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1. Introduction

Proteins are one of the fundamental pillars of all known life. They serve, e.g., me-
chanical stability, selective transport of ions and small molecules across membranes,
and energy conversion. Each protein acquires its unique three-dimensional structure
in a process called folding [3].

The interplay between the structure and the dynamics of each protein determines its
function. Depending on inherent structural rigidity and flexibility, several examples
can be distinguished. Proteins that serve to stabilize supramolecular structures are
characterized by a very rigid structure. Notable examples are the hair building
protein collagen [4] and proteins that are the building blocks of outer viral shells
[5]. The function of other proteins requires them to change between different well-
defined conformations, thus requiring both rigid and flexible parts. In this case,
rigid parts of such proteins are allowed to rearrange with respect to each other due
to the flexible parts that connect them. Examples are lysozyme, where two domains
connected by a flexible helix move relative to each other [6], and rhodopsin, where
light-induced isomerization of a cofactor leads to conformational changes [7]. The
function of proteins can also solely arise from their global flexibility. Examples are
intrinsically disordered proteins that lack any kind of well-defined structure, like
FG repeats within nuclear pore complexes [8]. Also nuclear transport receptors,
whose structures are required to undergo large conformational changes in order to
transport cargo molecules, belong to this group [9].

The structure of proteins can be determined in atomic detail by, e.g., x-ray crys-
tallography and nuclear magnetic resonance. Also, from both methods information
about protein flexibility can be derived. However, to study atomistic dynamics of
proteins, one needs to employ molecular dynamics (MD) simulations. This com-
putational method allows the numerical calculation of the development of atomic
motions within a macromolecular system, yielding trajectories of all atoms.

A new understanding of proteins from a mechanical point of view was introduced
in the 1980s by the development of atomic force microscopy (AFM) [10] and op-
tical tweezers (OT) [11, 12]. For the first time, these methods allowed the direct
manipulation of single proteins under external forces.

A prominent application of these methods is mechanical unfolding of proteins. Such
experiments quantify the structural stability of proteins. The results from these ex-
periments raise an understanding of how proteins fold into their well-defined struc-
ture by identifying folding units and key residues that stabilize the global protein
structure. The unfolding of a broad range of both soluble proteins such as titin

1



[13], green fluorescent protein [14], and lysozyme [15] as well as membrane bound
proteins such as bacteriorhodopsin [16], aquaporin [17] and rhodopsin [18] have been
studied.

Another application of both methods is the quantification of elastic properties of
proteins. Recent experiments determined the stiffness of viral outer shells [19] or
ankyrin repeats [20]. This knowledge is crucial since the function of these proteins
depends on their elasticity. AFM experiments were also employed to enforce the
unbinding of ligands from their respective receptor [21].

A connection between AFM and OT experiments and MD simulations is provided
by force probe molecular dynamics (FPMD) simulations [22, 23]. In this method,
the influence of an external force is mimicked by a moving harmonic potential also
referred to as “virtual spring”. Like in AFM and OT experiments, forces that are
acting on single proteins are monitored. In addition to the experimental methods,
FPMD simulations provide direct insight into the atomic processes governing these
forces, thus revealing atomic causes behind the measured forces. In this way, e.g.,
the unfolding of titin domains [24], the function of titin kinase [25], and the elasticity
of ankyrin repeats [26] were studied.

The current thesis consists of three parts that cover the diverse behavior of proteins
seen in FPMD simulations. In the first two parts, FPMD simulations were applied
to study the unfolding of membrane proteins as well as the elastic response of flexible
proteins. The third part investigates non-equilibrium behavior of macromolecules
under force at the short time scales present in FPMD simulations.

In the first part of this work (chapter 3.1 and reference [1]), the mechanical un-
folding of the membrane protein bacteriorhodopsin was studied. AFM unfolding
experiments on this protein characterized it as very stable and revealed that its
stability is governed by a small number of key residues [16, 27]. The aim of this
part is to explain the origin of the mechanical stability of bacteriorhodopsin from
an atomistic point of view. To this end, the unfolding pathway of the protein from
the FPMD simulations was thoroughly analyzed. In this process, a new analysis
method for the identification of the key residues that provide mechanical stability
to bacteriorhodopsin was developed and applied. Subsequent analyses of the atomic
interactions that stabilize the protein revealed that these are forming a dynamic
network. This dynamic interaction network explained why unfolding pathways of
bacteriorhodopsin are velocity-dependent.

The second part of this work (chapter 3.2 and reference [2]) investigated the flexibil-
ity of the nuclear transport receptor importin-β. The aim of this part is to explain
and quantify its flexibility. Both from different x-ray structures as well as from
MD simulations of this protein an unusually large degree of flexibility was observed
[9, 28]. To characterize and to quantify the flexibility of the protein, stretching and
relaxation simulations on importin-β were carried out. The results from these sim-
ulations quantified the amount of binding energy that is stored by deformation of
the protein. To determine the structural and energetic origins of the flexibility of
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Introduction

importin-β, the dynamics of the hydrophobic core of the protein were analyzed and
set in relation to more rigid proteins.

The observation of a previously not described non-equilibrium elastic behavior of im-
portin-β and of the outer shell of the southern bean mosaic virus [29] was the starting
point for the third part of this work (chapter 3.3). Both systems exhibited velocity-
dependent spring constants during elastic deformation in FPMD simulations. The
aim of this part was to explain and quantify this behavior, that is not explained by
any established model [23, 30–33]. Thus, a new model for non-equilibrium elastic
behavior of macromolecules, that extends the previous models, was developed. As a
validation, analytical solutions of this model correctly predicted elastic forces from
both both systems. Additionally, this model was extended to predict rupture forces
obtained by FPMD simulations of the southern bean mosaic virus.
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2. Molecular dynamics simulations

Molecular dynamics (MD) simulations describe the atomic motions within a system
of macromolecules of up to 107 atoms. In principle, such a system is described by
the time-dependent Schrödinger equation

i~
∂

∂t
ψ(R, r) = Hψ(R, r) (2.1)

where ~ = h
2π

is the reduced Planck constant, H the Hamiltonian of the system, ψ its
wave function, and R and r denote the coordinates of the nuclei and the electrons,
respectively. However, an analytical solution of the Schrödinger equation is already
impossible for a helium atom and numerical solutions are only feasible for up to
10 atoms. To circumvent these restrictions, MD employs three approximations.

The first approximation is the Born-Oppenheimer approximation [34], which sim-
plifies the description of the motions of nuclei and electrons. By utilizing the fact
that electrons are ∼ 2000 times lighter than nuclei and therefore move much faster,
the electronic wave function can be assumed to instantaneously follow the motion
of the nuclei. As a consequence, the wave function of the system is separated into
two parts

ψ(R, r) = ψnuclei(R)ψelectrons(R, r) . (2.2)

In this way, the coordinates of the nuclei are exclusively used to describe atomic
motions.

The next approximation is a simplified description of the interactions between atoms
by a so-called force field. In force fields, these interactions are approximated by
simple analytic functions such as xn, 1/xn, or cos(x) (figure 2.1). The parame-
ters describing the single energy terms are derived from experiments or quantum
mechanical calculations. Examples of commonly used force fields for protein MD
simulations are OPLS [35], Amber [36], GROMOS [37], and Charmm [38].

As a last approximation, the motions of the nuclei positions are calculated by New-
ton’s equation of motion,

mi
d2Ri(t)

dt
= −∇iV (Ri) , (2.3)

where mi is the mass of the ith atom and V (Ri) is the potential acting on it as given
by the force field.
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Figure 2.1.: Overview of the different energy terms of a force field. Picture provided
by Gunnar Schröder.

Despite all approximations, it is still not possible to obtain an analytical time-
dependent solution for atomic motions. Rather, new coordinates and velocities are
calculated numerically. In this work, the leap-frog algorithm [39] is used to iteratively
determine new velocities

vi

(
t+

∆t

2

)
= vi

(
t− ∆t

2

)
+

Fi(t)

mi

∆t (2.4)

and coordinates

Ri(t+ ∆t) = Ri(t) + vi

(
t+

∆t

2

)
∆t (2.5)

at discrete times. Here, Fi(t) = −∇iV (R) is the force acting on the ith atom and
∆t is the time step between each iteration.

Since simulation systems need to have a finite size, as indicated by a simulation
box (figure 2.2, black lines), the treatment of system boundaries is crucial. To this
end, periodic boundary conditions were employed in this work. Hence, a simulation
system (green) is surrounded by virtual copies of itself that are translated according
to the given lattice symmetry (gray).

As a consequence, e.g., a particle which leaves the box to the right side enters it again
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Molecular dynamics simulations

Figure 2.2.: Principle of periodic boundary conditions in two dimensions. A protein
(green) in a simulation box (black) is surrounded by virtual copies of
itself (gray).

from the left side. Furthermore, because no surface is present, surface artifacts do not
occur. Artifacts arising from interactions between a molecule and one of its periodic
images were avoided in this work by choosing a sufficiently large box so that these
interactions become negligible. In addition, periodic boundary conditions are ideal
for simulating systems forming a crystal lattice structure, such as bacteriorhodopsin
arranged within the purple membrane.

To keep temperature and pressure close to reference values during a simulation,
temperature and pressure coupling were employed. A reference temperature T0 was
maintained by employing a Berendsen thermostat [40] , thus scaling the velocities
of all atoms by

λ =

√
1 +

∆t

τT

(
T0

T
− 1

)
, (2.6)

where T is the current temperature and τT a coupling constant. Similarly, a Berend-
sen barostart [40] was used to keep pressure at a reference pressure p0 by scaling the
length vectors of the simulation box by

µ = 1− ∆t

3τp
κ(p0 − p) , (2.7)

7



with τp as the corresponding coupling constant, p as the current pressure, and κ as
the compressibility of the solvent.

FPMD simulations incorporate a “virtual spring” (figure 2.3) into a MD simulation
to mimic a moving AFM cantilever. This is achieved by employing a probe potential

Vp(zp, t) =
kp
2

(zp − z0 − vt)2 (2.8)

that is acting on a selected set of atoms located at zp (rightmost atom of the molecule
depicted as red spheres) and moves with a constant probe velocity v along a reaction
coordinate z. Here, kp is the spring constant of the probe potential and z0 denotes
an initial offset. In this way, a force

Fp(zp, t) = −kp(zp − z0 − vt) (2.9)

is acting on the system. In the example given in figure 2.3, this enforces the release
of a ligand (red) from a protein (green).

Figure 2.3.: Principle of FPMD simulations. A “virtual spring” is acting on a ligand
(red), enforcing its release from a protein (green) in pulling direction
(arrow).
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3. Background of the publications

3.1. Velocity-Dependent Mechanical Unfolding of
Bacteriorhodopsin Is Governed by a Dynamic
Interaction Network

Besides soluble proteins, membrane proteins embedded in a lipid bilayer are crucial
for living organisms. One special family of membrane proteins are seven α-helical
transmembrane proteins. The α-helices of these proteins are oriented parallel to the
membrane normal and are embedded within the lipid bilayer. It has been proposed
that the single α-helices act as folding units of the protein [41].

One of the best studied α-helical transmembrane proteins is bacteriorhodopsin from
halobacteria (figure 3.1A, green) [42, 43]. This protein converts light energy into
a proton gradient. Light of a wavelength between 500 and 650 nm is absorbed by
a chromophore called retinal (magenta), leading to its isomerization. This leads
to a conformational change within the protein, which, in turn, causes protons to
be pumped across the membrane. In its native environment, bacteriorhodopsin
is arranged in trimers. These trimers form the unit cells of a hexagonal lattice
(figure 3.1B, green). Lipid molecules (yellow) are present between the proteins.
This very stable structure is called “purple membrane”.

In a pioneering work by Oesterhelt et al. [16], single bacteriorhodopsin molecules
were unfolded and extracted from the purple membrane by AFM. Overlays of force
curves obtained from the experiments revealed four distinct force peaks with decreas-
ing heights. Fits of the forces to the worm-like chain polymer model [44] proposed
an unfolding pathway according to which pairs of helices were extracted in a con-
certed manner from the membrane. Furthermore, the unusual decreasing force peak
values suggested that the protein unfolded along its amino acid sequence. This is
in contrast to results from unfolding experiments on soluble multi-domain proteins,
where the weakest unit unfolds first, independent of its position along the amino
acid sequence. Also, such an unfolding pattern is accompanied by increasing in-
stead of decreasing force peak values. After extraction, a stable water-filled hole
was left at the location of the extracted protein, underlining the stability of the
purple membrane.

Later experiments systematically investigated the extraction and unfolding of bac-
teriorhodopsin under different extraction velocities [45]. These experiments revealed
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3.1 Velocity-Dependent Unfolding of Bacteriorhodopsin

Figure 3.1.: A: Bacteriorhodopsin (cartoon representation) and the retinal (stick rep-
resentation). B: Top view of the purple membrane. Proteins and lipid
molecules are shown in green and yellow, respectively.

a velocity-dependent unfolding pathway, in which, instead of the unfolding of he-
lix pairs, the unfolding of single helices became more likely at higher extraction
velocities.

In another study, intermediate force peaks from single unfolding force curves were
investigated in more detail [27]. Analysis of single force curves with the worm-like
chain model revealed the location of a few key residues within bacteriorhodopsin
that withstand larger forces and interrupt the mechanical unfolding. Thus, these
residues, referred to as “anchor points”, are likely to play a key role in stabilizing
the three-dimensional structure of the protein.

Although the AFM experiments provided a thorough quantification of the mechan-
ical stability of bacteriorhodopsin, a number of open questions remain:

• How does the actual unfolding proceed at an atomistic level?

• What is the relation between the observed forces and the unfolding pathway?

• How are anchor points stabilized within the protein?

• Why are unfolding pathways velocity-dependent?

These questions are addressed in the study “Velocity-Dependent Mechanical Unfold-
ing of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network” [1].
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Background of the publications

3.2. An Unusual Hydrophobic Core Confers Extreme
Flexibility to HEAT Repeat Proteins

The cell nucleus is an important part of all eukaryotic cells. It contains the ge-
netic information in the form of DNA and is also the compartment in which gene
expression is initiated. The nuclear envelope, a double membrane, encloses the nu-
cleus and separates it from the cytoplasm. The function of the cell relies on the
selective transport of molecules between the nucleus and the cytoplasm. This trans-
port is mediated by nuclear pore complexes, large protein assemblies that span the
nuclear envelope and have a diameter of ∼ 100 nm [46]. Nuclear pore complexes
are filled with a mesh-work of intrinsically disordered protein domains known as
FG-rich nucleoporins [47], which guarantee a remarkable filter function. Ions and
small molecules with a mass below 30 kDa pass through nuclear pores by diffusion
whereas larger molecules are blocked. However, molecules with a mass above 30 kDa
can pass through the pore once they are in complex with a transport factor [48, 49].

These transport factors are called karyopherins. Karyopherin comprise of importins
[50] and exportins [51, 52], which mediate nuclear import and export, respectively.
All karyopherins are built of HEAT repeats, structural motifs consisting of two anti-
parallel helices connected by a short loop (figure 3.2A) [53]. These HEAT repeats
are stacked to form superhelical structures (figure 3.2B) [54].

Figure 3.2.: HEAT repeats and global structure of karyopherins. A: Example of one
HEAT repeat. B: The karyopherin kap95p (yeast importin-β). Different
colors represent different HEAT repeats.

Importin-β (figure 3.2B) is the prototypical karyopherin. This protein (figure 3.3,
green) transports cargo molecules (red) from the cytoplasm into the nucleus (left
side). Inside the nucleus, cargo molecules are released once RanGTP (magenta)
binds to importin-β. The importin-β-RanGTP complex is then transported back
into the cytoplasm (right side), where it is disassembled after GTP is hydrolyzed to
GDP. This transport cycle is mediated by a RanGTP/RanGDP gradient between
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3.2 Extreme Reversible Elasticity of Importin-β
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Figure 3.3.: Schematic importin-β transport cycle. Importin-β transports cargoes
from the cytoplasm into the nucleus across the nuclear envelope (gray)
through nuclear pore complexes (yellow).

the nucleus and the cytoplasm. RanGDP travels back into the nucleus with the help
of the protein nuclear transport factor 2 (NTF2) [55, 56].

Unlike most receptor-ligand complexes, importin-β and its homologues are able to
bind to a variety of cargo molecules that differ in structure and sequence [9]. In most
cases, cargoes are not bound directly but via adapter proteins such as importin-α or
snurportin that possess binding domains for both, cargo molecules and importin-β.

Crystal structures of importin-β in complex with different cargoes and adapters, re-
spectively, revealed that importin-β adapts its shape to its different binding partners
by changing its global conformation (figure 3.4) [9, 57–60]. In all known structures,
importin-β (green) wraps around its respective binding partner (red and magenta).
Because the protein adapts to its different binding partners, it has to possess an
inherent flexibility. This flexibility could also explain the paradox of importin-β
binding tightly to its binding partners while only needing small amounts of energy
for dissociation. It has been suggested, that the binding energy of importin-β is
partly stored by mechanical deformation of the protein [9].

One first explanation how importin-β changes its conformation was given by Zacha-
riae and Grubmüller [28]. In this MD study, RanGTP was removed from a RanGTP-
importin-β complex and, thus, the behavior of free importin-β was simulated. In
these simulations, importin-β opened up by extending its end-to-end distance from
9 nm to 13 nm within a time of only ∼ 30 ns. This work characterized importin-β as
a spring-loaded molecule.

12



Background of the publications

Figure 3.4.: Importin-β (green) with various adapter proteins (red) and RanGTP
(magenta). Different complexes involving the following molecules are
shown. Abbreviations in parenthesis denote the PDB identifier of the
complex. A: Importin-α (1QGK [57]). B: Snurportin 1 (2P8Q [58]).
C: SREBP-2 (1UKL [59]). D: RanGTP (2BKU [60]).

Despite the different x-ray structures and its classification as a molecular spring
by MD simulations, a number of open questions about the flexibility of importin-β
remained:

• To which extent is importin-β flexible?

• Does importin-β have a discrete set of conformations or can the protein change
continuously between different shapes?

• Are these changes permanent (plastic flexibility) or are they reversible (elastic
flexibility)?

• Which amount of energy is needed to drive importin-β into a different confor-
mation?

• What are the atomistic determinants that cause importin-β to be flexible?

These questions are addressed in the study “An Unusual Hydrophobic Core Confers
Extreme Flexibility to HEAT Repeat Proteins” [2].
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3.2 Extreme Reversible Elasticity of Importin-β
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3.3. Non-equilibrium elastic behavior of
macromolecules

Introduction

Molecular bonds in biological systems are typically modelled by a one-dimensional
free energy landscape G0(x) along a reaction coordinate x. Reaction coordinates are,
e.g., the distance between molecules or the length of a macromolecule. The bound
state is modelled as the minimum of G0(x) that is separated from the unbound state
by a barrier at a barrier location xb (figure 3.5, black line). Unbinding events are
described as a crossing of the barrier. In equilibrium, thermally activated crossing
of the barrier is quantified by a rate constant r [61, 62].

External forces F , that are applied by, e.g., an AFM cantilever, lower the height of
the barrier by Fxb. In this way, thermally activated crossing is more likely to occur
(figure 3.5, red line).

xb

fr
ee

 e
ne

rg
y

reaction coordinate

bound
state

unbound
state

Fxb

Figure 3.5.: Molecular bonds are modeled by a free energy landscape. Unbinding
events are described as crossing of a barrier located at xb. External
forces F lower the height of the barrier by Fxb and accelerate barrier
crossing and thus unbinding in this way.

Rupture forces occurring upon unbinding events are typically found to depend on
the loading rate dF/dt or on the probe velocity v. This behavior is explained by
Bell’s model [30], which predicts a force-dependent rupture rate

r(F ) = ω0e
βFxb (3.1)
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3.3 Non-equilibrium elastic behavior of macromolecules

for barrier crossing, where ω0 is an attempt frequency, and β = 1/(kBT ) is the inverse
temperature of the system (kB = 1.38×10−23 J/K is the Boltzmann constant). Bell’s
model is based on the assumption that an underlying one-dimensional free energy
landscape is sufficient to describe macromolecular systems. Furthermore, this model
predicts that other elastic properties of macromolecules besides rupture forces are,
to first order, independent of the probe velocity.

However, recent FPMD simulations of importin-β [2] and of the outer shell of the
southern bean mosaic virus [29] revealed a velocity dependence of spring constants
upon elastic deformation at high probe velocities. Yet, the velocity dependence of
rupture forces remained as predicted by Bell’s model. This phenomenon is neither
explained by Bell’s model nor by any later models that extend Bell’s model [23, 31–
33].

To that aim, I present a general model for non-equilibrium elasticity of macro-
molecules that is based on a multi-dimensional free energy landscape. The following
questions were addressed:

• Does this general model describe the observed phenomena for both examples?

• Does this model also correctly predict rupture forces?

• Is an analytical solution of the forces predicted by this model possible?

The study “Non-equilibrium elastic behavior of macromolecules” presented in this
chapter describes this model and answers the above questions.

Model for non-equilibrium elasticity

Previous models for the elastic behavior of macromolecules employ a one-dimen-
sional free energy landscape to describe the length of the molecule. Accordingly, the
length is used as a reaction coordinate (figure 3.6, red arrows).

This one-dimensional description implies that molecular motions along the length
of a macromolecule solely account for elastic behavior. However, in large macro-
molecules also motions along other degrees of freedom play a role (figure 3.6, green
arrows). These motions will be referred to as “perpendicular modes”.

Here, I present a new model for the elastic behavior of macromolecules that not only
considers motions along their length but also their perpendicular modes. In detail,
two assumptions about perpendicular modes are made:

1. Perpendicular modes of macromolecules are assumed to be coupled to motions
along the length of a macromolecule. Consequently, length changes, e.g. due to
deformation in AFM experiments or FPMD simulations, also enforce changes
in perpendicular modes.

2. The dynamics of perpendicular modes are assumed not to be faster than the
dynamics along the length of a macromolecule. Thus, perpendicular modes are
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Background of the publications

Figure 3.6.: Schematic representation of molecular motions along the reaction coor-
dinate (red arrows) as well as perpendicular modes (green arrows).

assumed to not instantaneously follow length changes, but after a relaxation
phase.

The extent of relaxation of perpendicular modes upon length increase depends on
the applied time scales. Upon an enforced elongation that is slow in comparison to
the dynamics of the perpendicular modes, relaxation of perpendicular modes to their
respective minima takes place. This behavior is indistinguishable from the behavior
proposed by previous models.

However, upon a fast enforced elongation, this relaxation does not take place. As
a consequence, an additional mechanical resistance of the macromolecule against
enforced elongation is present. This results in a stiffening of the molecule and,
conversely, in the observation of higher spring constants upon elastic deformation.

Modelling thermal fluctuations of macromolecules

For the mathematical description of the model for non-equilibrium elasticity, a two-
dimensional free energy landscape was used. There, the state of a macromolecule
x = (x, y)T describes a reaction coordinate x and a perpendicular coordinate y.
The length of the macromolecule is taken as the reaction coordinate x. The per-
pendicular coordinate y represents all perpendicular modes of the macromolecule.
This simplification is based on the assumption that the perpendicular modes behave
collectively.

To completely describe the dynamics of the state x = (x, y)T of the macromolecule,
thermal fluctuations that result in random changes of x have to be taken into ac-
count.
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3.3 Non-equilibrium elastic behavior of macromolecules

A mathematical formalism for molecular motions within a free energy landscape
G(x, t) that includes thermal fluctuations is given by the Langevin equation [63],

d
dt
v = −γv + µ(t)− 1

m
∇G(x, t) . (3.2)

Here, v = d
dt
x denotes changes of the state x and γ is a friction coefficient. Thermal

fluctuations are accounted for by a noise term µ(t). Solutions of the Langevin
equation yield probability distributions p(x, t) of finding a macromolecule at a state
x for a given time t.

An equivalent formalism to the Langevin equation is given by the Smoluchowski
equation [63, 64],

∂
∂t
p(x, t) = ∇D {∇+ β[∇G(x, t)]} p(x, t) . (3.3)

Here, D denotes a diffusion coefficient and, as before, G(x, t) is a free energy land-
scape. Because solutions of the Smoluchowski equation are easier to obtain, in the
following, the Smoluchowski equation will be used.

In the following, the goal is to find an analytical expression for the solution of
the Smoluchowski equation for the model for non-equilibrium elasticity. Also, probe
processes as exerted by AFM experiments and FPMD simulations will be included in
the model. The two-dimensional expression for this probability distribution p(x, y, t)
is the generalization of the probability distribution p(x, t) for elastic behavior as
described by a one-dimensional free energy landscape.

Hence, as a first step, solutions to the Smoluchowski equation for the elastic behavior
described by a one-dimensional free energy landscape are derived. As a next step, the
enforced elongation of elastic macromolecules within this model will be discussed.
Then, this solution is generalized to two dimensions to describe the elastic response
according to the free energy landscape of the model for non-equilibrium elasticity.

One-dimensional models for elasticity (Bell’s model)

The free energy landscape of an elastic macromolecule in one dimension is modeled
by

G0(x) = k0

2
x2 (3.4)

(figure 3.7A, black lines). The spring constant k0 characterizes the stiffness of the
macromolecule. The length of the macromolecule is taken as a reaction coordinate
x, that is chosen such that the equilibrium length is x = 0.

Solutions p(x, t) of the Smoluchowski equation for this free energy landscape are
now used to provide the description of the relaxation of an elongated elastic macro-
molecule to its equilibrium length. We assume that, in the beginning, the length
of the macromolecule has a value of x0 6= 0 and the probability distribution is lo-
cated sharply at x = x0. The probability distribution that solves the Smoluchowski
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equation is a Gaussian normal distribution [65]

p0(x, t) =
1√

2πσ0(t)
exp

(
−(x− 〈x0(t)〉)2

2σ0(t)2

)
(3.5)

(blue lines) whose time-dependent center (figure 3.7B) and width (figure 3.7C) are
given by

〈x0(t)〉 = x0e
−βk0Dt (3.6)

and

σ0(t) =

√
1− e−2βk0DT

βk0

, (3.7)

respectively.
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Figure 3.7.: Probability distributions according to solutions to the Smoluchowski
equation for a static free energy landscape G0(x). A: Development of
a probability distribution (blue) and the free energy landscape (black).
Time advances from top to bottom. B: Center of the probability distri-
bution over time. C: Width of the probability distribution over time.

As a next step, the enforced elongation of a macromolecule will be described. Hence,
a solution of the Smoluchowski for a time-dependent free energy landscape

Gmoving(x, t) = G0(x− vt) = k0

2
(x− vt)2 (3.8)

that moves with a constant velocity v is needed. This time-dependent free energy
landscape serves as a model for a moving AFM cantilever.

To this aim, the probability distribution p0(x, t) belonging to a static free energy
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3.3 Non-equilibrium elastic behavior of macromolecules

landscape G0(x) was taken and the ansatz

pmoving(x, t) = p0(x+ xoff(t)− vt, t) (3.9)

for the probability distribution belonging to a time-dependent free energy landscape
Gmoving(x, t) was made. This ansatz introduces a time-dependent offset xoff(t). The
solution of the Smoluchowski equation yields a value of

xoff(t) =
v

βkD

(
1− e−βkDt

)
. (3.10)

As a consequence, the center of the probability distribution is given by

〈xmoving(t)〉 = vt− v

βkD

(
1− e−βkDt

)
. (3.11)

The width of the probability distribution σmoving(t) remains identical to σ0(t).

As a next step, the stretching of an elastic macromolecule described by G0(x) (fig-
ure 3.8A, black lines) by a probe potential

Vp(x, t) = kp

2
(x− vt)2 (3.12)

(red lines) will be modeled. This process is modelled by a time-dependent free energy
landscape G(x, t), which is the sum of G0(x) and Vp(x, t),

G(x, t) = k0

2
x2 + kp

2
(x− vt)2 . (3.13)

To determine a solution to the Smoluchowski equation for this free energy landscape,
G(x, t) is rewritten as

G(x, t) = keff

2
(x− vefft)

2 + k0kp

k0+kp
v2t2 (3.14)

with an effective spring constant

keff = k0 + kp (3.15)

and an effective velocity

veff =
kp

k0 + kp
v . (3.16)

In this form, the derivation of a solution to the Smoluchowski equation for G(x, t)
is analogue to the case of Gmoving(x, t).

Hence, the center of the probability distribution is given by

〈xeff(t)〉 = veff

(
t− 1− e−βkeffDt

βkeffD

)
(3.17)

(figure 3.8B, blue line). With this result, a mean force 〈Feff(t)〉 = kp(vt − 〈xeff(t)〉)
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is determined from the displacement between the center 〈xeff(t)〉 of the probability
distribution and of the center vt of the probe potential (red line), yielding

〈Feff(t)〉 = kp

(
vt− kp

k0 + kp
vt+

kpv

β(k0 + kp)2D

(
1− e−β(k0+kp)Dt

))
(3.18)

(figure 3.8C).
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Figure 3.8.: Probability distribution for the enforced elongation of an elastic macro-
molecule by a probe potential. A: Development of the probability dis-
tribution (blue) and of the probe potential (red) and the free energy
landscape of the elastic macromolecule (black). Time advances from
top to bottom. B: Center of the probability distribution (blue) and of
the probe potential (red) over time. C: Forces exerted by the probe
potential on the elastic macromolecule.

Now, the mathematical description of the elastic behavior of macromolecules ac-
cording to a one-dimensional free energy landscape, as proposed by Bell’s model, is
present. Fits of theoretical forces F (t) given by equation (3.18) to forces from FPMD
simulations or AFM experiments are used to determine spring constants upon elastic
deformation. With this approach, Bell’s model is validated with respect to elastic
behavior.

Modeling non-equilibrium elasticity

In the following, a free energy landscape G0(x, y) that describes the model for non-
equilibrium elasticity will be constructed. A spring constant k‖ along the reaction
coordinate x and a spring constant k⊥ along the perpendicular coordinate y serve
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3.3 Non-equilibrium elastic behavior of macromolecules

as parameters. Both are coupled via a coupling constant α, which is the third
parameter. By construction, this free energy landscape is required to revert to
Bell’s model for the case of complete relaxation of perpendicular modes.

The two-dimensional harmonic free energy landscape

G0(x, y) =
k‖
2
x2 − k⊥xαy + k⊥

2
α2y2 , (3.19)

whose principal components are rotated with respect to the Cartesian coordinates,
fulfills these requirements (figure 3.9). In the case of a fully relaxed perpendicular

coordinate, dG0(x, y)/dy
!

= 0, this model reverts to a one-dimensional free energy
landscape

G0,Bell(x) =
k‖−k⊥

2
x2 (3.20)

in accordance to Bell’s model with an equilibrium spring constant keq = k‖ − k⊥.
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Figure 3.9.: Two-dimensional harmonic free energy landscape that is rotated with
respect to the reaction coordinate (black contour lines) and its eigen-
vectors e1 and e2 (red arrows).

To describe the enforced elongation along the reaction coordinate, as done in AFM
experiments or FPMD simulations, a probe potential

Vp(x, t) = kp

2
(x− vt)2 (3.21)

that acts exclusively along the reaction coordinate is added to G0(x, y). This results
in a time-dependent free energy landscape

G(x, y, t) =
k‖
2
x2 − k⊥xαy + k⊥

2
α2y2 + kp

2
(x− vt)2 , (3.22)

which can be written in a more convenient vector form

G(x, t) = 1
2
(x− vefft)

TC(x− vefft) +Goff(t) . (3.23)
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Here,

C =

(
k‖ + kp −αk⊥
−αk⊥ α2k⊥

)
(3.24)

is a symmetric matrix and

veff =
kpv

k‖ − k⊥ + kp

(
1

1/α

)
(3.25)

denotes the effective velocity of the minimum of G0(x, t). Goff(t) is a time-dependent
offset.

For the solution of the Smoluchowski equation to G(x, t), the ansatz given by equa-
tion (3.9) is generalized to two dimensions. To this end, it is employed that the two-
dimensional probability distribution p(x, y, t) that solves the Smoluchowski equation
for this energy landscape is the product of two uncoupled probability distributions
along the eigenvectors e1 and e2 of C (figure 3.10 and red arrows in figure 3.9).
The eigenvalues λ1 and λ2 of C are spring constants along the eigenvectors. This
probability distribution is given by

p(x, t) =
∏
i=1,2

pi(x, t) =
∏
i=1,2

1√
2πσi(t)

exp

{
− [(x− 〈x(t)〉) · ei]2

2σ2
i (t)

}
(3.26)

with

σi(t) =

√
1− e−2βλiDt

βλi
(3.27)

as the width of each process along the eigenvectors (figure 3.10, center and right
panel). The center of this two-dimensional probability distribution moves along

〈x(t)〉 =
∑
i=1,2

(veff · ei) ·
(
t− 1− e−βλiDt

βλiD

)
· ei , (3.28)

which is a generalization of 〈xeff(t)〉 given by equation (3.17) to two dimensions. The
mean force acting along the reaction coordinate is given by

〈F (t)〉 = kp

(
vt− 〈x(t)〉 ·

(
1
0

))
. (3.29)
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Figure 3.10.: A two-dimensional probability distribution p(x, y) (left panel) is the
product of two uncoupled probability distributions p1(x, y) (center
panel) and p2(x, y) (right panel).

Testing the model

In the following, the model for non-equilibrium elasticity will be tested for the ful-
fillment of the initial requirements:

• Trajectories within the free energy landscape of the model are velocity-dependent.

• As a consequence, elastic properties become also velocity-dependent.

Example trajectories of the state x of a macromolecule according to the probability
distribution for the enforced elongation by a probe potential given by equation (3.26)
were calculated for different probe velocities (figure 3.11A, symbols). These results
confirm that trajectories within the free energy landscape given by equation (3.19)
are, indeed, velocity-dependent. As predicted, slow probe velocities lead to trajec-
tories that move along lower energies (blue symbols) whereas fast probe velocities
lead to trajectories along higher energies (red symbols). For extremely fast and
slow probe velocities, respectively, limiting cases for the mean of the trajectories are
predicted (dark red and dark blue lines, respectively).

Projections of the energies onto the reaction coordinate closely resemble a harmonic
potential Veff = (keff/2)x2 for all probe velocities (figure 3.11B, symbols). As pre-
dicted, the curvature of the energies along the reaction coordinate, that defines the
spring constant keff , varies with the applied probe velocity. As a consequence, spring
constants measured by a one-dimensional approach, such as from force-fits according
to equation (3.18), are velocity-dependent.

The forces acting along the reaction coordinate exhibit similarities to forces predicted
by elasticity models based on one-dimensional free energy landscapes, despite the
difference in the underlying free energy landscapes (figure 3.11C, symbols).
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Figure 3.11.: The model for non-equilibrium elasticity and the elastic behavior of
macromolecules under different probe velocities. Symbols represent
trajectories under the influence of probe potentials with different probe
velocities (blue: slow, orange: medium, red: fast). Dark blue and dark
red lines depict limiting cases for slow and fast probe velocities, re-
spectively. A: The two-dimensional free energy landscape of the model
(iso-surface lines). Symbols depict trajectories within the free energy
landscape. A barrier is located at xb. B: Energy along the reaction
coordinate. C: Forces exerted by the probe potential.

Rupture forces

As stated earlier, the rupture of a molecular bond is modelled as the crossing of a
barrier within a free energy landscape (figure 3.5). To calculate the rupture forces
that occur upon unbinding in dependence of a rate constant r, the fraction of bound
states Q(t), i.e. the probability of finding the system in the bound state, is employed.
The fraction of bound states is related to the rate constant by the differential equa-
tion

dQ(t)/dt = −r(t)Q(t) . (3.30)

Typically, the fraction of bound states has a sigmoid shape over time (figure 3.12A).
The time derivative of the fraction of bound states, dQ(t)/dt, denotes the flux over
the barrier (figure 3.12B).
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Figure 3.12.: A: Fraction of bound states Q(t). B: Flux over barrier dQ(t)/dt.

A general formula for the rate constant for barrier crossing is given by [66]

r(t) =
D∫

well
e−βG

∫
barrier

eβG
, (3.31)

where D denotes a diffusion constant and G is an underlying free energy landscape.
The rupture event is accompanied by a mean rupture force 〈Fyield〉 that is given by
the integral of the product of force and the flux over a barrier over time,

〈Fyield〉 = −
∫ ∞

0

〈F (t)〉dQ(t)
dt

dt . (3.32)

However, the rate constant given by equation (3.31) can only be applied to systems
that are near equilibrium and that are described by a one-dimensional free energy
landscape. To calculate a rate constant for a system that is out of equilibrium and
that is based on a multi-dimensional free energy landscape, such as the problem that
is discussed here, this formalism has to be generalized.

As a first step, the equilibrium free energy G(x, y, t) given by equation (3.22) is
replaced by a non-equilibrium free energy GNE(x, y, t) that is defined as

GNE(x, y, t) = −kBT ln (p(x, y, t)) , (3.33)

where p(x, y, t) given by equation (3.26) is the probability distribution belonging to
the enforced elongation of a macromolecule described by the free energy landscape
G(x, y, t).

To calculate the rate constant r(t) for barrier crossing in a two-dimensional free
energy landscape, it is not sufficient to account for one single path through the free
energy landscape since multiple paths for barrier crossing are possible. Rather, this
rate constant is the sum of all possible rate constants for single paths across the free
energy landscape.
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Therefore, two steps were taken to estimate the rate constant for barrier crossing in
a two-dimensional free energy landscape:

1. A rate constant

rx(y, t) =
D∫

well
e−βGNE(x,y,t)dxdy

∫
barrier

eβGNE(x,y,t)dx
(3.34)

according to a single path along the reaction coordinate across the free energy
landscape over the barrier is calculated as given by equation (3.31). This rate
constant is evaluated for the path parallel to the reaction coordinate with the
minimal barrier height (figure 3.13, red line), which is the most likely path in
equilibrium.

2. This one-dimensional rate constant is integrated along the perpendicular co-
ordinate to account for all possible paths through the two-dimensional free
energy landscape (green lines), yielding

r(t) =

∫ +∞

−∞
rx(y, t)dy (3.35)

as the rate constant for barrier crossing in a two-dimensional free energy land-
scape.
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Figure 3.13.: Calculation of a rate constant for barrier crossing in a two-dimensional
free energy landscape. First, a rate constant rx(y, t) accounting for one
way along the reaction coordinate is calculated (red arrow). This rate
constant is integrated over the perpendicular coordinate to account for
all possible paths (green arrows).

As a first step, the rate constant rx(y, t) will be estimated. To evaluate the in-
tegrals in rx(y, t), a component px(x, t) of p(x, y, t) given by equation (3.26) that
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only depends on the reaction coordinate x must be determined. This is achieved
by describing p(x, y, t) as the product of two normalized probability distributions
according to

p(x, y, t) = px(x, t) · py(x, y, t) . (3.36)

These two components are given by

px(x, t) =
1√

2πσx(t)
exp

{
−(x− 〈x(t)〉)2

2σ2
x(t)

}
(3.37)

and

py(x, y, t) =
1√

2πσy(t)
exp

{
−(y − 〈y(t)〉+ c · (x− 〈x(t)〉))2

2σ2
y(t)

}
(3.38)

(figure 3.14). The additional parameters employed here are given by

σx(t) =
√

(e1,xσ1(t))2 + (e2,xσ2(t))2 , (3.39)

σy(t) =

√√√√1/

[(
e1,y

σ1(t)

)2

+

(
e2,y

σ2(t)

)2
]

, (3.40)

and

c =

[
e1,xe1,y

σ2
1(t)

+
e2,xe2,y

σ2
2(t)

]
/

[(
e1,y

σ1(t)

)2

+

(
e2,y

σ2(t)

)2
]

. (3.41)

Figure 3.14.: A two-dimensional probability distributions p(x, y) (left panel) is de-
scribed as the product of two probability distributions px(x) (center
panel) and py(x, y) (right panel).

With these solutions at hand, the rate constant r(t) for barrier crossing in the two-
dimensional free energy landscape given by the model for non-equilibrium elasticity
is determined. As a first step, the rate constant for one path across the free energy
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landscape rx(y, t) is evaluated. First, the well integral is evaluated as∫
well

e−βGNE =

∫ xb

−∞
px(x, t)dx

∫ ∞
−∞

py(x, y, t)dy (3.42)

=
1

2

{
1 + erf

[
xb − 〈x(t)〉√

2σx(t)

]}
. (3.43)

For the barrier integral, the non-equilibrium free energy is replaced by a linear
approximation to the barrier,

GNE(x, y, t) ≈ GNE(xb, y, t) + ∆G (3.44)

with

∆G = (x− xb) ∂
∂x
G(x, y, t)

∣∣
x=xb

(3.45)

= (x− xb)[(k‖ + kp)xb − kpvt− αk⊥y] . (3.46)

This approximation is justified because the regions where this approximation be-
comes inaccurate only contribute little to the integral since the exponential of ∆G
is integrated. Therefore, the error due to this approximation is small.

This expression is evaluated for y = xb/α, which is the minimum of G(xb, y, t) along
y, to account for the path parallel to the reaction coordinate with the minimal
barrier height, as required before. This results in

∆G = (x− xb)[(k‖ − k⊥ + kp)xb − kpvt] . (3.47)

Subsequently, this expression is further approximated by replacing ∆G with its mean
over time for 0 ≤ t ≤ T . Here, T = (k‖ − k⊥ + kp)xb/(kpv) is the time when the
time-dependent minimum of G(x, y, t) reaches x = xb. Thus, a final expression for
∆G is given by

∆G = (x− xb)1
2
(k‖ − k⊥ + kp)xb . (3.48)

By employing that eβGNE(xb,y,t) = 1/p(xb, y, t), the integral over the barrier is evalu-
ated as ∫

barrier

eβGNE = eβGNE(xb,y,t) ·
∫ xb

−∞
e∆Gdx (3.49)

=
1

1
2
β(k0 − k⊥ + kp)xbp(xb, y, t)

. (3.50)

By combining equations (3.34), (3.43), and (3.50), the rate constant accounting for
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one path across the free energy landscape is given by

rx(y, t) =
β(k‖ − k⊥ + kp)D

1 + erf
[
xb−〈x(t)〉√

2σx(t)

] p(xb, y, t) . (3.51)

With this expression for rx(y, t), and by employing that p(xb, y, t) = px(xb, t) ·
py(xb, y, t), the rate constant r(t) for a non-equilibrium process in a two-dimensional
free energy landscape given by equation (3.35) is evaluated as

r(t) =
β(k‖ − k⊥ + kp)D

1 + erf
[
xb−〈x(t)〉√

2σx(t)

] px(xb, t)∫ ∞
−∞

py(xb, y, t)dy (3.52)

=
β(k‖ − k⊥ + kp)D

1 + erf
[
xb−〈x(t)〉√

2σx(t)

] px(xb, t) . (3.53)

Along with mean forces 〈F (t)〉 given by equation (3.29) and the flux over the barrier
dQ(t)/dt defined by equation (3.30), mean rupture forces 〈Fyield〉 for barrier crossing
within the free energy landscape from the model for non-equilibrium elasticity are
calculated according to equation (3.32).

Application to importin-β

To test whether Bell’s model is sufficient to describe the elastic response of importin-
β at different probe velocities in FPMD simulations [2], mean forces F (t) according
to equation (3.18) were fitted to the respective stretching forces (figure 3.15A).
Probe velocities ranged from 0.08 m/s to 20 m/s. Although these fits described the
forces well, the spring constants determined from these fits were velocity-dependent
(figure 3.15B). This result shows that Bell’s model is not sufficient to describe the
elastic behavior of importin-β present in these FPMD simulations.
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Figure 3.15.: A: Sample force curves obtained during stretching of importin-β at
different stretching velocities (black symbols) with force fits under the
assumption of a one-dimensional free energy landscape according to
equation (3.18). B: Velocity dependence of spring constants determined
by these fits.

However, the occurrence of velocity-dependent spring constants at fast probe veloc-
ities was predicted by the model for non-equilibrium elasticity. Hence, a force fit
according to the model for non-equilibrium elasticity using equation (3.29) to a data
set containing all force curves was carried carried out. This fit reproduced the force
curves for all probe velocities with the same parameters. Only four parameters –
k‖ = 0.10 N/m, k⊥ = 0.09 N/m, α = 0.51, and D = 1.64× 10−10 m2/s – describe all
force profiles for probe velocities over two orders of magnitude (figure 3.16, green
lines). The equilibrium spring constant keq = k‖ − k⊥ = 11 mN/m is in good agree-
ment with the spring constant k = (10 ± 4) mN/m determined from equilibrium
fluctuations and slow stretching simulation (figure 3 in reference [2]).

For comparison, additional individual fits to each single force curve were carried out
(figure 3.16, blue lines). These individual fits reproduced the force curves very well
and yielded similar parameters as the previous approach. These result show that the
model for non-equilibrium elasticity reproduces the elastic behavior of importin-β
very well.
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Figure 3.16.: Sample force curves obtained during the stretching of importin-β (black
symbols) with fits under the assumption of a two-dimensional free en-
ergy landscape according to equation (3.29) (colored lines). Green and
blue lines denote fits to all forces simultaneously and fits to individual
forces, respectively.

Application to the southern bean mosaic virus

So far, the only test system for the model for non-equilibrium elasticity is the ex-
ceptionally flexible nuclear transport receptor importin-β. To test the universal
applicability of this model, a mechanically different second test system was chosen.
Hence, the elastic behavior of the very stiff outer shell of the southern bean mosaic
virus, which was studied in recent FPMD simulations [29], was investigated.

To reduce noise from the force profiles, forces were smoothed by replacing them
with one-dimensional linear functions F = keff∆z, where keff denotes an effective
spring constant and ∆z describes the indentation of the viral shell. Probe velocities
ranged from 2 m/s to 50 m/s. As for importin-β, spring constants derived from
this one-dimensional approach were found to be velocity-dependent (figure 3.17A,
symbols).

Like in the case of importin-β, simultaneous fits of non-equilibrium forces using
equation (3.29) to smoothed forces from all simulations provided fit results of k‖ =
4.3 N/m, k⊥ = 3.4 N/m, α = 0.058, and D = 4.2 × 10−10 m2/s. A conversion of
these non-equilibrium forces into linear forces keff∆z revealed that effective spring
constants obtained by a one-dimensional model reach a limiting value at probe
velocities below ∼ 0.1 m/s (figure 3.17A, line).
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To further validate the model for non-equilibrium elasticity, rupture forces occurring
upon the rupture of the outer shell of the southern bean mosaic virus were predicted
and compared to rupture forces obtained from the FPMD simulations. Therefore,
mean velocity-dependent rupture forces 〈Fyield〉 according to equation (3.53) were
calculated. This was done by employing mean forces given by equation (3.29) and
rate constants r(t) according to equation (3.32). The four parameters k‖, k⊥, α, and
D obtained from the force fits were used. As an additional parameter, the barrier
location xb was needed to determine rate constants r(t).

Least square fits of velocity-dependent mean rupture forces 〈Fyield〉 with the barrier
location as additional fit parameter to results from the simulation (figure 3.17B,
symbols) described the observed forces very well (line). In this way, a barrier location
of xb = 1.56 nm was predicted.

Also, a prediction for rupture forces at slow probe velocities < 0.1 m/s was made.
The predicted rupture force of ∼ 1.4 nN for slow probe velocities lies in the range of
∼ 0.6− 2.5 nN of experimentally determined rupture forces for viral shells [5, 67]
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Figure 3.17.: Results from FPMD simulation of the outer shell of the southern bean
mosaic virus and comparison to the model for non-equilibrium elastic-
ity. A: Spring constants obtained from forces based on the assumption
of a one-dimensional free energy landscape (symbols). The line shows
the predicted velocity dependence of these spring constants under the
assumption of a two-dimensional free energy landscape given by equa-
tion (3.19). B: Rupture forces obtained from the simulations (symbols).
The line depicts predicted rupture forces based on the two-dimensional
free energy landscape from the model for non-equilibrium elasticity.
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4.1. General

In this PhD thesis, the behavior of several different proteins under force was stud-
ied. In the first part, the mechanical unfolding of the membrane protein bacteri-
orhodopsin was analyzed by FPMD simulations to quantify its structural stability.
The results from the simulations were validated by comparison with results from
AFM experiments with the same protein including forces and the locations of an-
chor point residues that resist mechanical unfolding. The analysis of atomic interac-
tions and of structural rearrangements during unfolding revealed that anchor points
are stabilized by intramolecular hydrogen bonds and hydrophobic contacts. This
stabilization of anchor points, in turn, governs the mechanical stability of bacteri-
orhodopsin. Furthermore, these atomic interactions were found to form a dynamic
interaction network.

In the second part, FPMD simulations were applied to study the flexibility of the
nuclear transport receptor importin-β. In this way, the protein was characterized as
a fully reversible molecular spring. This mechanical characterization allowed the de-
termination of the amount of binding energy of importin-β-cargo complexes that is
stored via mechanical deformation of importin-β. Investigation of the hydrophobic
core of the protein and subsequent comparison to the structurally similar but me-
chanically different protein Rop revealed that a special highly mobile hydrophobic
core is the origin of the flexibility of importin-β.

The last part of this thesis covers non-equilibrium elastic behavior of macromolecules.
Such a behavior, which was observed in FPMD simulations of importin-β and of the
outer shell of the southern bean mosaic virus, is manifested by velocity-dependent
spring constants. To this end, a new model for macromolecular elasticity based on
a multi-dimensional free energy landscape was introduced. This model was success-
fully applied to describe elastic forces present in both systems. The results gained
from this model characterize internal protein motions that are otherwise not acces-
sible.
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4.2 Velocity-Dependent Unfolding of Bacteriorhodopsin

4.2. Velocity-Dependent Mechanical Unfolding of
Bacteriorhodopsin Is Governed by a Dynamic
Interaction Network

The study “Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Gov-
erned by a Dynamic Interaction Network” [1] addressed open questions concerning
mechanical unfolding of bacteriorhodopsin. In this work, FPMD simulations were
employed to extract single bacteriorhodopsin molecules from an atomistic purple
membrane model (figure 1 in reference [1]). Different extraction velocities were
employed to quantify a possible velocity dependence of unfolding pathways and as-
sociated observables. Furthermore, extraction simulations were carried out towards
both sides of the membrane.

To facilitate complete extraction of a single protein within a reasonably sized simula-
tion system, a new extraction protocol was developed and applied. In this protocol,
extraction simulations were stopped at regular intervals and extracted and unfolded
parts of the protein were removed. Voids generated by peptide removal were filled
with water, the ion concentration was adjusted to keep the system neutral, and
the extraction simulations were continued at the cleaved part of the protein with
properly adjusted forces.

To validate the extraction simulations against the AFM experiments, forces from
both methods were compared. The forces obtained during the extraction simula-
tions showed strong similarities to forces obtained from AFM experiments. In both
cases, four distinct peaks of decreasing height were observed (figure 3A and B in
reference [1]). However, the peak forces from both methods did not follow a common
logarithmic dependence (figure 3C in reference [1]). This results suggests that the
unfolding pathways differ between both methods.

The question how the unfolding proceeds at an atomistic level was answered by
investigating snapshots of bacteriorhodopsin taken from the extraction simulations
(figure 4A-F in reference [1]). These snapshots revealed an unfolding pathway in
which the single transmembrane helices unfolded turn-by-turn. Furthermore, the
protein was unfolded along its amino acid sequence. The end of the protein that
was attached to the probe potential unfolded first.

The question about the relation between the observed force profiles and the unfolding
pathway was addressed by comparing the force development upon extraction to the
different stages of unfolding (figure 4G in reference [1]). In this way, the extraction
and unfolding of each of the first three helix pairs and the last helix alone along the
unfolding sequence were revealed to induce a force peak.

This result is in contrast to the proposal from the AFM experiments that the con-
certed unfolding of helix pairs gives rise to a force peak. However, since the force
profiles and the locations of the force peaks are similar between experiments and
simulations, a sequential unfolding of single helices is also probable to occur in the
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experiments.

To further validate the simulations against the experiments, locations of anchor
points residues that stabilize bacteriorhodopsin were determined from the extraction
trajectories and compared to anchor points obtained from the experiments. Instead
of relying on worm-like chain polymer model fits to forces, as in the interpretation of
the AFM experiments, atom coordinates were employed to determine anchor point
locations. For this approach, that is only possible in FPMD simulations, a new
method was developed and applied.

This method relies on the fact that anchor points interrupt the mechanical unfolding
of bacteriorhodopsin. As a consequence, the transition point between the folded and
the unfolded part of the protein remains stable for a longer period at anchor points
than at residues that do not interrupt the mechanical unfolding. Accordingly, anchor
points are the most frequent transition points. To that end, transition points were
determined for all times. Transition points that were observed the most frequently
were classified as anchor points (figure 2 in reference [1]).

By comparing anchor points from the simulations with anchor points from the ex-
periments, a very good agreement between both methods was seen. This shows that
the residues that govern stability are largely independent of the applied extraction
velocity (figure 5A and B in reference [1]).

The question how anchor points are stabilized within the protein was addressed
by looking at snapshots and interaction energies from extraction simulations before
and after the detection of an anchor point. This way, hydrophobic contacts and
hydrogen bonds within the protein were determined as the dominant causes for the
stabilization of anchor points (figure 5C, D, and E in reference [1]).

More importantly, even on the short time scales of the simulations, a dynamic re-
arrangement of interactions was observed. This behavior raises the hypothesis of
velocity-dependent unfolding pathways of bacteriorhodopsin. On the much longer
time scales accessible by AFM, more such dynamic interaction rearrangements can
be expected that alter the unfolding pathway of the protein. Furthermore, a change
in unfolding pathways should be visible in FPMD simulations for sufficiently small
extraction velocities.

To look for evidence of a change in unfolding pathways upon different probe ve-
locities, bacteriorhodopsin unfolding at an extraction velocity of v = 0 m/s was
simulated by stopping the unfolding process in special relaxation simulations (fig-
ure 6 in reference [1]). These simulations revealed two relaxation processes. First,
a fast relaxation in the order of pico- to nanoseconds was seen. This relaxation is
likely to be caused by the loss of friction build up during the fast non-equilibrium
extraction simulations before. An estimation revealed that this relaxation process
would vanish at extraction velocities below ∼ 1 m/s, which is in good agreement
with simulations performed at similar extraction velocities.

The second relaxation process takes place at much slower time scales of 5 to 50 ns.
Here, structural rearrangements that are characteristic for the extraction of helix
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pairs were observed. These rearrangements are due to a quasi-static pulling process.
Furthermore, this behavior serves as an evidence for velocity-dependent unfolding
pathways of bacteriorhodopsin.

The newly developed protocol for extraction simulations where unfolded parts of
the protein are removed regularly proved to be useful in this work. With its easy
implementation, this protocol can be applied to the mechanical unfolding of other
proteins in FPMD simulations. This is of great use for protein that are too large to
be unfolded otherwise.

It will be interesting to know, if the dynamic interaction network that stabilizes
bacteriorhodopsin is unique for this protein or whether it is a common property of
membrane proteins. Extraction simulations of other membrane proteins will serve
to answer this question. Furthermore, it is not known whether soluble proteins
also show this behavior. An according analysis of unfolding trajectories of soluble
proteins will solve this question.

The successful determination of anchor points based on the frequency of transition
points between folded and unfolded protein regions will be valuable for the analysis
of future unfolding simulations. However, the current implementation of this algo-
rithm based on line fits to residue deviations only works for proteins that unfold
in sequential manner. For proteins that unfold non-sequentially, a different imple-
mentation for the determination of transitions between folded and unfolded protein
regions is required.

A direct comparison of anchor points determined by transition points and by worm-
like chain fits is still missing. To this end, FPMD simulations in which anchor points
are determined by both methods are required. Unfortunately, this was not possible
with the bacteriorhodopsin extraction simulations. This comparison must be carried
out by future FPMD simulations on protein systems where both approaches can be
applied. Furthermore, such a comparison would allow a validation of the accuracy of
the indirect worm-like chain method by the direct atomistic anchor points approach.

4.3. An Unusual Hydrophobic Core Confers Extreme
Flexibility to HEAT Repeat Proteins

The study “An Unusual Hydrophobic Core Confers Extreme Flexibility to HEAT
Repeat Proteins” [2] focused on the flexibility of unbound importin-β and character-
ized its mechanical properties. Furthermore, the atomistic mechanism behind the
flexibility of the protein was analyzed.

To answer the question about the extent of the flexibility of importin-β, FPMD
simulations were carried out in which the protein was stretched. It turned out,
that importin-β can be stretched from an equilibrium end-to-end distance of 13 nm
up to 21 nm without structural break-ups (figure 1 in reference [2]). Also, these
simulations answered the question whether changes between different conformations
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of importin-β are continuous or discrete. The forces obtained upon stretching of
the protein showed no distinct steps, thus suggesting that importin-β possesses a
continuous flexibility (figure 3A in reference [2]).

To answer the questions whether the enforced structural changes of importin-β are
reversible or irreversible, relaxation simulations were employed. To this end, snap-
shots of elongated conformations of importin-β from stretching simulations were
used as starting point for free MD simulations, i.e. without the presence of a pulling
potential. These simulations revealed that the protein relaxed back to its equilib-
rium conformation within only tens of nanoseconds (figure 2 in reference [2], colored
lines). Furthermore, the RMSD of relaxed structures reached values of only 3 Å,
which were also seen in equilibrium simulations of importin-β (figure 2 in refer-
ence [2], gray lines).

These results classify importin-β as a fully reversible molecular spring. The biolog-
ical relevance of this behavior is the easy release of binding energy upon the release
of binding partners, as proposed by Conti et al. [9].

With importin-β classified as a molecular spring, the question about the energy that
is required to change the protein to a different conformation is easily answered. The
deformation energy of importin-β is given by

E(d) = k
2
(d− d0)2 (4.1)

with k as the spring constant of the protein and d0 as its equilibrium end-to-end
distance. To this end, the spring constant of importin-β was determined from equi-
librium fluctuations and from slow stretching simulations (figure 3 in reference [2]).
The equilibrium end-to-end distance was determined from equilibrium simulations.

In this way, a spring constant of (10 ± 4)mN/m was determined. With this result,
the amount of the binding energy between importin-β and different cargoes that is
stored through deformation of importin-β was estimated (table 1 in reference [2]).

The large global changes governing the spring-like behavior of importin-β are the
sum of small local changes. To identify these local changes, and thus to answer the
question about the atomistic origin of the flexibility of importin-β, the hydrophobic
core that connects adjacent HEAT repeats was investigated. To this end, it was
compared with the hydrophobic core of the protein Rop. Similar to a succession of
HEAT repeats in importin-β, Rop consists of two protein units with two antiparallel
helices each. However, in contrast to importin-β, Rop is known to be very rigid.

To look for differences between the internal dynamics of the hydrophobic cores of
both proteins, the mobility of hydrophobic amino acid side chains within each hy-
drophobic core was quantified. This was done by determining the torsional degrees of
freedom of these side chains. A comparison of the side chain mobility of importin-β
and Rop showed that the hydrophobic cores of both proteins behave very differ-
ently (figure 4 in reference [2]). The hydrophobic core of Rop showed only very
little internal dynamics. In contrast, hydrophobic amino acid side chains within the

39



4.3 Extreme Reversible Elasticity of Importin-β

hydrophobic core of importin-β showed a high degree of flexibility.

This result suggests that successions of HEAT repeats allow importin-β to adapt to
external changes while Rop likely does not have this ability. To test this hypothesis,
a triplet of HEAT repeats was extracted from importin-β. Connecting loops were
removed to allow better comparison to Rop. Upon external stress exerted in FPMD
simulations, the HEAT repeats showed structural rearrangement at low forces, as
quantified by their RMSD (figure 5 in reference [2]). In contrast, Rop remained
stable up to high forces. These results confirmed the hypothesis that importin-β is
easily able to adapt to external changes.

This raised a new question about how accumulated local changes of hydrophobic
cores between adjacent HEAT repeats can cause the global spring-like energetic
behavior of importin-β. To this end, Coulombic and Lennard-Jones energy contri-
butions between and within HEAT repeats at different elongations were determined
(figure 6 in reference [2]). The Lennard-Jones energy contributions between ad-
jacent HEAT repeats, that characterize hydrophobic interactions, were found to
increase with increasing end-to-end distance. This result showed that local changes
within hydrophobic cores between HEAT repeats give rise to the global energetics
of importin-β.

Furthermore, the sum of all energy contributions revealed a spring-like energy. How-
ever, the enthalpic spring constant derived in this way was still four times larger
than the spring constant obtained from equilibrium and stretching simulations. This
raised the question, whether an entropy compensation was present to decrease Gibbs
free energy. To this end, the entropy of importin-β has to increase with increasing
length d. This behavior was confirmed by entropy estimations of importin-β from
simulations where the length of the protein was kept fixed (figure 7A in reference [2]).
Moreover, enthalpic terms with entropy corrections covered the Gibbs free energy
profile (figure 7B in reference [2]). In this way, local enthalpic interactions between
adjacent HEAT repeats and an increasing entropy upon elongation determine the
spring constant of importin-β.

This part of the thesis provided a thorough investigation of the flexibility of im-
portin-β. It was revealed that this flexibility is governed by a special hydrophobic
core between adjacent HEAT repeats of the protein. Moreover, its flexibility allows
importin-β to bind to a variety of cargoes and thus designates its function as a
universal nuclear transport receptor.

The flexibility of importin-β, that determines its function, points to a new view of
proteins, where their function is governed by their structure as much as by their
flexibility.

Besides importin-β, other nuclear transport receptors, such as transportin or ex-
portin, are also built of HEAT repeats. Stretching simulations of these proteins will
show whether flexibility is a common property of this class of proteins.

One restriction of this work is that only the flexibility of unbound importin-β was
investigated. Thus, a new question is raised, concerning whether the elastic behavior
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of importin-β within complexes with cargoes is different compared to its unbound
state. The large entropy compensation revealed in this work suggests that the elastic
properties of importin-β may change within complexes.

To address the question whether the type of hydrophobic core seen in importin-β is
a general quantity of flexible proteins, MD simulations and corresponding analysis
of hydrophobic cores of different flexible repeat proteins, such as ankyrin, will be
necessary.

Although the special nature of the hydrophobic core of importin-β was revealed in
this work, the mechanism how its amino acid composition affects flexibility is still
unclear. To this end, future studies are necessary to link the origin of the flexibility
of the protein to single amino acids within the hydrophobic core. Furthermore,
based on this knowledge, mutations within the hydrophobic core of importin-β may
lead to an alternation of its flexibility. If this approach would be successful, it may
facilitate the design of flexible proteins.

4.4. Non-equilibrium elastic behavior of
macromolecules

The study “Non-equilibrium elastic behavior of macromolecules” (chapter 3.3) in-
vestigated a previously unknown elastic behavior of macromolecules that is not ex-
plained by standard models. The starting point for this investigation was the obser-
vation of velocity-dependent spring constants in FPMD simulations of importin-β
(figure 3.15B in chapter 3.3) and of the outer shell of the southern bean mosaic virus
[29] (figure 3.17A in chapter 3.3).

To explain and quantify this behavior, a new model for the elasticity of macro-
molecules was introduced. In contrast to previous models, that are based on an
underlying one-dimensional free energy landscape describing only the length of the
macromolecule as a reaction coordinate, a two-dimensional free energy landscape
was introduced. Using the additional dimension, perpendicular modes of molecular
motion orthogonal to the reaction coordinate were described in addition to motions
along the length of the macromolecule. Moreover, both modes are coupled.

The enforced elongation of a macromolecule through, e.g., an AFM cantilever was
described by an additional moving probe potential that acts only along the re-
action coordinate. In contrast, motions along the perpendicular coordinate were
unrestricted. Analytical solutions to the Smoluchowski equation for the probability
distribution of the macromolecule within the free energy landscape revealed velocity-
dependent pathways. At slow probe velocities, a path along minimal energies is taken
(figure 3.11A in chapter 3.3). At fast probe velocities, relaxation along the perpen-
dicular coordinate does take place and, thus, a path along higher energies is taken.
These different pathways lead to different energies and thus different elastic proper-
ties along the reaction coordinate (figure 3.11B in chapter 3.3). In turn, this causes
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an velocity dependence of spring constants. These results show that this new model
explains qualitatively the non-equilibrium elastic behavior seen for importin-β and
the southern bean mosaic virus.

This model was applied to quantitatively describe the elastic forces obtained from
FPMD simulations of importin-β and of the southern bean mosaic virus. In both
cases, all force curves obtained over a broad range of probe velocities could be
described with a single set of only four parameters (figure 3.16 and figure 3.17A in
chapter 3.3).

As a next test of the model, rupture forces occurring upon the rupture of the outer
shell of the southern bean mosaic virus were calculated. To this end, a formalism for
the calculation of rate constants for barrier crossing within the two-dimensional free
energy landscape of the model for non-equilibrium elasticity was developed. With
this formalism, rupture forces from the FPMD simulations were predicted very well
with the barrier location as the only fit parameter (figure 3.17B in chapter 3.3).

Our newly introduced model for non-equilibrium elastic behavior of macromolecules
correctly predicted elastic forces for two mechanically different systems: the soft
nuclear transport receptor importin-β and the stiff outer shell of the southern bean
mosaic virus. This shows that this model is universally applicable. The prediction
of yielding forces further strengthened the model. Also, perpendicular molecular
modes were quantified. This can only be achieved with this model.

The non-equilibrium elastic behavior describes in this study has been only observed
in FPMD simulations that employ fast probe velocities above 0.1 m/s. Hence, the
question whether this behavior can also be seen at slower probe velocities is still
open.

So far, our model was only applied to two test systems. However, it is likely that
other macromolecules exhibit the same behavior. To this end, force curves from
existing experiments or simulations need to be analyzed with respect to the model
for non-equilibrium elasticity. Also, experiments or simulations on proteins that are
similar to both studied test systems and therefore are likely to show the same non-
equilibrium elastic behavior may be carried out to look for a further validation of
this model.
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Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is
Governed by a Dynamic Interaction Network

Christian Kappel and Helmut Grubmüller*
Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

ABSTRACT Bacteriorhodopsin is a model system for membrane proteins. This seven transmembrane helical protein is
embedded within a membrane structure called purple membrane. Its structural stability against mechanical stress was recently
investigated by atomic force microscopy experiments, in which single proteins were extracted from the purple membrane. Here,
we study this process by all-atom molecular dynamics simulations, in which single bacteriorhodopsin molecules were extracted
and unfolded from an atomistic purple membrane model. In our simulations, key features from the experiments like force profiles
and location of key residues that resist mechanical unfolding were reproduced. These key residues were seen to be stabilized by
a dynamic network of intramolecular interactions. Further, the unfolding pathway was found to be velocity-dependent. Simula-
tions in which the mechanical stress was released during unfolding revealed relaxation motions that allowed characterization of
the nonequilibrium processes during fast extraction.

INTRODUCTION

Membrane proteins mediate a broad range of biochemical
functions. Although ~20–30% of all proteins are membrane
proteins (1), only little is known about their energetics and
their stability against mechanical stress. One important class
of membrane proteins are G-coupled protein receptors
(GPCRs) (2), which consist of seven transmembrane helices
and mediate signals from the extracellular to the cytoplasmic
side of a membrane, e.g., light, hormones, or neurotransmit-
ters, by conformational changes. Therefore, knowledge of
the mechanical stability and energetics of these proteins is
crucial.

The light-driven proton-pump bacteriorhodopsin (BR)
is a model system for seven-transmembrane helical proteins
and shares many similarities to GPCRs (3,4). Photoinduced
isomerization of the chromophore retinal drives a reaction
cascade in which the protein undergoes several conforma-
tional changes. In vivo, BR trimers and lipid molecules
arrange into a remarkably stable two-dimensional hexag-
onal structure called ‘‘purple membrane’’.

One versatile tool to study single proteins and their struc-
tural stability is atomic force microscopy (AFM) (5), which
served, e.g., to study the mechanical properties of biological
macromolecules such as polysaccharides (6), DNA (7), and
heparin (8). Furthermore,AFMexperiments provided insight
into the strength of ligand-receptor bonds (9) and the stability
of soluble proteins such as titin (10) and fibronectin (11).
Also, membrane bound proteins such as sodium-proton anti-
porters (12) and aquaporin (13) were studied.

The underlying intramolecular forces that govern macro-
molecular mechanical stability and unfolding have been

studied by force probe molecular dynamics (FPMD) simula-
tions (14,15), e.g., for the unfolding of titin domains (16),
folding intermediates (17), the function of titin kinase
(18), and the elastic properties of ankyrin (19). Also, the un-
folding of membrane proteins was studied using this method
(20–22).

In recent AFM experiments (23–32), single BRmolecules
were mechanically extracted and unfolded from the purple
membrane. The forces obtained during extraction revealed
a characteristic sawtooth pattern. Using the wormlike chain
polymer model, these force peaks were linked to the unfold-
ing of single helices. Contrary to former AFM experiments
on soluble multidomain proteins, the order of unfolding
was not from the weakest to the strongest link, but along
the amino-acid sequence. Also from wormlike chain fits to
the force profiles, anchor residues that exhibit considerable
resistance against mechanical unfolding were located. These
relatively few residues are obviously important for stabi-
lizing the protein.

Although the forces that counteract mechanical unfolding
have been precisely measured by AFM, the atomistic origin
of the quite diverse behavior of the individual residues is
unclear. In this work, the extraction and unfolding of single
BR molecules is therefore simulated at atomic level using
FPMD simulations. To validate the results from the simula-
tions with the experiments, peak forces and anchor residues
were compared. Subsequently, the simulations enabled us to
characterize the interactions that provide the anchor resi-
dues with such remarkable stability.

To assess a possible influence of the loading rate, which is
much larger in the simulations than in the experiments, the
extraction simulations were carried out at various loading
rates. Simulations in which the extraction process was
stopped provided further insight into extraction at very
slow velocities.
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METHODS

Simulation system and details

As starting structure, the BR x-ray structure 1QHJ (33) from the Protein

DataBank was chosen. Residue side-chain atoms not resolved in the

x-ray structure (Met163, Arg227, and Glu232) were modeled using WHAT

IF (34). Terminal residues not resolved in the x-ray structure (1–4 and

233–248) were omitted from the model. BR trimers were created by

applying the appropriate symmetry operations to the protein.

To obtain a full membrane system, the proteins were embedded within

a hydrated POPC lipid bilayer (provided by Peter Tieleman (35)) using

the method described in Faraldo-Gómez et al. (36) and employing the

program MSMS (37). Nine lipid molecules per monomer (four at the

cytoplasmic and five at the extracellular side) were placed in the simulation

box (33). We consider POPC a reasonable mimic for the purple membrane,

because BR is known to fold into its native functional state within a

POPC bilayer (38). Details are provided in the Supporting Material.

A water layer of 5 nm with sodium and chloride ion concentration of

300 mM, similar to the experiments (23), was added to the hydrated system

at the cytoplasmic side of the purple membrane model.

Next, energy minimization of 150 steps was performed using steepest

descent. Three equilibration runs with increasingly relaxed harmonic

position restraints were performed. First, restraints with a force constant

of k ¼ 1000 kJ mol�1 nm�2 were applied to all nonhydrogen atoms of

protein and lipid molecules for 200 ps. Second, only the protein restraints

were kept for 1 ns. Finally, a 3.5-ns equilibration run was performed

without any position restraints.

To provide sufficient space for extracted polypeptides, one more 5-nm

water layer was appended at the cytoplasmic side of the system, yielding

a water layer of 10 nm in total (Fig. 1 A). This enlarged system was equil-

ibrated for 500 ps.

To avoid periodic boundary artifacts during the extraction of one mono-

mer, the system was replicated to construct a system of four trimers accord-

ing to the crystal symmetry of a hexagonal lattice. The full simulation box

thus contained 12 BR monomers (Fig. 1 B). Periodic boundary conditions

were used for all simulations.

The system was equilibrated for 500 ps and used as starting structure for

all subsequent cytoplasmic extraction simulations described below. For

extraction simulations toward the extracellular side, the 10-nm water layer

was placed at the extracellular side of the purple membrane model, and

the N-terminal was subjected to a force acting downwards in Fig. 1 A.

Both simulation systems comprised 236,124 atoms, with a box size of

12.16 � 12.16 � 15.32 nm3.

All simulations were carried out using the software package GROMACS

3.3 (39). Proteins and ions were described by the OPLS all-atom force field

(40). The TIP4P water model (41) was employed. Lipid molecules were

described with a unified atom model (42). Partial charges for the retinal

were taken from Kandt et al. (43). All other force-field parameters were

converted into the OPLS force field as described.

All simulations were run in the NPT ensemble. The system was coupled

to a constant temperature of 300 K using a Berendsen thermostat (44) with

a relaxation time constant of t ¼ 0.1 ps. A Berendsen barostat with a relax-

ation time constant of t ¼ 1.0 ps and a compressibility of 4.5 $ 10�5 bar�1

was used to keep the pressure at 1 bar. Semiisotropic pressure coupling was

used; no coupling was applied in x and y direction, whereas in z direction

the box was free to adapt to pressure changes.

Long-range electrostatic interactions beyond 1.0 nm were calculated

using particle mesh Ewald summation (45,46). A grid dimension of

0.12 nm and fourth-order b-spline interpolation was used. Lennard-Jones

interactions were truncated at 1.0 nm. The length of bonds involving

hydrogen atoms were constrained using LINCS (47). An integration time

step of 2 fs was used.

FPMD simulations with various extraction velocities were carried out for

extraction toward both the cytoplasmic and the extracellular side. In each

simulation, the Ca atom of the C-terminus (N-terminus, respectively)

(Fig. 1 C) was subjected to a harmonic pulling potential Vpull, which was

moved with constant velocity in positive (negative, respectively) z direction

away from the membrane, parallel to the membrane normal,

VpullðtÞ ¼ 1

2
k
�
zCa

ðtÞ � zoffset � vt
�2
; (1)

where k¼ 500 kJ mol�1 nm�2 is the spring constant, zCa
ðtÞ the z position of

the respective Ca atom, and v the extraction velocity. An offset zoffset was

introduced to allow for nonzero initial forces, as will be described below.

FIGURE 1 Simulation system setup. (A, Side view) The expanded

volume at the cytoplasmic side provides sufficient space for extracted poly-

peptides. BR molecules are shown in green, lipid molecules in yellow, and

water molecules in red. (Black lines) Simulation box. (B, Top view) Four

unit cells, each containing a BR trimer, form a hexagonal two-dimensional

crystal. Colors as before. (C) Mechanical unfolding setup. Either the C- or

the N-termini (red and blue sphere, respectively) were subjected to a pulling

potential as described in Methods (arrow), enforcing extraction toward the

cytoplasmic and extracellular side, respectively. Colors represent the

secondary structure of the crystal structure (33). Helices A–G are indicated.
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The center of mass of the nonextracted proteins was kept fixed. No position

restraints were applied.

Aiming at extracting and unfolding a complete BR monomer, the fully

extended polypeptide chain would be too long to fit into the chosen simula-

tion box. To circumvent this problem and to keep the systemcomputationally

tractable, we repeatedly cut off unfolded parts of the protein that had moved

sufficiently far away from the membrane to render interactions, in particular

electrostatic ones,with themembrane negligible. Accordingly, whenever the

pulled Ca atom approached the simulation box boundary to below 1 nm, the

unfolding simulation was stopped, extracted residues that reside >1 nm

above the membrane in z direction were removed, and the voids caused by

peptide removal were filled with water molecules. Ions were added or

removed to keep the system neutral. New charged termini were built and

the system was energy-minimized and equilibrated at 300 K for 20 ps with

position restraints on heavy atoms of proteins and lipid molecules.

The extraction simulation was then resumed, with the new terminal Ca

atom subjected to the new Vpull and appropriately chosen zoffset to match

the initial force of the new simulation to the final force of the previous

one. Specifically, the new force

FnewðtÞ ¼ k
�
zCa ;newðtÞ � zoffset;new � vt

�
was required to equal the force

FoldðtÞ ¼ k
�
zCa ;oldðtÞ � zoffset;old � vt

�
applied before removal of the residues. Accordingly, and using Eq. 1 and

with F ¼ �7V, the new offset position zoffset, new was chosen as

zoffset;new ¼ zoffset;old þ zCa;new � zCa;old: (2)

The spring constant was kept unchanged during the simulations. This

procedure was iterated until complete protein extraction.

Anchor points

As observed in the AFM experiments (23), the unfolding of BR proceeds

stepwise. Apparently, some residues referred to as anchor points are able

to withstand a much higher force against mechanical unfolding than others.

In the experiments, anchor points have been located from peaks in the force

curves by wormlike chain polymer model fits (48). To facilitate direct

comparison to AFM results, anchor points were also determined from our

simulations as described below. In contrast to the experiments, detailed

structural information is here available, which therefore has been used to

determine anchor points without referring to the wormlike chain model.

We proceeded in two steps (Fig. 2). First, for each frame of an extraction

simulation a transition point (Fig. 2 A, arrows) between the unfolded (red)

and folded (gray) part of the protein was determined. To this end, unfolded

parts of the protein were identified via their markedly increased deviation

Dz of Ca positions from the x-ray structure in z direction (Fig. 2 B).

Transition points were defined in an automated manner by using the fact

that Dz values of the unfolded part of the protein increase nearly linearly

with residue number, in contrast to the folded part. Accordingly, transition

points were determined as the start of this linear range. To that end, the

quality of fits to varying ranges (Fig. 2 C, different colors) with varying start

residues N0 but the same end residue was used. (For mechanical extraction

toward the cytoplasmic side, conversely, ranges with the same start residues

but different end residues were used.)

Accordingly, a linear function with slope m and intercept b was fitted to

the Dzi values for all residues i in each of the considered ranges with length

n (Fig. 2 C) using

m ¼ nðP iDziÞ � ðP iÞðPDziÞ
n
�P

i2
�� ðP iÞ2 (3)

and

b ¼
�P

i2
�ðPDziÞ � ðP iÞðP iDziÞ
n
�P

i2
�� ðP iÞ2 : (4)

The fit quality was quantified by the relative error sm/m of the slope, with

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
PðDzi � b� miÞ2

ðn� 2Þ�nP�
i2
�� ðP iÞ2�

s
: (5)

Fig. 2 D shows the fit quality as a function of start residue number N0 for

the chosen example. Transition points were then defined as the minimum

of sm/m (red circle).

FIGURE 2 Determination of anchor points. (A) Snapshots of an unfold-

ing helix. Black and red regions indicate folded and unfolded parts, respec-

tively, with arrows depicting transition points. (B) Displacement Dz of

residues from the crystal structure in z direction; colors as in panel A.

(Circle) Transition point. (C) Transition points are determined via a line

fit. Example data sets with line fits are shown. (Black) Full data set.

(Red) Data set without the first 115 residues. (Green) Data set with only

unfolded residues. (D) Relative error sm/m of the slope m of the line fits

as a function of the first residue in the data sets. The minimal relative error

was used to define the transition point (red circle). (E) Time development

(left) and frequency (right) of transition points determined from an extrac-

tion simulation.
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The left part of Fig. 2 E shows transition points determined from an

extraction simulation as described above. As can be seen—and as quantified

by the histogram (right side)—some transition points occur markedly more

often than others. This histogram served to determine the location of the

anchor points for comparison with the AFM data.

Due to the stochastic nature of the unfolding process, histograms

obtained from separate trajectories will differ from each other. To improve

statistics, all histograms for a given extraction velocity were merged and

filtered using a Gaussian filter with a one-residue half width.

RESULTS AND DISCUSSION

After equilibration, 27 extraction simulations were carried
out, both toward the cytoplasmic and the extracellular
side. To study to which extent the unfolding path and anchor
points are velocity-dependent, unfolding simulations were
carried out at five different extraction velocities ranging
from 50 m/s to 1 m/s. Each simulation was terminated after
complete extraction of the respective BR monomer. As also
observed in the AFM experiments (23), adjacent proteins
were essentially unperturbed, leaving a stable water-filled
hole at the former position of the extracted protein. Except
otherwise noted, we will focus at those observables that
were similar for all simulations and velocities.

Force profiles

Fig. 3, A and B, shows typical force profiles obtained from
simulations at different extraction velocities for extraction
toward the cytoplasmic (A) and the extracellular side (B).
All force profiles show four main force peaks labeled 1, 2,
3, and 4 at similar spring positions. Their overall shape and
position is similar to the force peaks obtained by AFM.

Some of the main force peaks split up into subpeaks, e.g.,
thefirst and third peak of the cytoplasmic trajectories.Overall,
the force pattern does not depend on the extraction velocity.

For high extraction velocities (20 m/s and 50 m/s), abrupt
force jumps are occasionally observed. These drops occur
when peptides are removed from the system as described
in Methods and are due to transiently reduced frictional
drag of the unfolded peptide after cutting.

As in the experiments, the force peaks observed in the
simulations decreased from peak 1 to peak 4. We attribute
this effect to the decreasing number and strength of interac-
tions within the nonextracted protein due to the extraction of
unfolded parts during the later parts of the simulations.
Force minima reach 0 pN for extraction velocities below
5 m/s. This indicates that at these velocities, as also reported
in Gräter et al. (18), frictional forces become small with
respect to unfolding forces.

Comparison to AFM forces

Fig. 3 C compares the heights of the force peaks between
simulation (triangles) and experiment (26) (circles) for
different extraction velocities. In accordance to the AFM
force peaks, the MD force peaks increase with faster extrac-
tion velocities. To compare the unfolding forces observed in
the simulations with those measured by AFM at much
slower extraction velocities, a simple model for the logarith-
mic velocity dependence of activated barrier crossing is
used (18,49),

FðvÞ ¼ gvþ a lnðv=v0Þ: (6)
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FIGURE 3 (A and B) Sample force profiles from

extraction simulations for different extraction

velocities toward the cytoplasmic (A) and the

extracellular side (B). All force profiles start at

0 pN. (C) Comparison between peak forces from

AFM experiments (circles) and extraction simula-

tions (triangles) for extraction toward the cyto-

plasmic side. Two fits are shown for each peak;

a logarithmic fit to only the AFM data (solid lines)

and a fit to both AFM and MD data using Eq. 6

(dashed lines).
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Here, g denotes a friction coefficient and a and v0 are fitting
parameters.

Fits to both AFM and MD values (Fig. 3 C, dashed lines)
yield a good description for all MD force peaks and for
AFM force peak 4. For AFM force peaks 1, 2, and 3, the
logarithmic slope of the AFM force peaks (solid lines) is
smaller than that of the fit to both AFM and MD, indicating
that for these cases the unfolding pathway between both
methods may differ.

Remarkably, this discrepancy decreases, and eventually
vanishes, for the later stages of the unfolding process, where
fewer sterical hindrances obstruct further unfolding.This indi-
cates that, besides the intrinsic unfolding forces of the helices,
interactions to the remaining protein contribute to the overall
forces. The additional velocity dependence can be explained
by structural rearrangements that may occur during AFM
extraction but that are too slow for MD timescales.

To examine the causes of the force peaks during extrac-
tion, the unfolding pathway of the protein during the extrac-
tion simulations will be analyzed in more detail and

compared to the unfolding pathway proposed by the AFM
experiments.

Unfolding pathway

Fig. 4 shows unfolding snapshots of a BR monomer. As
example, the unfolding and extraction of helices G and F
toward the cytoplasmic side at an extraction velocity of
5 m/s is shown. The snapshots show a continuous and
sequential unfolding and extraction of the two helices. As
in the experiments, the order of the extraction on the helix
scale is given by the extraction direction: For extraction
toward the cytoplasmic side, helix G unfolds first and helix
A last. This order is reversed for extraction toward the extra-
cellular side.

On the level of the individual helices, a sequential unfold-
ing of individual helix turns is seen (Fig. 4, A–F). During
unfolding of part of each helix, only small structural
changes are seen in its remaining folded part and the re-
maining helices. One exception is helix E, part of which

FIGURE 4 Unfolding pathway of helices G and F of BR (A–F) and corresponding forces (G). Snapshots were taken at 1 ns intervals. Colors as in Fig. 1 C.

Bold letters denote transmembrane helices. Gray letters belong to helices that are only partly visible. Red circles in the force profile denote snapshot times.

(Inset) Complete force profile. The solid part corresponds to the main plot.
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unfolds together with helix F (Fig. 4 E). Most unfolding
events occur within the membrane, with the unfolding helix
nearly in place and oriented parallel to the remaining helices
(Fig. 4, A–D). An exception are the last parts of helices F, D,
and B, which are dragged out of the membrane partly intact,
then kink with respect to their original alignment, and
unfold in bulk water parallel to the membrane surface.

The rise and fall of the force during extraction correlates
with the unfolding of single helices (Fig. 4 G). During
the unfolding of helix G and F the force increases and
decreases, respectively. Upon complete unfolding of helix
G and F, the force reaches its maximum and minimum,
respectively. The extraction and unfolding of helix pairs E
and D as well as C and B creates a force peak in a similar
manner. The last peak in the force spectrum is caused by
the unfolding and extraction of helix A. Extraction toward
the extracellular side proceeds in a similar manner.

Anchor points

One main result of the experiments was that at certain resi-
dues, referred to as anchor points, larger forces were required
for unfolding to proceed. Apparently, these residues resist
mechanical unfolding particularly strongly, which indicates
strong interactions relevant for the general stability of the
protein. In the experiments, anchor point locations were
determined via wormlike chain fits to the force curves (48).
To locate anchor points in the extraction simulations, all
trajectories were subjected a systematic search protocol.

To that aim, transition points between folded and unfolded
parts of the protein were determined during the course of the
simulations. Because anchor points are expected to delay
unfolding, transition points should occur more frequently at
their locations, and should therefore show up as peaks in
transition point histograms.

Indeed, transition point histograms reveal a noncontin-
uous unfolding in the simulations (Fig. 5, A and B, light
gray areas). Maxima from this distribution can be clearly
identified and define anchor points. Anchor points from
the extraction simulations show no velocity-dependent
locations and nearly all are seen for all extraction velocities
at each respective extraction direction.

To better compare anchor points from AFM and MD,
we divided the latter into three groups: The first group
consists of MD anchor points that cover AFM anchor points
within their respective uncertainties. A second group is
defined as MD anchor points occurring close to AFM anchor
points. The first two groups cover ~40% of all anchor points
for both extraction directions, showing a good agreement
between both methods. For the last group, no match between
AFM and MD data is seen.

In thefirst group, almost allAFManchorpoints are also seen
in the simulations. In the case of extraction toward the cyto-
plasmic side, AFM anchor points Gly6, Arg82, Val101, Lys129,
and Phe135 arewell matched byMD anchor points. For extrac-

tion toward the extracellular side, Glu74, Leu100, and Asp102

show a good agreement. Given their occurrence in both
AFM and MD, these anchor points seem to be independent
of the extraction velocity, and the interactions revealed by
the simulations are likely to also dominate the AFM forces.

For the second group, a noticeable deviation of up to three
residues between anchor points from MD and from AFM is
seen. Notable examples are AFM anchor points Ile198 and
Val188 for extraction toward the cytoplasmic side and Arg164

and Leu223 for extraction toward the extracellular side. These
deviations may arise either from uncertainties in the experi-
mental determination of the anchor points via the wormlike
chain model (28), or, alternatively from a possible velocity
dependence of anchor point locations. Like the first group,
this group agrees remarkablywellwith theAFMexperiments.

The third group, where nomatch between AFM andMD is
observed, falls into two categories. The first, less frequent
category contains anchor points from AFM that are not
observed byMD. Only three anchor points fall into this cate-
gory, Tyr83, Pro91, and Leu111 from the extraction toward the
extracellular side. The fact that these anchor points are only
seen by AFM indicates a velocity dependence of the under-
lying reaction paths. The second, more frequent category
includes all MD anchor points that are not seen by AFM.
Most notably, MD anchor points are observed in helices B,
D, F, and G during the extraction toward the cytoplasmic
side and in helicesA,B, F, andG and the loop region connect-
ing helices D and E during the extraction toward the extracel-
lular side.

We assume that these anchor points are not seen by AFM
because they occur during force drops, whereas rising forces
are needed to detect anchor points in the analysis of the
experiments (48). Because the transition point method
used for the simulations does not involve forces, anchor
points can also be detected during decreasing forces. This
idea is also confirmed by the strongly decreasing forces
that accompany the unfolding of helices B, D, and F in
both extraction directions (see Fig. 3) and explains almost
all MD anchor points not seen by AFM.

Remarkably, anchor points occur more frequently in the
extraction simulations toward the cytoplasmic side than in
the opposite direction. We attribute this finding to interac-
tions between the retinal and the helices in contact with it
that stabilize the protein core. As the retinal is covalently
bound to Lys216 located in helix G, it is removed upon
extraction of helix G. Because in the extraction simulations
toward the cytoplasmic side, helix G is removed from the
protein core already very early in each simulation, the stabi-
lization is lost, and a larger number of weaker interactions
dominate. In contrast, for extraction toward the extracellular
side, the retinal remains within the protein for nearly the
complete process, and, due to the interactions with the
retinal, more pronounced but possibly fewer anchor points
are expected. This is seen in Fig. 5, A and B. In this scenario,
one would also expect more details and anchor points in the
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force profile for bacterioopsin extraction than seen for BR,
which indeed has been observed (24).

Energetics causing anchor points

Which are the interactions that stabilize intermediate struc-
tures and thus cause the observed anchor points? To address
this question, we analyzed the sequence of structural changes
and the rupture of intramolecular interactions leading to the
occurrence of these points in more detail.

Analysis of interactions between each residue and the
remaining protein revealed that the residues lose their inter-
actions in sequential order (see Fig. S1 in the Supporting
Material). This behavior even applies to hot-spot residues
with higher interaction energies. Fluctuations of residuewise
energies suggest a rearrangement of interactions within the
protein.

Based on their location within the helices and on their
stabilizing energetics, we divided anchor points into three
groups. The first group consists of anchor points that are

FIGURE 5 (A and B) Comparison between AFM anchor points (vertical bars and lines) (28) and frequency of transition points determined by MD (light

gray areas). Transition point histograms are filtered with a Gaussian filter with a one residue half width. (Dark gray areas) Helices. (C–E) Structural and

energetic determinants of anchor points. Each panel shows snapshots before and after rupture of an anchor point. The plots show hydrogen bond energies

(C and D) or hydrophobic solvent-accessible surface areas (E) of selected residues. Bold letters denote helices. Key residues are shown as sticks (C and D) or

spheres (E). (C) Anchor point Pro200 in a stable conformation and shortly before rupture. The plot shows the summed energy of hydrogen bonds between

Arg134 and Ser193 and Glu194. (D) Anchor point Val179 before and after rupture. The plot shows the summed energy of hydrogen bonds belonging to Arg175.

(E) Anchor point Leu48 before and after rupture. The plot shows the hydrophobic solvent accessible surface area of Phe27.
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located at the ends of the transmembrane helices and are
stabilized by interhelical hydrogen bonds. Anchor points
in the second group are also stabilized by interhelical
hydrogen bonds but reside in the center of the helices.
The third group consists of anchor points in the center of
helices that are stabilized by hydrophobic contacts.

Fig. 5 C depicts Pro200 as a typical example of anchor
points from the first group. Upon the unfolding of helix G,
the extracellular end of the adjacent helix F is held back by
hydrogen bonds between backbone atoms from Ser193 and
Glu194 from helix F to side-chain atoms of Arg134 from helix
E (first snapshot). Before complete unfolding of helix G, a
rearrangement of interactions is seen: New hydrogen bonds
between side-chain atoms from Arg134 to side-chain atoms
from Ser193 and Glu194 are formed (second snapshot). The
nearly constant energy of hydrogen bonds belonging to
Arg134 (lower plot) shows that this rearrangement preserves
the strength of interactions that hold back helix F. To this end,
a dynamic network of hydrogen bonds connects terminal
regions of adjacent transmembrane helices.

Anchor points from the second group are also stabilized
by hydrogen bonds but are located in the center of the
helices, like Val179 located in helix F (Fig. 5D). Upon extrac-
tion, hydrogen bonds between side-chain atoms of the
nearby Arg175 to backbone atoms from residues from helix
E maintain the orientation of helix F (first snapshot). Once
these interactions break up, the remaining part of helix F
kinks with respect its former orientation (second snapshot).

In contrast, anchor points belonging to the third group,
like Leu48 located in helix B (Fig. 5 E), are stabilized by
nonpolar interactions rather than hydrogen bonds. Phe27,
Thr47, and Leu48 form a hydrophobic core between helices
A and B that disintegrates during unfolding of helix B, indi-
cated by the increasing hydrophobic surface area of Phe27

(lower graph). Once the hydrophobic core is completely
disrupted (maximal hydrophobic surface), the remaining
part of helix B tilts away from its former alignment (second
snapshot).

A table of anchor points observed in extraction simula-
tions toward the cytoplasmic side is available in Table S1.

Our analysis of mechanically relevant interactions in BR
thus revealed as the main determinants for the observed
anchor points a network of hydrogen bonds and hydro-
phobic contacts. Further, a highly dynamic rearrangement
of these interactions during extraction is seen. The competi-
tion of quite different kinetics suggests that the observed
unfolding pathway depends on the timescale set by the
extraction velocity. Thus, the question arises, how slower
extraction velocities and correspondingly longer timescales
of extraction would influence the unfolding process.

Relaxation processes

Indeed, the different kinetics of interactions described in the
previous section suggests a velocity-dependent unfolding

pathway. This was also proposed by fits to the peak forces
obtained by AFM and MD (see Comparison to AFM
Forces). Thus, for sufficiently small extraction velocities,
we would expect to observe also in the simulations a simul-
taneous unfolding of helix pairs rather than the sequential
unfolding of single helices seen so far.

To test this hypothesis, we determined how the unfolding
pathway of partially unfolded helices proceeds once the
extractionvelocity is changed from fastMDvalues (~10m/s)
to slow AFM values (~10�9 m/s). Because the difference in
velocities is very large, extraction at AFM velocities is qua-
sistatic withinMD timescales. To this end, we took snapshots
from an extraction simulation with v ¼ 20 m/s as start for
simulations with a resting spring, v ¼ 0 m/s. To study an
extended unfolding pathway, we chose snapshots where
helices G or F were partly unfolded.

In both simulations, forces began to decrease instanta-
neously (Fig. 6 A). The force development can be described
by a biexponential decay

FðtÞ ¼ Ffinal þ F1 , e
�t=tfast þ F2 , e

�t=tslow (7)

with slow and fast relaxation times tslow and tfast, respec-
tively. Ffinal, F1, and F2 are fit constants (values are given
in Table S2). The fast relaxation times ((730 5 5) ps and
(95 5 2) ps for the simulation with a partially unfolded
helix G and F, respectively) can be attributed to the loss of
friction built up during the preceding extraction simulation.
By assuming that the attachment point for the harmonic
potential moves ~1 nm during the fast relaxation, a minimal
velocity of vanishing relaxation can be determined using
v< 1 nm/tfast. For a time constant of tfast ~ 1 ns, one obtains
v < 1 m/s. This is in agreement with the previous observa-
tion that frictional forces become negligible below extrac-
tion velocities of 5 m/s (see Force Profiles).

The slow relaxation seen in the later part of the simulations
revealed much longer relaxation times (tslow ¼ (55,000 5
6000) ps and tslow¼ (48105 60) ps for the first and second
simulation, respectively). Because in the slowest extraction
simulation (v < 1 m/s) the unfolding of the protein takes
~80 ns, relaxation times of ~50 ns can only be covered by
much slower extraction velocities not accessible to our simu-
lations. However, it should be possible to observe structural
relaxation in the 30-ns relaxation simulations.

In the first relaxation simulation, a shift of both helices G
and F in extraction direction was observed (Fig. 6 B). Helix
G did not further unfold but remained parallel to helix
F during further extraction, which was not observed in the
extraction simulations. This clearly indicates mutual extrac-
tion and unfolding of helices G and F at long timescales.
We conclude that for very small extraction velocities, the
unfolding pattern observed by AFM already shows up in
the simulations.

The partially unfolded helix F (Fig. 6 C) showed further
unfolding during the slow relaxation phase at small forces
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(~100 pN) (Fig. 6 C). Because peak forces in the experi-
ments are in a similar range and helix F unfolds after
a peak, a spontaneous unfolding of helix F in the experi-
ments can be assumed. Fast unfolding is further corrobo-
rated by the short relaxation time of ~5 ns.

The results from both relaxation simulations show that
the unfolding pathway of BR under external force changes
with extraction velocity and is therefore timescale-depen-
dent. Based on these observations, the discrepancies in the
proposed unfolding pathways can be explained. At slow
extraction velocities in AFM experiments (<10�7 m/s),
the extraction and unfolding of pairs of helices is visible,
whereas at high extraction velocities in MD simulation
(>1 m/s), single helix turns unfold. This is also in line
with the observation of the unfolding of single helices at
higher AFM extraction velocities (>10�7 m/s) (26).

SUMMARY AND CONCLUSION

We presented all-atom FPMD simulations in which we
extracted and unfolded single BR monomers from an atom-
istic purple membrane model. The extraction was carried
out at various velocities both toward the cytoplasmic and
the extracellular side of the membrane. To maintain a
computationally tractable box size, a new protocol was
introduced and successfully tested, in which the extracted
and unfolded part of the protein was removed regularly
and the extraction continued at the cleaved part of the
protein, with the respective forces adjusted appropriately.

Force profiles obtained from the simulations were similar
to those obtained byAFM inmany respects. In bothmethods,
four distinctive peaks with decreasing values were observed,
pointing to a sequential unfolding of the protein. For extrac-

tion toward the cytoplasmic side, extraction and unfolding of
each helix pair GF, DE, and BC, as well as of helix A, caused
a force peak. In contrast to the experiments, which suggested
a concerted unfolding of helix pairs, in the simulations we
observed a sequential unfolding of individual helix turns,
although—as in the experiments—only every second helix
actually gave rise to a pronounced force peak. This observa-
tion suggests a second possible interpretation of the AFM
force profiles, according to which the experiments would
also be compatible with sequential unfolding of individual
helices. In any case, details of the sequence of events during
unfolding may depend on the loading rate.

Despite these possible differences, similar anchor points
were seen by MD, suggesting that the underlying molecular
interactions are largely independent of extraction velocity.
MD anchor points fall into three groups. The first group
comprises anchor points that fully agree with those seen by
AFM, the second group consists of anchor points close to
AFM anchor points, and the third group includes anchor
points not seen by AFM.Most anchor points of the last group
occur after the main force peaks, during force drops, where
they are unlikely to be seen in the experiments, which can
explain this discrepancy.Overall, remarkably good agreement
is seen, with the position of most anchor points being largely
unaffected by the quite different timescales of AFM andMD.

As the dominant molecular interactions that stabilize
the anchor points and, hence, govern the mechanical
stability of BR, we identified hydrogen bonds and hydro-
phobic contacts. During extraction, these interactions form
a highly dynamic network, where transient interactions are
established subsequent to the rupture of old ones. Thus,
the unfolding of BR does not follow a predefined path;
rather, the competition between the kinetics of the

FIGURE 6 Relaxation simulations with partially unfolded helices G (gray) and F (red), respectively. (A) Forces (symbols) and biexponential fits (lines).

The force fit for the first simulation starts after the retinal was extracted from the protein core. (B) Snapshots before (red) and after (cyan) the relaxation

simulation with a partially unfolded helix G. (C) Similar, but for a partially unfolded helix F (same colors).
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interaction network and the unfolding timescale can give
rise to different velocity dependent unfolding pathways.

To explore this possibility further, relaxation simulations
were carried out to detect slow relaxation motions that
are not visible in the fast extraction simulations. To this
end, extraction simulations with a partially unfolded protein
were taken and continued without further extraction. Indeed,
an onset of spontaneous collective unfolding of both helices
G and F was seen, which deviated from the fast unfolding
pathway, toward the one suggested by AFM carried out at
much longer timescales.

The good agreement between the results from the experi-
ments and the simulations suggest that our simulations
capture the essential characteristics of BR extraction.
Because the simulations were performed with a POPC
membranemodel for the purple membrane, onemight expect
slightly changed interactions between the protein and the
bilayer. However, as our model fully includes the hexagonal
symmetry of the purplemembrane and therefore also all inter-
molecular contacts, our results support the role of this specific
arrangement of BR within the bilayer.

It will be interesting to see whether dynamic interaction
networks of the type observed in this work also govern the
timescale-dependent mechanical properties of other GPCRs
or even members of other membrane protein families.
Further, this approach may also reveal atomistic details of
the origin of recently observed mechanical fingerprints of
ligand binding (50,51).

SUPPORTING MATERIAL

One figure and two tables are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(11)00046-4.
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ABSTRACT Alpha-solenoid proteins are suggested to constitute highly flexible macromolecules, whose structural variability
and large surface area is instrumental in many important protein-protein binding processes. By equilibrium and nonequilibrium
molecular dynamics simulations, we show that importin-b, an archetypical a-solenoid, displays unprecedentedly large and fully
reversible elasticity. Our stretchingmolecular dynamics simulations reveal full elasticity over up to twofold end-to-end extensions
compared to its bound state. Despite the absence of any long-range intramolecular contacts, the protein can return to its
equilibrium structure to within 3 Å backbone RMSD after the release of mechanical stress. We find that this extreme degree
of flexibility is based on an unusually flexible hydrophobic core that differs substantially from that of structurally similar but
more rigid globular proteins. In that respect, the core of importin-b resembles molten globules. The elastic behavior is dominated
by nonpolar interactions between HEAT repeats, combined with conformational entropic effects. Our results suggest that a-sole-
noid structures such as importin-b may bridge the molecular gap between completely structured and intrinsically disordered
proteins.

INTRODUCTION

Solenoid proteins, consisting of repeating arrays of simple
basic structural motifs, account for >5% of the genome of
multicellular organisms (1). Their fold often forms extended
superhelical structures, which expose large surface areas to
solvent. Because of this feature, solenoid proteins play
central roles in the shaping of cellular scaffolds and many
other cellular processes that require multiple protein-protein
interactions. Examples include pathways of endocytosis,
receptor-mediated nucleocytoplasmic transport, protein
sorting, and the scaffold structure of the nuclear pore
complex (2–5).

In structural studies, it was suggested that a-solenoids
form especially flexible structures, which may fall between
typical globular structured and intrinsically disordered
proteins (6,7). Their tertiary structure usually displays high
flexibility, whereas their secondary structure elements are
thought to remain stable and well defined (6–8). This feature
actually also bears close resemblance to the so-called molten
globule state of proteins—a third protein structural state
lying between the fully folded and completely unfolded
states, in which stable secondary structure elements are
believed to be arranged into a flexible, loosely packed tertiary
fold (9–12). Despite their enormous biological importance,
the principles governing flexibility and structural integrity
of solenoid proteins have received limited attention so far.

Recently, single molecule spectroscopy methods, such as
atomic force microscopy and optical or magnetic tweezers,
have become useful tools to study the response of macro-
molecules to external forces (13). Whereas most studies

on repeat proteins focus on the folding and unfolding
mechanism (14–16), an atomic force microscopy study on
different ankyrin repeat constructs showed that ankyrin
repeats behave as Hookean springs with spring constants
of 1.5–23 � 10�3 N/m (17). This finding suggests that
such springlike features may be of general importance for
the function of a-helical repeat proteins.

Importin-b is an archetypical a-solenoid and one of the
best-studied repeat proteins. It is the main player in nucleo-
cytoplasmic transport, mediating the principal pathway of
protein import into the cell nucleus (3). Its extended super-
helical structure, built from 19 so-called HEAT repeats,
a structural motif composed of two a-helices linked by
a short loop (18), is instrumental in binding and wrapping
around cargo proteins destined to the nucleus. Simulta-
neously, importin-b interacts with nuclear pore complexes
(19). To perform its function, importin-b must be able to
structurally adapt to cargo proteins of various size and shape
as well as to its effector protein RanGTP (20–22). Intrigu-
ingly, it has been suggested that importin-b complexes are
capable of storing energy through a huge springlike defor-
mation of this superhelix that is then released, upon dissoci-
ation, to drive disassembly and support high transport rates
(20,22).

To test this hypothesis, we have performed extended equi-
librium and nonequilibrium molecular dynamics (MD)
simulations of the yeast importin-b solenoid (Kap95p,
yImpb). Our stretching simulations show that yImpb
exhibits an extraordinary degree of elasticity. Most unex-
pectedly, extensions by nearly a factor of two are found to
be fully reversible on very short timescales. Our studies
enabled us to determine the molecular spring constant of
yImpb and thus to calculate the amount of energy stored
in molecular complexes of yImpb. They also reveal the
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structural determinants underlying the unique level of elas-
ticity in yImpb, and highlight a marked difference to the
usual construction principle of rigid proteins.

METHODS

All simulations were based on an open unbound conformation of the impor-

tin-b homolog Kap95p (yImpb). The relaxed structure with an elongation

of ~13.5 nm was simulated from PDB file 2BKU (22). The structure was

obtained by free MD simulations of yImpb without RanGTP as described

in Zachariae and Grubmüller (8).

All subsequent MD simulations were performed using GROMACS 3.3

and 4.0 (23,24). The OPLS all-atom force field (25) and the TIP4P water

model (26) were used. In all simulations, sodium and chloride ions corre-

sponding to a salt concentration of 150 mM were added. All bond lengths

were restrained using the LINCS algorithm (27). The temperature was kept

constant at 300 K using the Berendsen thermostat (28) with a coupling time

of 0.1 ps. The Berendsen barostat (28) was used with a coupling time of 1 ps

and an isotropic compressibility of 4.5 � 10�5 bar�1 to maintain a constant

pressure of 1 bar. Lennard-Jones interactions were cut off beyond 1 nm.

Electrostatic interactions were calculated explicitly below 1 nm and via

particle-mesh Ewald summation (29,30) beyond that distance. An integra-

tion time step of 2 fs was used. All simulations performed are summarized

in Table S1 in the Supporting Material.

For unbiased simulations of yImpb, the protein was placed in a dodecahe-

dral box with box vectors of ~18-nm length. Together with added water

molecules and ions, these systems consisted of ~550,000 particles.

Preceding the production runs, 1000 steps of steepest-descent energy mini-

mization, with a subsequent 1-ns simulation, and position restraints of

1.66 N/m on heavy protein atoms, were performed.

For stretching simulations, the protein was oriented along the box

vectors, so that the main dimension of the protein pointed in z direction.

The length of the box vectors was chosen to ensure that the minimal

distance from protein atoms to the box boundaries does not fall below

1 nm. Subsequently, the box was enlarged by 15 nm along z, resulting in

a box of 10 � 10 � 30 nm. Water and ions were added, resulting

in ~390,000 particles. One-thousand steps of steepest-descent energy mini-

mization with a subsequent 1-ns simulation and position restraints of

1.66 N/m on heavy protein atoms were performed. All stretching simula-

tions are based on the coordinates of this system. To stretch the protein,

the Ca-atom of the N-terminus was fixed by position restraints with a force

constant of 1.66 N/m, while a pulling potential with a force constant of

0.83 N/m was moved with constant velocity in z direction (see Fig. 1)

(31). The pulling potential was acting exclusively in z direction. The simu-

lations were stopped after 15 nm of spring movement. To determine the

spring constant, a second set of simulations was performed with the setup

as described above, but which were stopped after 5 nm of spring movement.

Relaxation simulations formed a third group of simulations. Here,

structures from stretching simulations were taken and simulated freely,

i.e., without the stretching potential. Two approaches were used to generate

the simulation systems. In the first case (elongations of 15.3, 17.1, and

19.1 nm), a snapshot of only the protein was used. Subsequently, a new

box with a minimal distance to the protein of 1 nm was built and filled

with water and ions. Before production runs, energyminimization and equil-

ibration were performed as described before. In the second case (elongation

of 21.0 nm), a snapshot of the whole simulation system including solvent

atoms was taken and used as input for further unbiased simulations. In this

instance, further energy minimizations or equilibration simulations were

not needed.

To estimate entropy changes upon extension, in a fourth group of simu-

lations, snapshots from elongated conformations of yImpb at 13.4, 14.6,

15.3, 16.3, 17.1, 18.1, and 19.1 nm were taken and the Ca atoms of

the termini were subjected to position restraints of 1.66 N/m. In this

way, extended trajectories of the protein at these fixed elongations were

obtained.

To quantify the equilibrium fluctuations of yImpb, a sum of n weighted

Gaussian functions with center mi, width si, and weighting factor wi accord-

ing to

f ðdÞ ¼
Xn
i¼ 1

wi

1ffiffiffiffiffiffi
2p

p
si

exp

 
� ðd � miÞ2

2s2
i

!
(1)

was used to describe the histogram of elongations d of the protein. From the

width of the Gaussians, force constants ki were derived via

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ki

p
;

where kB is the Boltzmann constant and T the temperature used in the simu-

lations. The statistical error was estimated as follows: For all five subsets of

four out of five trajectories, spring constants and center positions of the

Gaussians were determined as above. The variance of the obtained values

was used as an estimate of the error.

To quantify the flexibility of amino-acid side chains, we used dihedral

order parameters for torsion angles from side chains (c-angles), as

described in van der Spoel and Berendsen (32). Briefly, from using the prob-

ability distribution p(q) of a given dihedral angle q, the autocorrelation

function C(N) of this dihedral angle at infinite times is calculated,

CðNÞ ¼
�Z 2p

0

cosðqÞpðqÞdq
�2

þ
�Z 2p

0

sinðqÞpðqÞdq
�2

;

(2)

yielding an order parameter S2D ¼ C(N) (33) between zero (full flexibility)

and one (no flexibility). For each residue, the lowest calculated order

FIGURE 1 Snapshots during stretching of yImpb. Different colors repre-

sent different HEAT repeats. The Ca atom of the N-terminus was kept fixed

(red circle) while a moving harmonic potential was applied to the Ca atom

of the C terminus (red arrow). (Right) Numbers denote the end-to-end

distance of the protein.
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parameter was used. Calculations were performed using the GROMACS

tool g_chi (32).

Entropies were calculated according to Schlitter (34), based on a principal

component analysis of the backbone motions of yImpb. To obtain a suffi-

ciently equilibrated ensemble, the first 5 ns of simulated time were omitted

from the entropy calculations. Entropies were calculated from sections of

the trajectory of increasing length starting at a length of twindow ¼ 20 ns.

Each subsequent trajectory part twindow was chosen to be 5 ns longer than

the previous one. A linear fit of the calculated entropies as a function of

1/twindow was used to extrapolate entropy estimates for infinite trajectory

length.As an estimate for the accuracy of the determined entropies, the statis-

tical uncertainty of the intersection of the line fit with the y axis was used.

Simulations of the four-helix bundle protein Rop were based on the PDB

structure 1ROP (35). The protein was placed in a dodecahedral box with

box vectors of length 6.8 nm. Water molecules and sodium and chloride

ions according to a salt concentration of 150 mMwere added. Energy mini-

mization and equilibration were performed as described above. Subse-

quently, a simulation of 300-ns length was carried out. All other

parameters were identical to the simulations described above.

RESULTS AND DISCUSSION

Fully reversible elastic stretching

To characterize the flexibility of yImpb, we carried out 42
independent force probe simulations. In all simulations,
the protein was stretched by applying a moving harmonic
potential to the C-terminus, while the position of the
N-terminus was kept fixed. The elongation of yImpb
was measured as the distance between the Ca atoms of the
N- and C-termini.

Fig. 1 shows snapshots from a representative slow
(v ¼ 1 m/s) stretching simulation. It is evident that, while
yImpb adopted a strikingly more elongated tertiary structure
under mechanical stress, its helical secondary structure
remained intact. No unfolding events were observed
for elongations below ~22 nm. Beyond that critical point,
the structure showed local intermediate unfolding and
separated into two segments of HEAT repeats, most
frequently between HEAT repeats 4/5 and 14/15. These
locations had also been suggested previously to form
dynamic hot spots (8). Here, we focus at the elastic regime
before unfolding.

To examine whether or not stretching of yImpb is revers-
ible, six simulations were carried out in which the stretching
potential was turned off at different elongations of the
protein. Four of these simulations were started at elonga-
tions of 15.3, 17.1, 19.1, and 21.0 nm from snapshots after
stretching, carried out at 1 m/s (Fig. 2 A). To investigate
a possible influence of stretching velocity, two more relax-
ation simulations were started from a stretching simulation
with a 10-fold lower stretching velocity (0.1 m/s) at elonga-
tions of 15.1 and 17.3 nm (Fig. 2 B).

In each case, yImpbwas found to relax back to its original
elongation. Strikingly, the initial structure was fully recov-
ered, as testified by the low backbone root-mean-square
deviation (RMSD) values with respect to the initial state
(magenta, blue, and orange lines), which reached the equi-

librium RMSD value of simulations of free yImpb (gray
lines). Relaxation simulations starting from initial RMSD
values up to 20 Å returned to values at ~3 Å. Even when
stretched close to the limit of elastic elongation, the
RMSD still dropped from 25 Å to 5 Å (green line).

These results demonstrate that yImpb tolerates extreme
extensions of more than twice the end-to-end distance of its
RanGTP-bound structure (~8.9 nm) (22), showing fully
reversible recovery. Moreover, all relaxation processes
occurred on timescales faster than ~60 ns (Fig. S1 in the Sup-
porting Material). This timescale is similar to that observed
for the complete conformational transition between the
nuclear and cytosolic states of the related nuclear transport
receptor Cse1p (36), underscoring the functional relevance
of these fast timescales for karyopherins. Furthermore, it
can be seen from Fig. 2 B that fast relaxation occurs indepen-
dent of the velocity of the stretching simulation carried out
before. Such fully reversible elasticity (Fig. 2, A and B) is,
to our knowledge, the largest seen for proteins to date,

FIGURE 2 Backbone RMSD, with respect to the initial structure of

yImpb during stretching (black lines) and subsequent release (magenta,

blue, orange, and green lines). For comparison, gray lines display data

from equilibrium simulations. (Red horizontal line) RMSD value of 3 Å.

(A) Stretching at 1 m/s and subsequent release at different elongations.

(B) Stretching at 0.1 m/s and subsequent release at different elongations.
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markedly exceeding that of ankyrin repeats (37) and that
observed in the recent 2-ns simulations on the protein
PR65, which also consists of HEAT repeats (38).

Spring constant of yImpb

Stretching and subsequent fully reversible relaxation of
yImpb suggests that the protein indeed can act as a molec-
ular spring. We have determined its molecular spring
constant via two complementary and independent
approaches.

First, yImpb was subjected to weak mechanical stress,
and its spring constant was obtained from the force-exten-
sion curve. The moving spring potential was chosen to
advance slowly (v ¼ 0.1 m/s) to minimize friction.
The mean yImpb spring constant kstr, determined from the
slope of the force profiles of three independent stretching
simulations (Fig. 3 A), was found to be (8 5 1) �
10�3 N/m. The size of the observed force fluctuations is
that expected for the probe spring constant of 0.83 N/m
used in the stretching simulations (Fig. S2).

Secondly, extended equilibrium simulations were per-
formed, from which the spring constant was obtained
from the end-to-end distance distributions. Shaded bars in
Fig. 3 B display equilibrium fluctuations of yImpb elonga-
tions obtained from a 250-ns equilibrium simulation. As can
be seen from the histogram, nearly all fluctuations of yImpb
can be described by a Gaussian function centered at 13 nm.
The additional minor peaks at elongations of 11 nm and
below belong to transient excursions to local energy minima
(Fig. S1 and Fig. S3). The spring constant as well as its
uncertainty was estimated from the width of the main
peak by a statistical analysis as described in Methods.
A spring constant of keq ¼ (105 4) � 10�3 N/m was found
at an equilibrium elongation of (13.0 5 0.2) nm (dashed
line in Fig. 3 B). For comparison, the solid line in Fig. 3 B
shows a Boltzmann distribution for a harmonic potential
with spring constant kstr.
The values for the spring constant of yImpb agree very

well, characterizing yImpb as a very soft spring, allowing
large end-to-end equilibrium fluctuations of up to 2 nm.
With this stiffness, yImpb is slightly softer than the ankyrin
repeats studied before (keq(experimental) ¼ 1.5–23 �
10�3 N/m (17), keq(calculated) ¼ 16.4 � 10�3 N/m (37)).
It is far more rigid than DNA, which has a spring constant
of 0.2–4.7 � 10�6 N/m upon elastic stretching (39). Viral
shells, on the other hand, need to resist high pressures
of up to 60 atm, and exhibit force constants ranging
from ~0.1 N/m to up to ~4 N/m upon indention (40,41).

As calculated from its spring constant, yImpb can store
up to 40 kJ/mol in its compact RanGTP-bound state. This
result suggests that this mechanical strain can indeed drasti-
cally reduce the binding free energy of the tight complex
and thus enable disassembly by GTP hydrolysis which
ultimately drives nucleocytoplasmic transport. Table 1

summarizes an extrapolation of these findings to complexes
of human and mouse importin-b.

Structural basis for the reversible elasticity
of yImpb

HEAT repeat proteins contain a well-described and exten-
sive hydrophobic core, already detectable on a sequence
level (18,21,42,43). Despite this pronounced hydrophobic
core, a-solenoids appear to differ strongly from other
a-helical proteins by their exceptionally high flexibility,
characterized above. As a possible explanation, we hypoth-
esized that the hydrophobic core connecting helices, despite
its apparent regularity, shows differences compared to
typical soluble proteins.

To test this idea, we compared successions of HEAT
repeats (Fig. 4, B and D) with the repressor of primer
(Rop) protein from Escherichia coli, a soluble protein that

FIGURE 3 Determining the spring constant of yImpb. (A) Typical force

curve from a slow stretching simulation (crosses) and linear fit to the data

(solid line). (B) Equilibrium fluctuation of elongations of yImpb (shaded

bars) and derivation of the spring constant. (Broken line) Boltzmann distri-

bution of fluctuations according to the spring constant determined from

equilibrium simulations (see text). For comparison, a Boltzmann distribu-

tion according to the spring constant determined in the stretching simula-

tions is shown (solid line).
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has a paradigmatic, well-studied regular hydrophobic core
(Fig. 4, A and C). Indeed, Rop forms a dimer of two
a-helices each, connected by a short loop, bearing close
resemblance to a pair of HEAT repeats. The length of the
a-helices is ~45 amino acids in HEAT repeats and ~60 in
Rop, and the interhelical angle is ~20� in both cases, demon-
strating close structural similarity (35,43–45). Also, no
marked differences in the packing efficiency of the hydro-
phobic cores are observed (Fig. 4, A and B). Therefore,

a simple structural explanation is not sufficient to explain
the enhanced flexibility of yImpb. Moreover, during stretch-
ing, the contact pattern between the residues in the hydro-
phobic core of yImpb remains unchanged (not shown).

We therefore focused on the internal dynamics of the
hydrophobic core as a second possible determinant for
global yImpb flexibility. The dihedral order parameter S2D
(32) was used as a measure for the flexibility of the side
chains (color-coded in Fig. 4). As can be seen, Rop core
side chains are very rigid, i.e., they are confined to single
conformers, whereas most yImpb core side chains are rota-
tionally nearly as flexible as surface-exposed side chains,
despite their buried position.

This observation suggests that, by virtue of this molten
globulelike conformational flexibility, the hydrophobic
core of yImpb can adapt to external forces, exerted by
mechanical stress or binding interactions with other
proteins. The mechanical properties of such an adaptable
hydrophobic core are clearly seen in force-probe simula-
tions, by comparing Rop and a succession of HEAT repeats
from yImpb. The Rop dimer did not display significant
RMSD changes up to mechanical forces of 1200 pN, but
then ruptured abruptly at a high force of 2900 pN. In con-
trast, yImpb responded to mechanical stress gradually and
in a controlled manner by small changes in the structure
between HEAT repeats, as evidenced by stepwise small
increases in backbone RMSD (Fig. 5).

This behavior is also reflected in the energetics of the
system. According to the modular composition of yImpb,
we first focused on energy contributions within and between
adjacent HEAT repeats. Sequence-distal interactions were
found not to contribute significantly to the overall energetics
of the protein and were therefore not considered here.

TABLE 1 Estimation of stored energy in bound importin-b

complexes according to an equilibrium elongation of 13 nm

and a spring constant of 8 � 10�3 N/m, as derived from

equilibrium and stretching simulations of yImpb

PDB id Organism Cargo Elongation Stored energy Reference

1QGK Human Importin-a 8.9 nm ~41 kJ/mol (21)

2P8Q Human Snurportin1 8.5 nm ~48 kJ/mol (48)

2BKU Yeast RanGTP 8.9 nm ~40 kJ/mol (22)

1UKL Mouse SREBP-2 10.5 nm ~15 kJ/mol (49)

FIGURE 4 Comparison of the flexibility of hydrophobic side chains of

Rop and yImpb. (A and C) Side and top view of Rop. (B and D) Side

and top view of HEAT repeats 4–6 from yImpb. (Gray tubes) The protein

backbone. Hydrophobic residues belonging to the respective hydrophobic

core are shown as van der Waals spheres (A and B) or sticks (C and D),

and as lines otherwise. The coloring reflects dihedral order parameters

S2D (32). Values near 1 indicate rigid side chains (blue); low values reveal

increased rotameric flexibility (red).

FIGURE 5 RMSD of Rop (shaded) and HEAT repeats 11 and 12 from

yImpb (solid) during stretching in force-probe MD simulations. For Rop,

a moving harmonic potential was applied to the center-of-mass of both

chains. For yImpb, HEAT repeats 11–13 were simulated without connect-

ing loops between HEAT repeats. A moving harmonic potential was applied

to the centers-of-mass of HEAT repeats 11 and 13. In both cases, the

harmonic potentials were moved perpendicular to the main longitudinal

axis. The x axis shows the sum of the applied forces on both chains and

HEAT repeats, respectively.
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Fig. 6 displays intrarepeat and interrepeat Coulombic and
Lennard-Jones energies, respectively, as a function of the
elongation of the protein, averaged over 0.1-nm intervals.
For averaging, 250-ns equilibrium and ~740-ns stretching
simulations were merged, altogether totaling ~990 ns of
simulation. It is evident from Fig. 6 D that the largest contri-
bution to the total increase in enthalpy upon elongation
comes from Lennard-Jones interactions between neigh-
boring HEAT repeats. By comparison, intrarepeat Len-
nard-Jones interactions (Fig. 6 B) as well as intra- and
intermolecular Coulomb interactions (Fig. 6, A and C)
only show relatively low increases with elongation.

As the quadratic fit shows, the dominant interrepeat
Lennard-Jones energy is well described by a harmonic
potential with a spring constant of 23 � 10�3 N/m. When
combined, all four energy contributions yield a spring
constant of 47 � 10�3 N/m and an equilibrium elongation
of 13.2 nm (blue line in Fig. 7 B, see below).

This equilibrium elongation agrees very well with the
equilibrium end-to-end distance obtained from our free
and stretching simulations. In contrast, the obtained spring
constant is ~4 times larger, which suggests that additional,
compensating contributions must be relevant.

To identify these contributions, the change of entropy
with elongation was estimated (Fig. 7 A), using the quasi-
harmonic approximation formulated by Schlitter (34).
To this end, we carried out extended simulations, in which
the end-to end-distance of yImpb was kept fixed at different
values, whereas motions on all other degrees of freedom of
the protein were left unrestricted.

Fig. 7 A shows that, indeed, the entropy of yImpb rises
with increasing elongation of the protein. This finding is
in contrast to the simple worm-like chain model of polymer
chains, which would predict an entropy decrease. We attri-

bute this rise in entropy to the unusual flexibility of the
hydrophobic core discussed above, which, upon stretching,
facilitates relaxation and leads to an enhanced flexibility
of the entire protein.

Fig. 7 B shows that this rise in entropy indeed accounts
for the discrepancy between the spring constant derived
from purely enthalpic terms (blue line) and the overall
spring constant observed for yImpb in equilibrium and
stretching simulations (red line). When the entropic contri-
bution to the free energy (Fig. 7 A) is subtracted from the
enthalpic part (Fig. 7 B, blue line), agreement within the
error bars with the overall spring constant of yImpb
(Fig. 7 B, red line) is obtained (Fig. 7 B, black bars).
In summary, the reversibly elastic, springlike behavior of
yImpb can be largely ascribed to contributions from
Lennard-Jones interactions of the hydrophobic core
between HEAT repeats and to substantial entropy changes
associated with different degrees of elongation.

CONCLUSIONS

Our results characterize the a-solenoid yImpb as a soft
nanospring that tolerates up to twofold extensions without
rupture of its hydrophobic core and is capable of fully
reverting back to its original structure after stress release.
Upon stretching, the hydrophobic core between HEAT
repeats is able to adapt to the external changes by an internal
rearrangement of hydrophobic residues, while the contact
pattern between hydrophobic core residues is fully
preserved. Our analysis of side-chain flexibilities suggests
that yImpb and, by similarity, also most other a-solenoid
structures, exhibit a molten globulelike hydrophobic core
and that this core structure underlies the flexibility of these
proteins. Molten globule states are defined as possessing

FIGURE 6 Dependence of enthalpic interac-

tions in yImpb on molecular elongation. (A)

Intra-HEAT-repeat Coulombic interactions. (B)

Intra-HEAT-repeat Lennard-Jones interactions.

(C) Inter-HEAT-repeat Coulombic interactions.

(D) Inter-HEAT-repeat Lennard-Jones interactions

and harmonic fit (red line). (Black bar) Energy

interval of 100 kJ/mol.
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stable secondary structure elements and variable tertiary
structure, as seen here, and they are assumed to differ
from fully ordered states by relatively loose packing of
the hydrophobic core, allowing side-chain rearrangements
(11). Our simulations demonstrate that large conformational
changes of the global structure of a-solenoids can be ef-
fected by the accumulation of many small changes between
repeating secondary structure units. Alpha-solenoids thus
bridge the structural gap between fully folded and intrinsi-
cally unfolded proteins both in terms of global structure
and the mobility of core side chains (6–8,46). These unex-
pectedly highly flexible proteins also will deserve further
studies addressing the question of whether conformational
selection or induced fit is the predominant mechanism in
their protein-protein binding pathways (47).

SUPPORTING MATERIAL
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