independent subspace framework (MCSA) derived in the previous chapter. Briefly,
full correlation analysis [97] (FCA) is used to obtain nearly independent orthogonal
configurational subspaces, which allow to approximately factorise the configurational
space density. Subsequently, locally adapted anisotropic kernels are used to estimate the
entropy contributions for each of these subspaces.

To test the feasibility and accuracy of this approach, we applied this framework to the
coldshock protein, a 67 residue soluble protein (protein database entry 1CSP) which was
simulated with the OPLS full atom force-field [64] in explicit solvent. Of particular interest
was the question of how many (soft) degrees of freedom should be subjected to FCA and
to the locally adapted anisotropic kernel density estimation, leaving the remaining (stiff)
degrees of freedom to the Schlitter QH approximation. For simplicity and computational
efficiency, only backbone contributions to the configurational entropy were considered.
FCA was carried out on the first 100, 200, . . . , 500 modes of the configurational ensemble,
and nearly non-correlated subspaces were defined as decribed in the previous chapter.
Our locally adapted anisotropic kernel estimate was subsequently applied to each of
the resulting independent subspaces yielding an improved entropy estimate SFCA. The
remaining modes were considered via the Schlitter QH approximation, Eq. 5.5. The
sum of these two yields the desired entropy estimate Stot, also shown in Figure 5.8. As
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expected, no TI entropy reference could be obtained due to lack of convergence; hence,
we here resort to comparison with the QH estimate of the total configurational space
density Stot, QH.

Fig. 5.8 shows that the combination of FCA and locally adapted anisotropic kernels
improves on the QH estimate in all cases. In particular, a marked improvement on the
QH estimate is seen for the locally adapted anisotropic kernel estimate, which shows
that the neglect of non-linear and higher-order correlations, and of anharmonicities by
the established QH method implies an overestimate of the entropy by at least 14% (QH:
3081 JK−1mol−1 vs. SFCA: 2710 J K−1mol−1). For the coldshock protein, further, 400
modes need to be subjected to he independent subspace approach for converged results,
such that only 200 modes are properly described by the simple QH approximation.

This empirical distinction between stiff and soft modes is nicely reflected in the
eigenvalue spectrum shown in the inset of Fig. 5.8. Whereas eigenvalues of modes 1 to
400 decrease smoothly, an abrupt drop is seen at mode 400. Similar observations for
calmodulin (previous chapter) suggests that such abrupt drop can be used to identify the
stiff modes that can be subjected to the QH approximation. Our results also suggest
that, generally, a large fraction of degrees of freedom needs to be subjected to MCSA to
obtain reliable estimates.

5.4 Conclusions

We have introduced a kernel based density estimation method and showed that it provides
accurate results in even the high-dimensional and quite complex configurational space
density generated by the dynamics of biological macromolecules. Whereas established
k-nearest neighbour estimators have been reported to fail to converge for 23-dimensional
configurational space with 15 million sample points, the locally adapted anisotropic
kernels developed here provide robust results in up to 45 dimensions with only 500, 000
sample points. We attribute this improvement to the occurence of typically sparsely
sampled configurational density “threads” ubiquitous in protein dynamics, to which,
apparently, our locally multivariate approach provides an enhanced approximation.

Used within the framework of the minimally coupled subspace approach presented
in the previous chapter, this density estimator serves to overcome the three limitations
inherent in the conventional quasi-harmonic approximation, i.e. neglect of non-linear and
higher order correlations, of anharmonicity, and of multi-modality.
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Figure 5.8: Estimated entropies for the coldshock protein (1CSP, backbone only). The
total estimate, Stot, as a function of MCSA subspace size (100, . . . , 500 modes),
was calculated as sum of SFCA, the estimate obtained by application of locally
adapted anisotropic kernels to independent subspaces obtained by FCA, and
the QH estimate for the remaining modes, as described in the text; SPCA :
cumulative QH estimate; SQH,tot : global QH reference. For detailed values
cf. Table 5.1. The inset shows the PCA eigenvalues as a function of mode
index.
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6
Chapter 6

The Coupled Cluster Entropy

estimation method for application

to macromolecules

6.1 Introduction

The previous chapter established that non-parametric estimation of the configurational
probability density is indeed possible in up to 45 dimensions. Within the Minimally
Coupled Subspace (MCSA) framework, Full Correlation Analysis (FCA) is utilised to
find coordinate transformations which provides a set of non-correlated eigenmodes, and
subsequently almost non-correlated subspaces are identified. On each of these subspaces,
the density estimation method introduced in the previous chapter is applied and an
improved density estimate with respect to the quasi-harmonic approximation is obtained.
The downside of this approach, however, is that FCA is computationally expensive and
rests on linear coordinate transformations only. In case of slowly converging FCA and if
linear transformations are inapt to find uncorrelated modes, sufficiently small independent
subspaces to render non-parametric density estimation possible cannot be obtained.

To address this issue, in this chapter a method is introduced which shows how to split
the configurational space (or oversized subspaces provided by the FCA) of macromolecules
into arbitrary subspaces without neglecting correlations between those.

To this end, a correlation expansion is used which has hitherto been employed for the
calculation of real gas properties [148] and since then is sometimes also referred to as the
Kirkwood superposition approximation or mutual information expansion. Even though
many attempts have been made so far [134, 136, 137] it has never successfully applied to
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larger molecules of biological interest.

6.2 Theory

6.2.1 Inclusion-exclusion principle – Review

The MIE we are going to exploit here bears close resemblance to the principle of inclusion
and exclusion known from set theory since the late 17th century. The inclusion-exclusion
principle states that if A1, . . . , An are finite sets one can estimate the cardinality |

⋃
A|

of the union of all sets as

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai| −
∑

i,j:1≤i<j≤n
|Ai ∩Aj |+ . . .

+
∑

i,j,k:1≤i<j<k≤n
|Ai ∩Aj ∩Ak| − . . .

+(−1)n−1|A1 ∩ · · · ∩An| (6.1)

If all sets A1, . . . , An are disjoint then clearly |
⋃n
i=1Ai| =

∑n
i=1 |Ai| . The complex

shape of this equation (as well as the name) results from alternating over-generous
subtraction followed by addition of correction terms.

Application to Information Theory

Due to the additive property of measures one can directly transform this formula, which
has been derived from elementary set theory, to probabilties, as has been shown by
Poincaré [149]. In fact, Yeung proved that any set theoretical entity/operation can be
viewed as information theoretical entity/operation [150, 151]. It is therefore not surprising
[152] that the inclusion-exclusion principle can be shown to have an information theoretical
twin expressing the cardinality of a set A as entropy, the intersect of two sets (Ai ∩Aj)
as Kullback-Leibler divergence or mutual information and the intersect of more than two
sets (Ai ∩ · · · ∩Ak) as interaction information or “mutual information of higher order”.
Thus, one can expand the entropy S(A) of an arbitrary joint ensemble A = {A1, . . . , An}
in terms of lower order probabilities,
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S(A1, . . . , An) =
n∑
i=1

S(Ai)−
∑
i<j

I2(Ai,Aj) + . . .

∑
i<j<k

I3(Ai, Aj , Ak)− · · ·+ (−1)n−1In(A1, . . . , An) , (6.2)

with

In(Ai, . . . , Ai+n−1) =
�
i,...,i+n−1

pn(Ai, . . . , Ai+n−1) ln
pn(Ai, . . . , Ai+n−1)

n∏
j=1

p1(Aj)

. (6.3)

The rather complicated structure of these two intertwined equations is illustrated in
Fig. (6.1), the information theoretical analogon of set theory’s Venn diagrams, where
circles are used to symbolize ensembles A,B and C and circle overlaps denote pair/third
order correlations In. More detailed information is given by Yeung [150].

Superposition approximations

The nth order correlation functions

p̃n(Ai, . . . , Ai+n−1) =
pn(Ai, . . . , Ai+n−1)

n∏
j=1

pj (Aj)

can now be formally correctly expanded as a product of lower-order probabilities and a
correction factor ∆(n) [135]

p̃n(Ai, . . . , Ai+n−1) =
pn(Ai, . . . , Ai+n−1)

n∏
j=1

pj (Aj)

= ∆(n)
n−1∏
s=2

∏
{is}

p̃s(A1, . . . , As)

(−1)s+n−1

, (6.4)
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Figure 6.1: I-diagram for three ensembes A,B and C. Circles S(A), S(B) and S(C)
denote the entropy of the these ensembles, the overlap between two sym-
bolizes the pair-correlations I2(A,B), I2(A,C) and I2(B,C), respectively.
The overlap between all three ensembles stands for the three-body corre-
lation I3(A,B,C), which in this representation cannot become negative
(cf. Sec. 6.2.6). The non-overlapping parts are the conditional entropies
S(A|B,C), S(B|A,C), and S(C|A,B) which become important for negative
higher-order correlations.
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where the inner product runs over all
(
n
s

)
possible combinations {i1, . . . , is} ∈ {1, . . . , n}.

The remainders ∆(n) are what keep the expansion formally exact. An approximation for
the entropy can, however, be made by truncating the expansion at some point t ≤ n.
Note that truncating at a given order does not imply ignoring correlations beyond that
order but making a particular superposition approximation for them, namely the one that
has corrections of that order and greater set to unity. This has the important consequence
that also Eq. 6.2 is truncated.

A well-known superposition approximation was suggested by Kirkwood. It formulates
three-body correlation functions as the product of their three pairwise probabilities
according to Eq. 6.4,

p̃3(Ai, Aj , Ak) = p̃2(Ai, Aj)p̃2(Ai, Ak)p̃2(Aj , Ak)

∆(3)(Ai,Aj , Ak) ,

which recovers Eq. 6.4, and is therefore exact, and then sets ∆(3)(Ai,Aj , Ak) = 1:

p̃3(Ai, Aj , Ak) ≈ p̃2(Ai, Aj)p̃2(Ai, Ak)p̃2(Aj , Ak) (6.5)

Even though Kirkwood introduced this only for three-body correlations [148, 153], the
general approach of truncating the series of Eq. 6.4 at some point t ≤ n setting ∆(t) = 1
happens to be called generalized Kirkwood approximation [135]. For instance, for the
four-body correlation functions we have

p̃4(Ai, Aj , Ak, Al) =
p̃3(Ai, Aj , Ak)p̃3(Ai, Aj , Al)p̃3(Ai, Ak, Al)p̃3(Aj , Ak, Al)

p̃2(Ai, Aj)p̃2(Ai, Ak)p̃2(Ai, Al)p̃2(Aj , Ak)p̃2(Aj , Al)p̃2(Ak, Al)

∆(4)(Ai, Aj , Ak, Al) . (6.6)

Setting ∆(4) = 1 yields the Fisher-Kopeliovich superposition approximation [154]. For
comparison, applying the Kirkwood superposition approximation to this four-body
problem yields

p̃4(Ai, Aj , Ak, Al) = p̃2(Ai, Aj)p̃2(Ai, Ak)p̃2(Ai, Al)p̃2(Aj , Ak)p̃2(Aj , Al)p̃2(Ak, Al)

∆(3)(Ai,Aj , Ak)∆(3)(Ai,Aj , Al)∆(3)(Ai,Ak, Al)

∆(3)(Aj,Ak, Al)∆(4)(Ai, Aj , Ak, Al) , (6.7)
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and setting ∆(4) = 1 and all ∆(3) = 1. This shows that indeed truncating Eq. 6.4 at
t ≤ n also truncates Eq. 6.2.

Setting the correction factors ∆ = 1 in Eqs. 6.5, 6.6 or 6.7 bears the problem that then
their left-hand side is normalised, whereas the right one is not, since for instance

p̃2(Ai, Aj)p̃2(Ai, Ak)p̃2(Aj , Ak) =
p2(Ai, Aj)p2(Ai, Ak)p2(Aj , Ak)

(p(Ai)p(Aj)p(Ak))
2 .

Watanabe claimed that for this reason expressions like these are in general not meaningful
and do not allow any useful interpretation [155]. Yet they provide the correct asymptotic
behaviour in the case of vanishing correlations, i.e. as I2(Ai, Ak), I2(Ai, Ak), I3(Ai, AjAk)→
0 only the correlation between i and j remains. However, for higher correlations, the
Kirkwood approximation greatly overestimates the triplet probability and higher-order
analogues [156]. The validity of the Kirkwood approximation is therefore restricted to
weak correlations. Correlations larger than 0.3 − 0.5 have previously been found to
introduce non-convergent behaviour as the third term overcorrects errors of the first
two terms [135]. Hence, even though the generalised Kirkwood approximation holds the
promise of constituting a suitable framework for obtaining configurational entropies in
the high-dimensional configurational space of macromolecules, expansions over highly
correlated degrees of freedom (e.g., internal coordinates) are likely to be problematic.
To avoid divergencies of the expansion terms, weakly correlated collective coordinates,
obtained from coordinate transformations as discussed in the previous chapters, are a
suitable basis.

6.2.2 Application to PCA/FCA modes

Analogously to Eq. 6.2, the entropy S [ρ (y)] of an atomistic ensembles x = {x1, . . . ,xn}
of n configurations xi ∈ R3N of a macromolecule of N atoms, after some coordinate
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transformation y = Tx, can be expanded as

S [ρ (y)] =
3N∑
i=1

S [ρ (yi)]− Sres [ρ (y)] (6.8)

=
3N∑
i=1

S [ρ (yi)]−
∑
i<j

I2 [ρ (yi, yj)] +

∑
i<j<k

I3 [ρ (yi, yj , yk)]− · · ·+ (−1)3N+1I3N [ρ (y1, . . . , y3N )] ,

where yi denote the components of y = Tx.

The most naive and straightforward approach would be to estimate the marginal
distributions ρ (yi) =

�
ρ(y)dyj 6=i from a quasi-harmonic (QH) approximation, which, as

discussed in the previous chapters and in Chapter 2, is obtained by fitting the configura-
tional density ρ(x) with a multi-variate gaussian function [56, 57]. The configurational
density approximately factorizes,

ρQH (y) =
3N∏
i=1

ρ (yi) , (6.9)

but here only linear correlations are eliminated. Non-linear and higher-order correlations,
in contrast, prevail and consequently the entropy

S [ρ (y)] =
3N∑
i=1

SQH [ρ (yj)] + Sres [ρ (y)]

contains a non-neglegible residual entropy Sres [ρ (y)] due to ignored correlations. Approx-
imating Sres [ρ (y)] according to Eq. 6.8 could, in principle, substantially improve the QH
result. From a computational point of view one has now replaced the evaluation of the 3N
dimensional integral,

�
3N ρ ln ρ, by the evaluation of

∑t
i=1

(
3N
i

)
i-dimensional probability

density estimations, t being the truncation order for which a particular superposition
approximation is being made. Already for fairly low {N, t} one is confronted with an
unsurmountable combinatorial explosion. Attempts to apply this scheme to biological
macromolecules have failed due to the high number of terms to be evaluated [157? ].
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6.2.3 Mode clusters

To reduce the combinatorial pressure, we propose to make use of the fact that the entities
whose correlations are sought can be completely arbitrarily chosen by using groups of
modes rather than individual modes.

Accordingly, given disjoint sets of eigenmodes Cs we cluster into hs disjoint subclusters
D

(s)
i of sizes ds1, . . . , d

s
hs
< 15, so that Cs =

⋃hs
i=1D

(s)
i . Cs may either be the complete set

of 3N PCA or FCA modes or, within the Independent Subspace framework, oversized
clusters. The approximation to the residual entropy then reads

Sres [ρ (Cs)] = −
∑
i<j

I
(ds

i +ds
j)

2 [ρi, ρj ] +

∑
i<j<k

I
(ds

i +ds
j+ds

k)

3 [ρi, ρj , ρk]− · · ·+ (−1)hs+1Ihs [ρi, . . . , ρhs ] , (6.10)

where ρi ≡ ρ(ds
i )
(⊗

j∈D(s)
i

yj

)
. This has three advantages. First, it significantly retards

the combinatorial explosion since now one has to evaluate only
∑t

i=1

(3N/ds
i

i

)
correlation

terms. Furthermore, inside every group one has effectively taken all correlations up to
order dsi into account without making any superposition assumption at all. That is, only
the dsi -th fraction of the original numbers of correction factors ∆(n) will be set to unity
resulting in less severe ignorance about the true behaviour of the system. This in turn
will, third, result in faster convergence of the expansion, since less terms in Eq. 6.4 need
to be overcorrected for with higher-order correlations.

6.2.4 Error cancellation via ’fill modes’

We applied the non-parametric density estimation method developed in the last chapter
to obtain configurational probability density estimates ρ (yi). The configurational entropy
is estimated according to

Sc =
kB

n

n∑
i=1

ln
nZd (yi) rdi,k
k (yi, ri,k)

, (6.11)

where k (yi, ri,k) = 〈K (yi, (yi − y) /ri,k)〉y denotes the ensemble average of a locally
adapted kernel function K, whose anisotropy and scaling ri,k depends on the local density
at point yi. Due to the moderate regularization assumptions, this estimator is sensitive
to the sparse sampling problem whose effect is highly dependent on the dimensionality
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Figure 6.2: a) Two arbitrary strongly correlated modes yi and yj marginally distributed
on the axes. Correlation is clearly visible from the yj-distributed yi. The
joint distribution p(yi, yj) is more sparsely sampled than both marginal
distributions. b) The y′j-distributed yi is decorrelated and has exactly as
many sample points as the joint distribution in a) allowing precise computation
of I2(yi, yj).

(see also Sec. 5.3.2). To guarantee the same accuracy of all density estimates required for
the computation of the correlation terms In of Eq. 6.10 despite different dimensionality,
it is necessary to ensure the same local densities around points yi in different terms. This
is normally not provided. The mutual information between two modes yi and yj ,

I2 =
�
i,j
ρ(yi, yj) ln

ρ(yi, yj)
ρ(yi)ρ(yj)

. (6.12)

contains differently well sampled terms in denominator and numerator, because the
number of sampling points available to estimate ρ(yi, yj) is only half the number of
sampling points available for estimating the marginal densities ρ(yi) and ρ(yj) (cf.
Fig. 6.2). The accuracy for the estimation of the marginal densities is, consequently,
possibly higher than the joint estimate yielding an inaccurate correlation estimate. To
overcome this problem, we devised the concept of fill modes. Accordingly, artificially
decorrelated modes y′i : {y′i,1, . . . , y′i,3N} = perm{yi,1, . . . , yi,3N} are created by randomly
permuting its components yi,j , with 1 ≤ j ≤ 3N . The marginal densities ρ(y′i) = ρ(yi)
and ρ(y′i, yj) = ρ(yi)ρ(yj), yielding a new expression for Eq. 6.12,

I2 =
�
i,j
ρ(yi, yj) ln

ρ(yi, yj)
ρ(y′i, yj)

, (6.13)
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6 The Coupled Cluster Entropy estimation method for application to macromolecules

where the product of the marginal densities ρ(yi) and ρ(yj) is now computed from the
synthetically decorrelated joint distribution ρ(y′i, yj), such that the same accuracy for the
joint estimate is guaranteed as for the marginal estimates. Conducting this scheme on
the third order correlation function of three modes yi,yj and yk,

I3 =
�
i<j<k

ρ(yi, yj , yk) ln
ρ(yi, yj , yk)

ρ(yi,yj)ρ(yi,yk)ρ(yj ,yk)
ρ(yi)ρ(yj)ρ(yk)

,

yields

I3 =
�
i<j<k

ρ(yi, yj , yk) ln
ρ(yi, yj , yk)

ρ(yi,yj ,y′k)ρ(yi,yk,y
′
j)ρ(yj ,yk,y

′
i)

ρ(y′i,y
′
j ,y
′
k)2

, (6.14)

where the pairwise joint distributions have been ’filled up’ with randomly permuted ’fill
modes’, as described above, e.g. ρ(yi, yj) = ρ(yi, yj , y′k)/ρ(y

′
k) . The same scheme has

also been applied to correlation functions of higher order than three (c.f. Fig. 6.5).

6.2.5 Consistent dimensions

The sensitivity of the nearest-neigbour estimates, Eq. 6.11, towards the sparse sampling
problem also affects the different terms of Eq. 6.10, which inevitably suffer from different
sparse sampling problems if computed seperately. Furthermore, a huge number of
probability density distributions ρ(yi), ρ(yi, yj), . . . , ρ(yi, yj , . . . , yk) is computed more
than once for the many instances of identical correlation terms appearing in that equation.
Expanding over entropy terms rather than correlation terms, in contrast, yields

S [ρ (y1, . . . , yn)] =
t∑

k=1

∑
m1<...<mk

θk,tS [ρ (y1, . . . , yk)] , (6.15)

where the first summation runs over different orders k = 1, . . . , t until truncation order
t ≤ n. θk,t =

∑t
i=k(−1)i+k

(
n−k
i−k
)

designates how many times a certain order appears and
whether it needs to be added or subtracted, and the second sum over all

(
n
k

)
possible

combinations {m1, . . . ,mk} ∈ {1, . . . , n}. Table 6.1 summarizes a few features of this
expansion. In A, the θk, k = 1, . . . , 4 have been calculated for 4 arbitrary modes yi.
As can be seen, for t = n all lower-order terms vanish and only the highest-order term
remains with a weighting factor of exactly 1. B–C show the θk for different numbers of
modes n = 10, 20, 100 when expanding up to order 4. As can be seen, for fairly low n,
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6.2 Theory

A n = 4
k/t 1 2 3 4

1 1 -2 1 0
2 0 1 -1 0
3 0 0 1 0
4 0 0 0 1

B n = 10
k/t 1 2 3 4

1 1 -8 28 -56
2 0 1 -7 21
3 0 0 1 -6
4 0 0 0 1

C n = 20
k/t 1 2 3 4

1 1 -18 153 -816
2 0 1 -17 136
3 0 0 1 -16
4 0 0 0 1

D n = 100
k/t 1 2 3 4

1 1 -98 4753 -152096
2 0 1 -97 4656
3 0 0 1 -96
4 0 0 0 1

Table 6.1: Factors θk of Eq. (6.15) as a function of truncation orders t and index k, for
four different mode/subcluster numbers n.

these weighting factors grow very large. This illustrates how much computational time
can be saved when expanding the entropy in terms of Eq. 6.15 rather than Eq. 6.8.

To guarantee the same estimation accuracy for all ρ (y1, . . . , yk) of Eq. 6.15, each
term is filled up to truncation order t yielding ρ

(
y1, . . . , yk, y

′
k+1, . . . , y

′
t

)
. Under this

modification, Eq. 6.15 reads

S [ρ (y1, . . . , yn)] = θ′1,t
∑

m1,...,mt

S
[
ρ
(
y′1, . . . , y

′
t

)]
︸ ︷︷ ︸
marginal entropies/fill modes

+ (6.16)

t∑
k=2

∑
m1<...<mk

θk,tS
[
ρ
(
y1, . . . , yk, y

′
k+1, . . . , y

′
t

)]
,

with the number of marginal entropies,

θ′1,t =
t∑
i=1

(−1)i+1

(
n− 1
i− 1

)
︸ ︷︷ ︸

normal first-order indexing

−
t−1∑
i=2

θ′t

(
n
i

)(
n−i
t−i
)
(t− i)

n︸ ︷︷ ︸
fill modes

,

83



6 The Coupled Cluster Entropy estimation method for application to macromolecules

which depends on the fill mode weighting index

θ′t =
t∑

k=2

t∑
i=k

(−1)i+k
(
n− k
i− k

)
,

where, like above, primes indicate permuted entries.

6.2.6 Negative Correlations

Higher-order correlation functions can, in principle, be either positive or negative. Systems
with negative higher-order correlations are called frustrated [158] and complex macro-
molecules are in many respects paradigms for frustrated systems [159]. It is sometimes
argued [157] that one can therefore expect higher-order correlations of proteins always to
be negative. The three-body correlation of three modes yi, y2, y3 can be rewritten as

I3(yi, yj , yk) = I2(yi, yj) + I2(yi, yj)− I2(yi, yjyk)

where
I2(yi, yjyk) = S [ρ (yi)] + S [ρ (yi, yk)]− S [ρ (yi, yj , yk)]

is the information gained of yi from simultaneous measurement of yj and yk. Since
none of the terms appearing in the former equation goes into the latter, it is possible that
I2(yi, yjyk) is nonzero even if I2(yi, yj) and I2(yi, yk) (nearly) vanish. I3(yi, yj , yk) will
be negative if the information gained of yi by simultaneous measurement of yj and yk is
larger than the information gained of yi from separate measurement of yj and yk [158].

To illustrate this concept, Fig. 6.3 rather sketchily displays an arbitrary rugged object
(a) which has the property that neither of the three 2D-projections (b–c) conveys the
information needed to give the true shape of this object. All 2D projections suggest
a cubic shape, but the total volume of the object depicted in Fig. 6.3 is clearly much
smaller than that of a cube of the same edge length, which can be verified by assuming a
3D view corresponding to including third-order information into the observation. Hence,
the ’view’ on the high-dimensional landscape is what determines how many modes are
needed for assessing the true extent of it. This is independent of the systems’ frustrated
properties since proper choice of T can always return a set of uncorrelated modes y.
Frustration, thus, does not describe the inherent properties of the system but rather the
quality of the applied coordinate transformation T. This fact will become important for
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6.2 Theory

a b

c d

Figure 6.3: a) An arbitrary rugged column object with negative third-order correlation I3.
Colours are for better orientation only. Neither of the three 2D projections (b–
d) conveys the information needed to assess the true extent of the object, which
from the 2D views appears to be a cube. Including third-order information
reveals that the true volume is in fact much smaller than a cube’s volume of
given edge length.
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6 The Coupled Cluster Entropy estimation method for application to macromolecules

the interpretation of expansion curves of alkanes in Sec. 6.3.2.

6.3 Results

To test the applicability and accuracy of the above discussed expansions, we examined
a number small alkane systems, hexane, octane and decane. As shown in the previous
chapter, due to their flexibility, these constitute particularly hard test examples. It can
be expected, that also here they are suitable to explore the limits of the introduced
method. Of particular interest are convergence properties. The generalized Kirkwood
approximation has been shown to diverge in case of highly correlated systems (Sec. 6.2.1).
Furthermore, it is a priori unclear whether correlation functions of order > 2 are positive
or negative. It is of high interest to see if these expansions still yield upper bounds to
the true entropy.

6.3.1 Single mode vs. clustered mode expansions

The six-atomic alkane hexane modelled with an united-atom force field was examined
as a first test example, a 18 dimensional estimation problem (Fig. 6.4). A reference
value from a thermodynamic integration (TI) scheme (dashed line) was obtained, as
described in the previous chapter. A further reference value is the direct density estimate,
obtained via conducting locally adapted anisotropic kernel density estimation in the full
18-dimensional configurational space (dotted line). This value is slightly larger than the
thermodynamic reference (for exact numbers cf. Table 5.1). For comparison, the QH
estimate, which ignores all non-linear correlation between the 18 eigenmodes, is shown as
a solid line.

In Fig. 6.4, the square-mark line shows the expansion of individual PCA modes
according to Eq. 6.8. Four of the 18 PCA eigenmodes were highly correlated with
correlation factors above 0.3. Subtraction of all

(
18
2

)
= 153 possible pair-correlations,

which were calculated according to Eq. 6.13, gave rise to a value well above the reference.
Including all

(
18
3

)
= 816 third order terms, too, which were computed according to

Eq. 6.14, showed dramatically diverging behaviour underestimating the configurational
entropy by a wide margin (Note that the y-axis is broken to accomodate the whole data
range spanned by this plot). The large underestimation occurs even though consistent
sampling as discussed in Sec. 6.2.4 was ensured for both I2 and I3. Without fill modes,
the underestimation was even larger (data not shown).
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Figure 6.4: Configurational entropy of hexane estimated with different approaches.
Dashed line: TI reference entropy; Dotted line: Locally adapted kernel
direct density estimate on the whole configurational space; Solid line: QH
density estimate; Solid lines with squares: Computation of Eq. 6.2 with single
modes (no clustering) with sum of marginal entropies (first term) from the
quasi-harmonic appoximation, the second-order correlations from Eq. 6.13
and the third-order correlations from Eq. 6.14; dotted line with circle: compu-
tation of all three terms based on Eq. 6.16 with single modes (no clustering);
Dashed line with diamonds: computation of all three terms based on Eq. 6.16
with configurational space split into six clusters.

The same data as before were used for the computation of Eq. 6.16 ensuring consistent
sampling not only within each correlation term but throughout all terms up to truncation
order t = 3 as described before. The resulting plot “MIE single” in Fig. 6.4 clearly shows
that most of the previous underestimation can be attributed to the bias introduced by
inconsistent sampling densities of different order correlation functions. Nevertheless, a
non-negligible underestimation by ∼ 30 JK−1mol−1 (∼ 10%) remains. Hence, these types
of expansions on single, potentially highly correlated PCA-modes do not yield upper
bounds to the true entropy as, for example, Schlitter’s quasi-harmonic approximation
[57] or the adaptive kernel density estimations. Furthermore, the combinatorial pressure
of expanding up to order three is quite remarkable for a molecule of this size. In total,
the computation of Eq. 6.16 for 18 PCA modes up to order three required 987 single
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6 The Coupled Cluster Entropy estimation method for application to macromolecules

computations.

“MIE grouped” in Fig. 6.4 shows the convergence behaviour of expansions on the basis
of mode clusters rather than single modes. Here, the 18 modes were split into 6 groups of 3
modes each, and only 41 terms needed to be computed and used for evaluation of Eq. 6.16.
Clearly, the expansion has converged after the second term leaving a deviation of only
∼ 10 JK−1mol−1 to the direct density estimate which includes all relevant correlations of
the system. Furthermore, the clustered expansion did return an upper bound to the true
entropy.

The clustered expansion yields more accurate results at lower computational cost.
This could be a property of hexane rather than a generally valid observation. In the
following sections, the convergence properties of clustered expansions as a function of
cluster number will therefore be explored.

6.3.2 Influence of the number of clusters on convergence

Octane and decane comprising 8 and 10 atoms, respectively, served as our next test
systems. The molecules were simulated with the united atoms force-field ffG43b1 [65],
and an ensemble of 500.000 sample points from a stochastic dynamics simulation was
used to estimate the configurational entropy. Full Correlation Analysis (FCA) was carried
out to obtain a set of optimally decoupled eigenmodes.

Fig. 6.5 shows the obtained MIE estimates for octane (top row) and decane (bottom
row). The TI reference entropies are shown as solid horizontal lines. Also given are,
for comparison, the density estimates obtained by locally adapted anisotropic kernel
density estimation of the whole configurational space, Sdir (dashed-dotted horizontal
lines), and estimates according to the minimally coupled subspace framework (MCSA),
SMCSA (dotted horizontal lines) using a clustering threshold of θ = 0.025 as described in
the previous chapter. For both octane and decane, the expansions were calculated for
using Eq. 6.16 choosing truncation orders t = 3 (left column) and t = 4 (right column). In
each case, the clustering threshold θ was chosen such that uniformly sized mode clusters
could be formed. Remaining modes not assigned to an expansion cluster were subjected
to separate adaptive kernel density estimation, and the entropy estimate was added to
the expansion estimate at each permutation order.

For octane (top row), the expansions were conducted with four (circles), five (squares),
six (diamonds) and eight (triangles) mode clusters, respectively. For truncation at order
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Figure 6.5: Octane (top) and decane (bottom) expansions calculated at truncation orders
t = 3 (left) and t = 4 (right). The configurational space was split into 4
(circles), 5 (squares), 6 (diamonds), 8 (upwards triangles, octane), 9 (upwards
triangles, decane), and 12 (downwards triangles, decane t = 4 only) clusters,
respectively. Red: Expansions on independent subspace; black: expansions
on total configurational space. Solid horizontal lines: TI reference entropies;
dashed-dotted horizontal lines: direct adaptive kernel density estimates on the
whole configurational space; dotted horizontal lines: independent subspace
estimates.

t = 3 (upper left), certain expansions exhibit zig-zagging convergence behaviour (shown
in black), whereas others converge more monotonously (in red). Furthermore, increasing
cluster count seems to delay the onset of convergence.

The picture is similar for truncation at order t = 4 (upper right). Here, too, certain
expansion are zig-zags whereas others are not. Like before, increasing cluster count entails
more pronounced amplitudes indicating delayed convergence. The third-order values
obtained here are only slightly larger than those from the previous plot. The fourth-order
values, in contrast, diverge with increasing cluster count. On the one hand, as required,
the four-cluster plot (circles) reproduces the direct density estimate (dashed-dotted) at
permutation order 4, where, according to Eq. 6.16, all the lower-order contributions
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6 The Coupled Cluster Entropy estimation method for application to macromolecules

vanish. The five-cluster expansion, on the other hand, yields an estimate below the direct
density estimate but still above the TI reference, and the expansions with higher cluster
counts even yield values well below the TI reference.

For decane (lower row), a similar situation is seen. Here, the expansions were carried
out with four (circles), five (squares), six (diamonds), nine (upward triangles) and twelve
(downward triangles) mode clusters, respectively. Like before, the four-cluster expansions
recover the MCSA estimate for t = 3 (left-hand side), and the direct density estimate for
t = 4 (right-hand side), as required. Increasing cluster counts also delays convergence as
seen from increasing amplitude; and the fourth-order permutation does not yield sensible
values for more than five clusters.

In summary, Fig. 6.5 clearly shows that correlation expansions can improve on the QH
approximation. Notably, and in contrast to the diverging fourth-order estimates, neither
second-order nor third-order estimates underestimate the TI reference. Particularily
the second-order estimates are very close to the TI-reference. Is it therefore justified to
truncate the expansions after the second term? It is problematic that the second-order
estimates yield values below the direct density estimates in almost all cases. As can
be seen from the four-cluster expansions for both octane and decane, expansions need
to converge to the direct density estimate since here all the lower-order terms cancel
out. Thus, while it is, in principle, desired to recover the TI reference, the fact that the
second-order estimates are so close appears to be due to accidental error cancellations of
the expansions rather than the systems’ property.

It is furthermore evident that the cluster count does play an important role for
the accuracy of the entropy estimate. More clusters entail delayed convergence or
even pronounced divergence, particularily at permutation order four, where significant
underestimation of the TI reference is obtained if the number of clusters exceeds five.
We attribute the divergence at permutation order four to sparse-sampling problems. The
large number of terms to be evaluated at the fourth order with, e.g., nine or twelve
clusters requires extremely accurate entropy estimates for each single term. Such high
accuracy might not even be provided by the adaptive kernel estimation method, as seen
from the convergence issues of the larger alkanes illustrated in the previous chapter.

Interestingly, all mononously decreasing expansions (in red) were conducted on a single
rather homogeneous independent subspace created according to the ISA scheme rather
than on (almost) the whole, heterogeneous, configurational space. Minimally coupled
subspaces are created based on a paiwise correlation criterion; and as noted before, is is
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assumed that pairwise uncorrelated modes do not exhibit correlations of higher-order
either. It is furthermore assumed that the modes within a certain subspace consitute a
network of correlated collective coordinates. The expansions of Fig. 6.5 corroborate this
notion. Within the minimally coupled subspaces, pairwise correlations are relatively high
(larger than 0.025, the clustering threshold). These pairwise correlations, however, still
miss a considerable part of the multi-body correlation present in the network. Thus, the
third-order correlation is negative (c.f. Sec. 6.2.6).

Expanding over correlations of the whole configurational space rather than over each
subspace separately, the majority of correlation terms involve inter-cluster correlations;
and these remaining low pairwise correlations seem to considerably overestimate the total
inter-cluster correlations. This effect counterbalances the underestimation effect of the
intra-cluster terms. Hence, the total third-order correlations are positive.

6.3.3 Application to Calmodulin

Next, we explored the characteristics of entropy expansion applying it to a macromolecule
of biological interest, calmodulin. Modelled with the OPLS full atom force field in explicit
solvent, it comprises a ∼ 6500 dimensional optimization problem.

Using the entropy expansions for the purpose of improving on the quasi-harmonic result
applying it to the whole configurational space would not be feasible since the number of
single computations (i.e. the number of correlation terms) is

∑3
i=1

(
6500
i

)
= 4.6× 1010

when expanding on PCA mode pairs and triples, and still
∑3

i=1

(
650
i

)
= 4.6× 107 when

expanding on clusters of 10 thereof.

Following the MCSA scheme, Full Correlation Analysis was conducted on the first 2500
of the ∼ 6500 PCA modes assuming quasi-harmonic characteristics for the remaining
modes. After 3000 FCA optimization steps, the FCA modes were clustered as described
above with two different thresholds, 0.22 and 0.03, respectively, yielding a maximum
subspace size of 96 or 64, respectively. The entropy estimate based on the latter is
expected to be considerably larger than the former, because more non-linear correlations
are neglected. Second, from the alkane expansion, one would expect that lower cluster
count yields lower amplitudes of the expansion plots. Third, different clustering should
leave the entropy estimate at perturbation orders two and three roughly unchanged.

To verify these assumptions, we split the 96 modes subspace resulting from a clustering
threshold of 0.22 into 9 or 12 groups, repectively, and the 64 subspace into 8, 9 or 16
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Figure 6.6: MIE for calmodulin with different cluster numbers and clustering thresh-
olds. QH: quasi-harmonic estimate; FCA+density estim.: locally adapted
anisotropic kernel density estimation on each of the minimally coupled sub-
spaces obtained by clustering of the FCA modes using a high clustering
threshold of 0.05; FCA+MIE (x, y): MIE conducted on each of the minimally
coupled subspaces obtained by clustering with a clustering threshold of x,
splitting the subspaces into y clusters.
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groups. In Fig. 6.6, the two cases are plotted, together with two reference values; first, the
QH approximation reference which was obtained by assuming quasi-harmonic behaviour
for all CaM modes (dashed line), and the second reference is the estimate obtained
by choosing a clustering threshold of 0.05, which results in subspaces small enough to
be computed without any further entropy expansion (dotted line). While this second
reference markedly improves on the quasi-harmonic estimate, the high threshold does not
include sufficient non-linear correlations. Lower thresholds are, thus, likely to considerably
improve on this estimate.

Indeed, a lower threshold of 0.03, which includes more correlations but requires
MIE, yields considerably lower estimates in all three case and, importantly, the cluster
number/size indeed leaves the entropy estimate almost unchanged. An even lower
threshold of 0.022 further improves the estimate and the outcome is likewise the same
regardless of whether the group size was 9 or 12. Interestingly, despite the size of the CaM
configurational space the CaM expansion curves do not fluctuate as much as the alkane
expansions. The third-order estimates do not deviate from the second-order estimate by
more than 10%. This corroborates the previous observation that the alkanes constitute
particularily hard test cases.

6.4 Conclusions

In this chapter, we showed that application of the set theoretical inclusion-exclusion
principle markedly improves estimates of configurational entropies in configurational
(sub-) spaces of macromolecules. We also showed that even the application to large
biomolecules is possible if this method is embedded within the minimally coupled subspace
approach (MCSA) framework developed in this thesis. The application of these mutual
information expansions (MIE) is useful whereever the sparse sampling problem, the ’curse
of dimensionality’, impedes application of direct density estimation on the full minimally
coupled subspace. Previous attempts to apply similar expansions to macromolecules
failed due to the “combinatorial explosion” caused by the large number of correlation
terms to be considered. We have shown that by clustering modes for the expansions
improved results are obtained and the “combinatorial explosions” are alleviated. The
problem of negative correlations has been analyzed and discussed. In particular, the
appearance of negative higher-order correlations has been shown to be connected to
’frustrated’ coordinate transformations rather than frustrated systems.
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Outlook We here used generalised-Kirkwood type of correlation expansions and found
that they are applicable in this framework. In principle, however, there is no reason
to confine mutual information expansions to the generalised Kirkwood expansions. In
information theory, Markov expansions have been shown to be more robust than Kirkwood
expansions in the high-correlation regime. It would be interesting to test the applicability
and usefulness for the estimation of configurational entropies.
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7
Chapter 7

Allosteric regulation of pyruvate

kinase

7.1 Introduction

Cell regulation relies vitally on enzymatic control at the molecular level both within
and between molecules. Allostery is a mechanism to exert intramolecular control by
modulating the activity of a protein’s catalytic binding site by binding of a ligand at a
distant allosteric binding site. Even though Pauling had proposed an allosteric model for
the positive cooperativity of hemoglobin [160], the term allosteric was coined by Jaques
Monod and François Jacob [161] more than 25 years later to describe such remote control
mechanisms. The Pauling model was taken up in 1966 by Koshland [162] and is now
generally referred to as the KNF model.

Modern understanding of allosteric mechanisms in proteins began with the symmetry,
or MWC, model [42, 163], which sought to explain the Hill equation of binding oxygen
to hemoglobin [164, 165] in terms of a structural difference between apo- and holo-
hemoglobin [166, 167]. The symmetry model postulates, first, allosteric molecules to be
made of identical monomers in a symmetric arrangement and, second, the allosteric effect
to be due to a symmetry preserving rotation of the subunits upon binding of at least one
ligand, which changes the quarternary structure from an inactive T-state (tensed) to an
active R-state (relaxed). In this model, the different (T and R) quarternary structures are
accessible in both the liganded and the unliganded form. However, binding of a ligand at
the allosteric site of at least one monomer entails a shift of the T-R-equilibrium towards
the R-state since the subunits are coupled in such a way that they always assume the same
conformation (symmetry model). The symmetry/MWC model has found widespread
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application in biology [42, 168] and has inspired a number of generalizations [169–175].

The Pauling-KNF or sequential model [160, 162], in contrast, drops the symmetry
constraint and allows the subunits to assume different tertiary conformations. Moreover,
instead of an T-R equilibrium (like in the symmetry model), the transition from T- to
R-state of each subunit is assumed to be due to an induced fit mechanism. While such
an induced fit converts a subunit from the tensed state to relaxed state, it does not
propagate the conformational change to adjacent subunits. Instead, substrate-binding at
one subunit only slightly alters the structure of other subunits so that their binding sites
are more receptive to substrate. This allows for a larger number of intermediate states
between ’full’ R and ’full’ T state.

The severe restrictions imposed on the behaviour of the subunits in either of these
models have allowed for an elegant mathematical framework which found widespread
appreciation in particular for the paradigm of allosteric proteins, hemoglobin. The
applicability of either model or of one of their more sophisticated generalisations used
to be, and still is, mainly tested by kinetic and thermodynamic experiments, in which
the protein can be represented at the cartoon level and otherwise treated as a black box.
Accordingly, the focus on the most pronounced structural changes seen in crystallographic
studies of proteins, the quarternary change, sufficed. The kinetics of some allosteric
systems seem to be correctly described by the symmetry model, others by the sequential
model and some by neither model [176].

It is, however, problematic to relate kinetic measurements to a mechanical model
[177]. Accordingly, it is now clear that almost all of these postulates do not apply to
many systems studied so far. In particular, allosteric proteins have been discovered,
which are only monomeric [44, 178, 179], the symmetry assumption is not always fulfilled
[175], and quarternary changes are sometimes not observed in allosteric proteins [44].
Neutron scattering experiments found evidence for changes of protein dynamics upon
ligand binding [180, 181] – data which corroborated newer models of allostery introduced
previously by Weber [182], which emphasize the importance of continuous conformational
distributions [183, 184]. Cooper and Dryden later realised [44] that ligand binding at an
allosteric site can influence binding at a remote site without inducing mean conformational
change, solely through alteration of atomic fluctuations. This finding inspired many
follow-up studies of allosteric protein dynamics focusing mainly on effects of allosteric
regulation on free energies [41, 185–187]. Moreover, since both MWC and Pauling-KNF
model were primed for comparison with kinetic measurements, they are, by construction,
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7.2 L. mexicana PYK

ADP + H+ ATP
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Figure 7.1: The reaction catalyzed by pyruvate kinase

phenomenological and as such do not answer at atomic detail the question of how the
binding of a ligand result in an allosteric effect.

In this chapter, the allosteric regulation of pyruvate kinase is examined in atomic
detail using extensive molecular dynamics simulations. This project was carried out in
collaboration with the structural biology group of Malcolm Walkinshaw in Edinburgh,
Scotland. Experimental data as well as some of the basic illustrations (marked as
such) were provided by Malcolm’s PhD student Lindsay Tulloch, who crystallised the
R-state pyruvate kinase. Malcolm also suggested many simulations from an experimental
point of view during the start-up phase of this project and my PhD time and acted as
supervisor-in-charge for the first 1.5 years, when I was based in his lab. All work related
to simulations and data analysis was carried out by myself.

7.2 L. mexicana PYK

Pyruvate kinase (PYK) catalyzes the final step in glycolysis, producing the second of two
ATP molecules generated in the glycolytic pathway. In the presence of one equivalent of
monovalent cations, normally K+, and two equivalents of bivalent cations, usually Mg2+

or Mn2+, the enzyme converts phosphoenolpyruvate (PEP) and ADP to pyruvate and
ATP (Figure 7.1). PYK plays a central role in the cellular metabolism. The regulation
of PYK is important for controlling the levels of ATP, GTP and glycolytic intermediates.
PYK also serves as a switch between the glycolytic and gluconeogenic pathways in
certain tissues [188]. PYK has been characterized from a number of prokaryotes and
eukaryotes [189], and in nearly all organisms it shows allosteric properties in binding the
substrate PEP. PYK from prokaryotes is normally activated homotropically by PEP and
heterotropically by sugars bearing either one (i.e. ribose-phosphate) or two (i.e. fructose-
1,6-biphosphate or fructose-2,6-biphosphate, respectively, FBP) phosphate groups. FBP
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Figure 7.2: Structure of one of the four subunits of pyruvate kinase. A: illustration of
the four domain (three large domains A–C and one very small N-terminal
domain) architecture. Allosteric and catalytic binding sites are marked. B:
the same monomer with secondary structure elements highlighted which have
been found to be functionally important in kinetic experiments.

is also the activator of nearly all characterised eukaryotic PYK molecules. In mammals,
there are four distinct forms, which are named the M1, M2, L- and R-types: M1 PYK is
mostly present in the skeletal muscle, M2 PYK in many tissues such as kidney, intestine,
lung fibroblasts, testis, and stomach, L-PYK mostly in the liver, R-PYK exclusively in
red blood cells. These forms all consist of identical subunits (see Section 7.2.1) of about
60 kDa, but differ in enzymatic properties as well as in regulation of their gene expression
[190].

7.2.1 Crystal Structures

Overall architecture

The molecular architecture of the enzyme is very complex. It comprises tetramers of four
identical subunits, each monomer encompassing three domains (cf. Fig. 7.2A); the A
domain shows (β/α)8 barrel topology, the small B domain, characterised by an irregular
β barrel, the C domain has an α/β topology. A fourth small N-terminal domain, absent
in bacterial PYK, is formed by a helix-turn-helix motif.

Domain A (residues 1–86, 186–357 and 424–435 ) is the largest of the three major
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domains. Its (β/α)8-barrel is characterised by three additional α-helical segments located
on loops 6, 7 and 8 (named Aα6’, Aα7’, Aα8’) at the C-terminal side of the eight-stranded
parallel β-sheet, play a central role in catalysis and allosteric regulation (cf. Fig. 7.2 B).

Domain B (residues 87–185), adjacent to the C-terminal side of domain A and inserted
on loop 3, forms a lid covering the (β/α)8-barrel. Domain B consists of a mixed β-barrel
with only one short α-helix. It interacts very loosely with domain A, connected by only
one interdomain hydrogen bond (hydrogen bonds not shown in the figure). In contrast,
domain A interacts tightly on its N-terminal side with domain C (residues 352–470),
which displays an α/β structure with αβαβαβαββ-topology.

The active site is located between the A and the B domain in each of PYK’s four
subunits (yellow ligand in Fig. 7.2A). The binding site for the allosteric activator, FBP
(blue ligand in Fig. 7.2A), is completely contained in the C domain .

In the functional enzyme, the four subunits are closely associated to form a tetramer
of 222 symmetry. The 222 symmetry is exact only for the A and C domains, whereas
the B domains of subunits 1 and 3 are not related to each other by exact twofold axes
because of their different orientations. Extensive interactions mainly between the A and
the C domains of two opposite subunits stabilize the assembly, whereas the B domains do
not take part in any inter-subunit interaction. Intermolecular contacts along the larger
interface are mostly contributed by residues belonging to helices Aα6, Aα7 and Aα8.
The most relevant structural elements building this interface are strands Cβ5 of the two
opposite subunits which, by running antiparallel to each other, extend the central β-sheet
of the C domains to generate a 10-stranded intermolecular β-sheet.

7.2.2 PYK allosteric activation – experimental results

Allosteric regulation of PYK is a critical feature of cell-cycle control in rapidly proliferating
tissues, because PYK controls both the consumption of metabolic carbon for biosynthesis
and the utilization of pyruvate for energy production. Defects in regulation of PYK
activity have been shown to be involved in the growth of malignant tumor cells (see [188]
and references therein).

PYK is a typical allosteric enzyme of the K-type, i.e. an enzyme, whose Michaelis-
Menten constant Km is being altered by effectors. This is in contrast to the other class
of allosteric proteins, V-type, which have their maximum reaction rate Vmax altered
upon activator binding. Crystallographic and mutagenesis studies have revealed the
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Figure 7.3: Structure of l. mexicana pyruvate kinase. A, illustration of the tetramer
architecture. The four subunits (monomers 1-4) are separated by two inter-
faces (dashed lines). B, the same structure rotated by 90◦ illustrating the
X-shape of the tetramer from the side. C, red box, the catalytic binding site
with natural ligand phosphoglycolytic acid (PG, a PEP replacement) with
adjacent K+ (purplish) and Mg2+ (white) ions. D, black box, the allosteric
site with the natural ligand fructose-2,6-bisphosphate (purple) docked inside.

100



7.2 L. mexicana PYK

Figure 7.4: Sketch of the allosteric activation of PYK; homotropic vs. heterotropic
activation [191]. Top row, homotropic activation: Inactive T-state PYK can
be activated through the binding of PEP to the catalytic site. However, PEP
has a low affinity for the active site of the inactive enzyme (S0.5 = 1.44 mM)
[192]). The binding of PEP allows the binding of ADP at the active site.
Bottom row, heterotropic activation: Inactive T-state PYK can also be
activated through the binding of F-1,6-BP or F-2,6-BP to the allosteric site.
The activated enzyme has a much greater affinity for PEP (S0.5 = 0.2 mM)
[192]) than the inactive enzyme.
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Activ.

Deactiv.

T R

Figure 7.5: Schematic layout of pyruvate kinase illustrating structural differences between
inactive T-state (left) and activated R-state (right) [191]. Different colours
illustrate different subunits. The barrel architecture of the A-domains (central
to each of the subunits) is sketched, B-domains are symbolized as lids, C-
domains as base planks. The quarternary structure of the T-state is much
narrower and higher than the one of the R-state.

general features of the allosteric transition mechanism. The enzyme displays a dramatic
conformational change in going from T- to the R-state. The allosteric signal is transmitted
across the long distance (> 20 Å ) separating the allosteric binding site from the catalytic
center. The exact mechanism of the allosteric transition is not known in detail, since not
PYK had been so far crystallised in both T and R-state. Even though allosteric effects
at the active site have been characterized and the FBP binding site is known [188], very
little is known about the propagation of the allosteric signal from the FBP binding site
to the active site, because PYK had so far not been crystallized in both the T and the R
states. Two mechanisms of allosteric transition have been proposed.

Network mechanism

Friesen et al. [193] proposed a network mechanism to explain allostery in PYK. They
proposed that K421 in rabbit muscle PYK hydrogen binds with Y443 of the neighbouring
subunit across the C-C interface. They then proposed that this tyrosine residue is part
of a hydrogen bond network that transmits an allosteric signal from the C-C interface
to the active site. Results by Fenton and Blair [194] support this theory. This network
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mechanism is in contrast to the rotating rigid domains mechanism suggested by Mattevi
et al.

Rotating rigid domains

Comparing a T-state E. coli PYK structure with the R-state of rabbit muscle M1 PYK,
which is not allosterically regulated and is thus thought to be an allosterically locked
’natural’ mutant adopting an active R-like conformation [195], Mattevi et al. [189, 196]
proposed a combination of two kinds of movements: (i) intra-subunit rotation of the B
and C domains (by 17◦ and 15◦, respectively) within every subunit, and (ii) inter-subunit
16◦ rotation. The activation process therefore seemed to involve a combination of domain
and subunit rotations, whereas the structure of the individual domains is not significantly
altered, implying that they rotate as rigid bodies and are connected to each other by
highly flexible hinges.

However, this proposed mechanism suffered from the fact that the PYK structures
compared were not only from different species, but one was allosteric and the other was not.
All known PYK isoenzymes share high similarity in their primary sequences. However,
extrapolating effects of mutations in one isoenzyme to other isoenzymes may lead to
severe errors, since minor sequence differences may cause large changes in stabilization,
enzymatic, and thermodynamic properties [194]. The model of allosteric activation was
improved through a comparison of the structures of inactive T-state L. mexicana PYK
with active R-state S. cerevisiae PYK [197], allowing to better separate the structural
differences that are consequences of the inherent divergence between eukaryotic and
prokaryotic proteins from the conformational changes associated with the allosteric
transition.

The mechanism of PYK regulation has also been the subject of many mutagenesis
experiments [194, 198]. The general picture emerging from the mutant analysis is that
the intersubunit interactions at the A/A’ and the C/C’ interfaces and the interdomain
interactions at the A/B interface are key to determining the allosteric response and
to defining the distribution of the conformations between active and inactive states.
Moreover, the mutagenesis analyses combined with the crystallographic data provide
evidence for the idea that the T and R forms correspond to ensembles of conformations
characterized by the rotational flexibility of the B domain. The key functional role of the
A/A’ interface has been highlighted by a mutation, which targets a residue located in
the core of the A/A’ interface, producing an enzyme the retains a stable tetrameric state
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but almost entirely lacks enzymatic activity [199]. Conversely, none of the mutations
targeting residues in the A/C interface alters the enzyme’s allosteric properties. Thus,
this domain interface appears not to be involved in the transduction of the allosteric
signal; rather it seems to be important for the stability of the domain assembly within
the enzymatic subunit [194].

All of the above proposals were based on comparisons of crystal structures and enzymat-
ics of mutants. Information on dynamics as well as considerations of intermediate states,
in contrast, were lacking. In this study, extensive molecular dynamics simulations were
used to elaborate a model of allosteric L. mexicana PYK regulation. The simulations were
started from and compared to three crystal structures of two different PYK isoenzymes.
First, the T-state of L. mexicana PYK, second, the fully activated yeast PYK R-state,
and, third, the recently solved crystal structure of a putatively not fully activated L.
mexicana R-state. Here, the fact that the crystallisation precipitant’s sulphate moieties
occupied the binding sites of the phosphate groups of both fructose-2,6-bisphosphate and
PEP, displacing all native ligands, triggered speculations that this structure might not be
fully active. This notion was corroborated by observations that both the orientation of
the monomers with respect to each other (quarternary structure) and the intra-subunit
structure (tertiary structure) were different from R-states of different species, in particular
of the R-state of yeast pyruvate kinase.

We first aimed at obtaining an ensemble of inactive T-state structures and active
R-state structures, respectively, followed by examinations of the influence of ligand (un-
)binding and coupling between the subunits. Finally, we characterised the homotropic
activation pathway of PYK by comparing changes of dynamics of differently ligated
intermediate states.

7.3 MD simulation details

T-state structure

The T-state structure of wild type L. mexicana pyruvate kinase at 2.35 Å was taken
from the protein database (entry 1PKL). Two tetramer structures were available (first
tetramer chains A–D, second tetramer chains E–H) and only one of the eight chains were
complete without any regions of poor electron density (chain H). Non-resolved regions of
other chains were modelled according to the corresponding regions of Chain H using the
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WHATIF suite [200] and the editconf and g rmsd modules of the GROMACS simulation
suite [113, 114].

R-state structures

The (3.3 Å) crystal structure of the ’quasi-active’ R-state of L. mexicana PYK was
recently crystallized (pdb code 1E0V) and described [201]. None of the present subunits
were fully resolved, such that non-resolved loop regions were modelled according to the
resolved loop regions of Chain H of the active T-state structure (see above). The R-state
structure of yeast PYK was taken from the protein data base (entry 1A3W). Since this
structure served only as a reference point and no MD simulations were carried out for
this isoform, no further refinement was carried out here.

General simulation parameters

All simulations were carried out with the Gromacs simulation suite [113, 114], using
the OPLS all-atom force field [64] and periodic boundary conditions. NpT ensembles
were simulated, with the protein and solvent coupled separately to a 300 K heat bath
(τT = 0.1 ps) [69]. The systems were isotropically coupled to a pressure bath at 1 bar
(τp = 0.1 ps) [69]. Application of the Lincs [31] and Settle [30] algorithms allowed for an
integration time step of 2 fs. Short-range electrostatic and Lennard-Jones interactions
were calculated within a cut-off of 1.0 nm, and the neighbour list was updated every
10 steps. The particle mesh Ewald (PME) method was used for the long-range electrostatic
interactions [72], with a grid spacing of about 0.12 nm.

Ligand force field

The natural ligand phosphoglycolyic acid (PG), which is used in all structures of all
PYK isoforms crystallised so far as phosphoenol pyruvate replacement, and fructose-
2,6-bisphosphate (FBP), were not available in the OPLS force field. The atomic partial
charges of both FPB and PG were derived from quantum chemical calculations at
the B3LYP/6-31+G* level using the CHELPG electrostatic potential fitting scheme
[115]. The quantum chemical calculations were carried out with Gaussian03 [116]. All
non-bonded parameters are given in Appendix B. Bonded parameters were taken from
Reference [117].
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Figure 7.6: Docking of natural ligands PG (left) and FBP (right) into the binding sites
of the putative R-state. The phosphate groups of FBP and PG overlap with
the crystallisation sulphates proposed to have replaced PG and during the
crystallisation process. For PG with only one phosphate group, binding site
information of yeast PYK was additionally used to allow for unambiguous
binding.

Docking of PG and FBP

PG and FBP were docked into the corresponding binding sites such that the phosphate
moieties overlapped with the sulphate ions present in the crystal structure (cf. Fig. 7.6).
Additionally, structural information from the yeast PYK binding sites, where all natural
ligands were resolved, were used to guarantee correct distances to binding site residues.
A short MD (500 ps) simulation was used to equilibrate the ligands within the binding
sites.

Energy Minimization and Equilibration of the Solvent

Prior to the free MD simulations, the systems were solvated with explicit TIP4P water
within a dodecahedral box of 16.9 nm length such that the minimum distance of the
protein from the box boundaries was 1.2 nm. Sodium and chloride ions were added
(c = 0.15 mol/l), and the systems were energy minimized for 1000 steps using steepest
descent. The solvent was then equilibrated for 500 ps with positional restraints on the
protein heavy atoms (force constant 1000 kJ mol−1 nm−2). The total system comprised
roughly 500.000 atoms. Total simulation time of all studied systems was about 500 ns.
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Figure 7.7: Pyruvate kinase simulation box (cubic only for illustration purposes) totalling
500.000 atoms. Protein coloured, explicit solvent grey.

7.4 Results

7.4.1 Identification of T- and R-state

For the examination of allosteric activation pathways it is important to identify the active
and inactive state of the same isoenzyme. In the first part of this study, we addressed
the question whether the new crystal structure of the quasi-R state (cf. Sec. 7.3) has to
be considered a fully or a partially activated structure. This question was raised [201],
because the crystal structure showed non-native ligands inside all binding sites, and both
quarternary and tertiary structure appear not close enough to previously crystallised fully
activated R-states of other isoenzymes. Accordingly, it was proposed that this structure
does not belong to the fully activated but to a trapped intermediate state, whereas the
true L. mexicana R-state was proposed to show larger structural similarity to the R-state
of yeast. Two tests were carried out to test this proposal. First, the influence of native
vs. non-native ligands on the dynamics of the quasi-R state structure was compared
and, second, the system was driven towards the fully activated yeast R-state structure,
followed by an analysis of the sampling behaviour after removal of constraints.
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Figure 7.8: Sketched free energy surfaces. l.mex. R’: recently crystallised (partially
activated?) L. mexicana R-state structure, yeast R: fully activated yeast
R-state. A: The L. mexicana. R’-state is energetically unfavourable. The
fully activated state close to the yeast R-state (right), however, is readily
accessible; B: Like A, except L. mexicana. R’ is trapped inside an energy well
separated from the more favourable fully activated conformation by a high
energy barrier; C: The L. mexicana. R’-state is energetically more favourable
than the region close to to the yeast R-state. Stimulated transition over the
energy barrier would result in a new trapped ensemble; D: like C, except a
stimulated sampling of the region close to the yeast R-state would result in
an immediate back-transition.
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How well does sulphate really mimic native ligands?

To test how well the sulphate ions present in the R-state mimic the native ligands PG
and FBP, we compared the sampling of the ’quasi’-R state with SO2−

4 to the same
structure with native ligands, which were docked into the binding pockets as described
in methods. If the sulphate ions are indeed the reason for PYK to have failed to fully
activate, pronounced differences of dynamics or even a straight structural rearrangement
to a fully activated conformation are expected to be seen. In Fig. 7.8A, where a free
energy landscape is sketched, this would correspond to a transition over a very low energy
barrier from the L. mexicana quasi R-state (l.mex. R’, left) to the fully activated R-state
close to the yeast R-state (yeast R, right).

Figure 7.9 shows the sampling behaviour projected in a quarternary-tertiary (Q-T) PCA
coordinate system, which shows the quarternary change on the x-axis and the tertiary
change on the y-axis. The quarternary axis represents the PCA eigenvector (based on the
1892 C-α atoms that were resolved in all crystal structures), which describes a transition
from the L. mexicana T-state to the yeast R-state with constrained intra-subunit motions.
Conversely, the tertiary axis is the PCA eigenvector which describes the same transition
with constrained inter -subunit motions.

The projections of the three crystal structures on these two eigenvectors are symbolised
as red squares. The yeast PYK R-state (1A3W) exhibits the strongest domain closure
(tertiary coordinate) and the smallest angles between subunits (quarternary coordinate).
It can thus be viewed as the most R-like reference point. The lower left red square
represents the T-state structure of L. mexicana PYK (1PKL), exhibiting the most T-like
behaviour. The new crystal structure of the L. mexicana ’R’-state (1E0V) is situated in
the middle. For both L. mexicana isoforms, MD simulations were carried out; the T-state
without any ligands, the L. mexicana. ’R’-state with SO4 and PG+FBP, respectively.
The yeast R-state served as a reference point only; no simulation was started from there.

As can be seen, the ensembles pertaining to T- or R-state do not overlap. Instead, a
clear gap is observed between the two ensembles. Furthermore, for the R’-state, both
trajectories, with sulphate and native ligands, respectively, sample the same region of
configurational space in the first place, travelling into the R-direction of the tertiary
coordinate but slightly in T-direction on the quarternary coordinate. The small gap
between crystal structures and ensemble is due to non-recorded sample points during the
equilibration period. Interestingly, the docked native ligands triggered slightly stronger
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Figure 7.9: Coordinate system with a quarternary coordinate (x-axis) and a tertiary coor-
dinate (y-axis). Red dots correspond to crystal structures, sample point clouds
to equilibration trajectories. Lower left: T-state PYK, middle: SO4-labelled –
sulphate ions as obtained from the crystal structure left inside the bindint sites,
’PG+FBP’-labelled: native ligands docked inside all binding sites. Cartoon
representations outside the graph illustrate the main movements represented
by tertiary and quarternary coordinate.
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Figure 7.10: Essential dynamics stimulated transition (blue) from both l. mexicana states
(left) towards the putative fully activated yeast R-state (upper right) and
backtransition after removal of constraints (pink).

R-like sampling on the tertiary coordinate indicating marked domain closure, albeit
not to the extent seen in yeast PYK. Overall, no pronounced movement into the ’full’
R-direction (upper right) was seen. Thus, the situation skeched in Fig. 7.8A is not
present.

This allows two conclusions. Either the crystallised pseudo-R state is not an intermedi-
ate but a fully activated state or the timescales of the simulations did not suffice for the
transition to the fully activated R-state. The latter case would occur if the energetically
more favourable fully activated state would be separated from the ensemble around the
crystallised intermediate state, as depicted in Fig. 7.8B.

Is yeast R-state close to the “real” L. mexicana. R-state?

The possibility that an energy barrier prevents the system from reaching a potentially
energetically more favourable fully active state during the relatively short simulation
time has to be addressed.

To stimulate a transition over a possible energy barrier, essential dynamics simulations
(ED, cf. methods Chapter 2) were carried out driving the system towards the yeast
R-state, the most R-like point in the Q-T coordinate system. Radius contraction, as
described in methods, was carried out on the first 1000 of the total 5676 eigenvectors
obtained after a PCA of the the ensembles presented in Fig. 7.9. Only the 1892 C-α
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atoms that are resolved in all three crystal structures were included into the analysis.
Even though the radius contraction algorithm does not strictly force the system into
the desired direction (cf. methods), and is thus a relatively soft sampling enhancement,
the transition (blue) of both T-state (with native ligands docked into the previously
empty binding sites) and L. mexicana. ’R’-state (with native ligands docked into the
previously sulphate occupied binding sites) towards the yeast R-state was complete after
less than 1 ns, as can be seen from Fig. 7.10, resulting in an overall RMSD of around
0.1 nm (data not shown). After the transition was complete, the simulation was continued
under ED-constraints for another 3 ns. In the next step, the constraints were removed
and a free ’relaxation’ MD was started (Fig. 7.10). Since the relaxation pathway of the
R-state-started ED trajectory overlapped with the one started from the T-state, the
latter was not plotted separately for clarity.

The fact that the ED activation took only 1 ns despite only a relatively soft sampling
enhancement shows that no high energy barriers had to be overcome. This observation
would, in principle, also agree with Fig. 7.8A. However, removal of constraints after
complete transition resulted in immediate return (Fig. 7.10) to the L. mexicana. ’R’-state
ensemble within 17 ns. This observation rules out the possibility that favourable energy
wells exist for L. mexicana PYK structurally close to the yeast R-state (as depicted in
Fig. 7.8B and C). In contrast, all observations are in agreement with Fig. 7.8D, where the
L. mexicana ’quasi’ R-state sits in a favourable energy well and the region structurally
close to the yeast R-state is rather unfavourable. Furthermore, from the fact that this
backtransition also happened when the transition started from the T-state (with native
ligands bound), we conclude that the energetically most favourable state for L. mexicana
PYK with ligands bound is indeed close to the quasi-R state structure.

7.4.2 Do the ligands induce immediate structural rearrangements?

Our results so far do not completely rule out the possibility that the true L. mexicana
R-state is similar to neither the yeast R-state nor the available L. mexicana quasi-R state,
but rather to a structure not considered in the simulations at all. To further explore the
characteristics of the free energy landscape which underlies the dynamics of PYK, in
the following sections we examine sampling pathways as response to ligand binding and
unbinding.

In this section, the question is addressed whether or not the presence of ligands
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Figure 7.11: A: Spontaneous R→ T deactivation upon removal of ligands. The deactiva-
tion starts immediately after removal of the ligands and is almost complete
after 35 ns. As a reference, the equilibration ensembles of T- and R-state,
as well as coordinates of the crystal structures, are also given. B and C:
analogous deactivation processes (rainbow scatter) like (A) started from
different snapshots of the R-state equilibration trajectory (bluish). In both
B and C, the dynamics of the four subunits are plotted separately showing
pronounced different sampling behaviour.

inside the PYK binding sites has readily observable structural consequences on the
timescales observable by MD simulations. From the PYK millisecond turnover number
[192], one activation/deactivation process would rather be expected to require hundreds
of microseconds. One can, however, hope to see the beginnings of such a transition
or pronounced changes of dynamics. Based on the assumption that activation and
deactivation pathways are similar, the deactivation pathway was chosen first, due to the
much simpler technical implementation – the ligands were removed and the reaction of
the system observed.

Fig. 7.11 shows the observed pathways. In Fig. 7.11A, two 10 ns equilibration tra-
jectories are shown, grey for the T-state trajectory with no ligands inside the binding
sites, blue for the L. mexicana R-state trajectory with ligands bound. The respective
crystal structures are depicted again as red squares. Note that the yeast R-state is not
considerated here. After removal of all ligands from the binding sites, a transition towards
the T-state ensemble could be seen (rainbow colours, where the colour indicates time
information from blue to red), which started immediately after removal of the ligands
and was almost complete after 35 ns.

To rule out the possibility that our observation was merely by chance, we carried out
three more analogous deactivation tests starting from different snapshots from a 30 ns
equilibration trajectory of the R-state ensemble (with native ligands bound). Additionally,
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7 Allosteric regulation of pyruvate kinase

as a second step, native ligands were docked also into the T-state binding pockets and
the resulting pathways were observed.

Two of those further tests are shown in Fig. 7.11B and C, respectively. Here, in contrast
to A and all aforementioned plots, the observed projections of the trajectories on the
tertiary coordinate are shown separately for each of the four subunits (referred to as
mon1–mon4) and not as an averaged tertiary coordinate. Also in contrast to A, the yeast
R-state is given as a red square (upper right corners in all subplots).

Interestingly, we found that the subunits show pronounced dynamics differences already
in the R-state equilibration trajectory (light blue). In particular, in contrast to the other
subunits, subunit 1 showed a clear domain closure. After removal of the ligands out of
the R-state (rainbow colours, where the colour again indicates time information from
blue to red) pronounced spontaneous movements towards the T-state ensemble could
be observed. Here, too, the movements of the four subunits were markedly different.
For example, whereas subunit 1 (mon1) in C performed a quick and complete transition
towards the T-state ensemble, subunit 2 in B did not leave its native R-state ensemble
(light blue) at all. Similarly, subunit 4 (mon4) in B initially performed a domain closure
motion, upwards in the figure, before reversing its direction towards the T-state. But in
C, the same subunit initially started towards the T-state but reversed the direction after
half of the transition.

A similar situation was seen for the reverse case, the T-state structure with native
ligands bound. For this case, a 20 ns trajectory was simulated (light green in Fig. 7.11B
and C). While, like above, the dynamics of the subunits appeared to be different, no
clear overall transition was seen. Only subunit 3 appeared to start a T→ R transition,
wheras the other three did not leave their native T-state ensemble.

To sum up, it was seen that absence of ligands introduced markedly different PYK
dynamics compared to the same system with ligands bound. Immediately after simulation
start, in all observed cases the systems showed a clear tendency to leave the native
ensemble and to approach the T-state both in terms of the quarternary coordinate and
in terms of the overall tertiary coordinate. Conversely, binding ligands into the empty
binding sites of the T-state structure did not (on the timescales accessed by our MD
simulations) result in T→ R transitions.

While, thus, the overall reaction of the system upon ligand removal indicates the
existence of an induced fit mechanism, the situation is somewhat more diverse if subunit-
wise tertiary coordinates are employed rather than averages over the tertiary coordinates
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Figure 7.12: Coupling of the tertiary structures of different subunits. ED stimulated
activation of subunits 1–3 from the T-state ensemble (green) induced the
fourth monomer to follow suit within 30 ns.

of all subunits. A pronounced diversity then becomes evident, which brings up the
question, whether or not subunit dynamics are influenced by neighbouring subunits’
dynamics at all.

7.4.3 Are the tertiary structures of the subunits coupled?

Whereas the previous section established that the ligands do have considerable influence
on both the tertiary and the quarternary architecture of the PYK tetramer, it could not
be shown that the internal structure of each subunit depends on neighbouring subunits’
conformation. From the results so far, it would be entirely possible that the conformation
of each subunit merely reacts on ligand binding or unbinding without being sensitive to
the neighbours’ binding situation and conformation at all. This, however, would then
not explain the cooperative effect.

To examine the structural influence of inter-subunit configurational coupling, we again
carried out radius contraction essential dynamics simulations. In contrast to the ED
simulations of Sec. 7.3, only the 1419 C-α atoms that were resolved in both L. mexicana
PYK and yeast PYK and belonged to subunits 1, 2 or 3, respectively, were subjected
to ED enhanced sampling. Within the binding sites of these three subunits, the native
ligands FBP and PG were bound. They were then driven towards the yeast R-state. The
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7 Allosteric regulation of pyruvate kinase

fourth subunit’s binding sites, in contrast, were left empty and this subunit was also not
subjected to ED, but left free to move. If the subunits’ conformations influenced their
neighbours, the unperturbed fourth subunit should show markedly different dynamics
after its neighbouring subunits were subjected to ED as compared to a completely
unperturbed tetramer.

Fig. 7.12 shows that the ED activated subunits 1, 2 and 3 (dark blue), which were
started from the T-state (red square lower left) equilibration ensemble (light green),
reached a tertiary coordinate similar to the yeast R-state (red square upper right) within
less than 5 ns. The quarternary coordinate, which is a property of the whole tetramer,
also showed such a fast activation procedure. Even after this completed activation, the
ED constraints were kept switched on throughout the whole subsequent simulation, when
the dynamics of the fourth subunit were observed. This unperturbed fourth subunit
(rainbow colours from blue to red represent time information) exhibited a similar domain
closure movement like the activated three other subunits, i.e. an upwards tendency on
the tertiary coordinate. However, the closure motion of the fourth subunit did not reach
the extent of the perturbed subunits, after reaching a similar tertiary coordinate like the
L. mexicana R-state structure (red square middle left). Interestingly, the initial closing
motion stopped after about 15 ns (change from blue to green). During the following
12 ns, a pronounced opening motion took place reaching almost the fully opened starting
point before the closing carried on to reach its final position around 30 ns (red).
Such structural rearrangements could neither be observed for empty subunits nor for
holo subunits (with bound ligands) in the previous free MD simulations (cf. Sec. 7.4.2).
The activation of the three subunits appeared to be connected to the fast structural
rearrangements seen for the non-perturbed subunit. We conclude that the activated
conformations/dynamics of the activated subunits 1, 2 and 3 significantly flattened the free
energy landscape underlying the dynamics of subunit 4, such that the T→ R-transition
of subunit 4 was facilitated.

However, whereas this experiment showed that intra-subunit configurations are influ-
enced by neighbouring subunits, the fact that the conformations of three of the four
subunits were constrained throughout the whole simulation has to be considered a severe
interference with the natural dynamics of the protein. All simulations with unperturbed
dynamics so far compared the dynamics of the fully ligated with the completely unligated
PYK. Accordingly, it is as yet unclear, how the activation from the inactivated empty
T-state PYK to the activated R-state PYK actually takes place. As a start, the following
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section aims at following the pathway of homotropic PYK activation, which is sketched
in Fig. 7.4.

7.4.4 Homotropic activation of pyruvate kinase

We aim at characterising the homotropic activation of PYK in terms of changes of
dynamics of differently ligated PYK configurations. The advantage of examining ho-
motropic activation rather than heterotropic activation is the fact that here the number
of intermediate steps is much lower; and it is the intermediate states which have been
proposed to carry the clue to understanding allosteric activation processes.

In kinetic experiments, homotropic activation was observed to take place very slowly,
due to a very low affinity of the PEP/PG ligands to the catalytic site of the inactive
T-state (cf. Fig. 7.4). This first obstacle was overcome by docking PG with accompanying
ions properly into the catalytic site, as described above. Due to the symmetry of the
tetramer, a set of six 50 ns simulations of differently ligated T-state PYK molecules was
sufficient to examine all different ligation states; one single-liganded, three double-liganded
(one cross-over, one small-interface neighboured, one larger interface neighboured), one
triple-liganded and one full-liganded. Over the whole 300 ns trajectory, a full-residue
(including side-chains, but excluding hydrogens, which are not expected to significantly
change the result; altogether 45,000 coordinates were examined) PCA was conducted
yielding a set of eigenvectors which best represent the common collective dynamics to the
system. Each of the first few principal components thus obtained turned out to represent
well the collective motions of exactly one of the ensembles underlying the PCA.

The residue-wise RMSF plot (Fig. 7.13 1a) shows the distinct distribution of highly
flexible regions along the eigenmode pertaining to the single-ligated PYK ensemble.
Above-average flexible regions are marked red. This docking of only one ligand into the
tetramer yielded a fast T→ R transition not only in this particular ligated subunit (holo,
Fig. 7.13 1b left) but also of the empty small-interface neighbour (holo, Fig. 7.13 1b right),
which was even more pronounced than for the ligated subunit. This surprising result can
be understood from the distribution of the active regions along this collective coordinate
(obtained from Fig. 7.13 1a), which are mapped into a cartoon representation of PYK.
The ligated subunit (green) exhibits high activity around its own allosteric site (allosteric
effector FBP in grey for better orientation only, it was absent in the simulations) as well as
around the smaller interface (Fig. 7.13 1e), where crucial regions for signal transductions

117



7 Allosteric regulation of pyruvate kinase

T
er

ti
ar

y

T R

T

R

Quarternary
T R T R

holo holo apo

1a

1b

2a

2b

3a

apoholo

T
er

ti
ar

y

T R

T

R

Quarternary

T
er

ti
ar

y

T R

T

R

Quarternary

1c

1d

2c 2d

1e

3b

1c

1d

2c

3c

Figure 7.13: Collective motions observed during the homotropic activation of PYK. 1a:
Distribution of especially flexible regions (red) in PYK upon docking of
only one ligand in the tetramer as obtained by RMSF. 1b: The ligation
of one subunit yields a T → R not only in this particular subunit (holo,
left) but also of the non-ligated small-subunit neighbour (apo, right); 1c:
the flexible regions obtained from and marked red in 1a are highlighted
red in a cartoon representation of PYK in the liganded subunit (side view).
The ligated subunit is green, empty subunits grey. PG in yellow. The
collective vibrations highly affect the allosteric binding site of the subunit,
and the region around the small subunit. The larger interface is unaffected.
1d: The same flexible regions marked in the smaller-interface neighbour.
Regions needed for T → R transition are highly affected; 1e: zoom into
the smaller-interface region illustrating the signal jump over the interface;
2a: like 1a, except for ligands in smaller-interface neighboured subunits; 2b:
this ligation combination introduces T→ R transitions for the two ligated
subunits (holo, left and middle) and also for the non-ligated larger-interface
neighbour (apo, right); 2c) no collective movement is seen any more via
the smaller interface; 2d) rather, the collective mode now forms a path via
the larger interface to the larger-interfact neighbour’s catalytic binding site,
explaining 2b; 3a) like before, but for triple ligated PYK; 3b) the active
regions now form a network which mostly affect the allosteric binding sites,
but not the catalytic sites; 3c) focus on the empty subunit. No activity
could be observed around the catalytic site.
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are active. Mapping the flexible regions also in the neighbouring subunit illustrates which
the T→ R transition in this empty monomer likely occured. Following this activation
route, the collective dynamics were examined of the double-ligated tetramer, where both
of the just examined smaller-interface neighboured subunits are ligated. Here, somewhat
different dynamics were observed and the active regions shifted to different areas of the
protein (Fig. 7.13 2a). Also here a T→ R transition could be observed not only for the
ligated subunits (holo; Fig. 7.13 2b left and middle), but also for the larger-interface
neighboured subunit (apo; Fig. 7.13 2b right). Mapping the active regions into a cartoon
representation of the protein, like above, shows the possible reasons. While the activity
around the smaller subunit showed a remarkable drop (Fig. 7.13 2c, ligated subunits
again in green, empty in grey), a pronounced active pathway is seen which connects
the catalytic sites of the larger-interface neighboured subunits (top view Fig. 7.13 2d).
The PG ligand inside the non-ligated subunit (right, grey) is again only for orientation
purposes, it was absent in the simulation. Ligating three of the four subunits again
yielded a completely different activation pattern (Fig. 7.13 3a). Here, a network of active
regions is spanned throughout the whole protein (Fig. 7.13 3b) concentrating around the
allosteric binding sites. A quarternary T→ R transition was seen, but no tertiary T→ R
transition of the empty subunit could be observed (data not shown), which is conceivable
from the maps of active regions inside this empty subunit (Fig. 7.13 3c). The ligands
FBP (top) and PG (below), absent in the simulations, were coloured orange for better
visibility to help identifying the binding sites. Regions crucial for T → R transitions
were unaffected by the network of activity observed for this ensemble, suggesting that no
stimulation for domain motions were available. On the other hand, pronounced activity
was observed around the allosteric site, suggesting that homotropic activation could result
in increased subsequent heterotropic activation. Kinetic measurements to test this idea
could be fairly easily carried out.

7.5 Conclusions and outlook

Our results show that, surprisingly, pyruvate kinase is regulated on time-scales which
are very well accessible to atomistic simulation techniques, despite a turnover number
which indicates catalytic cycle timescales on the order of milliseconds. In a coordinate
system spanned by three crystal structures of two different isoenzymes, PYK dynamics
was depicted as a linear combination of changes of quarternary and tertiary coordinates.
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7 Allosteric regulation of pyruvate kinase

We showed that, based on PYK dynamics, the recently crystallised putative R-state of
L. mexicana. PYK has likely assumed a fully activated R-state structure; in contrast
to what was proposed based on structural comparison and the fact that sulphate ions
replaced the natural ligands inside both allosteric and catalytic site. Activation and
deactivation appear to follow an induced fit mechanism, exhibiting spontaneous T→ R
(R→ T) transition upon introduction (removal) of ligands, where the activation appears
to take slightly longer than the deactivation (50–70 ns vs 30 ns). The dynamics of the
four subunits appears to be largely independent in the fully ligated and in the fully
unligated states, in disagreement with the symmetry assumption of the MWC model, but
in line with the Pauling-KNF model. Pronounced coupling not only of the quarternary
structure (which is a property of the whole enzyme) but also of the internal structure of
the subunits could be observed, on the other hand, for differently liganded states.

Using the homotropic activation process of pyruvate kinase as a fairly straightforward
mechanism in terms of number of intermediates, we showed that ligand binding induced
procounced changes of collective motions. The detailed examination of these collective
motions suggest that changes in collective motions are what drives the allosteric activation
of PYK. Whereas single-ligation provides means of signal transduction almost exclusively
via the small-interface, simultaneous ligation of both thereby coupled subunits appears
to favour collective modes facilitating signalling via the larger interface. In both cases,
the quarternary structure changed from T→ R, and also empty neighbouring subunits
exhibited an extremely fast tertiary T→ R transition, in the single-ligated state even
faster than the neighbouring ligated subunit.

The surprising result that the first and second of the intermediate ligation states appear
to be more active transition-wise than the triple-ligated intermediate state could provide a
whole new interpretation to the fact that homotropic activation is slower than heterotropic,
i.e. homotropic activation could simply lead to a dead-end during the activation process
rather than be slower due to a hindered first step. This interpretation does not collide with
kinetic data from titration experiments [188] which do not discriminate between dead-end
and hindered-first step activation, and the large variance 2.81± 0.52 of the cooperativity
constant n obtained from kinetic Hill-plots [192] does not oppose this interpretation
either. The fact that the dead-end observed in the simulations showed remarkable activity
around the allosteric sites of PYK furthermore suggests to examine the influence of FBP
addition on the kinetics after homotropic activation has been completed.

An essential brick that is lacking so far in this study of L. mexicana pyruvate kinase
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regulation processes is the proper description of the role of entropies. The large size of
this enzyme requires substantial computational effort to answer the question within the
minimally coupled subspace approach developed in Chapters 4–6. On the other hand,
the treatment with the quasi-harmonic approximation may lead to wrong conclusions,
as demonstrated before. Accordingly, this aspect of allosteric control remains as future
work.
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Chapter 8

Summary and conclusions

It is becoming increasingly clear that the old view of proteins exisiting in equilibrium
between discrete conformational states is not always helpful. Experimental results from
a wide range of disciplines, in particular from NMR experiments, indicate that proteins
need to be viewed as complex statistical ensembles. From a thermodynamic point of
view, the major question of protein science is whether and how a protein’s functional
properties are related to the distribution of states within this ensemble, and how a change
in environmental conditions, e.g., protein or ligand binding/unbinding, or external force,
affect this distribution and alter function. Within this framework, the present thesis
aims at characterizing by means of atomistic molecular dynamics simulation (MD) the
dynamic and functional response of two different classes of proteins to changed external
parameters; titin kinase’s response to external force, and the allosteric response to ligand
binding of the two allosterically regulated proteins calmodulin and pyruvate kinase.

The investigations of this thesis yielded insights into protein regulation on the atomic
scale. Complemented with experimental results, such as force extension curves, calorimet-
ric measurements and crystallographic studies, our simulations significantly contributed
to the understanding of protein function in terms of underlying protein dynamics. Fur-
thermore, to quantify (changes of) protein dynamics, and of complex macromolecules in
general, we developed and applied a new non-parametric method for the estimation of
configurational entropies of proteins.

123



8 Summary and conclusions

Mechanoenzymatics of titin kinase

The catalytic domain of the muscle protein titin, titin kinase (TK), has been proposed
to act as a molecular force sensor in the sarcomer of striated muscles by undergoing
force-induced unfolding events presumably linked to its catalytic function. In the first
chapter of this thesis, the force-induced unfolding and activation was explored by means
of force probe molecular dynamics (FPMD) simulations. In close collaboration with
experimental groups, which provided atomic force microscopy (AFM) and enzymatic
data, respectively, we showed that this notion of TK being sensitive to external force
is indeed correct. A crucial role plays here the removal of autoinhibition, which under
normal conditions (i.e. without external force) inhibits catalytic activity of TK.

Previous MD simulations of our group showed that the external force induces the
unfolding of the autoregulatory domain, thereby freeing the catalytic site of TK for
binding of ATP. The unfolding of the autoregulatory domain left the catalytic site nearly
unperturbed, such that catalytic actity was not affected, as required. The forces required
to remove autoinhibition were considerably lower than the the forces required to unfold
neighbouring titin domains. These results showed that mechanical TK activation might
be possible and that TK might indeed play a role as molecular force sensor in muscles.

For the study presented in Chapter 3, kinetic measurements of TK under external
AFM-force showed that catalytic activity is gained by exertion of force. Furthermore,
in AFM measurements of TK unfolding, saw-tooth shaped force-extension plots were
obtained, where the number of peaks corresponded to unfolding events of TK secondary
structure elements. In the presence of ATP, one additional force-peak was obtained.

In our FPMD simulations of TK with and without ATP, this additional force peak was
also seen in the presence of ATP. We were able to show that this force peak is indeed
induced by interactions of the N-terminal TK domain with ATP. After removal of the
autoinhibitory tail, the catalytic site of TK is free for ATP to bind. Our simulations
correctly predicted that two residues of TK, Met34 and Lys36, were crucial for catalysis.
Indeed, in subsequent kinetic measurements, mutations of Lys36 to alanine resulted in
almost completely vanished TK catalytic activity.

However, the comparison of simulated force-extension curves with experimentally
obtained ones, was not straightforward due to necessarily much higher pulling velocities
and much stiffer“cantilevers” in the simulation than in the AFM experiments. Accordingly,
we resorted to contour histograms, which display unfolding barriers as a function of
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contour lengths which were obtained from a worm-like chain fit to the force-extension
curves, thus allowing to quantitatively relate the structural events seen in the simulations
to experimentally obtained AFM force-extension plots. The very good agreement of
the contour histograms derived from simulations and from experiments, respectively,
corroborated that the main unfolding events were described correctly by the simulations.

Overall, the results of this project show that the catalytic activity of TK is indeed
force dependent. The much lower mechanical stability of TK as compared to adjacent
titin domains enables it to alter its activity by forces which are very well in the range of
the physiological forces generated by the actin filaments in sarcomers.

Estimating configurational entropies of macromolecules: the

minimally coupled subspace approach

The second objective of this thesis was to find means of quantifying protein dynamics
and changes thereof by thermodynamic measures. Chapters 4–6 of this thesis presented
a new approach for accurate estimation of configurational entropies of macromolecules.
These have to be considered the main driving forces behind many biological processes
including molecular recognition, ligand binding, protein folding or other phenomena
driven by hydrophobic forces. There is also growing evidence that entropies, and thus
dynamics, can be viewed as dynamic carrier of allosteric free energy governing enzymatic
activity in finely-tuned complex enzymes. Acccurate entropy calculation from structure
ensembles generated by atomistic simulations, however, is not straightforward. For
macromolecules of N atoms, the necessary evaluation over the 3N dimensional config-
urational probability density integral has been shown to be nearly impossible. Hence,
direct established methods to approximate this integral, such as the widely used (quasi-)
harmonic approximation (QH), are limited by neglection of non-linear and higher-order
correlations. Non-parametric density estimation allows, in principle, to overcome these
limitations; but non-parametric density estimators have so far yielded inaccurate results
even for 12-15 degrees of freedom.

In Chapters 4–6, a new hybrid approach to estimate configurational entropies was
developed, which incorporates three building blocks. Chapter 4 gives an overview on
the concept, and illustrates the applicability to a wide range of macromolecules. The
central building block of this method, a non-parametric density estimation method
is established (Chapter 5), which is based on adaptive anisotropic kernels. With this
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method, non-parametric entropy estimation is shown to be possible of up to 45-dimensional
configuration spaces, pushing previous limits by a factor of three. Accuracy was tested
and verified for a wide range of dimensionality by comparing our kernel entropy estimates
of seven alkanes ranging from butane to decane and the dipeptide dialanine by to two
thermodynamic integration (TI) references. It was shown that, in contrast to the QH
approximation, adaptive anisotropic kernels reproduced the TI reference with an error
of only 4 %. However, for a 14 residue β-turn with more than 500 degrees of freedom,
due to the ’curse of dimensionality’, which affects all non-parametric density estimation
methods, it was impossible to improve on the QH estimate by use of the kernel density
estimator alone.

Thus, as the second building block, we employed Full Correlation Analysis (FCA),
which uses a linear entropy invariant coordinate transformation such that the usually
highly coupled degrees of freedom separate into minimally coupled subspaces each of
which being sufficiently small to render non-parametric density estimation applicable.
FCA minimizes non-linear correlations of second and higher order [97] and therefore
improves on principal component analysis (PCA) which only considers linear correlations
of second order. For complex macromolecules, even for the optimal linear transformation,
considerable correlations between several degrees of freedom will remain and cannot be
neglected. To address this issue, the FCA modes are subsequently clustered according to
the generalized correlation coefficient yielding the required sufficiently small subspaces in
many cases. This has has been demonstrated exemplary for the coldshock protein and
for the apo form of calmodulin (CaM), a large 165-residual calcium regulated allosteric
protein.

However, for larger molecules, the above procedure may result in minimally coupled
subspaces which are too large for non-parametric density estimation. The third building
block of our hybrid approach addresses this issue by subdividing each oversized cluster
into a number of smaller subclusters, irrespective of the necessarily remaining strong
correlations between these. The correlations which are thus neglected are accounted for via
a mutual information expansion (MIE). Previous attempts to apply similar expansions to
macromolecules failed due to the “combinatorical explosion” caused by the large number
of correlation terms to be considered. We have shown that the clustering of modes
achieved via FCA improved the situation considerably, such that the “combinatorical
explosions” are avoided.

In combination, these three building blocks enable one to calculate configurational
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entropies even for larger biomolecules. As an example of biological relevance, the 146-
residue globular protein calmodulin was considered for which scanning or perturbation
methods do not converge. Calmodulin (CaM) is a calcium regulated protein which
binds up to four calcium ions under physiological conditions. Only the calcium bound
structure binds many different peptide binding partners with high affinity. As no
direct interaction of calcium with the peptide binding partners occurs, lowering the
configurational entropy of the free (but calcium bound) calmodulin has been suggested as
a possible regulation mechanism. However, calorimetric experiments suggested a nearly
vanishing configurational entropy contribution. We showed that, using the MCSA, a
nearly complete entropy cancellation within the error is obtained, in agreement with the
experiment. Our result suggested that calcium binding causes a substantial but free-
energy-neutral transfer of configurational entropy into solvent entropy, thereby activating
CaM for substrate binding. Quite a different picture would be provided by the QH
approximation, which clearly overestimated the effect of entropy reduction by a factor of
two.

Allosteric regulation of l.mexicana pyruvate kinase

The third part of this thesis aimed at exploring the allosteric regulation of l.mexicana
pyruvate kinase (PYK), a huge 2000 residue tetrameric enzyme catalysing last step of
glycolysis, the conversion of phospho-enol pyruvate to pyruvate. The catalytic activity
of PYK is remote-controlled by fructose-bisphosphate, which binds to a binding site
more than 2 nm apart (thus the name allostery) from the catalytic site of the same
subunit and more than 10 nm to the catalytic binding site of neighbouring subunits.
Insight into the allosteric mechanisms of PYK was hitherto limited by the fact that no
isoenzyme has crystallised in both active R and inactive T state. Only most recently, a
low resolution X-ray structure of a putative l.mexicana PYK R-state has been solved,
which, due to non-native ligands in both allosteric and catalytic site, was thought not to
have assumed a fully activated structure. Our results from extensive MD simulations,
which compared the putative l.mexicana R-state with the guaranteed fully active yeast
R-state, in contrast, suggest that the structure has indeed to be considered fully active.

We furthermore showed that, surprisingly for a molecule of this size, pyruvate kinase is
regulated on time-scales which are very well accessible to atomistic simulation techniques,
despite a millisecond turnover number. Activation and deactivation appear to follow
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a classic induced fit mechanism, exhibiting spontaneous T → R (R → T) transition
upon introduction (removal) of ligands. The dynamics of the four subunits is largely
independent, in disagreement with the symmetry assumption of the MWC model, but in
line with the Pauling-KNF model.

We examined the homotropic activation of PYK and observed changes of collective
motions throughout the overall tetramer upon binding of ligands at only one or two
monomers. These changes of collective motions nicely explain activation events observed
in the simulations. The observed transition patterns suggest a dead-end mechanism
rather than a hindered first-step mechanism as possible reason why homotropic activation
exhibits slower kinetics than heterotropic activation. We proposed kinetic experiments to
test this idea.

Concluding remarks

This thesis presented examinations of the homotropic PYK regulation, but not detailed
accounts of heterotropic regulation. The examination of heterotropic PYK regulation
is limited by the large number of in different intermediate steps, which need to be
considered for full description of allosteric activation pathways. With increasing computer
performance, however, this issue will certainly be possible to address. A further interesting
aspect of PYK allosteric regulation not yet fully investigated is an examination of the
role of configurational entropies. The minimally coupled subspace approach developed in
Chapters 4–6 now allows to address this issue by proper treatment also of the non-linear
and higher order correlations that have been found to be crucial for the correct description
of entropy contributions to the regulation of the allosterically regulated calmodulin.

128



9
Chapter 9

Appendix A

N39

37

N36

35

34

40

N30

31

N33

N41

28

O19

17

O26H27O22H23

H25H20

H29

14

H18

O13P10O9

O12
-

O11

P2
-O1

O4
-

O3

P7O6

O8
-

O5
H16H15

H32

H38

H41 H43

Figure 9.1: Schematic drawing of ATP, defining the atom numbers used in the table.

OPLS type σ ε

opls 966 0.374 0.837
opls 967 0.350 0.276
opls 968 0.296 0.879
opls 969 0.296 0.879

Table 9.2: Lennard-Jones (6,12) parameters.
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# OPLS type charge # OPLS type charge # OPLS type charge
1 opls 969 -1.1 16 opls 140 0.06 30 opls 354B -0.38
2 opls 966 1.9 17 opls 183 0.17 31 opls 353 0.2
3 opls 969 -1.1 18 opls 140 0.03 32 opls 359 0.14
4 opls 969 -1.1 19 opls 180 -0.6 33 opls 352 0.2
5 opls 968 -0.6 20 opls 158 0.2 34 opls 350 0.15
6 opls 969 -1.1 21 opls 140 0.06 35 opls 349 0.38
7 opls 966 1.9 22 opls 171 -0.68 36 opls 348 -0.55
8 opls 969 -1.1 23 opls 172 0.42 37 opls 347 0.35
9 opls 968 -0.7 24 opls 158 0.2 38 opls 355 0.2
10 opls 966 1.9 25 opls 140 0.06 39 opls 346 -0.53
11 opls 969 -1.1 26 opls 171 -0.68 40 opls 351 0.53
12 opls 969 -1.1 27 opls 172 0.42 41 opls 356 -0.74
13 opls 968 -0.7 28 opls 183 0.3 42 opls 357 0.385
14 opls 183 -0.12 29 opls 140 0.06 43 opls 358 0.355
15 opls 140 0.06

Table 9.4: Atomic partial charges for ATP.
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Figure 10.1: Left, structure of fructose-2,6-bisphosphate, defining the atom numbers used
in Table 10.2. Right: Structure of PG with K+ and Mg2+, defining the atom
numbers used in Table 10.4
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# OPLS type charge # OPLS type charge
1 opls 969 -0.983 16 opls 170 0.512
2 opls 966 1.154 17 opls 158 0.187
3 opls 969 -0.905 18 opls 140 0.162
4 opls 969 -0.982 19 opls 169 -0.879
5 opls 968 -0.841 20 opls 170 0.53
6 opls 183 0.694 21 opls 183 0.137
7 opls 157 -0.01 22 opls 140 0.103
8 opls 140 0.18 23 opls 987 0.064
9 opls 140 0.114 24 opls 140 0.075
10 opls 154 -0.827 25 opls 140 0.13
11 opls 170 -0.464 26 opls 968 -0.781
12 opls 180 -0.723 27 opls 966 1.472
13 opls 158 -0.084 28 opls 969 -0.912
14 opls 140 0.167 29 opls 969 -0.962
15 opls 169 -0.882 30 opls 969 -0.947

Table 10.2: Atomic partial charges for FBP

# OPLS type charge # OPLS type charge
1 opls 411 1.295 8 opls 967 -0.099
2 opls 408 0.86 9 opls 140 0.256
3 opls 969 -0.843 10 opls 140 0.258
4 opls 966 1.395 11 opls 235 0.742
5 opls 969 -0.881 12 opls 236 -0.687
6 opls 969 -0.866 13 opls 236 -0.684
7 opls 968 -0.773

Table 10.4: Atomic partial charges for PG with K+ and Mg2+
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