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1 Introduction

The beginner. . . should not be discouraged if. . . he finds that

he does not have the prerequisites for reading the prerequisites.

— Paul Halmos

In all living organisms, a large diversity of processes critically depend on the activity

of proteins, biological macromolecules which are mainly composed of polymeric chains

of amino acids [1]. Although in many of these processes the mere structure of a protein

dominates its function (e.g. collagen in tissues, α-keratin in hair, histones as spools

around which DNA winds), protein dynamics is fundamental to many others. Virtually

all biological processes involving motion find their origin in protein dynamics, i.e. the

proteins’ ability to adopt different conformations. Muscle contraction, for instance, is

based on the combined action of actin and myosin. Other examples are the molecular

motors kinesin and F1-ATPase. The inherent conformational flexibility of proteins is

not only restricted to mobility as the primary function, but is essential for the function

of many transport proteins, proteins involved in signal transduction, cellular recognition

(e.g. in the immune system), and numerous enzymes [1]. In many enzymes, confor-

mational changes serve to enclose the substrate, thereby preventing its release from

the protein and ideally positioning it for the protein to perform its function, as e.g. in

lysozyme. Allosteric proteins, such as hemoglobin in red blood cells, employ another

special class of conformational transitions. Here, substrate binding to one subunit of

these multimeric proteins triggers a conformational change that alters the substrate

affinity of the other subunits, thereby sharpening the switching response of these pro-

teins. Generally, in allosteric proteins binding of an effector molecule alters, via certain

conformational changes, the binding affinity of one or more binding sites which are

distinct from the effector binding site.

The range of conformational change encountered in nature varies from very subtle,

local changes, as in the case of myoglobin, to global conformational changes, involving

motions of significant amplitude for large parts of a protein such as adenylate kinase or

importin-β. Furthermore, dynamics not only plays an important role in the functional
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1 Introduction

native state of many proteins, but also the mechanism by which proteins reach that

native conformation, the folding process, is of course a dynamic one.

Experimental techniques have made substantial progress in revealing protein struc-

ture (especially X-ray crystallography [2, 3], nuclear magnetic resonance (NMR) spec-

troscopy [4, 5], cryo-electron microscopy [6]) and conformational flexibility (e.g. NMR

relaxation [7], fluorescence spectroscopy [8], electron paramagnetic resonance [9], neu-

tron scattering [10, 11]). In some instances, different functional states of proteins were

structurally characterized by trapping them in certain substates [12]. Furthermore,

time-resolved X-ray crystallography [13, 14] allows to follow the conformational protein

motion with picoseconds time resolution. Wide-spread use of this technique is impeded,

though, by the massive experimental effort involved.

Despite this enormous variety, experimental techniques having spatio-temporal reso-

lution in the nanosecond as well as the nanometer regime are not available, and thus

information on the conformational space accessible to proteins in vivo often remains

obscure. In particular, details on the pathways between different known conformations

are usually unknown. Computer simulation techniques provide the only possibility to

obtain dynamic information on proteins at atomic resolution in the nanosecond to mi-

crosecond time range. Out of all possible ways of simulating protein motions, molecular

dynamics (MD) techniques are among the most popular. MD tries to describe the time

evolution of molecular systems as realistically as possible. In a typical simulation, an

experimentally determined configuration is put into an environment that best mimics

its natural environment. Once started, the time evolution of the system is described

by integrating Newton’s equations of motion for all atoms, treated as point masses

interacting via simple force terms. The method operates in the full 3N dimensional

configuration space of the protein and the surrounding solvent molecules (where N is

the number of atoms). The large number of pairwise interactions to be evaluated and

the short femtosecond time steps enforced by the fastest motions (O-H bond vibra-

tions) entail very long computation times, limiting MD at present to systems of 105-106

atoms and to timescales of several 100 ns. Apart from a few exceptions, however, rel-

evant biological processes such as the gating of ion channels, allosteric interactions,

ligand binding, enzymatic activity or protein folding occur on the microsecond to sec-

onds timescale, and still remain out of reach for conventional MD.

An efficient exploration of the vast configuration space spanned by all molecular con-

formations, therefore, proves to be a challenging endeavor. The numerous interactions

present in the system give rise to a complex 3N -dimensional rugged free energy land-
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scape [15, 16] whose global shape is supposed to be funnel-like with the native state

populating the global minimum [17]. A more detailed look reveals a multitude of almost

iso-energetic minima separated by energy barriers of various heights. Each of these min-

ima corresponds to one particular conformational substate, with neighboring minima

corresponding to similar conformations. Within this picture, structural transitions are

barrier crossings, with the transition rate depending on the height of the barrier. The

largest barriers are rarely traversed, and thus are hardly observed in MD simulations

under standard conditions (sampling problem).

Efforts to bridge the gap towards all-atom simulations on biologically relevant length

and time scales are manifold and numerous algorithms have been developed to enhance

conformational sampling (see [18, 19] for recent reviews). Conceptually, three categories

of methods can be distinguished: (1) those that try to mimic biological systems as re-

alistically as possible and focus on sophisticated (mathematical) methods to enhance

computational efficiency, affecting the dynamics and thermodynamics as little as possi-

ble, (2) those that gain computation time by simplifying the molecular models involved,

and (3) those algorithms that make use of special properties of the simulated system

to describe the latter in more appropriate, internal coordinates. The above division is

not exclusive and some methods cannot be assigned to either category whereas others

are hybrid methods based on principles from several categories. A number of exam-

ples from all categories will be treated in the following paragraphs before introducing

two methods from the first and third category, namely replica exchange and essential

dynamics, that play a key role throughout this thesis.

Algorithms to speed up the core MD algorithm, especially the calculation of long-

range Coulomb forces, belong to the first category. Besides parallelization, recent devel-

opments include efficient methods such as multiple time step algorithms [20, 21, 22, 23,

24], fast multipole methods [25, 26, 27, 28], and Ewald summation techniques [29, 30].

Also, the use of constraints [31, 32, 33] helps to increase efficiency by allowing a longer

time step. Other approaches to reach equilibrium conformational properties at an en-

hanced sampling rate deal with the problem of high frequency vibration of hydrogen

atoms [34, 35]. Available methods to study functional transitions of a protein usually

require prior knowledge of the transition (i.e. an appropriate reaction coordinate) and

thus mainly differ in the definition of the transition coordinate and the way the system

is forced to proceed along this coordinate. The method of umbrella sampling [36, 37]

requires a pre-defined reaction coordinate, whereas no such limitation is given e.g. in

targeted MD [38], essential dynamics [39] and force probe MD [40], mimicking atomic
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1 Introduction

force microscopy (AFM) single-molecule experiments. In conformational flooding [41],

the potential energy landscape of the system is adaptively modified, thereby enabling

the system to escape from local minima.

Simplified or coarse grained models of biomolecular systems belong to the second cat-

egory of methods designed to enhance conformational sampling (see [42] for a compre-

hensive review). Representations of several atoms up to complete amino acids by single

beads allow a drastic reduction of computational means, thereby enabling the simula-

tion of large macromolecular aggregates on micro- to millisecond timescales. This gain

in efficiency, however, comes with an inherent lack of accuracy compared to all-atom

descriptions of proteins, restricting current models to semi-quantitative statements. Es-

sential in this respect are the parametrizations of used force fields that are both accurate

and transferable—that is, force fields capable of describing the general dynamics of sys-

tems having different compositions and configurations. As the graining becomes coarser

this process becomes increasingly difficult, since more specific interactions must effec-

tively be included in fewer parameters and functional forms. This has led to a variety of

models representing different compromises between accuracy and transferability. Apart

from using simplified models for proteins and lipids, also surrounding solvent molecules

are subject to either coarse graining [43] or complete omission [44, 45, 46, 47]. In

the latter case, mostly used in simulations where the solute is represented at atomic

resolution, solvent effects are implicitly modeled by additional terms in the force field.

As opposed to the usual Cartesian representation, the efficiency of computer simu-

lations of proteins can be increased by describing the system in their internal degrees

of freedom. The use of torsion angles is a natural choice in this respect, since dihe-

dral angles are the main degrees of freedom, of which the φ and ψ backbone dihedrals

play the largest role. The advantage of applying torsion angles in the study of protein

dynamics [48, 49] again comes from the larger time steps that can be taken during

the simulation (factors of up to 6.5 have been reported [49]). However, a number of

problems are encountered when protein dynamics is described in torsion angle space.

Solving the equations of motion in these internal coordinates requires the inverse of the

moments of inertia tensor at each step. Since matrix inversion scales with the third

power of the number of matrix elements in terms of computation time, application of

such methods is limited to small systems. However, a method to get around this prob-

lem has been proposed [27], reducing the computational cost to order N instead of N3.

A second problem connected with torsion angle dynamics is the absence of bond-angle

fluctuations, which severely restricts protein dynamics. This results in an overestima-
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tion of conformational barriers, thus making the method most useful for simulations

at elevated temperatures, used e.g. in the field of NMR structure determination [50]

and refinement [51]. Another way to define internal coordinates in proteins is based on

the notion that most positional fluctuations occur along only a few collective degrees

of freedom. This was first realized from normal mode analysis (NMA) of the small

protein bovine pancreatic trypsin inhibitor [52, 53, 54]. Since then, a number of studies

[55, 56, 57, 58, 59, 60, 61, 62, 63] have shown that protein dynamics is dominated by

a very limited number of collective coordinates, even beyond the harmonic approxi-

mation made in NMA. This has led to the development of several simulation methods

employing such collective coordinates [39, 64, 65, 66, 67] to drive the dynamics. Al-

though sampling efficiency is increased by these methods, such algorithms often do not

reproduce a canonical ensemble.

Replica Exchange

As a method from the first category introduced above, the replica exchange (REX)

method [68] produces correct Boltzmann ensembles for the simulated system, however

at the cost of losing dynamical information. The method belongs to the class of so-

called generalized ensemble algorithms, which have gained increasing attention in recent

years (see [69, 70] for a review). In the REX formalism, enhanced conformational

sampling is achieved by simulating in parallel multiple copies (called replicas) of the

system having a different Hamiltonian, which get exchanged according to a Monte Carlo

criterion with a certain probability. Temperature as the discriminating property is used

in most applications, but variants using different variables such as hydrophobicity or

atomic overlap [71] have been developed. For temperature REX simulations, the large

exploratory power of the high temperature replicas is hereby aiding—via exchanges—

the low temperature replicas to overcome local energy minima, while the latter achieve

a canonical sampling of these newly reached regions of the free energy landscape.

In the context of all-atom simulations, the application of REX is severely hampered by

the large number of degrees of freedom associated with these systems. The probability

of exchange P , essential for the method, approximately scales exponentially with the

number of degrees of freedom of the system, Ndf , and the temperature difference ∆T =

Tm − Tm−1 between successive replicas, P ∼ exp {−Ndf∆T}. Consequently, applying

REX requires a large (> 30) number of replicas to bridge a sufficient temperature gap

of several hundred Kelvin. Thus, considerable computational effort is needed even for

small systems containing only a few thousand atoms.
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V
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)

x Pm[V (x)]

〈V (x)〉T0
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〈V (x)〉T2

①

②

③

Figure 1.1: Temperature REX scheme. Provided sufficient overlap of potential energy distri-
butions Pm[V (x)] (right), replica m = 0 moves around configuration space x (①→③) using
the higher mobility of auxiliary replicas m > 0 within the potential energy landscape V (x)
(left).

Essential Dynamics

To overcome this inherent limitation of REX, a reduction of the simulated number of

degrees of freedom is a promising possibility to explore. As already stated above, the use

of internal coordinates for the description of protein dynamics can offer computational

advantages. As a representative of the third category, essential dynamics (ED) sampling

[39, 61] has been successfully applied in recent years. The method excites, following

different selectable protocols, collective modes obtained from a principal component

analysis (PCA) [59, 60, 61, 72]. Thereby, a considerable enhancement in sampling

along these modes of motion is observed, however at the cost of losing dynamical and

thermodynamical information. The advantages offered by PCA modes nevertheless

render ED an interesting sampling technique.

In PCA, those collective degrees of freedom are selected which contribute most to the

atomic motion seen in an ensemble of structures by diagonalizing the covariance matrix

of atomic fluctuations. In contrast to NMA, no assumption about the harmonicity of

the underlying potential energy landscape is thereby made. Moreover, the first 5-10 %

of all PCA modes usually suffice to describe more than 90 % of all fluctuations, and

these principal modes were shown to represent biologically relevant motions in several

cases [61, 73, 74, 75].

Given the specific advantages of essential dynamics, PCA and replica exchange, the

idea comes up of merging the REX and ED approaches into a new and efficient algo-

rithm.
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Aim of this Thesis

In this thesis a new simulation method is developed which combines the advantages

of collective coordinate algorithms with the thermodynamical accuracy of the replica

exchange formalism. In particular, the standard temperature REX algorithm is brought

together with the specific excitation of functionally relevant modes used in the ED

protocol to enhance conformational sampling. The modes are thereby constructed from

a PCA of an ensemble of structures.

The main tasks which need to be addressed in this work are (1) the incorporation

of both methodologies into a coherent algorithm, (2) its implementation and (3) val-

idation, as well as (4) its application. After a brief introduction into the principles

of molecular dynamics simulations in chapter 2, the foundation for the new algorithm

is laid subsequently. We discuss in detail the ideas behind replica exchange (chapter

3) and principal component analysis (chapter 4), which lies at the heart of the ED

algorithm. Chapter 5 is devoted to the new TEE-REX algorithm, synthesizing both

approaches. In order to validate the algorithm, its accuracy and performance with re-

spect to REX and MD is evaluated in chapter 6. In particular, the statistical properties

of the generated ensemble as well as the sampling performance are assessed quantita-

tively. To demonstrate the sampling power of TEE-REX, the algorithm is applied to

adenylate kinase (chapter 7). For this experimentally well studied enzyme, exhibiting

very large conformational motions crucial for its catalytic function, the transition path-

way between the two crystallographically resolved structures has not been resolved on

atomic level until now. With TEE-REX, a possible transition pathway elucidating the

underlying atomic mechanism was observed for the first time.
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2 Molecular Dynamics Simulations

Go ahead, make my day.

— Harry Callahan/Dirty Harry

2.1 Principles

This thesis is concerned with the development and application of a new simulation

method for which classical molecular dynamics (MD) provides the foundation. Thus,

the principles and approximations on which MD simulations rest are briefly outlined in

this chapter. For a comprehensive description of MD I refer to [18, 76, 77, 78], and the

reference manual [79] of the GROMACS simulation package [80] used in this work.

The exact description of any physical system requires the solution of the time-

dependent Schrödinger equation for the N -particle wave function ψ(r,R) of the system,

having r nuclear and R electronic degrees of freedom,

i~
∂

∂t
ψ(r,R) = Hψ(r,R) . (2.1)

Here, H denotes the Hamiltonian and ~ = h/2π is the reduced Planck constant. Due

to the large number of about 103 to 107 interacting particles for currently simulated

biomolecular systems, any attempt at solving such systems via Eq. (2.1) is prohibitive.

Approximations are therefore needed to reduce computational demands on current avail-

able hardware.

Born-Oppenheimer

Due to the much lower mass and consequently much higher velocity of the electrons

compared to the nuclei, electrons can often be assumed to instantaneously follow the

motion of the nuclei. Thus, in the Born-Oppenheimer approximation the total wave
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2 Molecular Dynamics Simulations

function is separated into the nuclear ψn and the electronic wave function ψel,

ψ(r,R) = ψn(r)ψel;r(R) .

The electronic wave function ψel;r(R) now only parametrically depends on the position

r = (r1, . . . , rN), but not on the dynamics of the nuclei. As a result of this approxima-

tion, Eq. (2.1) separates into a time-dependent Schrödinger equation for the motion of

the nuclei and a time-independent Schrödinger equation for the electron dynamics.

Newtonian Dynamics

Via the Born-Oppenheimer approximation only the nuclear motion has to be considered,

with the electronic degrees of freedom influencing the dynamics of the nuclei in the form

of a potential energy surface V (r). The second essential approximation is to describe the

motion of the nuclei in this potential energy surface classically by Newton’s equations

of motion

mi
d2ri

dt2
= −∇iV (r1, . . . , rN) ,

where mi and ri are the mass and the position of the i-th nucleus.

Force Fields

With the nuclear motion described classically, the Schrödinger equation for the elec-

tronic degrees of freedom has to be solved to obtain the potential energy V (r). Due

to the large number of electrons a further simplification is necessary. Therefore, a

semi-empirical force field is introduced which approximates V (r) by a large number of

functionally simple energy terms for bonded and non-bonded interactions

V (r) = Vbonds + Vangles + Vdihedrals + Vimproper + VCoul + VLJ

=
∑

bonds

1

2
kl

i(li − li,0)
2 +

∑

angles

1

2
kθ

i (θi − θi,0)
2

+
∑

dihedrals

Vn

2
(1 + cos (nϕ− δ)) +

∑

improper

1

2
kξ(ξijkl − ξ0)

2

+
∑

pairs i,j

qiqj
4πε0εrrij

+
∑

pairs i,j

4ǫij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

.

Parameters for bonded interactions comprise equilibrium bond lengths li,0 and angles

θi,0, the respective force constants kl
i and kθ

i , the torsional barrier height Vn with mul-
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2.2 Validity of MD

tiplicity n and the phase δ of the dihedrals1. Improper dihedral angles ξijkl between

planes (ijk) and (jkl) are needed to keep planar groups planar (e.g. aromatic rings) and

to preserve chirality in tetrahedral groups. Non-bonded interactions are parametrized in

terms of partial charges qi for Coulombic interactions while ǫij and σij define the depth

and width of the Lennard-Jones potential, summarizing the short-range Pauli-repulsion

and induced dipole-dipole van der Waals interaction between uncharged atoms. All

these parameters are determined using ab initio quantum chemical calculations or com-

parisons of structural or thermodynamical data with suitable averages of small molecule

MD ensembles. Between different force fields the number of energy terms, their func-

tional form and their individual parameters can differ considerably. From the numerous

force fields developed, e.g., CHARMM [81], AMBER [82], GROMOS [83] and OPLS

[84], the latter was used throughout this work.

2.2 Validity of MD

Although MD simulations have become an established tool in the study of biomolecules,

the validity of this approach—like any other scientific model—has to be kept in mind

when using MD simulations. The description of a biomolecular system as point masses

moving classically in an effective potential breaks down as soon as quantum effects such

as electronic reorganizations or very low temperatures (few K) are considered. In such

cases a combined quantum mechanical and classical mechanical (QM/MM) approach,

originally proposed by Warshel and Levitt [85], may be taken that allows for an accurate

description of electronic excitations, charge-fluctuations and -transfer and the forming

and breaking of chemical bonds.

In classical MD simulations, depending on the chosen force field and the type of

compound studied, each atom is assigned a partial charge that reflects the polarity and

approximately models effective polarization. Throughout the simulation these charges

are kept constant thereby excluding explicit polarization effects. Nowadays, several

polarizable water models and force fields exist, see [86] for a recent review.

The approximation of the potential energy surface V (r) by some empirical force field

naturally raises the question of how accurate physical quantities are modeled. Each

force field has its own strengths in reproducing certain observations due to the data

that were specifically used to parameterize it. Consequently, the choice of a particular

force field will depend on the property and level of accuracy one is interested in.

1In a four atom system ABCD, the angle between the two planes ABC and BCD defines the dihedral.
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2 Molecular Dynamics Simulations

2.3 Implementation Details and Simulation Setup

Protocol

The above approximations lay the foundation for a practical realization of MD simula-

tions of proteins, as it is done in the GROMACS simulation suite which was used here

and whose algorithms and methods will be sketched in the following.

Newton’s equations of motion are solved iteratively in discrete steps by means of the

leap-frog algorithm [87], which has the advantage that the computationally intensive

force calculations need to be done only once per integration step. The length of one

time step has to be chosen such that it is small in comparison to the fastest motions

of the system. Bond vibrations involving hydrogen occur within several femtoseconds,

restricting the time step to 0.5 fs. A number of algorithms to constrain covalent bond

lengths have been developed that allow larger time steps. All MD simulations presented

in this thesis use the LINCS [31] and SETTLE [32] algorithms, allowing a time step of

2 fs.

Besides interactions with membranes and other macromolecules, water is the natural

environment for proteins. For a simulation of a model system that matches the in vivo

system as close as possible, water molecules and sodium chloride in physiological con-

centration are added to the system in order to solvate the protein. Having a simulation

box filled with solvent and solute, artifacts due to the boundaries of the system may

arise, such as evaporation, high pressure due to surface tension and preferred orienta-

tions of solvent molecules on the surface. To avoid such artifacts, periodic boundary

conditions are applied. In this way, the simulation system does not have any surface.

This, however, may lead to new artifacts if the molecules artificially interact with their

periodic images due to e.g. long-range electrostatic interactions. These periodicity ar-

tifacts are minimized by increasing the size of the simulation box. Different choices of

unit cells, e.g., cubic, dodecahedral or truncated octahedral allow an improved fit to the

shape of the protein, and, therefore, permit a substantial reduction of the number of sol-

vent molecules while simultaneously keeping the crucial protein-protein distance high.

Long-range Coulomb interactions in periodic systems are treated by the Particle-Mesh-

Ewald (PME) method [88, 89], which, in contrast to simple cut-off methods [90, 91],

allows their correct and computationally efficient evaluation.

A solution of Newton’s equations of motion conserves the total energy of the sys-

tem, resulting in a microcanonical NVE ensemble. However, real biological subsystems

of the size studied in simulations constantly exchange energy with their surrounding.
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2.3 Implementation Details and Simulation Setup Protocol

Furthermore, a constant pressure of usually 1 bar is present. To account for these fea-

tures, algorithms are introduced which couple the system to a temperature and pressure

bath. From the many proposed thermostats [92, 93, 94, 95, 96], the popular Berendsen

thermostat is used which simply rescales the velocities in each step using

v′ = λv , λ =

[

1 +
∆t

τT

(

T0

T
− 1

)]1/2

. (2.2)

Here, T0 denotes the reference temperature of the heat bath, τT the coupling constant,

and ∆t the integration time step. Pressure coupling in this work is done by the Berend-

sen barostat [94], which rescales the coordinates at each step. Thus, isobaric-isothermal

NPT ensembles are created.
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3 Replica Exchange Molecular

Dynamics

A child of five would understand this. Send someone to fetch a child of five.

— Groucho Marx

3.1 Conformational Sampling

The aim of computer simulations of molecular systems is to calculate macroscopic be-

havior from microscopic interactions. Thus, in order to describe the thermodynamics

and kinetics of proteins, a thorough sampling of the conformational space of the sys-

tem is required. Following equilibrium statistical mechanics, any observable that can

be connected to macroscopic experiments is defined as an ensemble average 〈A〉ensemble

over all possible realizations of the system. For a protein simulation described by MD,

the ensemble average cannot be computed directly from a single trajectory. However,

the ergodic hypothesis, which is generally assumed to apply for protein dynamics, al-

lows the indirect computation of ensemble averages as time averages from such a single

trajectory produced by MD simulations,

〈A〉time = lim
T→∞

1

T

∫ T

t=0

A(r(t),p(t))dt .

Given current computer hardware, a fully converged sampling of all possible confor-

mational states with the respective Boltzmann weight is attainable for simple systems

comprising several amino acids (see, e.g. [97]). For proteins, consisting of hundreds

to thousands of amino acids, conventional MD simulations often do not converge and

reliable estimates of experimental quantities can not be calculated.
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3 Replica Exchange Molecular Dynamics

Energy Landscape

The inefficiency in sampling is a result of the ruggedness of the systems’ energy land-

scape, a concept put forward by Frauenfelder [15, 16]. The term energy landscape is

ambiguously1 used within the literature, defined either as the potential or the free en-

ergy of the system as a function of all structural degrees of freedom Ndf . The global

shape of the free energy landscape is supposed to be funnel-like, with the native state

populating the global energy minimum [17]. Looking in more detail, the complex high-

dimensional free energy landscape is characterized by a multitude of almost iso-energetic

minima, separated from each other by energy barriers of various heights. Each of these

minima corresponds to one particular conformational substate, with neighboring min-

ima corresponding to similar conformations. Within this picture, structural transitions

are barrier crossings, with the transition rate depending on the height of the barrier.

For MD simulations at room temperature, only those barriers are easily overcome that

are smaller than or comparable to the thermal energy kBT and the observed structural

changes are small, e.g. side chain rearrangements. Most of its time the system will

spend in locally stable states (kinetic trapping). Of higher interest are—due to their

connection to biological function—the exploration of different conformational states

and the mechanism of global conformational transitions, which require the system to

overcome large energy barriers. Since MD simulations are mostly restricted to the

nanosecond timescale, functionally relevant conformational changes are rarely observed.

A plethora of enhanced sampling methods have been developed to tackle this multi-

minima problem, see e.g. [18, 19, 76] and references therein. Among them, generalized

ensemble algorithms have been widely used in recent years (for a review, see e.g. [69,

70]).

3.2 Replica Exchange

3.2.1 Generalized Ensemble Algorithms

Generalized ensemble algorithms sample an artificial ensemble that is either constructed

from compositions or extensions of the original ensemble. The multicanonical algorithm

[98] and its variant simulated tempering Monte-Carlo (MC) [99, 100] are examples of

this second category.

1In this thesis, the terms ‘potential energy landscape’ and ‘free energy landscape’ are used to avoid
possible misunderstandings.
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3.2 Replica Exchange

In the multicanonical algorithm, the bell-shaped canonical distribution of the poten-

tial energy p(E) is modified by a so-called multicanonical weight factor w(E) making

the resulting distribution uniform (p(E)w(E) = const). In a single multicanonical sim-

ulation this flat distribution can then be sampled extensively by MD or MC because

potential energy barriers are no longer present. For simulated tempering, the temper-

ature is no longer fixed but becomes a dynamical variable, and both the configuration

and the temperature are updated during a single MC simulation with a weight factor.

The latter is chosen such that the probability distribution of temperature is constant

(p(T ) = const). Hence, a random walk in temperature space is realized, which in turn

induces a random walk in potential energy space and allows the system to escape from

local energy minima. In both algorithms, estimates for canonical ensemble averages of

physical quantities are obtained by reweighting techniques [37, 101].

The main problem with these algorithms, however, is the non-trivial determination of

the different multicanonical weight factors by an iterative process involving short trial

simulations. For complex systems this procedure can be very tedious and attempts have

been made to accelerate convergence of the iterative process [102, 103, 104, 105, 106].

The replica exchange (REX) algorithm, developed as an extension of simulated tem-

pering, removes the problem of finding correct weight factors. It belongs to the first

category of algorithms where a composition of the original ensemble is sampled. The

standard temperature formulation of replica exchange MD, as detailed in [68], consti-

tutes the main building block of the Temperature Enhanced Essential dynamics Replica

EXchange (TEE-REX) algorithm developed in chapter 5. The standard temperature

REX algorithm is reviewed in the following section to introduce the concept and clarify

notation.

3.2.2 Temperature Replica Exchange

Consider a simulation system of N atoms of mass mk (k = 1, . . . , N) with their coor-

dinate and velocity vectors denoted by x := (x1, . . . ,xN ) ∈ R
3N , xi ∈ R

3 and v :=

(v1, . . . ,vN) ∈ R
3N , vi ∈ R

3, respectively. The Hamiltonian H(x, v) = E(x) + K(v)

is given by the sum of the potential energy E(x) and the kinetic energy K(v) =
∑N

k=1mkv
2
k/2. In the canonical ensemble at temperature T , each state s := (x, v)

with the Hamiltonian H(s) has a probability given by its Boltzmann factor W (s) =

exp {−βH(s)}, with the inverse temperature β−1 = kBT and the Boltzmann constant

kB. Via the equipartition theorem, the average kinetic energy is linked to the number
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3 Replica Exchange Molecular Dynamics

of degrees of freedom Ndf of the system,

〈K(v)〉T =
Ndf

2
kBT . (3.1)

Usually Ndf ≪ 3N since constraint algorithms [31, 32] considerably restrict the number

of degrees of freedom. As soon as flexible bonds are simulated, Ndf = 3N and the

standard textbook expression for a free N -particle system is recovered.
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Figure 3.1: Schematic illustration of exchange S → S′, cp. equation (3.3). Configuration and
temperature of each replica icon (e.g. 2) are represented by shape and fill-color, respectively.
The average potential energy of each replica is shown as dashed line. Configuration (3.4) or
temperature (3.5) exchange corresponds to a horizontal or vertical movement, respectively.

In REX, a generalized ensemble is constructed, which consists ofM+1 non-interacting

copies (or replicas) of the original system in the canonical ensemble with temperatures

{T0, T1, . . . , TM} and Tm ≤ Tm+1 (m = 0, . . . ,M). Equal temperatures for two or

more replicas are possible, but seldomly used. A state of this generalized ensemble is

characterized by

S = {. . . , s[i]
m, . . .} ,

where the configuration s
[i]
m := (x

[i]
m, v

[i]
m) represents the coordinates x

[i]
m and velocities

v
[i]
m of all atoms of the ith replica at temperature Tm. Because the replicas are non-

interacting, the statistical weight of a state S of this generalized ensemble is given by
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3.2 Replica Exchange

the product of Boltzmann factors for each replica,

W (S) = exp

{

−
M

∑

m=0

βmH(s[i]
m)

}

. (3.2)

We now consider an exchange between a pair of replicas i and j,

S = {. . . , s[i]
m, . . . , s

[j]
n , . . .} → S ′ = {. . . , s[j]

m

′

, . . . , s[i]
n

′

, . . .} . (3.3)

In more detail, (3.3) reads

s[i]
m = (x[i]

m, v
[i]
m) → s[j]

m

′

= (x[j]
m , v

[j]
m

′

)

s[j]
n = (x[j]

n , v
[j]
n ) → s[i]

n

′

= (x[i]
n , v

[i]
n

′

) ,
(3.4)

which corresponds to an exchange of configurations of the two replicas. It is inter-

esting to note that this configuration exchange is equivalent to exchanging a pair of

temperatures2 Tm and Tn (Fig. 3.1),

s[i]
m = (x[i]

m, v
[i]
m) → s[i]

n

′

= (x[i]
n , v

[i]
n

′

)

s[j]
n = (x[j]

n , v
[j]
n ) → s[j]

m

′

= (x[j]
m , v

[j]
m

′

) .
(3.5)

Unlike the original implementation of REX using Monte-Carlo updating steps [107, 108,

109], REX MD requires a rescaling of velocities, indicated by the primes in Eq. (3.4)

and Eq. (3.5). Velocity rescaling is done in such a way, that the equipartition theorem

(3.1) holds for each replica at all times. To this end, we look at the situation imme-

diately after a temperature exchange S → S ′. Starting with replica s
[i]
m = (x

[i]
m, v

[i]
m),

the equipartition theorem reads 2〈K(v
[i]
m)〉Tm

= NdfkBTm. Upon exchange, replica s
[i]
n

′

receives the rescaled velocities of replica s
[i]
m, thus 2〈K(v

[i]
n

′

)〉Tn
= NdfkBTn. Combining

both expressions yields

〈K(v[i]
n

′

)〉Tn
=
Tn

Tm
〈K(v[i]

m)〉Tm
.

Since K(v) ∼ v2, we arrive at the primed velocities

v[i]
n

′

=

√

Tn

Tm

v[i]
m , v[j]

m

′

=

√

Tm

Tn

v[j]
n , (3.6)

2In a parallel computing environment, this exchange protocol requires much less network communi-
cation between replicas.
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3 Replica Exchange Molecular Dynamics

where all atoms of the replicas are rescaled uniformly.

For the exchange process to converge towards the equilibrium distribution (3.2),

it is sufficient to impose the detailed-balance condition on the transition probability

(exchange/acceptance probability) P (S → S ′),

W (S)P (S → S ′) = W (S ′)P (S ′ → S) .

It is

P (S → S ′)

P (S ′ → S)
=

exp {−βmH(s
[j]
m

′

)} exp {−βnH(s
[i]
n

′

)}

exp {−βmH(s
[i]
m)} exp {−βnH(s

[j]
n }

= exp {−βm[H(s[j]
m

′

) −H(s[i]
m)] − βn[H(s[i]

n

′

) −H(s[j]
n )]}

(3.6)
= exp {βm[E(x[i]

m) − E(x[j]
m )] − βn[E(x[i]

n ) − E(x[j]
n )]}

(∗)
= exp {(βm − βn)[E(x[i]

m) − E(x[j]
n )]}

In the last step (∗) we used the fact that the potential energy of the system immediately

after exchange solely depends on the respective conformation of the system an not on

the temperature; thus, x
[j]
m = x

[j]
n and x

[i]
n = x

[i]
m. Detailed-balance can be satisfied by

the usual Metropolis Monte-Carlo criterion:

P (S → S ′) = min
{

1, exp {(βm − βn)[E(x[i]
m) −E(x[j]

n )]}
}

. (3.7)

For simulations performed in the NPT -ensemble, Eq. (3.7) is modified by a pressure

correction term [110]. Putting together everything, a simulation using the REX algo-

rithm is realized by alternately performing the following two steps:

(1) simultaneous and independent simulation of each replica for a certain number of

MD3 steps

(2) exchange of two replicas according to the Metropolis criterion (3.7).

In practice, only neighboring replicas are exchanged since the acceptance probabil-

ity (3.7) exponentially decreases with the temperature and potential energy difference

∆β∆E. Within the generalized ensemble S a random walk in temperature space is per-

formed, translating into a random walk in potential energy space for a single replica.

3Monte-Carlo updating can also be used.
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3.2 Replica Exchange

This facilitates an efficient and statistically correct conformational sampling of the

rugged free energy landscape of the system.

3.2.3 Algorithm Performance

The appropriate choice of temperatures is crucial for an optimal performance of the

REX algorithm. Depending on the problem under study, the properties of the system

at the lowest temperature T0 within the replica setup are usually of particular interest.

Therefore, replica temperatures have to be chosen such that (a), the lowest tempera-

ture sufficiently samples energy states of interest; (b), the highest temperature is large

enough to overcome energy barriers of the system; and (c), the acceptance probability

P (S → S ′) is sufficiently high, requiring an adequate overlap of potential energy distri-

butions for neighboring replicas, see Eq. (3.7). Protocols for this task can be found in

[71, 111]. Once a temperature distribution is established, the frequency with which ex-

changes between replicas are attempted (exchange attempt frequency) needs to be fixed.

There is some discussion within the literature [112, 113, 114, 115, 116, 117] analyzing

the interplay between acceptance probability and sampling efficiency. Likewise, find-

ing an appropriate criterion for judging REX efficiency is still a matter of controversy

[115, 116, 118, 119, 120].

Besides its simplicity and ease of implementation, the REX algorithm has some ad-

vantages which is reflected in the widespread use of this method over the last few years.

The main advantage of REX over other generalized ensemble methods lies in the fact

that the weight factor W (S) is known a priori and does not have to be determined

by a tedious and time-consuming procedure. Furthermore, each replica sm samples

from a Boltzmann ensemble having a temperature Tm. Using the weighted histogram

analysis method (WHAM) [37], thermodynamic quantities as a function of temperature

can be calculated from the simulated generalized ensemble S. This property of REX is

often used in the study of phase transitions [121] such as folding/unfolding simulations

[111, 122, 123, 124, 125, 126, 127, 128] or aggregation phenomena [129]. In particular,

the temperature dependence of calculated free energies ∆G = ∆H −T∆S allows infer-

ences about enthalpic and entropic contributions, assuming that ∆H and ∆S do not

depend on temperature [130].
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3 Replica Exchange Molecular Dynamics

3.3 All-Atom Explicit Solvent REX Simulations

Although REX has advantages over previously used algorithms, the method quickly

becomes inapplicable for simulations at full atomic resolution using explicit solvent.

Because the number of replicas needed to span a given temperature range scales with

the square root of the number of degrees of freedom of the system, N
1/2
df , many replicas

need to be simulated to span a temperature range that includes significantly higher

temperatures than the reference temperature T0 [71, 131]. Even for small peptide sim-

ulations [132] several thousand degrees of freedom are present in the system, requiring

already > 20 replicas to obtain exchange probabilities of ∼ 25%. For a given tem-

perature range TM − T0, a slight decrease in the necessary number of replicas can be

achieved by accepting lower exchange probabilities. However, temperature differences

of more than a few K are usually not possible within this setup.

The reason for this limitation is the large number of explicitly simulated solvent

molecules. A simple estimate [71, 131] shows that the potential energy difference ∆E ∼

Ndf∆T is dominated by the contribution from the solvent degrees of freedom N sol
df ,

constituting the largest fraction of the total number of degrees of freedom, Ndf , of the

system. Thus, the acceptance probability P (S → S ′) ∼ exp {−∆E} is dramatically

decreased, which in turn enormously increases computational demands.

A promising point of attack for the improvement of this class of algorithms is therefore

the reduction of the number of degrees of freedom used in the calculation of the exchange

probability (3.7). Implicit solvent models such as the semianalytical generalized Born

model [44, 45] or more rigorous models based on Poisson-Boltzmann equations [46, 47]

are often used in this respect. Here, the free energy of solvation of the solute is estimated

based on coordinates of the solute. Although this neglect of explicit solvent molecules

significantly reduces computational costs, simulations using such models do not have

as good a balance between protein-protein and protein-solvent interactions as explicit

solvent models [123, 124, 133, 134, 135].

Besides implicit solvent models, a lot of research has been carried out over the last

few years to reduce the number of degrees of freedom in simulations [70, 71, 131, 132,

136, 137, 138, 139, 140, 141]. Overall, each of these techniques has its own strengths and

weaknesses, and the best choice typically depends on the nature of the physical system

being studied and on the available computing resources. The TEE-REX algorithm,

discussed in chapter 5, takes an altogether different approach to the reduction of Ndf

by employing generalized coordinates.
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4 Principal Component Analysis

If you can’t convince ’em, confuse ’em.

— Harry Truman

Apart from the desire to enhance conformational sampling and/or reduce computational

costs by reducing the number of degrees of freedom of the simulated replicas, standard

REX and all its variants use an undirected excitation scheme such as temperature [68,

70, 107, 108, 110, 131, 132, 136, 137, 139, 141, 142, 143], hydrophobicity [71], potential

energy [132, 136, 140], atomic overlap [71] or degree of coarse-graining [138, 144]. In

this context, undirected means that the parameter, discriminating different replicas,

acts uniformly and uncorrelated on all degrees of freedom affected by this parameter.

In standard REX simulations this parameter is temperature: for replica sm, the kinetic

energy provided by temperature Tm > T0 is, via Eq. (2.2), evenly distributed over all

solvent and solute atoms of the system and no preference is given to any specific degrees

of freedom. Thus, the majority of motions excited by this scheme are of limited interest

since they involve only small uncorrelated fluctuations, e.g. rearrangements of side chain

atoms. Often, however, the focus of interest lies on correlated large-scale motions of

the system such as the opening and closing of protein domains relative to each other.

A further enhancement of sampling can therefore be achieved by combining a REX-

based simulation protocol with a directed excitation scheme. Naturally, important

functional motions of the considered protein lend themselves to this task. With the

TEE-REX algorithm, a formal realization of this idea is presented in chapter 5. As a

first step, the notion of collective motions of proteins is introduced in this chapter.

4.1 Internal Coordinate Description of Protein

Dynamics

There exist two major techniques to extract and classify relevant information about

large conformational changes from an ensemble of protein structures, generated either
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4 Principal Component Analysis

experimentally or theoretically: normal mode analysis (NMA) and principal component

analysis (PCA). Here, we focus on the latter.

Both NMA and PCA are based on the notion that by far the largest fraction of

positional fluctuations in proteins occurs along only a small subset of collective de-

grees of freedom. This was first realized from normal mode analysis of a small protein

[52, 53, 54]. In NMA, the potential energy surface is assumed to be harmonic and

collective variables are obtained by diagonalization of the Hessian1 matrix in a local

energy minimum. Quasi-harmonic analysis [55, 56, 57, 58], PCA [59, 60, 61, 72] and

singular-value decomposition [62, 63] of MD trajectories of proteins that do not assume

harmonicity of the dynamics, have shown that indeed protein dynamics is dominated by

a limited number of collective coordinates, even though the major modes are frequently

found to be largely anharmonic. These methods identify those collective degrees of

freedom that best approximate the total amount of fluctuation. The subset of largest-

amplitude variables form a set of generalized internal coordinates that can be used to

effectively describe the dynamics of a protein. Often, a small subset of 5-10 % of the

total number of degrees of freedom yields a remarkably accurate approximation. As

opposed to torsion angles as internal coordinates, these collective internal coordinates

are not known beforehand but must be defined either using experimental structures or

an ensemble of simulated structures. Once an approximation of the collective degrees

of freedom has been obtained, this information can be used for the analysis of simula-

tions as well as in simulation protocols designed to enhance conformational sampling

[39, 41, 64, 65, 145].

4.2 Theoretical Background

A detailed mathematical treatment of PCA can be found in [61, 72, 145]. Here, we give a

comprehensive description based on [146]. In essence, a principal component analysis is

a multi-dimensional linear least squares fit procedure in configuration space. The struc-

ture ensemble of a molecule, having N particles, can be represented in 3N -dimensional

configuration space as a distribution of points with each configuration represented by

a single point. For this cloud, always one axis can be defined along which the maximal

fluctuation takes place. As illustrated for a two-dimensional example (Fig. 4.1), if such

a line fits the data well, all data points can be approximated by only the projection onto

that axis, allowing a reasonable approximation of the position even when neglecting the

1second derivative
∑

i,j
∂2V

∂xi∂xj
of the potential energy
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A B

x

y

x′y′

Figure 4.1: Illustration of PCA in two dimensions. Two coordinates (x, y) are required to
identify a point in the ensemble in panel A, whereas one coordinate x′ approximately identifies
a point in panel B.

position in all directions orthogonal to it. If this axis is chosen as coordinate axis, the

position of a point can be represented by a single coordinate. The procedure in the

general 3N -dimensional case works similarly. Given the first axis that best describes

the data, successive directions orthogonal to the previous set are chosen such as to

fit the data second-best, third-best, and so on (the principal components). Together,

these directions span a 3N -dimensional space. Applications of such a multidimensional

fit procedure on protein configurations from MD simulations of several proteins have

proven that typically the first ten to twenty principal components are responsible for

90 % of the fluctuations of a protein (Fig. 4.2) [59, 60, 61]. These principal compo-

nents correspond to collective coordinates, containing contributions from every atom of

the protein. In a number of cases these principal modes were shown to be involved in

the functional dynamics of the studied proteins [61, 73, 74, 75]. Hence, the subspace

responsible for the majority of all fluctuations has been referred to as the essential

subspace [61].

Only internal fluctuations are usually of interest in the study of protein dynamics.

Thus, the first step of a PCA is to remove overall rotation and translation of each config-

uration of the ensemble: after a translation of the center of mass of every configuration

to the origin, a rotational least squares fit of the atoms onto a reference structure is per-

formed. Next, the variance-covariance matrix of positional fluctuations is constructed

and diagonalized. Let x(t) describe the fitted trajectory (ensemble) of internal motions

of the protein, where x ∈ R
3N is a column vector describing the coordinates of N

protein atoms and the time index t identifies each member of the ensemble. Although
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ensemble configurations x(t) are denoted as a function of time, they may be provided

in any order. In general, a PCA is not restricted to the complete protein but may be

performed on any subset of atoms (e.g. the protein backbone). The variance-covariance

matrix now reads

C = 〈(x(t) − 〈x〉)(x(t) − 〈x〉)T 〉 ,

with the angle brackets 〈·〉 representing an ensemble average. Particles moving in

a correlated fashion correspond to positive matrix elements (positive correlation) or

negative elements (negative correlation), and those that move independently to small

matrix elements. The symmetric matrix C ∈ R
3N ×R

3N can always be diagonalized by

an orthogonal coordinate transformation T which transforms C into a diagonal matrix

Λ = diag(λ1, λ2, . . . , λ3N), containing the eigenvalues λi of C,

Λ = T TCT or C = TΛT T .

The ith column of T = (µ1, µ2, . . . , µ3N) contains the normalized eigenvector (principal

component) µi ∈ R
3N of C belonging to λi. When a sufficient number of independent

configurations (at least2 3N + 1) are available to evaluate C, there will be 3N − 6

eigenvectors with non-zero eigenvalues. Six eigenvalues should be exactly zero, of which

the corresponding eigenvectors describe the overall rotation and translation that was

eliminated by the fitting procedure beforehand. If only K < 3N + 1 independent

configurations are available then at most K−1 non-zero eigenvalues with corresponding

eigenvectors will result.

The eigenvalues correspond to the mean square positional fluctuation along the re-

spective eigenvector, and therefore contain the contribution of each principal component

to the total fluctuation. When the eigenvectors are sorted to decreasing eigenvalue, the

first eigenvectors describe those collective motions that best approximate the sum of

fluctuations and the last eigenvectors correspond to the most constrained degrees of

freedom. The characteristics of these collective motions can be studied by projecting

the ensemble onto single eigenvectors, yielding the principal coordinates pi(t) ∈ R,

pi(t) = µi · (x(t) − 〈x〉) .

2An intuitive argument for this number is the following: Imagine a single configuration as one point,
then two independent configurations (points in a plane) can be described by one collective coordi-
nate, going through these two points. Given three independent points, two collective coordinates
are needed. Hence, for a description of a protein having 3N degrees of freedom, 3N +1 independent
configurations are necessary.
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4.2 Theoretical Background

Note that the variance 〈p2
i 〉 equals the eigenvalues λi, 〈p

2
i 〉 = λi. Often, two- or three-

dimensional projections along the major principal components are used to allow a rep-

resentation of the sampled distribution in configuration space or to compare multiple

ensembles along the principal modes of collective fluctuation. A translation of these

projections back into Cartesian space can be used to visualize the atomic displacements

associated with a particular eigenvector,

x′i(t) = pi(t)µi + 〈x〉 .

Annotations

The fact that a small subset of the total number of degrees of freedom (essential sub-

space) dominates the molecular dynamics of proteins (Fig. 4.2) originates from the pres-

ence of a large number of internal constraints and restrictions defined by the atomic

interactions present in a biomolecule. These interactions range from strong covalent

bonds to weak non-bonded interactions, whereas the restrictions are given by the dense

packing of atoms in native-state structures.
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Figure 4.2: Typical PCA eigenvalue spectrum (MD ensemble of guanylin backbone structures).
The first five eigenvectors (panel A) cover 80% of all observed fluctuations (panel B).

Overall, protein dynamics at physiological temperatures has been described as dif-

fusion among multiple minima [147, 148, 149]. The dynamics on short timescales is

dominated by fluctuations within a local minimum, corresponding to eigenvectors hav-

ing low eigenvalues. On longer timescales large fluctuations are dominated by a largely

anharmonic diffusion between multiple wells. These slow dynamical transitions are

usually represented by the largest-amplitude modes of a PCA.

In contrast to normal mode analysis, PCA of a MD simulation trajectory does not

rest on the assumption of a harmonic potential. In fact, PCA can be used to study
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4 Principal Component Analysis

the degree of anharmonicity in the molecular dynamics of the simulated system. For

proteins, it was shown that at physiological temperatures, especially the major modes

of collective fluctuation are dominated by anharmonic fluctuations [61, 150].

By definition, PCA is a linear analysis, i.e. only linear correlations between atomic

displacements enter the covariance matrix C. This means that non-linear correlations

between atom movements may be overlooked as they get spread out across multiple

collective coordinates. In practice, this is usually not a big problem, except for systems

that undergo large-scale rotations. In such cases, several eigenvectors are needed for a

description of these motions.
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5 Temperature Enhanced Essential

Dynamics Replica Exchange

All great ideas look like bad ideas to people who are losers.

It’s always good to test a new idea with known losers to make sure they don’t like it.

— Dogbert

As we have seen in chapter 3, generalized ensemble algorithms such as REX provide a

means to tackle the notorious sampling problem encountered in all-atom simulations of

biomolecular systems using explicit solvent. Focusing on standard temperature REX,

the method quickly becomes computationally prohibitive for all but the smallest sys-

tems. The main bottleneck is the large number of simulated degrees of freedom. From

PCA (chapter 4) we know that the configurational dynamics of proteins is dominated

by a small number of collective degrees of freedom. When using sampling techniques

based on a selective excitation of such collective coordinates [39, 41, 64, 65], a signif-

icant increase of sampling efficiency can be achieved [39, 151, 152]. However, systems

simulated with such methods are always in a non-equilibrium state, rendering it difficult

to extract thermodynamic properties of the system from such simulations.

With the newly developed Temperature Enhanced Essential dynamics Replica EX-

change (TEE-REX) algorithm the favorable properties of REX are now combined with

those resulting from a specific excitation of functionally relevant modes, while at the

same time avoiding the drawbacks of both approaches. In the following, we sketch the

algorithm and discuss in depth the crucial parts of the simulation protocol, namely

temperature coupling and calculation of exchange probability.

5.1 Algorithm

The basis for TEE-REX is given by the replica framework, i.e. M + 1 replicas (m =

0, . . . ,M) of the system under study are simulated simultaneously and independently
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1 , T0)

(T es
2 , T0)

Figure 5.1: Comparison of standard temperature REX (left panel) and the TEE-REX al-
gorithm (right panel) for a three-replica simulation. Temperatures are sorted in increasing
order, Ti+1 > Ti. Exchanges (↔) are attempted (· · · ) with frequency νex. Unlike REX, only
an essential subspace {es} (colored boxes) containing a few collective modes is excited within
each TEE-REX replica. Reference replica (T0, T0), containing an approximate Boltzmann
ensemble, is used for analysis.

by MD with periodic exchange attempts every ν−1
ex time steps. In contrast to stan-

dard replica exchange, TEE-REX replicas m = 1, . . . ,M are divided into an essential

subspace and its complement (Fig. 5.1). The essential subspace

{es} := {µi ∈ R
3NI | i = 1, . . . , Nes}

is defined by a subset of Nes eigenvectors {µk ∈ R
3NI | i = 1, . . . , 3NI}, describing

collective modes of a subsystem of interest having NI atoms. A loop region or the

protein backbone could be such a subsystem. The collective degrees of freedom {µk}

can be obtained in a variety of ways. Here, we use a PCA of an ensemble of structures

(e.g. NMR or X-ray data or a previous simulation), but also eigenvectors from a normal

mode analysis of a single structure can be used. Between exchanges, the essential

subspace of replicas m = 1, . . . ,M is coupled to a temperature bath T es
m > T0 with

the rest of the simulation system staying at the reference temperature T0. For replica

m = 0, no partition into {es} and its complement is applied and all degrees of freedom

are coupled to the same temperature, T es
0 = T0. The ensemble generated by this

reference replica is later on used for analysis.

Before discussing algorithmic details, let us summarize the idea behind the TEE-REX

algorithm. In essence, TEE-REX combines the REX approach with essential dynamics.

A thermal stimulation of only those degrees of freedom that contribute significantly to

the total fluctuations of the system is carried out, and multiple simulations at different

temperature levels are coupled to each other via a REX framework. This way, several

benefits are combined and drawbacks avoided. In contrast to standard temperature
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5.2 Temperature Coupling

REX, the specific excitation of collective coordinates promotes sampling along these

often functionally relevant modes of motion, i.e. the advantages of essential dynamics

(ED) [61] are used. To counterbalance the disadvantages associated with such a specific

excitation, i.e. the construction of biased ensembles, the scheme is embedded within

the REX protocol. Thereby ensembles are obtained having approximate Boltzmann

statistics and the enhanced sampling properties of REX are utilized. The exchange

probability P (S → S ′) ∼ exp {−N∗

df∆T} between two replicas crucially depends on

the excited number of degrees of freedom N∗

df (chapter 3.3). With the stimulated

essential subspace {es} containing only a minute fraction of the total number of degrees

of freedom of the system, dim{es} = N∗

df ≪ Ndf , the bottleneck of low exchange

probabilities in all-atom REX simulations is bypassed. For given exchange probabilities,

large temperature differences ∆T can thus be used, such that only a few replicas are

required.

Next, the specific protocol used to excite {es} modes is discussed which requires

substantial changes in the temperature coupling protocol of standard MD simulations.

5.2 Temperature Coupling

The temperature1 coupling of the essential subspace {es} is carried out in the follow-

ing way: Let NI be the number of atoms of the subsystem of interest by which the

eigenvectors {µk ∈ R
3NI | k = 1, . . . , 3NI} are defined. We denote these atoms index

atoms to distinguish them from the remaining atoms of the system. The total number

of atoms in the system is thus given by N = NI +NR (R for remaining). By introducing

the eigenvectors {µk}, a second orthonormal basis set besides the usual Cartesian refer-

ence frame is established for the description of index atoms. Throughout the following

paragraph all vectors (PCA modes, velocities) are written solely within the Cartesian

reference frame.

At each timestep, the velocity vector vm(t) ∈ R
3N of each non-reference replica

m = 1, . . . ,M is split into two parts, describing index atoms and their complement

vm(t) =

(

vI
m(t)

vR
m(t)

)

,

with vI
m(t) ∈ R

3NI and vR
m(t) ∈ R

3NR . Next, the velocity vector vI
m(t) of the index group

1Due to the unique assignment of temperatures with replicas in all TEE-REX simulations reported
here, the replica index [i], introduced in chapter 3, is dropped henceforth.
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5 TEE-REX

is decomposed within the new eigenvector basis set {µk} into an essential subspace part

ves
m(t) and its complement ṽes

m(t) (Fig. 5.2)

vI
m(t) =

3NI
∑

i=1

(

vI
m(t) · µi

)

µi

=
Nes
∑

i=1

(

vI
m(t) · µi

)

µi +

NI
∑

i=Nes+1

(

vI
m(t) · µi

)

µi

=: ves
m(t) + ṽes

m(t) .

The velocity projection onto {es}, ves
m(t), is then coupled to the respective essential

subspace temperature T es
m using a Berendsen thermostat,

ves
m

′(t) = λmv
es
m(t) , λm =

[

1 +
∆t

τ es
m

{

T es
m

T es
m (t− ∆t

2
)

}]1/2

. (5.1)

All velocity components not coupled to the essential subspace, i.e. ṽes
m(t) = vI

m(t)−ves
m (t)

and vR
m(t), are coupled to the reference temperature T0 using any standard coupling

algorithm [92, 93, 94]. For the Berendsen thermostat used here, the coupling of the

non-essential velocity components within the Cartesian reference frame is given by

ṽes
m

′(t) = λ0ṽ
es
m(t) and vR

m
′

(t) = λ0v
R
m(t). Thus, after temperature coupling, the velocity

vector v′m(t) ∈ R
3N of the full system reads

vm(t) → v′m(t) =

(

vI
m

′

(t)

vR
m

′(t)

)

=

(

λmv
es
m(t) + λ0ṽ

es
m(t)

λ0vR
m(t)

)

.

The reference replica m = 0 undergoes a standard MD simulation, since v′0(t) = λ0v0(t).

A two dimensional illustration of the temperature coupling of index atoms is given in

Fig. 5.2.

5.3 Exchange Probability

The coupling of different degrees of freedom to heat baths of different temperature

(T es
m , T0) creates an inherent non-equilibrium situation. Except for the reference replica

m = 0, the statistical weight of each state in replica m > 0 is therefore no longer

known. To account for this new situation, the acceptance probability of Eq. (3.7) used

for standard REX is modified. The additional kinetic energy (5.1) put locally into the
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ṽ
es m
(t

)
ṽ
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′ (t

) Figure 5.2: Essential subspace temperature coupling of

the index group atoms, vI
m(t) → vI

m
′

(t), visualized in
two dimensions. After projection onto {es} := µ1, the
projected velocity vector of index atoms ves

m(t) is cou-
pled to T es

m , resulting in ves
m

′(t) (red arrow). Velocity
components ṽes

m(t) orthogonal to {es} are coupled to the
reference temperature T0. The resulting back-projected
velocities vI

m
′

(t) are biased towards all collective modes
of motion set up in {es}.

few essential degrees of freedom (Nes ≪ Ndf ) is now thought to be evenly distributed

over the whole system, thus defining an effective temperature. Starting from the kinetic

energy of replica m > 0, K(vm) = KI(ves
m)+KR(vR

m, ṽ
es
m(t)), and using the equipartition

theorem

2K = NdfkBTeff , 2KI = NeskBT
es
m , 2KR = (Ndf −Nes)kBT0

for the different contributions, we arrive at the effective temperature for each non-

reference replica,

T eff
m =

(

1 −
Nes

Ndf

)

T0 +
Nes

Ndf
T es

m = T0 +
Nes

Ndf
(T es

m − T0) . (5.2)

Ndf hereby denotes the degrees of freedom of the complete system. Given Eq. (5.2),

the modified acceptance criterion used in TEE-REX thus reads

P (S → S ′) = min
{

1, exp
[

(βeff
m − βeff

n ) (E(xm) − E(xn))
]}

. (5.3)

It is βeff
0 ≡ β0 for the reference replica m = 0. By replacing βm → βeff

m in Eq. (3.7) of the

standard replica exchange criterion, one implicitly assumes that the ensemble created by

each non-reference replica can be described by an equilibrium Boltzmann distribution

at the effective temperature introduced in Eq. (5.2). Since each non-reference replica by

construction samples some unknown non-equilibrium distribution, this approximation

introduces—upon exchange with the reference replica—some bias in the statistics of

the reference ensemble m = 0. However, the number of degrees of freedom of the
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5 TEE-REX

complete system is much larger than the few excited degrees of freedom comprising

the essential subspace {es} (Ndf ≫ Nes). Hence, the approximation made in Eq. (5.2)

can be considered a small deviation from an equilibrium distribution and, therefore,

can be expected to be valid for all but the smallest systems simulated with TEE-REX.

Moreover, to quantify the bias introduced by this scheme and to assess the extent to

which the TEE-REX algorithm approximates a Boltzmann distribution, extensive tests

were carried out with a test system for which a converged Boltzmann distribution was

available for comparison (chapter 6).

5.4 Essential Subspace Composition

The composition of the essential subspace (i.e. what modes have been chosen) is in

principle irrelevant with respect to the definition of T eff
m . However, the excitations

obtained using a specific {es} naturally depend on the choice of modes. Each PCA mode

represents a single (collective) degree of freedom, contributing via equipartition—like

any other degree of freedom—to the kinetic energy. This is independent of whether the

respective mode describes a global transition or a more localized motion (e.g. involving

a loop). Here, it is important to note that PCA modes describe linearly independent

collective modes, thereby neglecting non-linear couplings. If one specific eigenvector

is excited, several other modes are indirectly excited, either outside the {es} (like

side chains) or inside the essential subspace. This feature has influence on sampling

performance, not only along {es} modes but also along PCA modes indirectly linked

to the former (chapter 6.3 and Table 6.1).

The fact that the choice of modes for {es} is not restricted in any way makes the TEE-

REX algorithm quite versatile with regard to biomolecular applications. In chapter 7,

the algorithm is successfully applied to the problem of simulating large conformational

transitions in proteins, a challenging task for all-atom MD simulations. Along the same

line are questions concerning allostery, where conformational changes in tertiary and

quarternary structure are important. These may be addressed in future applications.

Besides the composition of the essential subspace, also the specific nature of the chosen

modes can be varied. In this work, principal component analysis is used for the calcu-

lation of modes, but also NMA or the recently developed full correlation analysis [145]

can be utilized for TEE-REX, offering modes possessing different properties.
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6 Benchmarking TEE-REX

I think animal testing is a terrible idea;

they get all nervous and give the wrong answers.

— Unknown

With the TEE-REX algorithm in place, its accuracy and performance with respect to

REX and MD has to be evaluated. In particular, two things need attention: First, in

order to validate the ensemble approximation made in Eq. (5.2), extensive tests of the

TEE-REX protocol were made using a dialanine peptide (Fig. 6.1) to rigorously vali-

date TEE-REX generated ensembles. As a converged MD ensemble is available for this

system, it allows us to quantitatively assess any systematic deviations from a canon-

ical ensemble possibly introduced by the TEE-REX protocol. Second, the sampling

efficiency of TEE-REX was assessed using a small peptide. We start by reporting on

simulation details.

6.1 Simulation Details

All simulations were carried out using the MD software package GROMACS 3.3.1 [80],

supplemented by the TEE-REX module. The OPLS-all atom force field [84] was used for

proteins and TIP4P was used as a water model [153]. All simulations were performed

in the NPT ensemble. In all MD simulations the temperature was kept constant at

T = 300 K by coupling to an isotropic Berendsen thermostat [94] with a coupling time

of τt=0.1 ps. The pressure was coupled to a Berendsen barostat [94] with τp=1 ps and

an isotropic compressibility of 4.5 · 10−5 bar−1 in the x, y and z directions. All bonds

were constrained by using the LINCS algorithm [31]. An integration time step of ∆t =

2 fs was used. Lennard-Jones and Coulombic interactions were calculated explicitly

at a distance smaller than 10 Å; above 10 Å, long-range electrostatic interactions were

calculated by particle mesh Ewald (PME) summation [88], with a reciprocal grid spacing

of 0.12 nm and fourth-order B-spline interpolation.
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6 Benchmarking TEE-REX

MD Simulations

The dialanine reference simulation system was set up as follows. PyMOL [154] was used

to build an N -acetylated dialanine to prevent electrostatic attraction between the N -

and the C-terminus. The peptide was solvated in a rhombic dodecahedral box with box

vectors of 2.35 Å length. The system comprised ∼1200 atoms. Na+ ions were added

accordingly to neutralize the system. Energy minimization of the solvated system using

the steepest descent algorithm was followed by a 100 ps MD simulation at the target

temperature using harmonic position restraints on the heavy atoms of the peptide with

a force constant of k = 1000 kJmol−1nm−2 to equilibrate the solvent. After one ns of

equilibration, a 4.1µs trajectory was produced by unbiased MD simulation. Structures

were saved every 1 ps for further analysis.

TEE-REX Simulations

Four 210 ns TEE-REX simulations of dialanine starting from different equilibrated MD

structures were performed. Each TEE-REX simulation consisted of two replicas, with

an essential subspace temperature of 500 K for the second replica whereas the first,

reference replica was run at 300 K. A PCA was performed on the first 1.87µs of the

reference MD trajectory, taking all backbone atoms into account. The first two eigenvec-

tors, describing 92% of all backbone fluctuations, were defined to describe the essential

subspace. The {es} was coupled to a Berendsen thermostat with a coupling time of

τ es
m = ∆t = 2 fs. Exchanges between replicas were attempted every ν−1

ex = 140 ps and

were accepted on average with 97.7% probability. Structures were saved every 1 ps.

After each successful exchange 40 ps of trajectory were discarded from analysis.

Free Energy

Free energy landscapes of dialanine were calculated in the subspace spanned by the

first two eigenvectors (essential subspace {es}). Assuming equilibrated ensembles, the

relative Gibbs free energy

∆G(xi, yj) = −kBT ln

[

P (xi, yj)

Pmin

]

(6.1)

was calculated for discrete grid points (xi, yj) using a k-nearest neighbor scheme [72]

for the spatial probability function P (xi, yj). It is Pmin := min {P (xi, yj)}.
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6.2 Statistical Ensemble

6.2 Statistical Ensemble

To probe the ensemble generated by TEE-REX, a 4.1µs explicit-solvent MD simulation

of the dialanine peptide (Fig. 6.1) was compared to four 210 ns TEE-REX simulations

of the same system (see chapter 6.1 for computational details).

Figure 6.1: N -acetylated dialanine molecule (left) and corresponding simulation system
(right), containing ∼1200 atoms.

Dialanine was chosen since it constitutes one of the smallest systems with a non-trivial

configuration space. Because of its small size extensive trajectories can be generated

within a reasonable amount of time. The main motions of dialanine occur around its

(φ,ψ)-pair of dihedrals, hence, the available configuration space of the system is very

limited. This increases chances to achieve complete sampling with conventional MD

simulations, i.e. a full coverage of the available phase space. Furthermore, deviations

from the equilibrium distribution of the reference replica due to the input of configu-

rations excited by the essential subspace {es} can be expected to be largest for small

systems. This is because the influence exerted by the stimulated {es} increases with

the number of modes, Nes = dim{es}. The fraction Nes/Ndf can thus be taken as a

measure for the influence caused by the excitation of modes. For dialanine, the frac-

tion Nes/Ndf ∼ 10−3 is at least one order of magnitude larger than for systems usually

simulated.

The thermodynamic behavior of a system is completely known once a thermodynamic

potential such as the Gibbs free energy is available. Comparing free energies thus

enables us to decide to which degree ensembles created by both methods coincide.

However, calculating relative free energies according to Eq. (6.1) requires a converged

ensemble. Therefore, as a first step, we checked whether the MD reference trajectory

yielded a converged ensemble, i.e. if a complete sampling of the configuration space of

the system was obtained.
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6 Benchmarking TEE-REX

6.2.1 Convergence of the MD Reference

As a first test, structural convergence was examined using the eigenvector inner product

matrix µA
i · µB

j . Backbone eigenvectors {µA
i }, obtained from a PCA of the full 4.1µs

MD trajectory, were compared to eigenvector sets {µB
i }, calculated from trajectory

fragments of length 180 ns to 1.87µs (Fig. 6.2). Then, subspaces spanned by the first

four eigenvectors of each set were constructed. Therein, 97 % of all backbone fluctu-

ations are covered. Next, overlaps of these different subspaces with the subspace of

the full trajectory were calculated. The subspace overlap between the m orthonormal

(ON) vectors {w1, . . . , wm} and the reference subspace spanned by the n ON vectors

{v1, . . . , vn} is given by n−1
∑n

i=0

∑m
j=0(vi ·wj)

2. The overlap will increase with increas-

ing m and equals one when the set {vi} is a subspace of set {wj}. Results indicate that

structural convergence is reached for trajectory fragments of lengths ≥400 ns (measured

subspace overlap of > 99 %).
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Figure 6.2: Eigenvector (EV) inner product matrices µA
i · µB

j for EV sets {µ
A/B
i } derived

from different MD trajectory fragments. Color coding of matrix elements ranges from blue
(orthogonal EV, µA

i ⊥µB
j ) to red (parallel EV, µA

i ‖ µB
j ). Left: fully converged EV sets from

a 1.87µs MD piece (y axis) vs. the 4.1µs MD trajectory (x axis). Right: EV set from a
400 ns MD piece (y axis) vs. the 4.1µs MD reference. Subspace overlaps are calculated for
the subspace comprising the first four EVs (lower left red diagonal elements).

As a second test for convergence, transitions between the two main dialanine con-

formations were counted. Fig. 6.3B shows representative structures found along the

system path overlayed onto a two-dimensional free energy surface derived from a 420 ns
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MD trajectory piece. The main motion of the system is a rotation around its only di-

hedral pair around the Cα−C bond between the Cα atom of Ala1 and the carbon atom

of the second peptide unit. Starting from an “open” conformation (with respect to the

distance of the N - and C-termini) in the left basin (principal component p1 ≤ −0.1), a

transition to a “closed” conformation in the right basin (principal component p1 ≥ 0.2)

takes place. During the 4.1µs of MD simulation time, more than 900 transitions be-

tween the “open” and the “closed” conformation were observed, giving further evidence

for a converged ensemble covering the complete configuration space.

As a third test for convergence we evaluated relative free energy landscapes for di-

alanine ensembles generated by MD and TEE-REX (see below).

6.2.2 Ensemble Comparison – Free Energy Landscape

Ensembles generated by MD and TEE-REX were compared in terms of relative Gibbs

free energy landscapes ∆G(x, y) calculated from trajectory projections onto the two-

dimensional essential subspace {es} excited in all dialanine TEE-REX simulations

(Fig. 6.3). A 1870 ns piece of the full 4.1µs reference MD trajectory was used to

define the {es} eigenvectors (see chapter 6.1). We used the information that ensem-

bles from trajectory parts of length ≥400 ns are converged (chapter 6.2.1) to define

nine independent non-overlapping 420 ns MD trajectory fragments out of the full 4.1µs

MD reference. To guarantee equal computational effort, the length of a single two-

replica TEE-REX simulation was thus set to 210 ns. In this way we compare ensembles

that were generated with the same computational effort. Four 210 ns two-replica TEE-

REX simulations with replica temperatures (T es
m , T0) of (300 K, 300 K) for the first and

(500 K, 300 K) for the second replica were started from different MD snapshots taken

from the full MD trajectory to check for any dependence of the sampling on the starting

structure.

The upper panels of Fig. 6.3 show typical Gibbs relative free energy surfaces (units of

kJ/mol) for TEE-REX (panel A) and MD (panel B) ensembles with respect to the first

two backbone eigenvectors comprising the essential subspace {es}. The observed ring

structure seen in all ensembles is due to the fact that a non-linear dihedral rotation is

described by two orthogonal linear PCA coordinates. Two distinct conformations are

distinguishable, an “open” conformation located in the left minimum of the ∆G surface

and a “closed” conformation located in the right minimum. Transitions between the

two conformations occur along the free energy “valley” (upper pathway), illustrated

by representative structures shown in Fig. 6.3B. A free energy barrier of ∼15 kJ/mol
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Figure 6.3: Comparison of dialanine ensembles generated by TEE-REX and MD. Gibbs rela-
tive free energy surfaces (in units of kJ/mol) projected onto the first two MD-derived backbone
eigenvectors ({es}) are shown for a TEE-REX ensemble (panel A) and an ensemble from a
420 ns MD trajectory piece (panel B), overlaid by representative structures found along the
system pathway. All calculations were carried out on an equal number of 40000 samples.
Panels C and D: standard deviations (top view, units of kJ/mol) σTEE-REX (panel C) and σMD

(panel D), calculated for all four TEE-REX and all nine MD free energy surfaces, respectively.

(saddle) impedes the conformational transition along the lower pathway. No apparent

visual difference between the free energy surfaces determined by the two methods is

seen, indicating that TEE-REX creates ensembles very similar to that created by MD.

Fig. 6.3C-D display standard deviations σTEE-REX and σMD (in units of kJ/mol), calcu-

lated from all four TEE-REX and all nine MD ∆G surfaces, respectively. The statistical

error is less than 0.4 kJ/mol≈0.15 kBT for both methods and thus very low with respect

to the absolute ∆G values. This further supports the assumption of converged ensem-

bles in both cases. In the case of MD (panel D), the largest statistical errors are found

in the saddle region, which hinders conformational transitions along the lower pathway.

These comparatively large errors are due to the poor sampling in this part of the con-

figuration space, since barrier heights of 15 kJ/mol are rarely overcome by MD during
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420 ns of simulation time. While the central region is not sampled by MD (Fig. 6.3D),

panel C shows that TEE-REX explores this region, indicating the ability of the latter

to sample high-energy regions more frequently than MD. When comparing Fig. 6.3C-D,

it is important to note that σTEE-REX was constructed using four samples, whereas nine

MD samples were used for σMD.
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Figure 6.4: Top view of the difference in free energy 〈∆GTEE-REX − ∆GMD〉, averaged over all

combinations ∆Gi
TEE-REX

− ∆G
j
MD. See text for details.

To investigate the shape of the free energy surfaces generated by both methods in

detail, Fig. 6.4 displays the difference 〈∆GTEE-REX − ∆GMD〉 averaged over all combi-

nations ∆Gi
TEE-REX

− ∆Gj
MD (i = 1, . . . , 4; j = 1, . . . , 9). Areas colored in blue are

sampled more frequently by TEE-REX than by MD, since ∆GTEE-REX < ∆GMD in these

areas. The maximum absolute deviations of 1.5 kJ/mol≃ 0.6 kBT from the ideal case

∆GTEE-REX − ∆GMD = 0 are commensurate with the maximum statistical errors of

0.15 kBT (Fig. 6.3) found for each method. As can be seen from the distribution of

blue regions, high energy configurations are more frequently sampled by TEE-REX,

whereas MD sampling focuses on the stretched low energy basin containing the open

conformation. Thus, the excitation of essential subspace modes allows the TEE-REX

reference replica to explore high energy configurations usually not available to a normal

MD sampling at the same temperature.
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6.3 Sampling Efficiency

To analyze the sampling efficency of the TEE-REX algorithm, the 13 amino-acid pep-

tide hormone guanylin [155] was simulated by both MD and TEE-REX. To provide

meaningful statements about sampling efficiency, two independent 60 ns trajectory frag-

ments from the 130 ns TEE-REX reference replica were compared to four independent

180 ns=3×60 ns MD trajectory fragments taken from one 800 ns MD trajectory. Besides

employing projections onto eigenvectors drawn from the essential subspace {es}, both

methods were compared using (φ, ψ) dihedral space.

It is generally accepted that standard REX improves sampling efficiency over classical

MD. However, the computational effort associated with explicit solvent simulations

is often very high with respect to the gain in sampling. Initial tests with standard

temperature REX simulations of guanylin showed only a slight increase in sampling

performance over classical MD. In particular, the computational effort of a 4-replica

REX simulation of 60 ns length was 25 % larger than the 3-replica TEE-REX simulations

of comparable length. Therefore we omit REX and directly compare results from MD

with TEE-REX.

6.3.1 Simulation Details

MD Simulations

The MD reference simulation system of guanylin was set up as follows. From a standard

REX simulation a snapshot of the 300 K reference replica served as the MD starting

structure. The simulation system is based on the protonated NMR structure (Protein

Data Bank (PDB) entry 1GNA), solvated in a rhombic dodecahedral box and neu-

tralized adding Na+ ions accordingly. The system comprised ∼6000 atoms. Energy

minimization of the solvated system with the steepest descent algorithm was followed

by a 100 ps MD simulation at the target temperature using harmonic position restraints

on the heavy atoms of the protein with a force constant of k = 1000 kJ mol−1nm−2 to

equilibrate the solvent. After one ns of equilibration, a 800 ns trajectory was produced

by free MD simulation. Structures were saved every 2 ps for further analysis.

TEE-REX Simulations

One 130 ns TEE-REX simulation of guanylin starting from an equilibrated MD struc-

ture was performed. Three replicas were simulated, having essential subspace tem-
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peratures of 450 K and 800 K. A PCA of a 50 ns MD trajectory fragment taking all

backbone atoms into account was performed. The first six eigenvectors, describing

87 % of all backbone fluctuations, defined the essential subspace {es}. Exchanges were

attempted every ν−1
ex = 160 ps and were accepted with 97.8 % probability. Structures

were saved every 1 ps. A 40 ps trajectory snippet was discarded after each successful

exchange to yield equilibrated ensembles.

6.3.2 Essential Subspace

Every MD and TEE-REX reference ensemble was projected onto the first two backbone

eigenvectors of the six-dimensional essential subspace {es} used in the TEE-REX sim-

ulation. Together, both eigenvectors describe 64% of all backbone fluctuations of the

system. In Fig. 6.5, all of these projections are displayed, together with their respective

starting structures (red diamonds). Fig. 6.5A shows the configuration space sampled

by a 180 ns fragment of MD trajectory ranging from 20-200 ns. The intensely sampled

region in the upper half of the µ1µ2-plane indicates a pronounced local minimum in the

free energy surface of the system. For the remaining 600 ns of simulation time, the MD

simulation gets trapped in this region of configuration space (Panel B-D). Projections

of both 60 ns fragments of the 130 ns TEE-REX reference replica trajectory, ranging

from 5-65 ns and 70-130 ns, are shown in Fig. 6.5E-F. Although the starting structure

lies within the local minimum amply sampled by MD (Panel E), the space captured

by TEE-REX not only covers that explored by MD, but extends beyond that. This

result is independent from the starting structure, as a projection of the second 60 ns

TEE-REX reference trajectory fragment confirms (Panel F).

To quantify TEE-REX sampling performance, the time evolution of sampled config-

uration space volumes Vi(τ) was measured using projections of all MD and TEE-REX

trajectory fragments along the first two eigenvectors of the six-dimensional essential

subspace {es} excited in the TEE-REX simulation. In order to monitor time evolution,

the µ1µ2-plane (Fig. 6.5) was discretized by a grid with a spacing of 0.01 nm. At each

time step, the number of occupied grid cells was recorded. Conversion of time into

computational effort τ (measured in units of 180 ns MD simulation time) yielded the

Vi(τ) curves shown in Fig. 6.6. Panel A compares TEE-REX sampling performance

VTEE-REX(τ) (solid lines) against MD sampling curves VMD(τ) (dotted lines) for all 180 ns

MD trajectory fragments of the 800 ns reference MD simulation.

Apart from the the first 200 ns of simulation time, the sampling performance of MD

is quite limited compared to TEE-REX. Here, the dependence of the MD sampling on
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Figure 6.5: Trajectory projections of guanylin MD and TEE-REX simulations on the first two
eigenvectors used in the TEE-REX simulation (axes’ labels are only shown for panel E). Red
diamonds represent the starting structure of each simulation window. Panels A-D: projection
of MD ensembles for four different time spans. Panel E-F : TEE-REX ensemble for both 60 ns
pieces.
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Figure 6.6: Quantitative comparison of TEE-REX sampling performance with respect to MD
for a guanylin test system. Sampled configuration space volumes Vi(τ) are measured versus
computational effort τ (in units of 180 ns MD simulation time) for trajectory projections onto
the first two eigenvectors of the six-dimensional {es} excited in the TEE-REX simulation of
guanylin. Panel A: TEE-REX performance (dark and light solid lines) versus MD performance
(dashed lines). Panel B: Average TEE-REX (solid) and MD (dashed) sampling performance
〈Vi(τ)〉 ± σi with error bars denoting standard deviations σi.

the starting structure becomes clearly visible. For TEE-REX, sampling performance is

independent of the starting structure, displaying the ability of the method to efficiently

explore large regions of configuration space within short simulation times. Fig. 6.6B

summarizes the results of Fig. 6.6A, showing average TEE-REX (solid line) and MD

(dashed line) performance 〈Vi(t)〉± σi, with errorbars representing standard deviations

σi. In the 180 ns MD simulation windows of guanylin, on average only 10% (τ =

0.1) of the total computational effort is necessary to sample 80% of the configuration

space available to MD. Thus, exploring the remaining 20% of configuration space is

computationally very expensive. For TEE-REX, we see a 3.6-fold1 increase in sampled

configuration space using the same computational effort τ = 0.1. Although the sampling

rate of TEE-REX decreases with increasing τ , it outperforms the MD sampling rate by

a factor of three.

6.3.3 Dihedral Space

In order to evaluate the sampling performance of TEE-REX in subspaces not related to

the essential subspace {es}, ensembles of both methods were compared within full (φ, ψ)

1A different measure for sampling performance is given by the fact that TEE-REX requires around
5 % of the computational effort to sample VMD(τ = 1), resulting in a more than 20-fold gain in
sampling over MD.
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dihedral space. Panels A-C of Fig. 6.7 show Ramachandran plots [156] of several 180 ns

fragments of MD trajectory. In all three fragments the left half plane φ ∈ [−180◦, 0◦[ is

well-sampled by MD, whereas moderate sampling is achieved in the remaining half plane

φ ∈ [0◦, 180◦[. For the corresponding TEE-REX ensemble (Fig. 6.7D) a substantial

increase in sampling is seen, where a notably broader range of ψ values is sampled by

TEE-REX.

Table 6.1: Average TEE-REX sampling efficiency
for guanylin, calculated in different two-dimensional
subspaces. The efficiency measured in parts of the
excited essential subspace, {µ1, µ2} ⊂ {es}, is shown
for comparison.

Subspace Efficiency Gain

(φ, ψ) 2.43

{µ7, µ8} 2.80

{µ14, µ15} 2.62

{µ1, µ2} ⊂ {es} 3.65

For a more detailed analysis the volume V (τ = 1) explored in dihedral space was

calculated for each of the eleven pairs of dihedrals in all four MD and two TEE-REX

ensembles. The average gain in sampling efficiency 〈VTEE-REX/VMD〉 for (φ, ψ) space

is shown in Table 6.1 together with results from additional analyses, made on two

PCA subspaces linearly independent from the {µ1, µ2} ⊂ {es} = {µ1, . . . , µ6} space,

namely {µ7, µ8} and {µ14, µ15}. For all subspaces independent from {es}, sampling

performances are comparable, yielding an approximately 2.5-fold gain in TEE-REX

sampling efficiency over classical MD. Although these values are lower than the observed

3.6-fold performance gain measured in the {µ1, µ2} subspace, it clearly demonstrates

the capability of TEE-REX as an efficient sampling method.

6.4 Defining {es} Using Sparse Structure Information

The sampling enhancement in TEE-REX is largely due to excitations of the essential

subspace {es}. Hence, the question arises how sampling performance is influenced by

the definition of {es}, i.e. the amount of available structural information from which

collective coordinates are constructed. Often, such information is limited and hard to

get, either through experimental (few or no X-ray/NMR structures) and/or compu-

tational2 restrictions. We therefore tested the algorithm’s sampling power under the

condition that only few configurations of a system are available.

2Starting from a single structure, the CONCOORD method [157] allows to generate structural en-
sembles at low computational costs, thereby alleviating lack of structural information. However,
the statistical weight of each structure is thereby unknown.
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Figure 6.7: Ramachandran plots of different guanylin MD and TEE-REX ensembles (axes’
labels are only shown for panel C). MD ensembles for different 180 ns time windows (panels A-
C) are compared with a TEE-REX ensemble, ranging 5-65 ns (panel D). Enhanced sampling
of TEE-REX with respect to MD is observed.

To mimic sparse structural information, a 130 ns TEE-REX simulation of guanylin

was performed using an essential subspace {es}′, constructed using eigenvectors ob-

tained from a PCA on the backbone atoms of an MD trajectory spanning only 1 ns.

This corresponds to a 50-fold reduction of available structures with respect to the orig-

inal definition of {es}. Compared to the six eigenvectors used originally, the first ten

eigenvectors were necessary in the construction of {es}′ to account for the same 87 %

of all observed backbone fluctuations. Calculating the subspace overlap between both

essential subspaces shows that {es}′ can reproduce about 70 % of the configurational

space covered by {es}. Looking at the modes itself, we found that collective modes

µ′

j ∈ {es}′ differ markedly from the well-defined modes µi ∈ {es} (Fig. 6.8). When this

subspace {es}′ is taken as a basis for TEE-REX, despite the substantial reduction of

structural information, projections of 60 ns trajectory pieces from both TEE-REX sim-

ulations onto the first two eigenvectors of {es} reveal only minor differences in sampled

regions of configuration space (Fig. 6.9) as compared to the original. Comparing sam-
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Figure 6.8: Inner product matrix µi ·µ
′

j, show-
ing the difference of collective modes of mo-
tion present in {es}′ and {es}. Compared
to {es}, different modes are contained within
{es}′, resulting from lack of structural infor-
mation available for the construction of {es}′. {es}

{
es
}
′
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pled configuration space volumes measured over computational effort yields an average

difference of 7 % in sampling efficiency within the essential subspaces. These results

indicate that TEE-REX sampling efficiency is hardly sensitive to the choice of the es-

sential subspace. To further validate these findings the overlap of both ensembles in

A B−1

 0

 1

 2

−0.5  0.5−1.5 −2 −1  1 0

Eigenvector 1 [nm]Eigenvector 1 [nm]

E
ig

en
ve

ct
or

2
[n

m
]

{es} {es}′

Figure 6.9: Influence of TEE-REX sampling performance on the amount of structural infor-
mation present in the essential subspace. Only minor differences in sampling are seen between
the structurally well-defined {es} (panel A) and {es}′ (panel B), derived from only 2% of the
structures used for {es}.

full (φ, ψ) dihedral space was estimated to have a PCA-independent measure. To this

end, the (φ, ψ) plane was discretized by a grid of size 1◦ and the grid cells shared by

both ensembles were counted, yielding an overlap of more than 84 %.
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6.5 Algorithm Sensitivity

During development, extensive tests were made with the algorithm to elucidate its

sensitivity with respect to the three main parameters: essential subspace temperature

T es
m , size of the essential subspace Nes, and exchange attempt frequency νex.

Excitations of the chosen {es} are controlled by T es
m and the corresponding coupling

constant τ es
m (Eq. (5.1), page 32), defining the coupling strength. Both parameters

are not independent of each other since for a weak coupling τ es
m ≫ ∆t, dissipation

of the excitation energy to colder degrees of freedom (i.e. degrees of freedom coupled

to T0) leads to a lower {es} temperature and hence reduced efficiency in sampling.

Thus, a higher subspace temperature needs to be chosen to achieve the same sampling

efficiency as with a tight coupling and a lower {es} temperature. Values for both of

these parameters depend on the particular system and were chosen such as to find an

optimal compromise between sampling efficiency and accuracy. Except for applications

dealing with folding/unfolding, combining a high excitation temperature T es
m & 700 K

with a strong coupling constant τ es
m ≈ ∆t should be avoided. In such cases the coupling

to the heat bath is very strong and only a small amount of the excitation energy put

into the {es} is actually dissipated through other modes. As a consequence, a rapid

loss in tertiary and secondary structure is observed within a few ns of simulation time.

In general, increasing T es
m to arbitrarily high values (in combination with a reasonable

choice of τ es
m ) may allow sampling of configurations having a low Boltzmann factor at the

reference temperature T0, leading either to slow convergence of the reference ensemble,

or to a bias of the latter (in case convergence is not reached). As already mentioned

above, for very high excitation temperatures, care has to be taken regarding (partial)

unfolding events. In such cases the available configurational space drastically increases,

rendering it improbable to return to folded states.

Method attempt νex acceptance prob. actual ν ′ex

REX 1 ps 20 % 5 ps

TEE-REX 160 ps 97 % ∼160 ps

Table 6.2: Typical REX
and TEE-REX exchange
frequencies.

The time between two exchange events should be chosen long enough to (1) allow

equilibration of the reference replica after each exchange, and (2) to enable the system

to adequately sample this new part of configuration space. Values of ∼ 100 ps were

chosen because autocorrelation functions of different structural and energetical proper-

ties, such as velocity, RMSD and the short-range contribution to the Coulomb energy
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(cp. chapter 6.1), showed correlation times on the order of several picoseconds. The

exchange frequencies thus employed are one to two orders of magnitude lower than

those routinely used in REX simulations. In TEE-REX simulations the exchange at-

tempt frequency νex is almost identical to the actual exchange frequency ν ′ex due to

high acceptance probabilities of > 95 %. Values for the latter in standard REX simula-

tions usually lie between 10-50 %, resulting in actual exchange frequencies one order of

magnitude higher than in TEE-REX (see Table 6.2 for an example).

In this study the size of the essential subspace, Nes, was always chosen such that

around 90 % of the total mean square fluctuations of the respective atoms was included.

In general, the composition (i.e. number and type of modes) are chosen according to

the specific problem under study.

6.6 Conclusions

The applicability of standard REX to all-atom simulations of biomolecular systems us-

ing explicit solvent becomes computationally prohibitive for systems comprising more

than a few thousand atoms. Due to the large number of degrees of freedom involved,

numerous replicas are needed to span a given temperature range. To overcome this in-

herent limitation we developed a new algorithm combining the replica exchange frame-

work with the idea of essential dynamics. In each TEE-REX replica only a selection

of essential collective modes of a subsystem of interest is excited, with the rest of the

system staying at a reference temperature. The collective modes are taken from a

PCA of a subsystem of interest. This selective excitation of functional relevant mo-

tions within the replica framework overcomes the computational limitations inherent

to replica exchange and at the same time efficiently samples the configurational space

of the system.

For a dialanine test system TEE-REX ensembles agree favorably with converged

reference MD ensembles, making TEE-REX an efficient method for the study of ther-

modynamic properties of biomolecular systems.

The algorithm can easily be applied to larger systems. Because only a small fraction

Nes ≪ Ndf of the degrees of freedom of the system are excited in each TEE-REX replica,

the exchange probability P (S → S ′) is no longer dominated by the solvent contribution

to the potential energy. This drastically cuts down computational demands with respect

to conventional REX, enabling TEE-REX to address problems currently not readily

accessible to MD or other ensemble-preserving methods.
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The superior sampling performance of TEE-REX with respect to MD was demon-

strated using guanylin as a test system. Here, the degree to which modes are defined,

i.e. the amount of a priori structural information, was shown to have only a minor

influence on sampling performance.

The choice of the essential subspace degrees of freedom prior to any TEE-REX sim-

ulation renders the method very suitable to address questions related to structural and

dynamical properties of biomolecular systems.
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7 Simulating Large Conformational

Transitions – Application to

Adenylate Kinase

Life is pleasant. Death is peaceful. It’s the transition that’s troublesome.

— Isaac Asimov

7.1 Introduction

Experimentally determined structures of protein conformations have become increas-

ingly available over the last years. Such structures, which are commonly determined by

X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy offer atomic

resolution but only provide static pictures of different conformational states of proteins.

Often, one is interested in the transitions between such conformations as they frequently

form the basis for protein function. Examples are motor proteins such as myosin and

kinesin, the bacterial flagella, ATP synthase [1, 12, 158], the chaperonin GroEL [159] or

nuclear transport proteins [160]. However, questions related to the underlying transition

pathway often remain open [161]. Despite recent advances in time-resolved X-ray crys-

tallography [13, 14], it remains a challenge to elucidate the pathways and mechanisms

of protein conformational dynamics.

Among the family of nucleoside triphosphate (NTP) kinases, Escherichia coli adeny-

late kinase (ADK) is a structurally well studied protein exhibiting large conformational

motions crucial for its catalytic function [162]. ADK is a monomeric ubiquitous enzyme

that plays a key role in energy maintenance within the cell, controlling cellular ATP

levels by catalyzing the reaction

Mg2+:ATP + AMP ⇋ Mg2+:ADP + ADP .
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Structurally, the enzyme consists of three domains (Fig. 7.1): the large central “CORE”

domain (blue), an AMP binding domain referred to as “AMPbd” (red), and a lid-shaped

ATP-binding domain termed “LID” (green), which covers the phosphate groups at the

active center [162]. In an unligated structure of ADK the LID and AMPbd adopt an

open conformation, whereas they assume a closed conformation in a structure crystal-

lized with the transition state inhibitor Ap5A [163]. Here, the ligands are contained

in a highly specific environment required for catalysis. Recent 15N nuclear magnetic

resonance spin relaxation studies [164] have shown the existence of catalytic domain

motions in the flexible AMPbd and LID domains on the nanosecond time scale, while

the relaxation in the CORE domain is on the picosecond time scale [165, 166].

α2

α3

α4

α6

α7

Figure 7.1: Closed (left) and open (right) crystal structures of E. coli adenylate kinase (ADK)
having domains CORE (blue), AMPbd (red) and LID (green). The transition state inhibitor
Ap5A is removed in the closed crystal structure (left). Assignment of secondary structure
elements according to [163].

For ADK, several computational studies have addressed its large conformational flex-

ibility [167, 168, 169]. Maragakis and Karplus [170] used a coarse-grained plastic net-

work model to generate a minimum energy path between the open and closed crystal

structures. Their study predicts that the motion of the LID region precedes the motion

of the AMPbd when going from the open to the closed form. In a very recent study,

essential dynamics simulations have been performed to determine whether the closed

conformation is accessible to the open unligated enzyme [171]. The study suggests
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that the open conformation is at a slightly lower free energy than the closed confor-

mation, as a consequence of hinge motions responsible for domain closure. Although

considerable progress has been made towards the understanding of these large confor-

mational changes in ADK, a detailed picture of the open to closed transition at full

atomic resolution has not yet been achieved.

Here, we employed TEE-REX to facilitate the spontaneous transition between the

open and closed structures of ADK, achieving a fully atomistic description of the tran-

sition pathway and its underlying mechanics.

7.2 Simulation Details

All simulations were carried out using the MD software package GROMACS 3.3.1 [80],

supplemented by the TEE-REX module [97]. Eight TEE-REX simulations were carried

out, four starting from the equilibrated open and four form the closed crystal structures.

Additionally, two reference MD simulations were started from the closed and open con-

formation. The OPLS-all atom force field [84] was used for the protein and TIP4P

was used as a water model [153]. All simulations were performed in the NPT ensemble.

The pressure was coupled to a Berendsen barostat [94] with τp = 1.0 ps and an isotropic

compressibility of 4.5 · 10−5 bar−1. All bonds were constrained using the LINCS algo-

rithm [31]. An integration time step of 2 fs was used. Lennard-Jones interactions were

calculated explicitly with a 10 Å cutoff. Coulombic interactions were calculated explic-

itly at a distance smaller than 10 Å; above 10 Å, long-range electrostatic interactions

were calculated with the PME method [88], using a direct space cutoff of 10 Å and a

reciprocal grid spacing of 0.12 nm and fourth order B-spline interpolation.

MD Simulations

Two reference simulations one of 92 ns and one of 109 ns length were started from the

closed (MDc) and open (MDo) conformation, respectively. In all MD simulations the

temperature was kept constant at T = 300 K by coupling to an isotropic Berendsen

thermostat [94] with a coupling time of τt = 0.01 ps for the MDc and τt = 0.1 ps for the

MDo simulation.

The MDc simulation system was set up as follows. From the protonated crys-

tal structure (PDB entry 1AKE) [163] the two-substrate-mimicking inhibitor P 1,P 5-

bis(adenosine-5’)pentaphosphate (Ap5A) was removed. The protein was then solvated

in a rhombic dodecahedral box with box vectors of 74.775 Å length. The system com-
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prised 37 965 atoms. Four Na+ ions were added to neutralize the system. The energy

of the solvated system was minimized using the steepest descent algorithm. Subse-

quently, a 100 ps MD simulation at the target temperature was carried out using har-

monic position restraints on the heavy atoms of the protein with a force constant of

k = 1000 kJmol−1nm−2 to equilibrate water and ions. Next, a trajectory of 109 ns

length was produced by a free (unbiased) MD simulation. Structures were recorded

every 1 ps for subsequent analysis.

For the MDo simulation system the protonated crystal structure (PDB entry 4AKE)

[162] was solvated in a rectangular box having a size of 63.309 Å× 83.52 Å× 77.031 Å.

The system comprised 53 195 atoms. To mimic physiological conditions, 38 Na+ and

35 Cl− ions were added. Energy minimization of the solvated system using the steepest

descent algorithm was followed by a 500 ps MD simulation at the target temperature

using harmonic position restraints on the heavy atoms of the protein with a force

constant of k = 1000 kJmol−1nm−2 to equilibrate water and ions. Subsequently, a

trajectory of 92 ns length was produced by a free MD simulation. Structures were

recorded every 3 ps for subsequent analysis.

TEE-REX Simulations

Eight 20 ns TEE-REX simulations were performed, starting from the equilibrated open

(TRo 1-4) and closed (TRc 1-4) starting structures used in the MDo and MDc sim-

ulations, respectively. Each TEE-REX simulation consisted of three replicas, having

temperatures (T es
m ,T0) of (300 K, 300 K) and (320 K, 300 K) for the reference m = 0 and

first excited replica m = 1, respectively. Excitation temperatures of (550 K, 300 K) or

(650 K, 300 K) were used for the second excited replica m = 2 (see Table 7.1).

Three different eigenvector sets were used in the construction of the essential sub-

spaces {es} (Fig. 7.2). A PCA was performed on the first 5 ns of the MDo simulation,

taking all backbone atoms into account. The first five eigenvectors, describing 92 % of

the backbone fluctuations, defined the essential subspace {µ1, . . . , µ5}. Repeating this

procedure for the first 5 ns of the MDc simulation yields the eigenvector set {ν1, . . . , ν5},

describing 92 % of the respective backbone fluctuations. A PCA on the combined MDo

and MDc ensemble results in {es} = {κ1, . . . , κ5}. The latter was used for simula-

tions TRo 1-2 and TRc 1-2. Thereby, also the eigenvector directly connecting the

open and the closed structure is excited (Fig. 7.2C). For the second set of eigenvec-

tors, {es} = {µ1, . . . , µ5, ν1, . . . , ν5}, used in simulations TRo 3-4 and TRc 3-4, only

eigenvectors describing the local fluctuations of the respective conformation are excited.
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A B C

MDo, {µ1, . . . , µ5} MDc, {ν1, . . . , ν5} MDo+MDc, {κ1, . . . , κ5}

Figure 7.2: Schematic two-dimensional visualization of the procedure to construct the essential
subspaces {µi}, {νi} and {κi} used in TEE-REX simulations of ADK, see also Table 7.1.
Principal component analyses performed on MD ensembles (scatter plots ◦ and ×) are depicted
as coordinate axes (→↑ ). Essential subspaces {µi} (Panel A) and {νi} (Panel B) describe
only local fluctuations around the respective conformation, whereas the eigenvector directly
connecting the open and closed form is excited in {es} = {κi} (Panel C).

The used essential subspaces were coupled to a Berendsen thermostat with a coupling

time of τt = 0.05 ps, with all other degrees of freedom coupled with τt = 0.1 ps. Ex-

changes between replicas were attempted every 160 ps and were accepted with > 95 %

probability. Structures were recorded every 2 ps for further analysis. A summary of all

parameter combinations used is given in Table 7.1.

Simulation Starting Structure Time Essential Subspace Temperature

MDo open 109 ns T = 300 K
MDc closed 92 ns T = 300 K
TRo 1 open 20 ns {κ1, . . . , κ5} max {T es} = 550 K
TRo 2 open 20 ns {κ1, . . . , κ5} max {T es} = 650 K
TRo 3 open 20 ns {µ1, . . . , µ5, ν1, . . . , ν5} max {T es} = 550 K
TRo 4 open 20 ns {µ1, . . . , µ5, ν1, . . . , ν5} max {T es} = 650 K
TRc 1 closed, no ligand 20 ns {κ1, . . . , κ5} max {T es} = 550 K
TRc 2 closed, no ligand 20 ns {κ1, . . . , κ5} max {T es} = 650 K
TRc 3 closed, no ligand 20 ns {µ1, . . . , µ5, ν1, . . . , ν5} max {T es} = 550 K
TRc 4 closed, no ligand 20 ns {µ1, . . . , µ5, ν1, . . . , ν5} max {T es} = 650 K

Table 7.1: TEE-REX and MD simulation details. Shown simulation parameters are: simula-
tion length (ns), used essential subspace {es}, maximum {es} excitation temperature (K).
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7 Simulating Large Conformational Transitions – Application to ADK

7.3 Results

7.3.1 Conformational Transition

To analyze whether any spontaneous transition between the open and closed conforma-

tion was observed, simulations were analyzed in terms of their root mean square devi-

ation (RMSD) of all backbone atoms with respect to the experimental structure that

was not the starting structure of the simulation (i.e. the closed structure for simulations

starting from the open X-ray structure and vice versa). A threshold of 0.3 nm, derived

from averaging equilibrium fluctuations relative to the respective starting structures

(Fig. 7.3D), was used to identify transitions. Panels A-C of Fig. 7.3 show the RMSD as

a function of simulation time for all TEE-REX and MD simulations, with the transition

threshold of 0.3 nm indicated by a dashed line.
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Figure 7.3: Backbone RMSD versus time for all simulations reported. Panel A: RMSD of
TEE-REX simulations started from the closed conformation with regard to the open structure:
TRc 1 (black), TRc 2 (red), TRc 3 (blue), TRc 4 (green). Panel B: RMSD of TEE-REX
simulations started from the open form relative to the closed conformation: TRo 1 (black),
TRo 2 (red), TRo 3 (blue), TRo 4 (green). Panel C: RMSD of MD simulations MDo (black)
and MDc (red), started from the open and closed structure, with respect to the closed and
open conformation, respectively. Panel D: Backbone RMSD of MD simulations MDc (black)
and MDo (red) relative to their starting structure.
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A complete transition event is clearly observed for simulation TRc 3 (blue line in

Panel A), as evident from the fact that this simulation repeatedly approaches the open

conformation as close as 0.14 nm in terms of RMSD. Interestingly, the modes excited

in the TRc 3 simulation did not include the difference X-ray mode connecting the open

and closed experimental structures (Fig. 7.2). The TRc 2 simulation also seems to

briefly sample the open conformation. However, strictly this is not the case (chapter

7.3.3). In all four TRc simulations, a constant drop in RMSD by 0.15 nm during the

first three nanoseconds of simulation time is observed, putatively indicating a relaxation

from internal strain energy. For TEE-REX simulations TRo 1-4 (Fig. 7.3B), starting

from the open conformation, only a slight excursion towards the closed conformation is

observed in the TRo 2 simulation during the 20 ns of simulation time. In comparison,

none of the MD simulations shows a complete transition between the two conformations.

The MDc simulation approaches the open conformation up to 0.33 nm RMSD briefly

during the 92 ns of simulation time, in accordance with measured rates of ∼52 ns for

ADK domain motions [164].

Throughout all MD and TEE-REX simulations a preference for the open conforma-

tion is observed, consistent with a suggested lower free energy for the open conformation

[171]. However, the inability of several TRc and TRo simulations to reach the open

and closed conformation, respectively, indicates a free energy barrier additional to the

suggested monotonic profile of Snow et al. [171].

7.3.2 Pathway Characterization

The TRc 3 ensemble was used to analyze the conformational transition in more detail.

In contrast to conventional MD, dynamical information on the transition pathway is

lost in TEE-REX due to frequent exchanges between all replicas. However, a pathway

can easily be constructed from the TRc 3 reference ensemble using a RMSD distance

measure described below.

Construction of the Transition Pathway

The construction of a pathway between the open and closed conformation of ADK for

the TRc 3 simulation is based on the following idea: in going from point A to some

distant point B one increases the distance from A while at the same time approaching

the target point B (thereby neglecting detour routes). The backbone RMSD curves

with respect to the open (RMSDo) and closed (RMSDc) structures are used as the
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7 Simulating Large Conformational Transitions – Application to ADK

distance measure. In doing so, a continuous pathway is defined between the open and

the closed state, commensurate with the simulated ensemble. In a first step, RMSD

differences RMSDo − RMSDc were calculated for each frame and sorted in decreasing

order. A large distance in the RMSD space thereby corresponds to a structure close

to the beginning of the path, whereas a low RMSD distance points to a structure in

the vicinity of the target conformation. Representative structures for a given number

of evenly spaced waypoints in the constructed RMSD distance space were chosen to

visualize the pathway (Fig. 7.4).

To probe for possible detour routes neglected in the algorithm described above, the

TRc 3 ensemble was projected into the plane spanned by the two RMSD coordinates

given in Fig. 7.3A and B, i.e., the RMSD with respect to the open and closed structure,

respectively. A narrow distribution along the diagonal connecting both end states of

the pathway is found, implying only limited variability for ADK along the transition

path.

Transition Pathway

Figure 7.4 shows a complete pathway (yellow line) overlaying the TRc 3 ensemble

(black) as well as the MDo (red) and MDc (cyan) ensembles. Two PCA analyses were

carried out on the TRc 3 ensemble to define the x and y coordinate. The x-axis is

given by the first eigenvector describing the AMPbd motion with respect to the CORE.

Similarly, the first eigenvector depicting the LID motion with respect to the CORE

defines the y-axis. The crystal structure of the open conformation (PDB code 4AKE)

is indicated by a green square, together with four cartoon representations visualizing

different structures along the pathway (insets A-D, magenta triangles). The closed

crystal structure (PDB code 1AKE, ligand removed) is shown in inset D, corresponding

to the lower right triangle at one end of the pathway. Secondary structure assignments

were taken from Müller and Schulz [163].

A secondary structure analysis of the structures along the pathway was performed

using DSSP [172] to check for structural stability during the transition. For the CORE

(residues 1-29, 60-121, 160-214) and AMPbd (residues 30-59), no significant change in

secondary structure is seen despite the large conformational change of the latter. As

for the LID (residues 122-159), both β-sheets are stable, with only small conversions

among residues constituting bends and turns of the domain. Overall, ADK strongly

maintains its integrity, showing only minute changes in secondary structure. Thus, the

system essentially behaves like a rigid body with flexible domains.
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Figure 7.4: Two-dimensional projection of the complete transition path (yellow line), over-
laying the TRc 3 (black dots), MDo (red dots) and MDc (cyan dots) ensembles, as well as
the crystal structure of the open (green square) and closed conformation (inset D, rightmost
magenta triangle). Colored cartoon representations A-D visualize different structures along
the pathway (magenta triangles). Color coding follows Fig. 7.1.

Unligated ADK can sample a wide range of conformations between the open and

closed structure, offering ligands several favorable structures for binding. This result

is indicative of the conformational selection view of ligand binding proposed for ADK

[173, 174, 175, 176]. The sampled regions of configurational space suggest a preferential

transition pathway of the unligated enzyme. The complete transition from the unligated

closed (structure D) to the open conformation (structure A) can be characterized by

two phases. During the first phase (insets C and D), the LID remains essentially

closed while the AMPbd, comprising helices α2 and α3 (Fig. 7.1), assumes a half-open

conformation (structure C). In doing so, α2 bends towards helix α4 of the CORE by 15◦

with respect to α3 (Fig. 7.5A). This opening of the AMP binding cleft could facilitate
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7 Simulating Large Conformational Transitions – Application to ADK

an efficient release of the formed product. For the second phase, a partially correlated

opening of the LID domain together with the AMPbd is observed. Halfway towards the

open conformation (structure A), an intermediate half-open structure (transition state

B) at the contact interface of both MDc and MDo ensembles is visited. During ∼100 ns

of simulation time, both MD simulations were unable to pass beyond this interface in

either direction, suggesting a substantial free energy barrier along the pathway.

A domain motion analysis using DynDom [177] of the second phase of the transition

shows that the LID opening cannot be described by a pure hinge-bending motion. Only

in the last part of phase two (going from B to A) the LID motion follows a pure hinge-

bending motion of approximately 30◦, with the hinge axis given by residues L115, I116

and R167, L168. At the beginning of phase two, a combination of a hinge-bending

motion and an outward translation away from the AMPbd characterizes the pathway

towards transition state B.

For phase one, an opening motion of the AMPbd is found, with bending residues

S30, T31 and K69-R71. An interesting observation in this respect is the formation

of a highly stable salt bridge D118-K136, connecting the LID and CORE domains

(Fig. 7.5B). Estimating the total non-bonded interaction between LID and CORE, it

was found that this salt bridge contributes substantially to the total interaction energy

between the two domains. From a comparison of thirteen1 PDB structures from yeast,

maize, human and bacterial adenylate kinase, ten structures feature such a salt bridge

motif at the LID-CORE interface.

7.3.3 Alternative Pathways

The observed transition pathway of the TRc 3 ensemble corresponds to a particular

sequence of events: starting from the closed conformation, a subsequent half-opening of

the AMPbd is followed by a partially correlated opening of the LID/AMPbd complex.

It is an interesting question whether this pathway is the only possibility or whether

alternative pathways are also possible.

An investigation of all TEE-REX simulations, conducted within the subspace shown

in Fig. 7.4, reveals that simulations TRc 1 and TRc 2 sample the first part of an alter-

native transition pathway: starting from the closed state, the LID opens independently

from the AMPbd, with the latter remaining between the closed and a half-open con-

formation. Inside the depicted PCA subspace of Fig. 7.4, this motion corresponds to

1PDB structures examined (* contain salt bridge motif): 4AKE∗, 1AK2∗, 1AKY, 1P3J∗, 1S3G,
1ZAK∗, 1ZD8, 1ZIO∗, 1ZIP∗, 2AK3∗, 2AR7∗, 2C9Y∗, 2ECK∗
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A B

D118

K136

Figure 7.5: Prominent features observed along the ADK transition path. Panel A: Opening of
the AMPbd cleft (grey→red) during phase one. Panel B: Rear view of the highly stable salt
bridge motif D118-K136 (magenta), connecting the LID (green) and CORE (grey) domains.

a basically vertical path parallel to the y-axis, with the starting point being the closed

conformation. For TEE-REX simulation TRc 2, the RMSD analysis (Fig. 7.3) suggests

a full transition event. However, despite the RMSD of only 0.3 nm, the final confor-

mation deviates considerably from the open crystal structure within the structurally

resolved PCA subspace (Fig. 7.6), mainly along the x-axis describing the AMPbd mo-

tion. To complete a transition along this pathway, the AMPbd would be required to

fully open up. Yet, both the TRc 1 and TRc 2 simulations fail to complete this last

step, possibly indicating a substantial free energy barrier in this part of configuration

space.

A comparison of the final structures from the TRc 2 and TRc 3 simulations shows that

conformational deviations are located in helix α3 of the AMPbd, the LID, helix α5 of

the CORE domain as well as helices α6 and α7 connecting the LID and CORE domain.

To investigate structural features in more detail, the pathway obtained from the TRc 2

ensemble was compared to the transition pathway of the TRc 3 ensemble (Fig. 7.6).

After initial relaxation (Fig. 7.3A), the TRc 2 pathway diverges from the TRc 3 case.

In the former, the LID domain fully opens with the AMPbd remaining closed. Here,

the LID domain motion occurs independently from the AMPbd, in contrast to the

observed transition in TRc 3, where opening of the AMPbd precedes LID movement.

While the LID assumes a half-open conformation in TRc 3, the AMPbd gains flexibility
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Figure 7.6: Two-dimensional projection of the complete TRc 3 transition path (dashed line)
and the TRc 2 pathway (solid line), overlaying the TRc 2 ensemble (grey dots).

via bending of helix α2 towards α4 of the CORE, resembling the motion encountered in

the transition pathway. However, a full opening of the AMPbd is prevented by helix α3,

keeping its relative position to helix α7 throughout the TRc 2 pathway. LID flexibility

is comparable for both pathways, although the end configurations assume a slightly

different aperture angle with regard to the CORE domain. A secondary structure

assignment of the TRc 2 pathway using DSSP shows larger fluctuations compared to

the TRc 3 transition, the differences concentrating in the CORE and AMPbd. For the

latter, residues of helices α2 and α3 adjacent to the helix-connecting loop exhibit the

largest structural variability.

7.4 Discussion

With the newly developed TEE-REX algorithm, the spontaneous domain conforma-

tional transition of E. coli adenylate kinase was simulated for the first time at full

atomic resolution. In contrast to coarse-grained models [167, 169, 170] originally de-

signed for such tasks, TEE-REX combines the advantage of atomic detail with a highly

efficient and approximately ensemble-preserving algorithm.

From a series of eight TEE-REX simulations, complemented by two MD references,
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a possible transition pathway was found. A truly spontaneous transition was induced,

since in the TRc 3 simulation, showing a full transition event, the temperature-enhanced

essential subspace did not contain the transition mode connecting the open and closed

conformations (see Fig. 7.2 and Table 7.1). The pathway could be characterized by two

phases. Starting from the closed conformation, a half-opening of the AMPbd is followed

by a partially correlated opening motion of the LID/AMPbd complex towards the open

state. This sequence of events exceeds findings of a study by Maragakis and Karplus

[170]. From a minimum free energy path, retrieved from a coarse-grained model of

ADK, Maragakis and Karplus found that the LID motion occurs independently from

AMPbd motion.

Along the transition pathway we identified two prominent features (Fig. 7.5). First,

during phase one, opening of the AMPbd domain occurs via bending of the α2 helix

towards α4 of the CORE domain by approximately 15◦ with respect to helix α3. This

opening of the AMP binding cleft might be involved in facilitating an efficient release

of the formed product after catalysis. However, since all simulations were carried out in

the absence of any ligand, no conclusions can be drawn with respect to ligand behavior.

Second, a stable salt bridge, D118-K136, connecting the LID and CORE domains forms

that strongly contributes to the total enthalpic interaction between both domains, sug-

gesting a stabilizing function for the open conformation. The occurrence of such a salt

bridge motif in several adenylate kinase structures of different species supports the hy-

pothesis. Breaking this salt bridge via mutation, e.g. D118A, should thus be expected

to decrease the stability of the open state.

A B

closed closedopen open

Figure 7.7: Schematic representation of suggested free energy profiles for unligated ADK.
Monotonic profile by Snow et al. [171] (Panel A); suggested profile by the author (Panel B).

From our simulation data, a qualitative picture of the underlying free energy land-

scape of unligated ADK can be estimated (Fig. 7.7). All TEE-REX and MD simulations,

starting from the closed crystal structure, show a preference for the open conformation,

whereas no such preference for the closed state is seen for simulations starting from the
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7 Simulating Large Conformational Transitions – Application to ADK

open state. This finding is consistent with a declining free energy profile deduced from

simulations that induced the transition from the closed to the open conformation [171]

(Fig. 7.7A). However, the inability of both MD and several TRc and TRo simulations

to reach the open and closed structure, respectively, indicates a free energy barrier in

addition to the suggested monotonic profile (Fig. 7.7B). Thus, the following picture

emerges supporting the conformational selection view of ligand binding: in equilib-

rium, unligated ADK can sample both—open and closed—conformations, as observed

in the spontaneous transition of the TRc 3 simulation from the closed to the open

structure. Here, the closed state has a higher free energy with regard to the open state.

Upon ligand binding the closed structure is stabilized by protein-ligand interactions

for catalysis. From the behavior of both MD and TEE-REX simulations, the coarse

location in configuration space of the additional free energy barrier can be estimated,

corresponding to a half-open conformation of ADK.

Transition pathways other than the one characterized seem possible, as an analysis of

all TEE-REX simulations suggests. Although a complete transition was not observed,

an independent opening of the LID domain with respect to the AMPbd was found.

In both pathways the characteristic half-opening of the AMPbd and the stable salt

bridge motif are present, underlining their significance for the atomistic mechanics of the

transition. Full opening of the AMPbd would complete the alternative route. However,

this was not observed, possibly indicating an additional free energy barrier in this part

of configuration space. Together with the observed larger fluctuations in secondary

structure elements, indicating high internal strain energies, the enthalpic penalty along

this route possibly renders it unfavorable as a transition pathway of ADK. However,

the fact that no full transition events were observed along this pathway could also be

due to limited sampling in our simulations. Therefore, it can presently not be ruled out

that transitions also occur along this pathway.
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It’s hard to be nostalgic when you can’t remember anything.

— Unknown

A major goal of protein science is to explore the coupling of protein motion and func-

tion. Whereas the underlying molecular basis in terms of protein dynamics is often not

directly accessible by experiments, molecular dynamics (MD) simulations have shown

to be a valuable microscopic complement. In this respect, ongoing efforts are needed

in the development of algorithms aimed at an enhanced and efficient sampling of the

conformational space of proteins.

In this thesis, the new temperature enhanced essential dynamics replica exchange

(TEE-REX) method is developed, combining the ideas of essential dynamics (ED) with

the temperature replica exchange (REX) formalism.

Enhanced sampling in REX MD is achieved by simulating in parallel a number of

copies (replicas) of the system having different temperatures. Large free energy barriers

in conformational space are overcome in low-temperature replicas via exchange with

high-temperature copies, thereby utilizing the larger mobility of the latter. As a crucial

factor for sampling performance, the exchange probability scales inversely exponential

with the temperature difference among adjacent replicas and the excited number of

degrees of freedom per copy. Consequently, computational demands (i.e. number of

replicas) drastically limit REX performance when already applied to medium sized

(few thousand particles) systems simulated in full atomic detail.

To improve REX, a reduction in the number of degrees of freedom excited per replica

is thus a promising means to overcome this computational bottleneck. In the ED frame-

work collective coordinates, describing functional modes of motion, are excited to yield

an enhanced sampling of conformational space. These collective modes of motion are

obtained from a principal component analysis (PCA) of the covariance matrix of atomic

fluctuations. In the ED protocol the system is constantly driven along selected collective

modes, irrespective of the topology of the underlying free energy landscape. Although

the sampling is enhanced by this driving process, sampled structures are distributed
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evenly over conformational space which results in a wrong statistical ensemble. Despite

this lack of thermodynamical accuracy of ED, its usefulness originates from the fact

that around 5-10 % of the first collective PCA modes describe all observed fluctuations

by more than 90 %.

With the newly developed TEE-REX method, the REX and ED approaches are

brought together in a consistent framework. In contrast to standard REX only a few

predefined—collective—degrees of freedom, called essential subspace {es}, are excited

in each but the reference replica, with the remaining degrees of freedom kept at the

reference temperature throughout all copies. A substantial reduction in computational

effort (brought about by the larger temperature steps in TEE-REX) is thus combined

with the specific excitation of important modes of motion. Additionally, the REX

framework ensures an approximate correct statistical weighting of each structure within

the generated TEE-REX reference ensemble.

To assess algorithmic performance, statistical properties of TEE-REX and MD ref-

erence ensembles were investigated, as well as the sampling efficiency with respect to

MD. Statistical properties were directly probed by calculating a thermodynamic poten-

tial, namely the relative Gibbs free energy (Eq. (6.1), page 36) for a dialanine peptide

using extended multi-microsecond MD and sub-microsecond TEE-REX simulations.

Since conclusive statements can only be given on the basis of converged ensembles,

different convergence measures were applied to the MD reference ensemble, validating

convergence of the latter. A comparison of free energy landscapes showed favorable

agreement within the respective statistical errors of σTEE-REX ≈ σMD ≤ 0.15 kBT at

T= 300 K. The deviations from a correct statistical ensemble introduced by exchange

of non-Boltzmann structures into the TEE-REX reference replica are thereby largest

for small systems such as dialanine, due to the large fraction of excited {es} degrees of

freedom. Hence, the observed statistical differences of a TEE-REX generated ensemble

constitute an upper bound.

TEE-REX and MD simulations of a guanylin test system were performed to compare

the sampling efficiency of both methods. A direct comparison to REX simulations was

discarded because the computational effort involved with REX considerably exceeded

that by TEE-REX while only yielding a slight increase (few %) in sampling efficiency

over MD. As a measure for efficiency, projections of the sampled 3N -dimensional con-

figuration space of the system onto different 2-dimensional subspaces were calculated

as a function of computational effort. Within the essential subspace {es}, TEE-REX

outperforms MD on average by more than a factor of three. Sampling efficiency in sub-
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spaces independent from {es} is slightly lower, but still an 2.5-fold gain in TEE-REX

sampling efficiency over classical MD is seen.

In contrast to other simulation protocols based on REX, the TEE-REX algorithm

can easily be applied to larger systems. Because only a small fraction Nes ≪ Ndf

of the degrees of freedom of the system are excited in each TEE-REX replica, the

exchange probability P (S → S ′) is no longer dominated by the solvent contribution to

the potential energy. This drastically cuts down computational demands (three replicas

suffice regardless of system size) with respect to conventional REX, enabling TEE-REX

to address problems currently not readily accessible to MD or other ensemble-preserving

methods.

Information about different protein configurations is a necessary prerequisite for the

construction of the essential subspace {es}. Experimental or theoretical limitations can

severely restrict the available information. Using the guanylin test system, the effect

on the sampling efficiency of TEE-REX was investigated using only 2 % of the struc-

tural information available (and originally applied) for the construction of the essential

subspace. Although both subspaces differed markedly, only minor differences in the

sampled configuration space between the structurally well-defined {es} and the poorly

defined {es}′ were found. These results indicate that TEE-REX sampling efficiency is

hardly sensitive on the a priori available structural information.

In a first application, the sampling power of TEE-REX was used to study adeny-

late kinase (ADK), an experimentally well studied monomeric enzyme playing a key

role in energy maintenance within the cell. ADK exhibits very large conformational

motions crucial for its catalytic function of phosphorylation and de-phosphorylation of

ADP. Despite considerable computational effort, a transition pathway between the two

crystallographically known end states of the catalytic cycle at atomic resolution was

still missing. Using different essential subspaces derived from MD simulations of the

two crystal structures, a possible transition pathway was characterized for the first time

using TEE-REX. In addition to the identification of experimentally verifiable structural

features, a qualitative picture of the underlying free energy landscape was proposed.

Outlook

Numerous applications of the TEE-REX algorithm to questions concerning structural,

dynamical and thermodynamical properties of biomolecules can profit from the advan-

tages offered by the method. The all-atom description combined with an highly efficient

and statistically accurate sampling provides a strong footing, e.g. for the calculation of
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relative free energy differences between different protein conformers or to study confor-

mational transitions at atomic resolution. Unlike other REX-based schemes, systems of

arbitrary size can thereby be treated with little additional computational effort. This

opens up the possibility to investigate e.g. protein docking or allostery of large protein

complexes. Here, the enhanced sampling allows for the investigation of small confor-

mational changes, which require a large signal-to-noise ratio in terms of configurational

fluctuations.

The specific excitation introduced by the essential subspace degrees of freedom add a

flexible element to the algorithm. As demonstrated for adenylate kinase, the exploration

of unknown transition pathways is one application. Although the pre-defined {es}

modes are fixed throughout a TEE-REX simulation, new regions of conformational

space are explored by the unbiased reference replica. Thus, a PCA on this reference

ensemble results in new {es}′ modes which can be fed back into the algorithm, yielding

a further exploration of conformational space.

The temperature excitation of the {es} is an important ingredient for the enhance-

ment in sampling. However, adjusting the strength of the excitation depends on the

studied system and the choice of the {es} modes. Leaving aside folding/unfolding stud-

ies, an appropriate combination of essential subspace temperatures T es
m and coupling

constant τ es
m needs to be chosen. Depending on the experience of the user, various

trial simulations are necessary to determine suitable simulation parameters. To avoid

this additional computational effort, an adaptive T es
m temperature control scheme is

proposed, based upon on-the-fly calculations of the diffusion constant of the system

within the essential subspace. Preliminary work by the author indicates that such a

scheme indeed allows self-regulation of the essential subspace temperature. So far, this

approach is not entirely free of parameters since a cut-off for anomalous diffusive be-

havior, indicating unfolding, must be specified. However, the trial phase is replaced

by setting up various TEE-REX simulations with different cut-off parameters, of which

most will actively contribute to the sampling of conformational space.
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A How to Set Up a TEE-REX

Simulation

Never start a calculation before you know the answer.

— John Archibald Wheeler

Here we describe the general protocol for setting up a TEE-REX simulation using the

GROMACS simulation package. Implementation details specific to a certain version of

the software can be found in the corresponding README file. As an example, a single

protein (guanylin) solvated in water and ions is considered.

A.1 Construction of {es}

Before a TEE-REX simulation can be started, the essential subspace modes {es} have

to be constructed from structural information. Here we use PCA for this task so an

ensemble of structures is necessary, either experimental (X-ray, NMR) or theoretical

(MD/REX simulations, CONCOORD, homology modeling, . . . ). In a first step, the

group of index atoms has to be chosen (make_ndx) for which PCA modes are calculated.

In general, any subset of protein atoms can be used. For monomeric proteins, backbone

atoms are routinely used since most of the conformational flexibility of a protein is de-

termined by the backbone. We adopt this choice in our example. In multimeric proteins

(e.g. hemoglobin) or systems containing several proteins and/or ligands, the subset of

index atoms can belong to one (e.g. ligand, binding pocket) or to all constituents (e.g. all

backbone atoms of a tetramer). Once the PCA is performed on the chosen index group

(g_covar), the desired essential subspace is built using the make_edi tool. The {es}

modes are stored in the sam.edi file.
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A.2 Recalculation of Degrees of Freedom

After the construction of the {es}, the simulation system is partitioned into at least

three groups used for temperature coupling: index atoms, remaining atoms of the pro-

tein, and solvent. If no constraint algorithm for covalent bonds of the protein is used,

the actual TEE-REX simulation can be started. In case bonds are constrained (e.g. us-

ing the LINCS algorithm), a recalculation of the number of degrees of freedom (DOF)

for the two protein temperature coupling groups is necessary due to the partitioning in

index and remaining atoms.

When different temperature coupling groups are used, the grompp preprocessor es-

timates the number of DOF of the respective group i to ensure a correct calculation

of the group temperature via the equipartition theorem 2Ki = NikBTi. However, this

estimate only works if atoms of different groups do not share covalent bonds, i.e. are not

connected to each other. Ordinary MD setups use a protein-solvent topology; in our

example, the protein is partitioned into Backbone and Protein_&_!Backbone, i.e. both

groups share a lot of bonds and the DOF estimate for these groups leads to wrong

temperatures. A two-step process is thus needed to recalculate the number of DOF

such that the preset temperature values are reached during the TEE-REX simulation.

In the first step, a short MD simulation of the system is made at the reference

temperature T0 with the two standard temperature coupling groups Protein and Other

(containing solvent & ions). The obtained trajectory (traj.trr) serves as a reference.

Next, a rerun (mdrun -rerun traj.trr) over this reference trajectory is performed at

T0 using the TEE-REX coupling groups Backbone, Protein_&_!Backbone and Other.

Out of the obtained deviations from the reference temperature T0, the correct number

of DOF for each protein temperature coupling group is calculated and stored in the

mdp file. As a check, a short TEE-REX simulation is made with the new split-protein

topology and the correct number of group DOF.

We demonstrate the procedure by going through the example. The reference tempera-

ture is set to T0 = 300 K for all three coupling groups Backbone, Protein_&_!Backbone

and Other. GROMACS is abbreviated by GMX.

Step 1 - Create Short MD Reference at T0

A short (∼ 100 ps) MD simulation at T0 = 300 K is performed which serves as the

reference. Degrees of freedom calculated by grompp are denoted by DOFGMX:
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T0 TGMX DOFGMX DOFNEW

Protein 300 K 300.2 K 324 −

Other 300 K 300.0 K 8670 −

SYSTEM 300 K 300.0 K 8994 −

Step 2 - MD Rerun Using New Topology

From the reference trajectory traj.trr, a rerun is performed using the split topology

Backbone, Protein_&_!Backbone, Other and the wrongly calculated DOFGMX:

T0 TGMX DOFGMX DOFNEW

Backbone 300 K 377.5 K 51.5 −

Protein_&_!Backbone 300 K 286.5 K 272.5 −

Other 300 K 300.1 K 8670 −

SYSTEM 300 K 300.0 K 8994 −

Step 3 - Recalculating DOFGMX

DOFGMX are recalculated such that Tgroup = T0. For this, we use the equipartition

theorem. According to GMX, the kinetic energy is distributed over all DOF as 2K =

NGMX

df kBTGMX, with the wrong number of DOFGMX, NGMX

df , for the respective group

(Backbone and Protein_&_!Backbone). On the other hand, the correct distribution of

kinetic energy reads 2K = NNEW

df kBT0. Equating both expressions yields

NGMX

df TGMX = NNEW

df T0 ⇔ NNEW

df = NGMX

df

TGMX

T0
. (A.1)

For our example, we get (solvent DOF are not affected):

DOFGMX DOFNEW

Backbone 51.5 64.87

Protein_&_!Backbone 272.5 259.13

Protein 324 324

Because of Eq. (A.1), non-integer values for the number of DOF for a group are pos-

sible. However, the total number of protein DOF is a constant which we can use as a

verification.
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Step 4 - Check DOFNEW Assignment

To check the new DOF assignment, we perform a short TEE-REX simulation (without

exchanges!) using the new topology and DOFNEW:

T0 TGMX DOFNEW

Backbone 300 K 301.2 K 64.87

Protein_&_!Backbone 300 K 299.9 K 259.13

Other 300 K 300.1 K 8670

SYSTEM 300 K 300.1 K 8994

A.3 Start TEE-REX Run

We have now set up the desired essential subspace {es} in sam.edi and calculated

the correct number of degrees of freedom for a split-protein topology if necessary. For

each replica, a separate tpr file must be made, with the corrected DOFNEW provided

in the respective mdp file. A TEE-REX simulation is then started by invoking both

the REX and the essential dynamics option of GMX, mdrun -ei -replex. TEE-REX

specific information is stored in the log file of the corresponding replica and can be

post-processed using e.g. shell scripts.
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[111] K. Y. Sanbonmatsu and A. E. Garćıa. Structure of met-enkephalin in explicit

aqueous solution using replica exchange molecular dynamics. Proteins, 46:225–

234, 2002.

[112] D. A. Kofke. On the acceptance probability of replica-exchange Monte Carlo

trials. J. Chem. Phys., 117:6911–6914, 2002.

[113] D. A. Kofke. Erratum: On the acceptance probability of replica-exchange Monte

Carlo trials. J. Chem. Phys., 120:10852, 2004.

[114] C. Predescu, M. Predescu, and C. V. Ciobanu. On the efficiency of exchange in

parallel tempering Monte Carlo simulations. J. Phys. Chem. B, 109:4189–4196,

2005.

84



Bibliography

[115] D. M. Zuckerman and E. Lyman. A second look at canonical sampling of

biomolecules using replica exchange simulation. J. Chem. Theory Comput.,

2:1200–1202, 2006.

[116] D. M. Zuckerman and E. Lyman. Erratum: A second look at canonical sampling

of biomolecules using replica exchange simulation. J. Chem. Theory Comput.,

2:1693, 2006.

[117] X. Periole and A. E. Mark. Convergence and sampling efficiency in replica

exchange simulations of peptide folding in explicit solvent. J. Chem. Phys.,

126:014903, 2007.

[118] E. Lyman and D. M. Zuckerman. Ensemble-based convergence analysis of

biomolecular trajectories. Biophys. J., 91:164–172, 2006.

[119] S. E. Murdock, K. Tai, M. H. Ng, S. Johnston, B. Wu, H. Fangohr, C. A.

Laughton, J. W. Essex, and M. S. P. Sansom. Quality assurance for biomolecular

simulations. J. Chem. Theory Comput., 2:1477–1481, 2006.

[120] E. Lyman and D. M. Zuckerman. The structural de-correlation time: A ro-

bust statistical measure of convergence of biomolecular simulations. arXiv:q-bio,

0607037v2, 2007.

[121] A. M. Ferrenberg and R. H. Swendsen. New Monte Carlo technique for studying

phase transitions. Phys. Rev. Lett., 61:2635–2638, 1988.

[122] R. Zhou, B. J. Berne, and R. Germain. The free energy landscape for β-hairpin

folding in explicit water. Proc. Natl. Acad. Sci., 98:14931–14936, 2001.

[123] R. Zhou and B. J. Berne. Can a continuum solvent model reproduce the free en-

ergy landscape of a β-hairpin folding in water? Proc. Natl. Acad. Sci., 99:12777–

12782, 2002.

[124] R. Zhou. Free energy landscape of protein folding in water: Explicit vs. implicit

solvent. Proteins, 53:148–161, 2003.

[125] F. Rao and A. Caflisch. Replica exchange molecular dynamics simulations of

reversible folding. J. Chem. Phys., 119:4035–4042, 2003.

85



Bibliography
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