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The important thing in science is not so much to obtain new facts

as to discover new ways of thinking about them

— Sir William Bragg

Chapter 1

Introduction

Proteins are biological macromolecules, which are mainly composed from polymeric chains of amino

acids[1]. They are involved in a diversity of processes in living organisms. Although some play

a mere structural role (e.g., collagen in tissues, orα-keratin in hair), the function of most others

depends crucially on their dynamics. While for the many examples of motor proteins (e.g., kinesin

and F1-ATPase) the connection to dynamics is obvious, the dynamics also plays an important role if

primary function is not mobility itself. For example, the ability to change conformation is essential for

the function of proteins involved in signal transduction or transport, for molecular recognition, e.g.,

in the immune system, and for the function of numerous enzymes[1]. In many enzymes, for instance,

conformational changes serve to enclose the substrate, thereby preventing its release from the protein

and optimally positioning it for the protein to perform its function, as in lysozyme.

To understand the mechanisms of protein function is an intriguing and formidable task. Although

remarkable progress has been made in past decades, and despite the number and quality of available

methods has been tremendously increased, most mechanisms are not understood on a physical basis,

which would require models based on first principles allowing for a quantitative comparison with

experimental results.

Experimental techniques made remarkable progress to unravel protein structures (e.g., Xray

crystallography[2, 3] and nuclear magnetic resonance spectroscopy (NMR)[4, 5]) and, furthermore,

even allow to probe dynamics (NMR relaxation[6], electron paramagnetic resonance (EPR)[7],

neutron scattering[8, 9], as well as fluorescence spectroscopy[10]). In some instances different

functional states of proteins were structurally characterized by trapping them in certain substates[11].

Furthermore, time-resolved Xray diffraction[12, 13] allows to follow the conformational protein

motion with picoseconds time resolution. Wide-spread use of the latter two techniques is impeded,

though, by the massive experimental effort involved.

In comparison to this tremendous experimental progress and the enormous variety of available

techniques the theoretical treatment of protein dynamics strikes as underdeveloped. Only computer

simulation techniques, and especially molecular dynamics (MD) simulations at atomic resolution,
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8 CHAPTER 1. INTRODUCTION

have been applied with noteworthy success to elucidate functional processes in recent years[14].

Therefore, advancements of theoretical methods and concepts are urgently required.

As will be described in Chapter 2, classical MD is an atomistic simulation method, which treats

each atom as point mass and describes the interaction between atoms with simple force terms. Tra-

jectories are generated by integrating Newton’s equations of motions. It operates in the full3N
dimensional configurational space of the protein and the surrounding solvent molecules (whereN is

the number of atoms). The large number of pair-wise interactions to be evaluated and the short time

steps enforced by the fastest motions entail very long computation times, which limits MD at present

to systems of105 − 106 atoms and to timescales of several100ns. Unfortunately, apart from a few

exceptions, relevant biological processes, such as the gating of ion channels, allosteric interactions,

ligand binding, molecular recognition, chemo-mechanical energy conversion and many more, occur

on microsecond to seconds time scales, and thus are currently far out of reach for conventional MD.

This holds true despite considerable efforts to speed up the computations, particularly of the

long-range Coulomb forces. Recent developments include efficient methods such as multiple step

algorithms[15, 16, 17, 18, 19, 20], fast multipole methods[21, 22, 23, 24], and Ewald summation

techniques[25]. Also, the use of constraints[26, 27, 28] helps to increase efficiency. Still, however,

processes on time scales of microseconds and beyond can only be studied by resorting to certain

’tricks’ to enhance sampling by speeding up conformational motions, as reviewed in Ref. [29]. Un-

fortunately, this kind of accelerated sampling necessarily implies loss of dynamical information and

often loss of thermodynamical accuracy as well[29].

Statistical mechanics is the appropriate theoretical framework to understand the dynamics of

many-particle systems such as proteins. One considers a macroscopic state as statistical ensemble

of a large number of replica of a microscopic system, which evolve independently from each other.

Macroscopic observations of relevant degrees of freedom are obtained by averaging the remaining

ones over the statistical ensemble. The applied averaging yields energetics, which are influenced by

entropic contributions, and hence free energies need to be considered. Seen from this perspective,

protein function and the corresponding highly controlled conformational motions are driven by free

energy differences between different substates of the solvated protein.

MD simulation, however, is not intrinsically a statistical mechanics approach, since it describes

protein dynamics from a microscopic point of view. Rather, it is used as a ’brute-force’ method

to generate statistical ensembles. Although a statistical mechanics treatment can be attached to the

MD results, this modus operandi impedes profiting from the elegance of this framework. It remains

thus challenging to ’go the whole way’ and consistently treat relevant degrees of freedom of protein

dynamics with statistical mechanics.

In this thesis we advance the methodology beyond conventional ’brute force’ MD by applying

statistical mechanics to gain a drasticreduction of the large number of degrees of freedom.This

implies two steps. First, to identify few appropriate slow and relevant degrees of freedom[30], which

serve to define a reduced active space within which the dynamics is evolved without explicit treatment
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of the remaining orthogonal fast degrees of freedom. Second, to derive suitable equations of motion

for these slow degrees of freedom.

As an illustration of our approach consider the well-known dimension reduced treatment of the

motion of a Brownian particle, which is also based on a separation of slow and fast degrees of freedom.

A Brownian particle is a large solute particle immersed in a fluid of much smaller particles, e.g.,

water. Its macroscopic erratic movement is the combined result of a large number of collisions with

fluid particles. Because the motion of the macroscopic particle is much slower than that of the fluid

particles, one can consider the slow and fast motions as uncorrelated. This justifies to treat the solvent

coordinates as irrelevant and thus to replace their influence on the slow degree of freedom by a random

force, which is memory free due to the separation of timescales. In contrast to our work described

below, the trajectory of the Brownian particle is a random walk and can thus be described by a Markov

process, i.e., its future evolution does not depend on its past, because (a) the random force is memory

free and (b) the motion is overdamped.

To apply this concept — replacing fast degrees of freedom by a random force — to our case we

have to be aware of the differences though. First, it is not at all clear how to select the slow degrees of

freedom for the internal motion of a protein. All involved particles, regardless if constituting solvent or

protein, are atoms of similar mass, which move with comparable speeds. Second, there will be no clear

separation between fast and slow degrees of freedom due to the continuous spectrum of time scales

covered by protein dynamics. An important consequence is that the random force contains memory

effects. A third difference is that the motion is not overdamped, such that inertia effects matter. Thus,

our treatment will have to account for this non-Markovian character of the slow dynamics.

The absence of canonical slow degrees of freedom has led to a diversity of phenomenologically

motivated selections of the active space. These include implicit solvent[31], combined atom or bead

models[32, 33, 34, 35], and the treatment of polypeptides as chains of stiff ’platelets’, for which

only ψ-ϕ backbone angles are retained as explicit degrees of freedom[36, 37]. A somewhat related

approach is the gaussian network model[38].

However, by restricting the model to certain atoms or groups of atoms and omitting others, only

a very small subset of all possible collective degrees of freedom is considered. One may, there-

fore, expect to derive improved dimension-reduced descriptions of protein dynamics by dropping

this empirical restriction and considering as degrees of freedomm fully general functionsci =
fi(x1, . . . ,xN ), i = 1 . . .m, of the atomic positionsxj . Linear fi are widely considered, e.g.,

within the framework of principal components analysis (PCA)[39], which is often used to system-

atically derive slow and relevant (essential) collective degrees of freedom from MD simulations or

structural ensembles[40]. Here we consider both, linear and non-linear collective degrees of freedom.

The general framework that allows to reduce the full dynamics of all atomic degrees of freedom

to dynamics of the selected (collective) degrees of freedom is provided by the projection-operator

formalism of Zwanzig and Mori[41, 42]. The resulting generalized Langevin equation (GLE)[43, 44,

45, 46, 47, 48] governs non-Markovian dynamics due to its generalized dissipative term, which is a
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convolution of thememory kernelwith past velocities. We will show how the GLE is derived from

Newton’s equation of all degrees of freedom by separating the overall motion with the projection-

operator into (a) an ensemble-averaged motion on the free energy surface, governed by thepotential

of mean force,and (b) a deviation from these average dynamics.

Combining these two concepts, generalized collective degrees of freedom and dimension reduced

dynamics, we here develop the framework of Collective Langevin Dynamics (CLD), which describes

protein dynamics in collective coordinates. The projection-operator formalism is used to derive the

necessary parameters for the GLE, i.e., an appropriate potential of mean force and memory kernels

from short MD simulations. Thereby, all parameters are systematically obtained from first principles,

which allows to automate parameter extraction. By construction, there are no general parameters

which hold for all proteins, but parameters need to be specifically extracted for the chosen molecular

system and the selected set of collective coordinates. The low number of degrees of freedom will al-

low a computationally efficient generation of trajectories, thereby rendering microseconds timescales

accessible.

The main tasks which need to be addressed in this thesis are (1) identification of suitable confor-

mational coordinates, (2) extraction of memory kernels and (3) construction of a suitable free energy

landscape from MD simulations, and (4) evaluation of CLD accuracy and performance.

Note that it is a huge task to develop CLD to full maturity, such that we here only attempt the first

steps, which we outline below.

(1) Extraction of relevant degrees of freedom

Selection of suitable collective degrees of freedom crucially affects the strength and persistence of

memory effects as well as the resolution of conformational states. Thereby, this choice determines

the significance of the resulting CLD model for functionally relevant dynamics. Thus, we aim for

collective modes which are as slow as possible. Moreover, the active subspace is ideally uncorrelated

to those remaining fast degrees of freedom, which are not treated explicitly.

A well established method to identify functional relevant modes in MD trajectories is principal

component analysis (PCA)[49, 39, 50, 51, 40]. Therefore, it is a natural choice to consider PCA as

a candidate here. It selects those collective degrees of freedom which contribute most to the atomic

motion seen in the trajectory by diagonalizing the covariance matrix of atomic displacements.

Whether and to what extent a separation of timescales can be achieved by application of PCA

has not yet been systematically assessed. Furthermore, it is not clear, and subject to ongoing

discussions[52], whether principal components extracted from short MD simulations can serve to

describe protein dynamics at long time scales sufficiently well. In Chapter 2, we will shortly review

the theory of PCA and address these questions.

Unfortunately, PCA does not yield fully uncorrelated collective modes[50], because the covari-

ance matrix detects onlylinear correlations. Although the remainingnon-linearandmulti-coordinate

correlations do not impede using principal components within CLD we might be able to advance the
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method by extracting coordinates that are correlated to a lesser extent.

Therefore, we will introduce in Chapter 3 the (Shannon) mutual information[53], which detects

anycorrelation. Based on this measure we will develop in Chapter 4 Full Correlation Analysis (FCA),

which extracts maximally uncoupled coordinates by minimizing the mutual information of the con-

figurational ensemble.

That the extraction of collective coordinates relies heavily on correlation triggered the wish to

find an experimental access to this observable. This would allow a direct verification of collective

modes, and possibly an experimental access to collective modes without the requirement of an MD

simulation.

Experiments probe correlations in the motion ofatomsin three dimensional space[54, 55, 56], in

contrast to the previously considered correlations betweencoordinates. In Chapter 3 we will show that

the established method[57, 58] to quantify such correlations suffers from considerable inconsistencies,

and thus misses over 50% of correlations. Since this impedes any meaningful comparison of this

observable with experiments, we propose to apply mutual information also to this problem and define

a generalized correlation coefficient. In this way we avoid not only the inconsistencies of the previous

measure but also detectnon-linearcorrelations.

Having then established a solid grasp of correlations on the simulation side, we will compare these

with experimental data. A recently reported NMR relaxation experiment promised to probe correlated

motions in proteins[59]. Whether the results were really related to correlated motion, however, could

not be tested by experiment alone. Therefore, we address this issue by means of MD simulations in

Chapter 5.

(2) Extraction of Memory Functions

Extraction of memory kernels from MD simulations is still a challenging problem. Despite consider-

able efforts, a generally accepted approach has not yet emerged[60, 61, 62, 63]. Thus, we will study

different memory extraction schemes, and evaluate their performance within the framework of CLD

in Chapter 7.

To our knowledge, all existing algorithms are based on either the Memory equation[62, 64,

65, 66, 67, 68, 61, 69], or on a direct relation of the memory kernel with force autocorrelation

functions[63, 70]. We assess both approaches, which have different merits and flaws in the con-

text of CLD. Because exploiting the Memory equation requires solution of an inverse problem, we

need to study regularization techniques for its stable and robust numerical solution.

(3) Free energy surface

Free energy surfaces of the conformational coordinates can be estimated by molecular dynamics

sampling[71, 72]. More efficient, however, are enhanced sampling techniques[29], for instance, mul-

ticanonical methods (e.g., replica exchange MD (REMD)[73]), smart Monte Carlo (SMC)[74], or

umbrella sampling[75]. These techniques are complementary to CLD, because they yield canonical
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ensembles, but do not yield dynamical information. CLD, on the other hand, yields proper dynamical

information, but relies on already known canonical ensembles.

Due to the abundance of available techniques it was not necessary to treat this topic in detail.

(4) Evaluation of CLD models

Assessment of the quality of the obtained dimension-reduced description is non-trivial in itself.

Clearly, direct comparison of the observed CLD trajectory with explicit (deterministic) MD

simulations is not meaningful, because the underlying GLE governs a stochastic process and because

the dynamics is chaotic. Rather, suitable observables such as averages over many realizations of the

stochastic process, or time averages such as time correlation functions, transport coefficients, or

transition rates should be used[76].

However, one has to take care not to check observables which were used to parameterize the

CLD model, rendering the selection of test-observables a delicate choice. Velocity autocorrelation

functions, for example, are used to extract memory kernels from MD simulation and, thus, do not

represent a rigorous test of CLD. In Chapter 8, we use conformational transition rates as observables,

which are fully unrelated to the input - yet statistically meaningful. They are compared to reference

rates obtained from a long explicit MD simulation. Additionally, we compare positional autocorre-

lation functions as a probe of long time correlations, because these are not resolved by the velocity

autocorrelation functions used as input.



I do not fear computers. I fear the lack of them.

— Isaac Asimov

Chapter 2

Principal Component Analysis

Principal component analysis (PCA) is a well-established technique for reducing dimensionality. Its

applications include data compression, image processing, data visualization, exploratory data analysis,

pattern recognition and time series prediction[77]. In this chapter we elucidate whether PCA can be

applied to extract from short MD simulations slow slow collective degrees of freedom to treat protein

dynamics within the proposed framework of collective Langevin dynamics (CLD).

For analysis of protein dynamics principal component analysis (PCA)[49, 39, 50] is an established

method based on the notion that the biggest positional fluctuations occur along collective degrees of

freedom. This was first realized by normal mode analyses of small proteins[78, 79, 80]. In nor-

mal mode analysis, the potential energy is approximated harmonically and the collective modes are

obtained by diagonalizing the Hessian matrix in a local energy minimum. PCA, and the related quasi-

harmonic analysis[81, 82, 83, 84] and singular value decomposition[85, 86], have shown that even

beyond the harmonic approximation protein dynamics are dominated by few collective modes. In

particular, these methods showed that it was generally possible to describe about 90% of the total

atomic displacement of a protein with only 5-10% of the collective degrees of freedom[50, 87]. This

has led to the concept of theessentialsubspace, which is spanned by a small number of the PCA

modes with the highest fluctuational amplitudes. It could be shown that in this way PCA separates

protein dynamics in two kinds of modes. The fluctuational distribution of the non-essential (small

amplitude) modes is well approximated by a Gaussian. Thus, these modes are calledquasi-harmonic,

and are considered to constitute near constraint degrees of freedoms[88, 89]. For the large ampli-

tude (essential) modes, on the contrary, this approximation is inaccurate, such that they are called

anharmonic[88, 89]. It was argued that only the latter describe functional relevant motion, since the

anharmonicity results from rare transitions between multiple minima, while the motion within the

minima is rather quasi-harmonic[88, 89, 90].

As a consequence, the dynamics in the essential subspace, denoted as essential dynamics, are often

in the primary focus of computational studies[91, 92, 93, 94, 95], enhanced sampling techniques[96,

97, 98] or simple models of protein dynamics[90, 99, 100, 101]. To investigate whether the essential

PCA modes are suitable to serve as conformational coordinates within the CLD framework, we need

13
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to establish that (a) the timescales between essential and non-essential PCA modes must be partially

separated, and (b) the essential modes must describe also the long time dynamics sufficiently well.

Essential PCA modes indeed describe slow motion, because via the equipartition theorem the

large amplitude modes are connected with a slow effective frequencyωeff
i =

√
kT

〈c2i 〉
[87]. However,

the timescale separation needs to be investigated more systematically, because a slow effective fre-

quency does not rule out minor but significant fast contributions to the dynamics of an essential mode.

Therefore, we are going to analyze in Sec. 2.4 the power spectra of all principal modes, in order to

see whether and under which conditions PCA is able to filter out purely slow motions.

Furthermore, we need to establish that the essential subspace obtained from a short MD simula-

tion describes a considerable and sufficient amount of the overall protein motion observed on long

time scales. This question about the convergence of principal modes has led to considerable dispute.

Amadei et al. advocated a fast convergence[102], whereas Balsera et al. strongly questioned the

suitability of principal modes to describe protein dynamics on long time-scales[52]. This controversy

stems from a different perception of convergence of principal components. Amadei et al. found in2 ns

simulations evidence on a remarkably stability of the directions of single eigenvectors[102]. Balsera’s

rejection of principal modes, however, was mainly based on the slow convergence of the fluctuational

amplitudes[52]. Because these amplitudes are not important for the use of the PCA modes within the

CLD framework, the findings of Amadei et al. are more relevant to us.

Nevertheless, both antagonistic studies are based on short simulations — due to the limited com-

puter power at their time — rendering the judgment of the suitability of principal modes for description

of protein motion on long time scales a precarious extrapolation. Therefore, we resolve this question

by analyzing in Sec. 2.5 how well principal components computed from short MD simulations can

describe the dynamics observed in a much longer (i.e., 450ns) MD simulation of crambin. Besides, we

depart from Amadei’s work not only by means of much longer simulation time, but also by adopting

a new measure of stability (cf. Sec. 2.3.3) that is particular suited to answer our question.

In the subsequent section we introduce PCA as maximization of fluctuational amplitude and report

its basic properties. Since the following investigations are based on extended MD simulation, we

sketch its principles in Sec. 2.2 and use the opportunity to introduce in Sec. 2.3.1 all simulation

systems used within this work.

2.1 Theory of principal component analysis

We shortly review the most common derivation of PCA to illustrates its basic properties. PCA is

applied to ensembles of protein structures
{
r(k)
}

k=1...M
, wherer = (r1, r2, . . . , rN )T denotes the

positions of itsN atoms in three dimensional space and angular brackets denote the ensemble average

〈f(r)〉 = M−1
∑M

k=1 f
(
r(k)
)
. PCA aims at finding linear orthogonal projectionsci = aT

i (r− 〈r〉),
where theai are unit-vectors, such that the cumulative variances of the projections to the firstm

modes,σ2
m =

〈∑m
i=1 c

2
i

〉
, are maximized for allm = 1 . . . 3N . The ci are then calledprincipal
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components.

Now we show that the mode vectoraT
i corresponds to the normalized eigenvector associated with

the i-th largest eigenvalue of the covariance matrix of atomic displacements,

C = 〈(r−〈r〉) (r−〈r〉)T〉.

Without loss of generality it is assumed that〈r〉 = 0, i.e., C =
〈
rrT
〉
. First, the variance of

the first principal componentc1 is maximized, i.e.,m = 1, and, subsequently, the other principal

components are obtained by a simple repetition of the steps withm > 1.

A maximizera1 of the varianceσ2
1 =

〈
aT

1r
(
aT

1r
)T
〉

=
〈
aT

1rr
Ta1

〉
= aT

1

〈
rrT
〉
a1 under the

constraint‖a1‖2 = 1 must solve the normal equation

0 =
〈
rrT〉a1 − λa1, (2.1)

which is obtained by differentiation with respect toa1 of the Lagrangian function

Lλ (a1) = aT
1

〈
rrT〉a1 − λ

(
‖a1‖2 − 1

)
,

whereλ denotes a Lagrange multiplier. Eq. (2.1) yields the necessary condition that the maximizer

a1 has to be an eigenvector of the covariance matrix
〈
rrT
〉

corresponding to an eigenvalueλ. More-

over,λ = aT
1

〈
rrT
〉
a1 = σ2

1, i.e., the maximum variance is given by the largest eigenvalue and its

corresponding eigenvector.

After the firstd−1 projection vectorsai have been identified, the subsequent vectoraT
m is obtained

by maximizing the cumulative varianceσ2
m =

〈∑d
i=1 c

2
i

〉
= σ2

m−1 +
〈
aT

mr
(
aT

mr
)T
〉

keeping the

firstm− 1 vectors, and thus the varianceσ2
m−1, fixed. This yields, repeating the steps above, thataT

m

is the eigenvector ofC corresponding to them-largest eigenvalue.

An illustrative alternative is to define principal components as the projectionsci for

which the reproduction error
〈
‖r− r̂m‖2

〉
is minimized. Them-dimensional reproduction

r̂m = AT (c1, c2, . . . , cm, 0, . . . , 0)T, where the rows ofA are formed by the vectorsaT
i , is the

motion in the original3N -dimensional space, which can be described using onlym degrees of

freedomci. The minimization of the reproduction error is equivalent to maximization ofσ2
m〈

‖r− r̂m‖2
〉

=
〈
rTr− rTr̂m − r̂T

mr + r̂T
mr̂m

〉
,

which yields withr = AT (c1, c2, . . . , c3N )T due to
〈
rTr̂m

〉
=
〈
r̂T
mr
〉

=
〈
r̂T
mr̂m

〉
=
〈∑m

i=1 c
2
i

〉
=

σ2
m that 〈

‖r− r̂m‖2
〉

=
〈
rTr
〉
− σ2

m.

Thus, using PCA the dimension reduced description of the protein dynamics has the smallest repro-

duction error that is possible to achieve with a given numberm of collective degrees of freedom.
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This property of PCA renders it particularly useful in the context of CLD. The covariance matrixC,

which yields the principal modes by diagonalization, is computed from an MD ensemble. There-

fore, we describe in the following section the method of MD simulations, which is used to generate

MD ensembles as reported in Sec. 2.3.1, and explain the computation ofC from the generated MD

ensembles in Sec. 2.3.2.

2.2 Principles of Molecular Dynamics Simulation

Classical molecular dynamics (MD) is an atomistic simulation method, where:

• each atom is treated as a point mass,

• simple force rules describe the interactions between atoms

• trajectories are generated integrating Newton’s equations, and

• thermodynamic statistics and kinetics are extracted from the motion of the atoms.

Since the details of MD simulations are not of central importance for our work, we just shortly sum-

marize its principles and refer to the plentiful literature for detailed accounts[103, 104, 105, 106].

The goal of MD simulations of proteins is an accurate description of the dynamics of molecu-

lar systems containing about103 to 106 interacting atoms. The large number of interacting particles

requires basically three drastic approximations upon the exact description with the time-dependent

Schrödinger equation. First, the Born-Oppenheimer approximation separates off the electronic de-

grees of freedom and describes their effect on the nucleic degrees of freedomr = (r1, r2, . . . , rN )
in form of a potential energy surfaceV (r). Second, the motion of the nuclei in this potential energy

surface is described classically by Newton’s equations of motion

mi
d2ri(t)
dt2

= −∇iV (r1, r2, . . . , rN ),

wheremi andri is the mass and the position of thei-th nucleus. These two approximations are the

basis of most so calledQuantum Mechanicsmolecular dynamics methods[105]. However, to obtain

the potential energy and its gradient by solving the time independent Schrödinger equation for the

electronic degrees of freedom is computationally expensive and limits those methods to small systems

and short simulation times. Therefore, a further approximation is applied, that is the introduction of a

semi-empirical force field, which approximatesV (r) by a large number of functionally simple energy

terms, e.g., we use here,

V =
∑

bonds i

V i
B +

∑
bond angles j

V j
α +

∑
extra planar angles k

V k
imp +

∑
dihedrals l

V l
D +

∑
pairsα,β

(
V α,β

q + V α,β
vdW

)
.
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The simple energy terms, are harmonic (e.g.,VB, Vα andVimp) or motivated by physical laws (e.g.,

ColoumbVq and Lennard-JonesVvdW). They are defined by their functional form and a small number

of parameters, e.g., an atomic radius forVvdW. The number of energy terms, their functional forms,

and their individual parameters can differ substantially between different force fields. Thereby, the

single parameter, e.g., an atomic radius, carries only limited information on its own, but is an essential

part to yield the correct dynamics in the context of the whole force field. The parameters are usually

determined together in an iterative process, using experimental data, quantum-chemical calculations,

or comparisons of thermodynamic data with suitable averages of small molecule MD ensembles. A

large number of such force fields have emerged, e.g., OPLS[107], CHARMM[108], GROMOS[109],

AMBER[110], MM3[111]. Here OPLS and GROMOS were used.

Any observable that can be connected to macroscopic experiments has to be defined as an en-

semble average〈A〉ensemble, as prescribed by statistical mechanics. The ensemble average, however,

cannot be obtaineddirectly from the single replica of the protein system described by MD. Never-

theless, the ergodic hypothesis, which is generally assumed to apply for protein dynamics, allows the

indirect computation of ensemble averages as time averages from such single replica MD simulations

〈A〉time = lim
T→∞

1
T

∫ T

t=0
A (r(t),p(t)) dt.

Alternatively, non-equilibrium observables, e.g., escape times, can be obtained by averaging over

a large number of relaxation simulations, whose starting conditions are drawn randomly from an

appropriate ensemble[112, 113].

The above approximations lay the foundation for a practical realization of molecular dynamics

simulations of proteins, as it is done, e.g., in the GROMACS software package[114], which was used

in this work and whose algorithms and methods will be sketched in the following:

Newton’s equations of motion are iteratively solved in steps on the femto-second scale by means of

the leap-frog algorithm[115], which has the advantage that the expensive force calculation is done only

once per integration step. To avoid artifacts from the boundaries such as evaporation, high pressure due

to surface tension, and preferred orientations of solvent molecules on the surface, periodic boundary

conditions are applied. In this way the simulation system does not have any surface. This, however,

may lead to new artifacts if the molecules also interact with their periodic images due to the long-

range electrostatic interactions. These periodicity artifacts are minimized by increasing the cell size.

Different choices of unit cells, e.g., cuboid, dodecahedron, or truncated octahedron allow an improved

fit to the shape of the protein, and, therefore, allow reduction of the number of solvent molecules, while

simultaneously keeping the crucial protein-protein distance high.

A solution of Newton’s equations conserves the total energy of the system (NVE ensemble). How-

ever, in real systems a molecular subsystem of the size studied in the simulation constantly exchanges

energy with its surrounding. To be closer to reality, this energy exchange should therefore be intro-

duced to the simulation. Thus, the temperatureT of the system is kept constant by applying one of
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many proposedthermostats[116, 117, 118]. The popularBerendsen thermostat,which simply rescales

the velocities each step, was applied here[117].

In addition to the heat bath coupling, real biological systems are subjected to a constant pressure

of usually 1 atm. Therefore, in the simulations, isobaric ensembles were generated by applying the

Berendsen barostat,which rescales the coordinates each step[117]. Thus, NPT ensembles are created.

Additionally a couple of measures are taken purely to increase computationally efficiency. These

are parallelization, constraining bonds to increase the time-step, reduction of particle number by re-

placing aliphatic carbon centers with compound atoms (for GROMOS96 force field), and the special

treatment of non-bonded forces with Ewald-Summation techniques.

2.3 Methods

2.3.1 Generation of MD ensembles

In the following we report the particular methodical details for all molecular dynamics (MD) simula-

tion carried out within this work using the GROMACS simulation suite[114].

Lincs and Settle[28, 27] were applied to constrain covalent bond lengths, allowing an integration

step of2 fs. Electrostatic interactions were calculated using the Particle-Mesh-Ewald method[119,

120]. The temperature was kept constant by separately coupling (τ = 0.1 ps) the peptide and solvent

to an external temperature bath[117]. The pressure was kept constant by weak isotropic coupling (τ =
0.1 ps) to a pressure bath[117].

Crambin

Two molecular dynamics simulations of crambin, CR1 and CR2, were started from the crystal struc-

ture (Protein Data Bank entry 1CBN[121]). The simulations were carried out with the GROMOS96

force field F49A1[122]. The protein was solvated in 2718 SPC water molecules[123]. The total sys-

tem size comprised 8563 atoms. The simulations were carried out using periodic boundary conditions

in a dodecahedronal box. Simulation CR1 was run for450 ns, and coordinates were recorded every

0.1 ps. To obtain high-resolution Fourier spectra, an additional simulation, CR2, was performed for

100 ps, with coordinates and velocities recorded every2 fs timestep.

Neurotensin

Several molecular dynamics simulations of neurotensin were carried out, using the OPLS all atom

force field [107]. Neurotensin, a peptide with the sequence Ac-RRPYIL[124], was solvated with 2246

TIP4P water molecules[125] and 2 Cl− counter ions in a cubic box. A first simulation was started

from an extended configuration and equilibrated for10 ns. The90 ns simulation NT1 was started from

the last snapshot of the equilibration, and coordinates were recorded every 1ps. A second simulation

NT2 of length63 ns, was started from the last snapshot of NT1, and positions and velocities were
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recorded every10 fs, which allowed for the computation of velocity autocorrelations without aliasing

artefacts.

Additionally, eight500 ps simulations, NTSi , i = 1 . . . 8, were started from snapshots of NT1

selected for their mutually large root mean square differences, and positions and velocities were

recorded every10 fs.

T4 Lysozyme

A molecular dynamics simulation of coliphage T4 lysozyme (T4L),117 ns long using the OPLS all

atom force field [107], was started from the crystal structure of a M6I mutant (PDB entry 150L chain

D[126]). The protein was solvated in 8898 TIP4P water molecules[125] and 8 Cl− counter ions using

a rectangular box.

B1 domain of Protein G

Two Molecular dynamics simulations of the B1 domain of streptococcal protein G (GB1 and GB1/2),

using the OPLS all atom force field [107], were started from the crystal structure (Protein Data Bank

entry 1PGB[127]). The protein was solvated in 4651 TIP4P water molecules[125] using a cubic box.

Four sodium ions were added to the simulation system in order to compensate for the net negative

charge of the protein. Simulations were run for100 ns (GB1/2) and200 ns (GB1), respectively.

2.3.2 Recording of trajectory data

Sampling frequency

In those instances, where we are interested in autocorrelation functions or frequency distributions of

the motion, special care was taken to avoid aliasing artifacts. In signals sampled with a finite step

size∆t any frequency componentf above theNyquist frequencyfc = (2∆t)−1 will be indistinguish-

able from an oscillation, which differs fromf by a multiple of∆t−1, e.g., a slow oscillation in the

range0 . . . fc[128]. Thus, in sampled data high frequencies abovefc contribute spuriously to the low

frequency spectrum, which is calledaliasing. Note that velocity autocorrelation functions can suffer

from aliasing effects, too.

To avoid any aliasing we sampled all velocities with a timestep of∆t = 10 fs, which corresponds

to a Nyquist frequency of50 ps−1. Test computations with sampling-timestep∆t = 2 fs asserted that

all observed frequency contributions were well below50 ps−1.

Collective Coordinates with principal component analysis

We used PCA to extract collective coordinates from MD simulations. Since we were interested in the

internal protein motion only, overall translational and rotational motion was removed in a first step

from the recorded positioñr. This was achieved by moving the center of massr̃cm into the origin
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and subsequent least squares fitting to a reference structurerref, which yields a rotationR, such that

r = R (r̃− r̃cm). As reference structure we chose the crystal structure or, if not available, the starting

structure of the simulation.

Principal component analysis (PCA) was carried out by diagonalizing the covariance matrix

C = 〈(r−〈r〉) (r−〈r〉)T〉, where angular brackets denote averaging over an MD trajectory. The

eigenvectors ofC yielded the PCA modes{aj}j=1...3N , and positions projected onto modej were

obtained ascj = aT
j (r− 〈r〉).

For consistency with the positions, the rotational and translational motion had to be removed from

the recorded velocities̃v(ti). Therefore, the translational and rotational contributions to the velocities

were computed from the time dependence of both, the displacement vectorr̃cm(ti) and the rotation

matrixR(ti). Corrected velocitiesv(ti) were given by removing these contributions

v(ti) = ṽ(ti)−∆t [r̃cm(ti−1)− r̃cm(ti) + R(ti−1)x(ti)−R(ti)x(ti)] , (2.2)

where∆t denotes the sampling interval. Thus, for the projected velocitiesċj(t) = aT
j vc(t) consis-

tency with the projected positions was achieved, i.e.,cj(t) =
∫ t
0 ċj(τ)dτ + cj(0).

2.3.3 Convergence of conformational subspaces

Here we describe the stability measure that was used to quantify how well principal components

derived from short MD simulations can also describe the fluctuations observed in long MD simu-

lations. In particular, this measure should quantify the fraction of the protein dynamics that can be

described with a given subset of principle components, which is not achieved by the usually employed

measures[50, 102, 129, 130]. Instead, we computed the average reduction in observed fluctuation am-

plitude upon projectionP on to a subspace of given dimensionm, as the similarity

Υ =

√√√√〈‖P (x)‖2

‖x‖2

〉
. (2.3)

In order to use the similarityΥ as stability measure, we applied the projectionP , given by a set of

principle components derived from a short simulation, to an ensemble derived from a (different) long-

time simulation. Therefore, the average was evaluated by projecting each fitted (see above) position

x of the ensemble CR1 to PCA modes{aj}j=1...m, such that‖P (x)‖2 =
∑m

j=1(aj · x)2. Note, that

our similarity measure differs from the one previously proposed[50],√√√√√
〈
‖P (x)‖2

〉
〈
‖x‖2

〉 =

√∑m
i=1 σ

2
i∑3N

j=1 σ
2
j

,

whereσ2
i denotes the eigenvalue of PCA modeai. The advantage of the measure Eq. (2.3) is that it
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goes beyond a Gaussian approximation of the ensemble density. It also improves upon the measure

proposed in Ref. [102], by taking into account amplitudes.

The PCA modes were obtained from short fragments of CR1 with differing lengthT ranging from

100ps to400ns. The mean similaritȳΥ was computed fromM fragments of the same length, with

error bars computed as∆Υ =
(∑M

i
1

M(M−1)

(
Υ− Ῡ

)2)−1/2
. For fragment sizes below50ns, 5

fragments were chosen randomly, for larger fragment sizes, 2-5 (overlapping) fragments were chosen

with a separation of50ns. Snapshots from the fragments were taken every 0.1ps forT < 500ps and

every1ps forT > 500ps, respectively.

2.3.4 Frequency Spectra

Spectral densitiesgj of a PCA modeaj were computed from the discrete Fourier transform of the

projected velocityvk as

gj(ω) =
|Xj(ω)|2

2π
,

whereXj(ω) =
∑N−1

k=0 vk · aj exp (−iωk∆t/N), wherevk denoteM velocities sampled with inter-

vals of∆t.

2.4 Separation of timescales

In this section we investigate whether and how principal component analysis (PCA) can be applied

to identify slow collective modes suitable for CLD by considering molecular dynamics of the protein

Crambin. To this end the vibrational density of states along different PCA modes was analyzed.

Furthermore, because usually PCA is carried out on subsets such asCα-atoms only[40, 131], we also

analyzed the influence of such a preselection of atoms on the timescale separation properties.

Figure 2.1 (a-d) shows examples of frequency distributions of the MD trajectory CR2 projected

on single PCA modes. Panel (a) and (c) show the first mode of PCA carried out on allCα-atoms

and heavy atoms, respectively. A corresponding high index mode (Cα: 84th / 138 modes and heavy

atoms: 601th/ 981 modes) was plotted in panel (b) and (d). The first mode of the PCA carried

out onCα-atoms, i.e., mode 1/Cα, (panel a) showed the expected slow contributionsν < 5ps−1.

With similar weight, however, intermediate and also fast dynamicsν ≈ 20ps−1 contributed to this

mode. The latter are likely to result from angle vibrations, which occur at such timescales. Higher

frequencies, corresponding to bond vibrations, were hardly seen, because these are suppressed by the

used constraints. The density of states of mode 84/Cα in panel (b) lacks contribution of the slowest

motions, but shows hardly any change to mode 1/Cα in the distribution of the remaining frequencies.

In contrast, the two corresponding modes obtained by PCA carried out on all heavy atoms showed

a significantly improved separation of spectra. Both showed narrower frequency distributions than

theCα-based modes. The spectrum of mode 1/heavy (panel c) contained only frequencies below

ν < 5ps−1, whereas mode 601/heavy showed only frequencies aboveν > 10ps−1.



22 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

0 0.2 0.4 0.6 0.8 1
0

10

20

30

mode fraction

m
ea

n 
fre

qu
en

cy
 (p

s1 )

CA
heavy atoms
all atoms
backbone

0 10 20 30 40 50
0

0.5

1

1.5

freq (ps -1)

de
ns

ity
 o

f s
ta

te
s 

(p
s)

CA mode 1

0 10 20 30 40 50
0

0.5

1

1.5

freq (ps -1)
de

ns
ity

 o
f s

ta
te

s 
(p

s)

CA mode 84

0 10 20 30 40 50
0

1

2

3

4

freq (ps -1)

de
ns

ity
 o

f s
ta

te
s 

(p
s)

heavy atoms mode 1

0 10 20 30 40 50
0

1

2

3

4

freq (ps -1)

de
ns

ity
 o

f s
ta

te
s 

(p
s)

heavy atoms mode 601

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

mode fraction

σ 
(p

s−1
)

CA
heavy atoms
all atoms
backbone

a

d

e f

b

c

Figure 2.1: Comparison of spectral densities for different PCA modes. PCA was carried out on the four different
atom sets,Cα-atoms, backbone, heavy atoms, and all atoms. Sample densities of states corresponding to these
PCA modes are shown exemplary for individual modes(a-d) and are characterized by their averages(e) and
widths(f). To facilitate comparison despite different number of modes, the mode axis was normed to 1.
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To gain a more systematic overview we plotted the mean (Fig. 2.1e) and width (Fig. 2.1f) of

the frequency distribution for every mode and for the four analyzed atom sets,Cα-atoms, backbone,

heavy atoms, and all atoms. For theCα-atoms, the nearly constant mean and the constantly large

width underscored the lack of proper timescale separation. In contrast, for the heavy atoms, the

strong dependence of the average frequency on the mode index, together with the initially small

widths, shows that, indeed, a much improved separation is achieved, as was suggested already by the

examples (cf. Fig. 2.1c,d). An intermediate result is obtained for backbone atoms; the mean of the

slightly broader frequency distribution increases, but with a smaller slope.

Obviously, the separation of time scales improved with the number of atoms used for the PCA. To

rule out that this is merely due to the different number of degrees of freedom, we carried out a similar

analysis for neurotensin (6 residues) and HLA (385 residues) (the MD simulation of HLA-B27 is

described in [132]). Both systems showed the same dependency of the time scale separation on the

selected atom set (results not shown). In particular the first of the1155 Cα modes showed strong high

frequency contributions. This confirmed that the selection of the correct atom set is crucial to extract

slow modes with PCA, independent of the system size. In all cases the best - and sufficient - timescale

separation is achieved only if the PCA involves all heavy atoms.

Does inclusion of hydrogen atoms further improve the time scale separation? Figure 2.1e shows

that the improvement is small. The high frequency motion of these light particles is largely uncoupled

from the slow modes. This, is reflected in an increased mean frequency only in the last quarter of the

modes. Thus, an exclusion of the hydrogen atoms does not change the dynamics of the slower modes.

These findings show that PCA is able to identify systematically slow modes describing conforma-

tional motion, as expected. Moreover, the analysis revealed a strong improvement of the quality of

this separation if all heavy atoms of the protein participated in the collective modes.

An explanation needs to be found for the counterintuitive intrusion of high frequency motion in

modes like 1/Cα. From the effective frequencyωeff and accordingly the equipartition theorem one

would expect a separation of timescales, which is, however, only seen for PCA carried out on all

heavy atoms. Possibly, the reason for that is that in the first case atoms are excluded from the PCA

which are strongly coupled to the analyzed ones. For example consider motion in a three dimensional

highly elliptical harmonic well, whose cartesian degrees of freedom are highly coupled, such that

the principal axes are very different from the coordinate axes. If PCA is applied to all degrees of

freedom, it finds the three principal axes of this ellipse. One very short, with fast frequency, and

the others longer, with slower frequencies. However, if PCA is carried out on only two of the three

original degrees of freedom then obviously the true principal axes which are not in the plane of the

considered two degrees of freedom cannot be found. Therefore, high frequency motion is mixed into

the slow frequency motion and cannot be separated off anymore. This simple example of three highly

correlated 1-d atoms illustrates what might cause the break-down of PCA if strongly coupled atoms

are excluded, as it is the case with PCA onCα-atoms. On the other hand, exclusion of hydrogen

atoms only, does not impede the expected separation of timescales, because their motion does not
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Figure 2.2: Convergence of conformational subspaces for Crambin.(a) Similarity (Υ, Eq. (2.3)) between PCA
subspaces of different dimensionality (cf. legend in (b)) obtained from varying short fragments (cf. abscissa) of
the450ns-trajectory CR1 and the whole ensemble(b) same as figure (a), but the similarities are normalized by
the maximally achievable similarity for the respective subspace dimensionality.

couple strongly enough to the heavy atom motion.

2.5 Convergence of conformational subspaces

For the formulation of the CLD we proposed to use as conformational subspace the low-frequency

principal components or, embedded within this space, curved coordinates. Therefore, we need to

test whether and to what extent a small number of principal components obtained from short MD

simulations can describe the major part of protein dynamics also on relatively long timescales. To this

end we carried out PCA on varying short fragments of the 450ns MD simulation, CR1, of the protein

Crambin.

The similarityΥ between the whole ensemble and subspaces obtained from such fragments were

computed for a wide range of subspace dimensionalitiesm = 10 . . . 680, i.e., number of principal

components used to describe the protein motion. Figure 2.2a shows that these similarities were mono-

tonically increasing with larger fragment size (horizontal axis), and that also for a given fragment size

the similarity increased if the PCA subspace is enlarged (different curves). The results for the largest

fragment size, thereby, reflected the well-known result that ~5% of the eigenvectors describe ~90% of

the motion[50] (e.g., the curve corresponding to m=40 reaches 0.9 in Figure 2.2a).

Focussing on the dependence of the similarity on the fragment size, Figure 2.2b shows the curves

normalized by their respective maximum similarity. In particular, a PCA subspace ofm = 100, i.e.,

10% of all eigenvectors, computed from a short MD simulation of length 3ns could describe 86 %

of the whole ensemble generated in a 450ns simulation, which was 90% of the maximally achievable

limit of 96% for a subspace of that size. Apparently, already subspaces from short simulations describe

a large fraction of the long time protein dynamics.
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Note that for all subspace dimensions two regimes of the similarity curves are seen. Above25ns,

their slope decreases significantly, and, therefore, not much is gained using larger trajectory fragments.

A similar leveling off is found between300ps− 2ns, but only for the larger subspaces.

These results show, at least for the protein Crambin, a remarkably fast convergence of the con-

formational subspace. Hence, a few ns of simulation time suffice to derive a suitable conformational

subspace for long time CLD simulation with PCA.

This remarkable results needs to be discussed in the light of the arguments put forward by Balsera

et al.[52]. They claimed, in contrary to us, that slow convergence of the fluctuation amplitudes along

the largest PCA modes, would prevent such determination of long time-scale modes from short MD

simulations. Moreover, they compared the directions of eigenvectors of two independent235ps simu-

lations of a 375 residue protein and asserted from missing overlap that no convergence of the directions

was reached.

However, we do not agree with their conclusion that PCA subspaces of short MD simulations

cannot describe long time protein motion.

Firstly, the eigenvalues of the principal modes are not important for CLD. Secondly, the single

direction of an eigenvector is not relevant, but rather the whole space spanned by the most important

principal modes. For instance, the new direction of the first principal mode due to a freshly sam-

pled conformational substate, is nevertheless, as showed by our results, likely to be contained in the

conformational subspace spanned by them largest modes already, ifm is sufficiently large. Thirdly,

judging from our results obtained for a 46 residue protein, the small simulation time of235ps for a

much larger protein was slightly to short to see an onset of convergence.

To summarize, despite the well-known slow convergence of the complete information within PCA,

in particular its eigenvalues[102, 130, 129], about5ns of MD simulation of crambin suffice to define

a suitable subspace for CLD. This does not imply that a good sampling of the configurational space

was reached, but simply that several nanoseconds suffice for a good sampling of the near constraints

subspace, as already pointed out earlier[102].

2.6 Conclusions

We have shown that principal component analysis (PCA) is a suitable method to extract from molec-

ular dynamics (MD) simulations collective coordinates for the proposed framework of collective

Langevin dynamics (CLD). In particular, a few extracted coordinates are able to describe a large

fraction of the overall atomic displacement. As shown, this even holds true for remarkably long time

scales. For the protein crambin ten percent of the principal components obtained from MD simula-

tions shorter than5 ns were able to describe over85% of the total atomic displacement observed in

a 450 ns MD simulation. Furthermore, we were able to show that PCA, if based on the covariance

matrix of the fluctuations of all heavy atoms, is able to partially separate timescales. Thus, low in-

dexed modes constitute slow degrees of freedom, which are free of contributions from fast vibrational
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dynamics, and are, therefore, suitable for CLD.



...everything that living things do can be understood in terms of the jigglings and wigglings of atoms.

— Richard P. Feynman

Chapter 3

Generalized Correlation of Biomolecular
Dynamics

Correlated motions in biomolecules, in particular proteins, are ubiquitous and often essential for

biomolecular function[133]. Examples are allosteric signal transduction, as in G protein coupled

receptors (GPCRs)[134], or mechanical/thermodynamic energy transport, as inF0/F1-ATPase[135].

Furthermore, the energetics of protein function is often dominated by entropic contributions, which

are directly linked to correlated atomic motion[136, 137, 138]. Correct assessment of correlated mo-

tions, both experimentally and from theory and simulations, is therefore crucial for a quantitative

understanding of biomolecular function.

Collective Langevin dynamics (CLD) intrinsically describes correlated motions, since it is based

on collective coordinates as degrees of freedom. How accurate the correlated motions are represented,

however, is determined to a large extent by the choice of the collective coordinates. Thus, it is essential

for CLD to extract from molecular dynamics (MD) simulations such coordinates which describe the

correlations well.

This in turn requires that the MD trajectory used for extraction describes the correlations ac-

curately, which is optimally checked by a direct comparison of this observable with experiments

that probe correlations in the motions ofatoms in three dimensional space[54, 55, 56]. The estab-

lished method to quantify these correlations from MD simulations, in analogy to thePearson corre-

lation coefficient,rests on calculation of the normalized covariance matrix of atomic displacements,

Cij = 〈xi · xj〉/
√
〈x2

i 〉〈x2
j 〉, wherexi andxj are the positional displacement vectors of atomsi and

j, respectively, in the molecular fixed frame[58, 57]. As will be shown in the Theory Section, this es-

tablished approach, however, misses a considerable fraction of the correlated motions and, therefore,

usually underestimates atomic correlations. This limitation is mainly due to two assumptions.

First, estimates of correlations from the Pearson coefficient are only strictly valid ifxi andxj are

co-linear vectors, as already pointed out by Ichiye and Karplus[57]. Improved results are obtained

with the method ofcanonicalcorrelations[139] by choosing so calledcanonicalvariables which fur-

nish average co-linearity, i.e., for every pair of atoms a different coordinate transformation is applied.

27
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Figure 3.1: Correlations of random vari-
ables are defined as deviation of their prob-
ability distribution from the hypothetical
probability distribution of the independent
random variables. In the sketch, the cor-
relation between variables and (gray in the
scatter plot) is to be quantified. From the
marginal distributions and (black curves)
one computes the hypothetical joint dis-
tribution for independent variables (black
points). The difference between the given
joint distribution and the hypothetical un-
correlated joint distribution yields the cor-
relation measure, as illustrated at the top of
the graphic.

In contrast to the Pearson correlation coefficient, canonical correlations do not differentiate between

correlated and anticorrelated, i.e.,positively correlated,andnegatively correlatedmotion. Such a

distinction becomes problematic in the multidimensional case, and thus has to be dropped forany

meaningful correlation measure. Consider, e.g., two atoms which oscillate perfectly correlated in

parallel directions. If the oscillation direction of one atom is rotated until both atoms oscillate antipar-

allel, the Pearson correlation coefficient changes from1 to−1 and therefore has to cross zero, usually

after rotation by90◦, i.e., when the directions are perpendicular. In this case, the vanishing correlation

coefficient is highly misleading, because the motion of the two atoms is still perfectly correlated.

Second, use of the covariance matrix implies a Gaussian approximation of the underlying config-

urational space density. Therefore, this approach treats correlations in a quasi-harmonic, i.e., linear,

approximation. Thus, the Pearson correlation coefficient, as well as the canonical correlation method,

miss non-linear correlations. Higher moment corrections are conceivable, but notoriously suffer from

dramatic combinatorial increase of computational effort, and slow convergence, which renders the

treatment of large systems such as proteins impossible.

As an efficient alternative, we propose here a general approach to quantify any correlated motion.

The proposed generalized correlation measure rests on the fundamental definition of independence

of random variables. Accordingly, two random variables are independent, if and only if their joint

distribution is a product of their marginal distributions,P (X,Y ) = P (X)P (Y ). The basic idea is

to quantify the correlation between variablesX,Y as the deviation between both sides of the above

equation, i.e., by the deviation from the case of two independent random variables (Fig. 3.1). As

will be shown in Sec. 3.1.2, this definition is equivalent to defining a correlationC as the well-

known (Shannon) mutual information (MI)[53],C [X,Y ] = H [X] + H [Y ] − H [X,Y ] , where

H denotes the entropy of the random variables. This definition rests on the well-known inequality

H [X,Y ] ≤ H [X]+H [Y ], which becomes an equality if and only if both variables are independent.
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This formulation is equivalent to an infinite moment expansion. Truncation at second moments yields

a linearized mutual information which will be defined in Sec. 3.1.3.

In Sec. 3.1.1 we will review the definition of the Pearson correlation coefficient and its canonical

interpretation. Following this interpretation we will define thegeneralized correlation coefficient

which maps the mutual information with values in the range0, . . . ,∞ onto the more convenient

interval[0, 1) to allow a direct comparison with the Pearson correlation coefficient.

The impact of the known[57] problems of the Pearson correlation coefficient seems largely un-

derrated, and the canonical correlation approach[139], is generally not applied. Here we quantify the

inconsistencies and shortcomings of the Pearson correlation coefficient when applied to protein dy-

namics. To this end, two examples are studied, the B1 domain of Protein G and T4 Lysozyme. Using

these examples, we will also show that our generalized correlation measure does not suffer from these

shortcomings and, therefore, provides an accurate and complete quantification of correlations in pro-

tein dynamics. Note that the B1 domain of Protein G was chosen, because its experimental data was

available for the aspired comparison presented in Chapter 5.

3.1 Theory of correlation measures

At first we introduce some notation. In this chapter we focus on correlations of atomic displacements,

i.e., of vectors in3-dimensional space. In Chapter 4 it will be necessary to discuss also correlations

between one-dimensional variables. Therefore, we use the following notation. All positions of atoms

(or other variables) are denoted by a vectorr = (r1, r2, . . . , rN )T with N componentsri ∈ Rd, with

d = 3 for atoms (d = 1 for coordinates). We refer to positional displacements, i.e., the deviation from

the mean,x = r− 〈r〉, with

x =(x1,x2, . . . ,xN )T=
(
x

(1)
1 , x

(2)
1 , . . . , x

(d)
1 , . . . , x

(1)
N , . . . , x

(d)
N

)T

and 〈.〉 denoting the ensemble average. Withp(x) we denote the corresponding probability

density, which in the context of biomolecular dynamics is the canonical ensemble density

p(x) = Z−1 exp(−βV (x + 〈r〉)), whereZ is the partition function,β the inverse temperature, and

V the potential energy. Further we denote the marginal probability density bypi(xi) =
∫
p(x)dxj 6=i.

3.1.1 Pearson correlation coefficient

The established and intuitive method[57, 58] to quantify the correlation between pairs of components

(i, j) of the displacement vectorx is

r [xi,xj ] = 〈xi · xj〉/
(
〈x2

i 〉〈x2
j 〉
)1/2

, (3.1)

where the square brackets indicate the dependence on the whole ensemble ofxi,xj .
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In the one-dimensional case, r is called thePearson coefficient, and it has a very straightforward

and fairly general interpretation: Under the assumption that at least one variable is normally dis-

tributed, it yields thecoefficient of non-determination,

1− r2 =

〈
(xj − f(xi))

2
〉

〈
x2

j

〉 , (3.2)

of the bestlinear fit f (xi) to xj . For the multidimensional case, an analogous interpretation of the

Pearson coefficient is possible provided that the atoms(i, j) have unit variance
〈
x

(k)
i x

(l)
i

〉
= δkl and

the displacements are co-linear
〈
x

(k)
i x

(l)
j

〉
= rkδkl, i.e., the part of their covariance matrix containing

cross-correlations is diagonal. Then〈
(xj − f(xi))

2
〉

〈
x2

j

〉 =
1
d

d∑
k=1

(
1− r2k

)
,

which simplifies in the case of identical correlation coefficientsrk = r (k = 1, . . . , d) to thecoefficient

of non-determinationfor single variate variables, Eq. (3.2).

In the following discussion, and in accordance with common practice, we will use Eq. (3.1) also in

the multi-variate cases to define aPearson coefficient,due to its similarity with the usual single-variate

definition. However, in these cases several problems arise, which seemingly have not yet impeded

widespread use[57, 58, 140]. Firstly, the conditions co-linearity and unit variance are generally not

satisfied, thus invalidating the interpretation as a coefficient of non-determination. This raises serious

doubts regarding any conclusions drawn from this measure, particularly because any value for it can

be obtained for a given ensemble by scaling single coordinates. Secondly, the Pearson coefficient is

limited to detectlinear correlations, i.e., it yields the coefficient of non-determination regarding the

bestlinear fit. Non-linearfits, which can yield much lower coefficients of non-determinations, are

therefore not considered. This latter problem applies also to the one dimensional case. Consider, e.g.,

two atoms oscillating in parallel direction, but with a90◦ phase shift. They will give rise to a vanishing

correlation matrix element〈sin(ωt) sin(ωt+π/2)〉 = 0, and, thus, this fully correlated motion would

also not be detected. In configurational space, this motion generates an ensemble distributed along

the perimeter of a circle, which cannot be captured by the Gaussian approximation implied in any

formulation of correlated motion based on second moments.

3.1.2 Mutual information

Among the measures of correlation between random variables, mutual information (MI) is singled out

by its information theoretical background[53]. Accordingly, the joint probability distributionp(x) is
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the product of the marginal distributionspi(xi),

p(x) =
N∏

i=1

pi (xi) (3.3)

if and only if the componentsxi are independent, i.e., uncorrelated. Because Eq. 3.3 can be rewritten

as

ln
p(x)∏N

i=1 pi (xi)
= 0,

the ensemble-averaged deviation from the uncorrelated distribution is given by the mutual information

(MI)[141, 53],

I [x1,x2, . . . ,xN ] =
∫
p(x) ln

p(x)∏N
i=1 pi (xi)

dx. (3.4)

Only for fully uncorrelated motions, MI vanishes.

Evaluation of the right hand side of Eq. (3.4) relates MI to the more widely known measure of

information content (entropy)H[x] = −
∫
p(x) ln p(x)dx,

I [x1,x2, . . . ,xN ] =
N∑

i=1

H[xi]−H[x]. (3.5)

In contrast to the Pearson coefficient, this measure is scale-invariant. Even in-

dividual linear coordinate transformations in thed-dimensional subspaces, i.e.,

(x1,x2, . . . ,xN ) 7→ (T(1)x1,T(2)x2, . . .T(N)xN ), as given byd × d-matricesT(i), leave the

mutual information invariant, as little algebra shows. Here, we focus on the correlation between pairs

of atoms,

I [xi,xj ] = H[xi] +H[xj ]−H[xi,xj ]. (3.6)

For higher order correlations we refer to Ref. [142].

Having established that the mutual information provides us with a well defined and complete

measure of correlation, we note that it yields values in the range[0 . . .∞), which is unfamiliar and

has no obvious interpretation. Therefore we develop below an interpretation in terms of a coefficient

of non-determination,rMI , which quantifies how well the bestnon-linearmodel can describe the data.

To this aim, we generalize the above one-dimensional linear case, for which the Pearson coefficient

r directly allows this interpretation (Eq. (3.2)). In particular, we suggest to relateI [xi,xj ] to a more

intuitive Pearson-like coefficientrMI [xi,xj ] such that also in multidimensional and for non-linear

fit-functionsf , the connection to thecoefficient of non-determinationholds, i.e.,

1− rMI [xi,xj ]
2 =

〈
(xj − f(xi))

2
〉

〈
x2

j

〉 . (3.7)



32 CHAPTER 3. GENERALIZED CORRELATION

For fully correlated motions, thisgeneralized correlation coefficientrMI equals 1 and vanishes for

fully uncorrelated motion.

To this end we exploit that in the special case of Gaussian distributions (d = 1) or co-linear

Gaussian distributions of unit variance (d = 3) the Pearson correlation coefficient (r = 〈xi · xj〉 =
〈|xi| |xj |〉) captures all correlations. For this special case, one derives a one-to-one relationship be-

tween MI and the value of the Pearson correlation,

IGauss[xi,xj ] = −d
2

ln(1− r2). (3.8)

Starting from this relationship we define thegeneralized correlation coefficient, rMI , as the Pearson

coefficient of such a multi-dimensional Gaussian distribution, whose mutual information equals the

one we wish to interpret. From Eq. (3.8),

rMI [xi,xj ] =
(
1− e−2I[xi,xj ]/d

)− 1
2
, (3.9)

which, as it is derived from the mutual information, contains all correlations. Therefore, for vectors

of unit variance,rMI [xi,xj ] is always larger thanr [xi,xj ]. For multi-variant cases, this rule may

be violated due to the inconsistent scaling properties ofr, which is repaired byrMI . Note that the

Gaussian distribution used to definerMI will generally have a larger covariance than the original

distribution, because Gaussians have the highest covariance compared to all possible distributions

with the same MI[143].

We now turn to numerically estimating the mutual information from a given ensemble or molec-

ular dynamics trajectory. For high-dimensional variables, crude approximations, such as cumulant

expansions, are available[143]. For the correlation analysis of macro-molecular dynamics, however,

and in particular for the assessment of the correlated motion of atom pairs, density estimates for six-

dimensional subspaces suffice. Approaches resting onk-nearest neighbor distances[144] or kernel

density estimators[145] have proven to provide sufficiently accurate results for this purpose. The

required accuracy is indeed very high, particularly for small correlations, for which the entropies in-

volved nearly cancel out, hence small errors of the relatively large entropy terms lead to large errors in

the estimated mutual information. This problem is aggravated due to the large slope of the transforma-

tion Eq. (3.9), in the low-correlation regime, which further amplifies errors considerably. These strict

accuracy requirements hold also for many other applications of the concept of mutual information,

which recently instigated many developments[146, 147, 148, 149, 150, 144, 145].

3.1.3 Linear mutual information

The quite general and rigorous framework of Mutual Information also serves to single out non-linear

contributions to correlations. To this aim recall that the Pearson coefficient suffers from two flaws,

its inability to detect non-linear correlations and its unwanted dependency on the relative orientation

of the displacements. Thus, to separate the former from the latter, a reference quantity is required
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that suffers only from one of the two flaws. The linear mutual information defined below serves

this purpose. It has the additional advantage that its calculation does not require highly accurate and

computationally demanding density estimates. Rather it rests on the same Gaussian approximation

implied by the computationally much more efficient calculation of the covariance matrix, namely

g(xi,xj) =
1

(2π)d det
(
C(ij)

) exp
(
−1

2
(xi,xj)C−1

(ij) (xi,xj)
T
)
,

with the pair-covariance matrixC(ij) =
〈
(xi,xj)

T (xi,xj)
〉

. This gaussian is the harmonic ap-

proximation to the canonical density of atomic motion. Thus, the mutual information, which can be

computed analytical from this approximation, contains only linear correlations. The marginal prob-

abilities are computed accordingly, using marginal-covariancesC(i) =
〈
xT

i xi

〉
. In contrast to the

(general) mutual information, here, the required entropies are obtained analytically from the Gaussian

density approximations, i.e., from the covariance matrices,

H (xi,xj) =
1
2
[
2d (1 + ln 2π) + ln detC(ij)

]
.

From Eq. (4.1), the linear mutual information,

Ilin(xi,xj) =
1
2
[
ln detC(i) + ln detC(j) − ln detC(ij)

]
, (3.10)

is obtained.

Similarly to the interpretation of (general) MI, the coefficient of non-determination for the best

multivariatelinear fit is defined by Eq. (3.7) and (3.9). Linear MI (LMI) is a strict lower bound to

MI, because the Gaussian distribution maximizes entropy under the constraints of a given mean and

variance[53]. This is consistent with the definition of the generalized correlation coefficient and its

interpretation, because the inclusion of non-linear models will generally yield a higher coefficient of

determination than restriction to linear models.

3.2 Methods

Computation of Correlation Coefficients from Molecular Dynamics Simulations.

After a 5ns equilibration phase, coordinates every 10ps were used from MD simulations GB1 and

T4L. Thus 19500 and 11200 snapshots were used from GB1 and T4L, respectively. Translational

and rotational motions were removed by least squares fitting to theCα-atoms of the respective crystal

structures. The average structure〈r〉 was subtracted from the coordinatesr to obtain centered atomic

displacementsx. Correlations between displacements of theCα-atoms were quantified by Pearson

coefficients, Eq. (3.1), by linearized mutual information, Eq. (3.10), and by mutual information. For

the latter, the density estimator by Kraskov et al.[144] was used with nearest neighbor parameter
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k = 6.

3.3 Correlated motion in Protein G

We first compare both correlation measures, the Pearson coefficient, Eq. (3.1), and the generalized

correlation coefficient,rMI , Eq. (3.9), for the B1 domain of Protein G (Fig. 3.2a). As expected, all

correlations detected by the Pearson coefficient are also seen with the generalized correlation coef-

ficient. Many additional correlations are revealed byrMI , however, which are not revealed by the

Pearson coefficient. Furthermore, as will be analyzed in detail below, the purely geometrical (orien-

tational) perturbation of the Pearson coefficient creates patterns in the Pearson matrix which actually

are unrelated to any correlation and in this sense artificial.

Correlations detected by both methods are found along the diagonal and in two bands perpendicu-

lar to the main diagonal. The latter are due to the hydrogen bonded contacts between different strands

of the four-strandedβ-sheet. The correlations between strandsβ1-β2 andβ3-β4 are pronounced,

whereas the correlations between hydrogen bonding partners of the central neighborsβ1-β4, showing

up as band parallel to the diagonal, are weaker.

The broad region of high correlation along the main diagonal between residues 22 and 38 is caused

by the close packing of residues in theα-helix. The correlation between hydrogen bonded residues

in the helix is slightly weaker than correlation between opposingCα-atoms inβ-sheets. The reason

for this is that inβ-sheets, both neighbors of theCα-atom are tightly hydrogen-bond coupled to one

residue of the parallel strand, whereas in the helix the two neighbors couple to two different residues

in opposite direction.

New, so far undetected correlations, are seen in the generalized correlation matrix. These include

— less pronounced, but significant — correlations between theα-helix and the first double strand of

theβ-sheet (β1, β2), which are absent for the second double strand(β3, β4). This finding can also

be explained in terms of geometrical proximity. The helix of GB1 traverses diagonally one half of

theβ-sheet; starting above residues 50 and 1 of strandβ4 andβ1, respectively, it extends outwards

ending near residue 13 ofβ2 (cf. Fig. 3.2c). Therefore, the larger part of the helix is located far from

strands(β3, β4) and closely to strands (β1, β2), yielding correlations with the latter only, whereas the

residues in the preceding loop and the adjacent part of the helix are close enough to(β3, β4) to also

cause correlations with these strands.

In summary, the largest correlated motions observed in GB1 are rather due to geometrical prox-

imity than due to collective conformational motion, and, are in this sense, trivial. These large correla-

tions are, not surprisingly, captured by both measures, Pearson coefficient and MI. However, while the

Pearson coefficient focuses on the correlation inside secondary structure elements, mutual information

reveals many new and non-trivial medium strong correlations between different secondary structure

elements.
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Figure 3.2:(a,b) Generalized correlation coefficientrMI (upper left triangle) and Pearson coefficient|r| (lower
right triangle) correlation matrices for(a) the B1 domain of Protein G (GB1) and for(b) T4 lysozyme (T4L).
The strength of the computed correlation between two respective residues is color-coded, see color bars; note
that different color mappings are used to enhance contrast. Secondary structure elements are indicated by bars
in magenta (β-sheets) and cyan (α-helices). (c,d) Structure and superimposed three frames from the Protein
G (GB1) and lysozyme (T4L) trajectory, respectively, indicating the amplitude of the observed motion.(d)
For every residue the mean correlation with residues of the two domains D1 (15-46) and D2 (100-160) was
computed and color-coded.
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Figure 3.3: Matrix of purely non-linear
contributionsrMI − rLMI to the correlations
between atom pairs n T4 lysozyme, see text.
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3.4 Correlated motion in Lysozyme

The single protein domain GB1 characterized above is intrinsically rigid. Now we turn to T4

lysozyme (T4L), which exhibits two well-separated domains and significant conformational

inter-domain motions[151, 152]. Experimental and theoretical studies have shown that these domain

motions are essential for the function of this enzyme, allowing the substrate to enter and the products

to leave the active site[153, 154, 155, 156]. Atomic correlations have been analyzed extensively for

lysozyme using the Pearson coefficient matrix (Fig. 3.4b, lower right)[58]. Here we have calculated

the mutual information based generalized correlation coefficient matrix and focus on the new features

this analysis has revealed.

Figure 3.2b (upper triangle) shows that the mutual information successfully quantifies the highly

correlated motion within and between the two domains, D1, residue 13-50, and D2, residue 100-162,

of T4L (cf. Fig. 3.2). The second domain (D2) moves as two rigid blocks, formed by H4-H6 and

H8-H9 respectively, which are weakly linked by residues 118-121. Interestingly, the less correlated

linker residues are part of H7 and not, as one might expect, part of the loop region between helices.

Furthermore, the generalized correlation matrix shows that the inter-domain motion is not just a

simple hinge motion[154, 155, 157] with H3 and H4 (residue 62-90) forming the hinge region, as

one might expect. In fact, a typical hinge motions would imply smaller correlations for the hinge, as

indeed found for residues 85-98 (part of H4 and H5) and residues 62-74 (part of H3). Instead, part

of the hinge regions, namely adjacent parts of H3 and H4 (residues 75-84) correlate strongly with the

overall domain motion, which would not be the case for a simple hinge motion.

The N-terminal helix H1, which contains active site residues, moves correlated with both domains
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D1 and D2. However, in contrast to these domains, it shows only weak correlation to the aforemen-

tioned linker region around H4. These results are consistent with a previously conducted principal

component analysis[131], where the conformational motion of T4L could be described by a rigid

body closure and twist motion of domains D1 and D2. That study showed rigid co-motion of H1 and

D2 for the closure motion, and, for the twist motion, H1 moves with D1. This splitting up of the H1

correlation can now be understood by considering the non-linear contributions to the overall correla-

tion obtained as difference between mutual information and linear mutual information (Fig. 3.3). As

can be seen, the correlations between domains D1 and D2 are mostly linear in nature, while the corre-

lation of H1 with both domains has significant non-linear contributions. This explains why the rather

non-linear correlation of H1 with the domains was found to be distributed over twolinear principal

modes[131].

In contrast to the complete quantification of correlated motions by the generalized correlation

coefficient, the Pearson coefficient picks up only parts of these correlations, and many remain unde-

tected. This can give rise to a rather inconsistent picture, i.e., patterns in the results not reflecting

patterns of correlation, which is particular pronounced for T4 lysozyme (cf. Fig. 3.2b, lower triangle).

Although the two domains move as relatively rigid units, the Pearson coefficient quantifies the corre-

lations within the domains rather incompletely. While the Pearson coefficient does show correlations

within the first part of D1, the correlations between the first part of D1 and its last 10 residues (40-

50) seen by the generalized correlation coefficient are missing. Moreover, most correlations within

domain D2 are undetected. A particularly striking and obvious inconsistency would be the violation

of transitivity, i.e., two regions between which no correlated motions are detected, but which are both

correlated to a third one. Such a situation is indeed purported by the Pearson correlation coefficient,

which indicates a high correlation of D1 with the two regions, residues 100-118 and residues 130-150

of D2, but misleadingly low correlation between these two regions. Finally, the Pearson coefficient

does not detect H1 to be correlated with D1, and detects only a small fraction of the correlations be-

tween H1 and residues of D2. In some instances the Pearson correlation measure yields higher values

than the generalized correlation, which should, in principle, not happen. The two possible reasons,

the scaling dependency of the Pearson measure or numerical inaccuracies in the estimation of mutual

information, are discussed further below.

Thus, the proposed generalized correlation coefficient based on mutual information yields a much

more complete picture of the correlated motions which is consistent with — and extends — previously

applied principal component analysis[131]. In particular, whereas the Pearson correlation coefficient

captures most of the correlated motions within the B1 domain of Protein G, it misses many pronounced

correlated motions of lysozyme, which involve all active site residues and are likely to be functionally

important. The nature of this failure and the question under which conditions it is to be expected,

deserves closer inspection.
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3.5 Analysis of the failures of the Pearson coefficient

Figure 3.4 compares as scatter plots all elements of the generalized correlation coefficient matrices

with the respective elements of the Pearson correlation matrices, both shown in Fig. 3.2a,b. Results are

shown for both GB1 and T4L (Fig. 3.4a,b). For large correlations (rMI ≥ 0.8) the Pearson coefficient

r and the generalized correlation coefficientrMI give comparable results. For less correlated motions

(rMI ≤ 0.8), the Pearson coefficient rarely captures the full correlation, and often underestimatesrMI

considerably, yielding any value between zero andrMI . In fact, as quantified by the average underes-

timation 1
N

∑
ij |rij | /r

ij
MI = 0.48, only less than half of the correlations are revealed by the Pearson

coefficient. Below we analyze the causes for the erratic occurrences of their drastic underestimation.

As discussed in Methods, possible causes are a) the dependence on the relative orientation of the

displacements, b) the presence of non-linear correlations and c) lack of scaling invariance. We will

demonstrate below that the dependence on direction is in fact the main cause of the underestimation

enhanced by the presence of non-linear correlations.

We start the analysis by separating the effect of non-linear correlations from the purely linear

contributions. To this end, Figure??compares the generalized correlation coefficient discussed above

with the corresponding coefficient based onlinear mutual information (see Methods). As can be

seen, both agree well for GB1 except for numerical inaccuracies within the low-correlation regime.

In contrast, clear deviations for lysozyme point towards significant non-linear correlations. Indeed

as qualified by the histogram of deviation (inset) or quantified by1
N

∑
ij(rMI − rLMI )/r

ij
MI = 0.09,

the non-linear part of the correlation contributes up to10% to the overall correlation and, therefore,

accounts for a significant part of the correlation not described by the Pearson coefficient. (cf. crosses

in Fig. 3.4). Since both,rLMI andr, rely on the linear quasi-harmonic approximation, the remaining

approximately 40% of the undetected correlations — in fact the largest part — cannot be explained

by non-linear effects.

To quantify the (geometrical) effect of relative orientation of the atomic displacements on the

Pearson coefficient, the latter was separated into correlations of distances,

rabs[xi,xj ] = 〈|xi| · |xj |〉 /
(
〈xi〉 〈xj〉2

)1/2
, (3.11)

and average co-linearity

rdir [xi,xj ] =
〈∣∣∣∣ xi

|xi|
· xj

|xj |

∣∣∣∣〉 . (3.12)

Figure 3.5 compares the correlations of distances,rabs, with both, the linear generalized correla-

tion coefficientrLMI (black) as well as the Pearson coefficientr (red). As can be seenrabs is more

closely linked torLMI than to the Pearson coefficient, as is also quantified by correlation coefficients

of 0.88 vs. 0.64, respectively. In contrast, the average co-linearity is more linked to the Pearson coef-

ficient (correlation coefficients 0.47 vs. 0.87, respectively, data not shown), thus confirming that the

relative orientation of the atomic displacements perturbs the Pearson coefficient considerably. Indeed,
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Figure 3.4: Comparison of mutual infor-
mation based correlation measures with
Pearson correlation coefficients. For pairs
of Cα−atoms of (a) GB1 and (b) T4L,
both generalized correlation coefficients
rMI (dark gray circles) andrLMI (red
crosses) are plotted against the Pearson cor-
relation coefficient. (c) Comparison be-
tween linear and non-linear mutual infor-
mation. For GB1 (black) and T4L (gray) the
generalized correlation coefficients com-
puted from linear mutual information are
plotted against non-linear generalized cor-
relation. For T4L, the inset shows a his-
togram of the differences between both co-
efficients, with maximum of the distribution
at 0.04 and a mean of 0.09.
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Figure 3.5: Distance correlationsrabs com-
pared to the two linear correlation measures
rLMI (black) and Pearson coefficient (red).
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Figure 3.6: Relative (linear) divergence of
the Pearson coefficient∆ |r| = 1−|r| /rLMI

as a function of the average co-linearityrdir.
The colors quantify full (non-linear) corre-
lation rMI .
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as shown in Fig. 3.6, the average orientation is closely linked to the divergence of the Pearson coef-

ficient from the generalized correlation, quantified by a correlation coefficient of -0.78. Knowledge

of the relative orientations of the displacements alone, therefore, allows to predict when the Pearson

coefficient will fail to detect correlations. For high co-linearity, the Pearson coefficient quantifies the

correlation relatively well, whereas it systematically underestimates the correlation in cases where the

displacements are nearly perpendicular to each other.

Interestingly, additional consideration of the generalized correlation coefficient in Figure 3.6

(color-coded) shows that the very high correlation in lysozyme coincides exclusively with co-linear

motions — in which case the Pearson coefficient performs quite well. This is explained by the fact

that, for the case of protein dynamics, these high correlations can only arise from atoms confined

within secondary structure elements. That only medium strong correlations are missed by the Pearson

coefficient is, therefore, rather due to the specific properties of protein dynamics and not a merit of

the Pearson coefficient. Similarly, the high performance of the Pearson coefficient at high correlations

may hold only for dynamics and is not a general property of the Pearson coefficient.
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The only defect in the definition of the Pearson coefficient not discussed so far is its lack of

scaling invariance. Closer inspection of Figure 3.4 reveals atom pairs for which the Pearson coefficient

is slightly higher than therLMI . Since both measures are based on the same linear, i.e., harmonic

approximation, this cannot be explained with numerical estimation inaccuracies. We suggest as the

likely cause the improper scaling behavior, which yields an overestimation of the Pearson coefficient.

However, since the effect is small, we were not able to separate it from the other effects discussed

above, so that this hypothesis could not be proven.

We finally discuss the numerical inaccuracies mentioned above and described in Methods. For

certain atom pairs, the non-linear correlation is actually lower than the linear correlation (Fig.??),

which should not occur since linear mutual information is a strict lower bound to non-linear mutual

information (see Methods). However, here the mutual information is estimated from a finite number of

frames, which implies statistical inaccuracies. Because mutual information is a difference of relatively

large entropies the relative error increases for small correlations, which explains the deviations seen

in Fig. ?? for low mutual informationrLMI < 0.3. At higher correlations (rMI & 0.7) a small

systematic underestimation of MI is observed, as discussed in [144]. Taken together, accuracy can

be enhanced by using the larger value of both, the (analytical) linear and the (numerical) non-linear

mutual information.

3.6 Conclusions

We have derived a generalized correlation measure based on mutual information, which allows for

complete characterization and quantification of atomic correlations in proteins and other macromolec-

ular motion. It provides a consistent framework for analyzing correlations between coordinates,

atoms, and groups of atoms, and thereby overcomes the problems of the usually employed Pearson

correlation coefficient.

Firstly, both linear and non-linear contributions to correlation are accounted for. Moreover, a

linearized generalized correlation coefficient was derived within the framework of mutual informa-

tion which allowed separation of linear and non-linear contributions to correlation. For T4 lysozyme

the latter account for roughly 10% of all correlations. Secondly, our generalized correlation coeffi-

cient does not suffer from the artifacts of the established method which originate from the relative

orientation of the atomic displacements. This purely geometrical artifact of the Pearson coefficient

typically leads to underestimation of the correlations by more than 40%. Taken together, more than

50% of the correlations remain undetected by the established method, but are fully accounted for by

the generalized correlations coefficient.

Application to two proteins, the B1 domain of Protein G and coliphage T4 lysozyme, revealed

new information on their functionally relevant collective dynamics. In particular for lysozyme, the

established characterization of the domain motion in terms of a hinge motion has been extended

towards a more complex pattern of collective motions. This pattern is not revealed by the conventional
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Pearson coefficient matrix, which, in addition, conveyed misleading information.

The enhanced characterization of the collective motion provided by the generalized correlation

matrix also complements the analysis of collective motions with principal component analysis (PCA).

For example the assessment of non-linear correlations presented here, can explain the previous finding

by PCA that for T4 lysozyme the helix H1 moves either rigidly together with domain D1, as shown by

the first principal component, or, for the second principle component, H1 moves together with domain

D2[131].

Overall, particularly many inter-domain motions were revealed by the generalized correlation

coefficient. In contrast the Pearson correlation coefficient turned out to focus at the local correlations,

which often are due to spatial proximity within secondary structure elements and in this sense virtually

trivial. Particularly the inter-domain motions, however, tend to exhibit non-linear correlations, which

can now be captured by the generalized correlation.

We note that the presented definition of mutual information can be generalized to higher dimen-

sions. Accordingly, correlations between groups of atoms can also be quantified, e.g., between a

ligand and selected residues of its binding pocket. To this aim, the application of linearized mutual

information is straightforward. For the non-linear mutual information, the numerical estimation used

here may become inaccurate for larger numbers of atoms per group. In this case, parametric entropy

estimators will be superior[53].

The generalized correlation coefficient developed in this chapter is widely applicable to the expo-

nentially growing amount of configurational ensembles provided by molecular dynamics simulations

and from other sources such as NMR or Concoord[158]. This method will thus allow for the detection

and characterization of a large number of new functionally important protein motions. Moreover, it

facilitates direct comparison with experimental data, e.g., from X-ray diffusive scattering, NMR, or,

via entropy, from calorimetry. In Chapter 5 we use it to compare the discussed correlated motions of

the B1 domain of Protein G to measurements obtained with a new NMR method, which attempts to

probe these correlations.



Discontent is the first necessity of progress.

—Thomas A. Edison

Chapter 4

Full Correlation Analysis

For Collective Langevin Dynamics (CLD) we require suitable slow collective coordinates, which

enable us to describe the functionally relevant motions with a drastically reduced number of degrees of

freedom. We aim to extract these coordinates from MD trajectories, which is not a trivial problem[51].

The two most widely used methods to determine these motions are normal mode analysis (NMA)[78,

79, 80] and principal component analysis (PCA) (cf. Chapter 2). We have shown that the latter method

yields modes which are suitable candidates for a CLD approach.

However, it is not entirely clear which criterion one should apply to identify functionally relevant

motions. Since many functional processes involve large and slow conformational changes (as opposed

to small-amplitude fast thermal vibrations), one reasonable approach is to select those collective de-

grees of freedom which contribute most to the total atomic displacements seen in the trajectory. This

is achieved by PCA. A different approach, motivated by the desire to simplify the treatment by sep-

aration into weakly coupled modes, is NMA. For small molecules, this approach reliably predicts

infrared vibrational spectra, and it has also been successfully applied to calculate high frequency vi-

brational spectra of proteins[159]. However, it is unclear to what extent a harmonic approximation

to a single minimum of the potential energy surface can characterize the functional motion on the

complex frustrated multi-minima energy landscape of proteins[160].

This problem is partially circumvented by PCA, which rests on the covariance matrix of atomic

displacements rather than on the Hessian matrix. Accordingly, PCA yields a multivariate Gaussian

approximation to the canonical ensemble of the system, such that one can reinterpret principal com-

ponents as (uncoupled) normal modes in an effective harmonic free energy surface[81, 161]. Due to

this statistical mechanics approach to extract collective coordinates from MD simulations, PCA cap-

tures also motions that result from visits of multiple minima, which is a major advantage of PCA over

NMA for applications to proteins.

Unexpectedly at first sight, seeking those collective modes which accumulate the largest atomic

displacements, PCA is equivalent to diagonalizing the covariance matrix (cf. Sec. 2.1). Thus, PCA

identifies exactly those collective modes whose covariances vanish. However, because the covariance

matrix measures onlylinear correlations,non-linearcorrelations between the PCA modes can — and

43
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often do — persist, as already pointed out by Amadei et al.[50].

Here we present a new method, Full Correlation Analysis (FCA), to minimizeall correlations

between the collective degrees of freedom. Avoiding harmonic and linear approximations altogether,

we combine the advantage of PCA to use a statistical mechanics approach with the original objective

of NMA to yield uncoupled collective coordinates. The coupling between coordinates is quantified

by mutual information (MI) and subsequently minimized. This measure of correlation, which is sin-

gled out by its information theoretical background (cf. Sec. 3.1.2), quantifiesany correlation — in

particular, non-linear correlations and multi-coordinate correlations. In Chapter 3, MI was success-

fully applied to quantify the correlation in the motion ofpairsof protein atoms from MD simulations.

Here, we carry this idea further to full generality and minimize the MI of the whole system to yield

maximally uncoupled collective coordinates. This is achieved by selecting from all possible rotations

of configurational space the transformation with lowest MI.

For the implementation of FCA we adopt an efficient algorithm to minimize MI from the sig-

nal processing field. There, independent sources from mixed signals are extracted, e.g., by blind

source separation (BSS)[162] or independent component analysis (ICA)[141, 163]. The algorithms

developed for these methods differ in three main aspects. First, the estimation of MI can be either

cumulant based, parametric (e.g., FastICA[164]), or un-parametric (e.g., MILCA[165]). Second, for

the minimization of MI, diverse methods like stochastic descent, gradient descent or a direct solution

of the normal equations (e.g., FastICA) have been applied. Third, the resulting coordinates, can be

linear or nonlinear, e.g., MISEP[166]. Combining and selecting suitable features out of these existing

algorithms, we develop an algorithm tailored for the special requirements of FCA on biomolecular

dynamics. As first step we consider linear collective coordinates.

The chapter is organized as follows. In Section 4.1 we develop the minimization algorithm. In

the Section 4.3 its capability to extract uncoupled coordinates of a test-system with a known solution

is shown. Subsequently, FCA is applied to the 117ns MD trajectory of a T4 bacteriophage lysozyme,

which was already used in the previous chapter to analyze correlations of the atomic motions. Ad-

ditionally, FCA is applied to a 100ns trajectory of the hexapeptide neurotensin (cf. Sec. 4.4). In the

latter section, we compare, at first, the resolution of conformational subspaces of T4 lysozyme gained

by FCA and PCA. Then, we obtain free energy surfaces for two-dimensional subspaces spanned

by either FCA or PCA modes of neurotensin, and compare their ability to accurately describe the

conformational transitions of the peptide. Subsequently, we quantitatively analyze the differences of

amplitude, collectivity and anharmonicity of FCA and PCA modes, and assess the remaining coupling

between pairs of modes. Finally, the convergence of FCA modes is elucidated by applying FCA to a

multi-dimensional random walk.
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4.1 An Algorithm for Full Correlation Analysis (FCA)

4.1.1 Minimization of mutual information

As shown in Sec. 3.1.2,any correlation between atomic displacementsx =(x1, x2, . . . , x3N ), i.e.,

alsonon-linearandmulti-coordinatecontributions, can be quantified via the well-known (Shannon)

mutual information (MI) (cf. Eq. (3.5))

I [x1, x2, . . . , x3N ] =
3N∑
i=1

H[xi]−H[x], (4.1)

whereH[x] = −
∫
p(x) log p(x)dx denotes the entropy.

In the following we exploit this property by minimizing Eq. (4.1). In order to find those collective

modes for which Eq. (4.1) is minimized, we look for an orthogonal coordinate transformationR of

the cartesian displacement vectorx, such that the resulting coordinates

s(t) = Rx(t), (4.2)

s(t) = (s1(t), s2(t), . . . , s3N (t)) , minimizeI [s1, s2, . . . , s3N ].

This overall rotationR is gained iteratively by carrying out a sequence of rotations which respec-

tively act on two coordinatesxi andxj , i.e.,R =
∏N(N−1)/2

k=1 Rikjk
(ϕk), where

Rij(ϕ) · (x1, . . . , xi, . . . , xj , . . . , xN )T = (x1, . . . , x̃i, . . . , x̃j , . . . , xN )T , (4.3)

with

x̃i = cosϕxi + sinϕxj , x̃j = − sinϕxi + cosϕxj .

For such a rotation the change in MI is given by

∆I(ϕ) = I [Rij(ϕ)x]− I [x] = H [x̃i] +H [x̃j ]−H [xi]−H [xj ] . (4.4)

To find in a specific rotational plane the global minimum of∆I (ϕ) the angleϕ is optimized in

two steps. At first the whole interval
[
0, π

2

]
is sampled coarsely at 10 rotation angles{ϕl}l=1...10

and subsequently minimization is refined by the MATLABTM-function fminbnd on interval[ϕk −
∆ϕ,ϕk + ∆ϕ], whereϕk = min {ϕl}l=1...10 and∆ϕ the step-size.fminbnd uses a combination

of golden section search and parabolic interpolation to achieve this goal[167]. Note that during the

iteration process to find the optimal overall rotationR the same rotation plane is generally minimized

several times, because its optimum changes as soon as one of its coordinates is rotated during a

minimization of a different plane.

The algorithm can be summarized by the following steps:

(i) preprocessing (PCA is used to find an initial guess)

(ii) select rotation plane heuristically
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(iii) find angleϕ to minimize∆I(ϕ)

(iv) repeat from (ii) until no further minimization is possible

4.1.2 An efficient selection of rotation planes

In applications to high dimensional protein ensembles the search space of the minimization algorithm

becomes rather large. To cut down computational costs, the number of visited planes is kept small by

applying heuristics, which select primarily the promising planes for minimization of∆I (ϕ).

In particular, at first those rotational planes(i, j) are selected which feature a high pairwise corre-

lation Iij = I [xi,xj ], since for these a relatively high loss of mutual information upon minimization

is expected. Furthermore, unnecessary re-evaluation of already visited planes are avoided, by using a

markermij , which is initialized with one, and set to zero after minimization in theij-plane. Because

rotation in theij-plane increases the likelihood that an already marked plane(ik) or (jk), k 6= i, j,

allows further optimization, all respective markers are increased by|ϕ|, scheduling these planes for

re-evaluation.

Taken together, planes are evaluated in the decreasing sequencemi1j1Ii1j1 > mi2j2Ii2j2 > . . . ,

until 4 rotations with|ρ| > 0.01 have been found. Then the correlationsrij are re-computed and a

new successionmi1j1Ii1j1 > mi2j2Ii2j2 > . . . is devised.

Because only those pairwise correlationsIij need to be updated, where coordinates changed sub-

stantially, a second book-keeping matrixoij was used to track these changes.oij is set to zero after

computation ofIij and increased by|ϕ| if the rotation-angle corresponds to a(ik) or (jk) plane. As

soon asoij > 0.3 the respective correlationIij is computed again.

The algorithm is terminated if allmij ≤ 0.01.

4.1.3 Estimation of mutual information

The FCA algorithm described in Sec. 4.1.1 depends upon numerical estimates of entropiesH [xi].
Furthermore, the heuristical selection of rotational planes (cf. Sec. 4.1.2) requires an explicit compu-

tation of pair-wise mutual informationI [xi, xj ], and therefore estimates ofH [xi, xj ]. Thus, densities

pi(xi) andpij(xi, xj) of one or two dimensional distributions, respectively, have to be estimated.

On the one hand, FCA requires a computational efficient estimator, since a high number of eval-

uations are performed during the iterative minimization procedure. On the other hand, also the re-

quired accuracy is high, because small absolute errors of estimated entropies lead to large relative

errors of their difference, i.e., the estimated MI. Nonetheless, in application of FCA to MD ensembles

statistics are usually very good, i.e, usually ensembles with> 10000 structures are generated. Thus,

sophisticated estimators, e.g., spacing estimates[150],k-nearest neighbor methods, or kernel density

estimators[147] are not required, but would slow-down the computation considerably.

Instead, we chose a fast kernel-smoothed histogram estimation and will check its accuracy in

Sec. 4.3.1 against an estimator based on ak-nearest neighbor approach.
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The details of the estimation were as follows. The entropyH [xi] of a one dimensional ensemble

{xi(tk)}k=1...M was estimated by counting occupations,nb, of b = 1 . . . L1D bins, withL1D = 200.

The histogram was smoothed by convolutionpb =
∑m

k=−m nb+kgk/M with a discrete Gaussian

functiongl =
(
2πσ2

)−1/2 exp
(
−(l∆x)2/σ2

)
, with σ = ∆x the binning width, evaluated at points

l = −m. . .m with m = 3. From this the entropy of coordinatexi was computed asH [xi] =
−∆x

∑L
b=1 pb log pb.

Entropies of two dimensional ensemblesH [xi,xj ] were estimated by choosingL2D = 100 bins

for every dimension and bandwidthsσi = 1.8∆xi andσj = 1.8∆xj , respectively.

For efficiency reasons we did not implement a sophisticated optimal bandwidth selection as, e.g.,

in Ref. [168]. A computationally less expensive bandwidth selection scheme[147] was tested, but

led to unacceptable inaccuracies for distributions which deviated too much from a Gaussian. Instead,

bandwidth is selected by adapting the bin widths∆xi and∆xj such that a fixed number of bins (L1D

andL2D) is placed between the extremes of a distribution. In this way, a good trade-off between

efficiency, accuracy and robustness, has been achieved.

4.2 Methods

4.2.1 Preprocessing of FCA

Before minimization of MI commenced, PCA was applied to theCα-atoms for the T4L example

and to all non-hydrogen atoms of neurotensin, respectively. For efficiency only rotations within the

subspace of the first 100 eigenvectors were considered in both cases. This is justified, because the

small amplitude PCA modes are sufficiently uncoupled already.

4.2.2 Selection of essential FCA modes

FCA modes were ranked, such that the mode which is most likely to describe functional protein

motion has the lowest index. Instead of following PCA to rank the modes by fluctuation amplitude

〈x〉2[50], we rank by anharmonicity. The anharmonicity of a collective mode was quantified by its

negentropy[163],

J [xi] =
1
2
[
1 + log (2π) + log

(〈
x2

i

〉)]
−H [xi] , (4.5)

i.e., the difference in the entropies of the observed density and its Gaussian approximation.

4.2.3 Selection of pairs of FCA modes

The subspace of relevant FCA modes is generally more than three dimensional, and thus, difficult

to analyze visually. For exploratory data analysis it is, therefore, necessary to project the motion on

pairs or triples of FCA modes, as it is usually done with PCA modes[50]. However, the amount of

projections to analyze increases quickly, and many projection pairs are redundant. The MI used for

FCA offers the advantage to select pairs of modes more targeted. In our experience a selection of
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modes with highest pairwise correlation is likely to convey the most information. Accordingly, we

showed each of the first ten modes together with the highest correlating mode of smaller index.

4.2.4 A test-system for FCA

To test the FCA algorithm we constructed a set of 10 independent modes

s(t) = (s1(t), s2(t), . . . , s10(t)). These were mixed by applying a random orthogonal

matrix x = As and were subsequently recovered from the mixturex by FCA. For comparison we

also tried to recover the independent coordinates with PCA.

Modes with non-gaussian distribution,si(t) (i = 1 . . . 5), were obtained from five 300ns trajecto-

ries recorded every10 ps generated with a one-dimensional CLD model of the conformational motion

of the peptide neurotensin, which will be devised in Chapter 8.

Additionally, five quasi-harmonic distributions,si(t) (i = 6 . . . 10), were drawn randomly from

Gaussian densities of differing widths, i.e., yielding fluctuational amplitudes
(〈
x2
〉)−1/2 =1, 0.8, 0.6,

0.4, and0.2, respectively.

The random orthogonal10 × 10 matrix A was generated by eigenvalue decomposition, i.e.,

TTT = AΛAT, whereT denotes a10 × 20 matrix, whose elements are normal distributed ran-

dom numbers with unit variance, andΛ a diagonal matrix.

From the mixed componentsx = As we computed with FCA and PCA,RFCA andRPCA, respec-

tively. The results were validated by computing inner product matrices,ATRT
FCA andATRT

PCA, and

recovered components,s̃FCA = RFCAx ands̃PCA = RPCAx.

4.2.5 Collectivity of modes

We computed the collectivityΩ of a mode from its normed direction vectord = (d1, d2, . . . , d3N ).
To this end, the squared motional contributiona2

i of atomi to modes, was computed as the sum of

the squared entries, which belong to atomi, i.e.,a2
i =

∑3
j=1 d

2
3(i−1)+j . The collectivity was given by

the entropy of the distribution of motional contributions. Thus,

Ω(d) = − (logN)−1
N∑

i=1

a2
i log a2

i ,

where the normalization constantlogN was chosen, such that a mode, whose atoms contribute equally

to the motion, has a collectivity of one.

4.2.6 Free energy surface for projected motion of neurotensin

Calculation of free energy surfacesG = β−1 log ρ(s1, s2) of the projection of neurotensin dynamics

onto pairs of modes(s1, s2) required the densityρ(s1, s2) of the projected MD ensemble. It was

estimated by smoothing a two dimensional histogram (150 × 150 bins) with a Gaussian function of

widthsσ1 = 3∆s1 andσ2 = 3∆s2, respectively, where∆s denotes the bin width. The superposed
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Figure 4.1: Test of estimation of correlation
for Gaussian distributed random data sets.
rMI estimated with the histogram method
(crosses) andrMI estimated with the method
of Kraskov et al.[144] (circles) are plotted
against analytically computedrMI . The in-
set shows the same comparison, but with
105 sample points used.

trajectories shown in Fig. 4.8 and Fig. 4.9 were obtained by smoothing the projection of the MD

trajectory NT1 onto the respective modes with a Gaussian function of widthσ = 20 ps.

4.3 Checks of FCA Algorithm

4.3.1 Check of entropy estimation

As described in Sec. 4.1.3, FCA calculates the MI for efficiency reasons with a relatively crude but

fast estimator, which is based on histograms. To check the validity of this approach, the estima-

tor was evaluated against the recently devisedk-nearest neighbor approach of Kraskov et al., which is

unbiased and was found to be more accurate than a number of other methods[144]. To this end, MI es-

timated from Gaussian distributions with random widths was compared to MI calculated analytically

from the same widths. In Figure 4.1 MI estimated with both, the histogram method and Kraskov’s

method, is plotted against the analytically obtained MI. As seen in the figure, the generalized corre-

lation coefficients estimated with the histogram method are as accurate as those estimated with the

alternative method. In particular, in the low correlation regime the histogram estimates deviated less

than Kraskov’s estimates.

The bandwidth of the histogram estimator is controlled by the number of bins (cf. Sec. 4.1.3).

Since the bandwidth optimum usually scales with the number of sample points, we checked the ac-

curacy of our estimator also for the higher boundary of the envisaged rangeM = 104 . . . 105 of

sample points. Indeed, the inset of Figure 4.1 shows that the chosen number of bins work well also

for M = 105.

So far we have only checked accuracy for Gaussian distributions, whose MI can be obtained

analytically. To rule out a significantly lowered accuracy for non-Gaussian distributions, we checked

also MIs of distributions obtained from molecular dynamics data of T4 lysozyme using Kraskov’s

method as a reference. The achieved correlation with the reference (corr. coeff. r=0.98), shows
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Figure 4.2:(a-b) Inner products of PCA (a) and FCA (b) modes, with the directions of the original independent
componentssi. The black squares denote entries with a magnitude of near unity.(c-d) Projections of the
test-ensemblex onto the first two coordinates of PCA (c) and FCA (d).

that the fast histogram method reaches almost the same accuracy as the computationally much more

expensive method, and thus poses a reasonable choice for FCA.

We remark that a recent development[145] might offer increased accuracy without increasing

computational costs, but had not yet been available at the time when the presented work was per-

formed.

4.3.2 Application of FCA to test-case with known result

To verify the FCA algorithm, we constructed an example with a known solution, as follows. We

started with independent modes, i.e., the solution, and artificially mixed them to generate a mock

protein ensemble (cf. Methods). In particular, ten independent modess1(t), s2(t), . . . , s10(t) were
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Figure 4.3: Histogram of generalized cor-
relation coefficients between pairs of co-
ordinates. The four histograms count cor-
relations between thesi (unmixed), the
xi (mixed), and between PCA and FCA
modes, respectively.

generated, and FCA was applied to recover them from their mixx = A · (s1, s2, . . . , s10)T with-

out any knowledge of the random mixing matrixA. To mimic collective modes of proteins[88], we

adopted a one dimensional model of conformational motion (see Methods) to create five pseudo-

collective modess1(t), s2(t), . . . , s5(t) with a double peaked density, and derived five additional

modess6(t), . . . , s10(t) from Gaussian densities with decreasing fluctuational amplitude
〈
s2i
〉
.

Both, PCA and FCA, were applied to this artificial ensemble. The directions of the original

componentssi in the mixed systemx are the columns ofA, such that an accurately identified mode

would yield an inner product near unity with one of these columns. Fig 4.2a shows the respective inner

products for PCA modes. The field of gray boxes in the upper left indicates that PCA was not able to

recover the anharmonic modess1, s2, . . . , s5, whereas the black boxes in the lower right indicate that

the quasi-harmonic modess6, . . . , s10 were retrieved successfully. On the contrary, all independent

components were accurately recovered by FCA, as shown by ten inner products near unity (black

boxes, Fig. 4.2b).

As a consequence, the projection to the first FCA modes shown in Fig. 4.2d reveals correctly the

peaked structure of the conformational density, whereas this structure is completely blurred in the

projection to PCA modes (Fig. 4.2c).

The pairwise correlations, shown as histogram in Fig. 4.3, were drastically reduced between pairs

of FCA modes. The small putative correlations remaining between FCA modes are due to the finite

number of sample points and statistical inaccuracies in their estimation (cf. Fig. 4.1). Accordingly,

these remaining correlations are as high as the estimated correlations between pairssi, sj of the inde-

pendent modes. As expected, PCA reduced the correlations only incompletely.

Since it is highly unlikely that protein motion can be separated into completely uncoupled modes,

we tested whether FCA is able to reverse the mixing also in cases where the known solution contains

coupled modes. Indeed, FCA also solved such test examples that were constructed to contain pairs

and triples of coupled coordinatessi(t). (results not shown).
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Before applying FCA to selected proteins, we briefly discuss the relation of this FCA algorithm

to known algorithms for the methods ICA (and synonymously BSS) from signal processing (cf. Intro-

duction).

The aim of ICA is to recover the underlying independent sources from a recorded multichannel

signal of their mixture. Within the context of molecular simulations, the cartesian coordinates repre-

sent observation channels, and the collective motions are the putatively independent signals supposed

to be recovered. Because the relative amplitudes of different signal sources are meaningless, an ICA

algorithm usually simplifies the search problem by applying the so-called pre-whitening, i.e., a scaling

which imposes unity on all eigenvalues of the covariance matrix[164, 169, 143].

However, to analyze protein dynamics, the relative amplitudes of all coordinates are meaningful

and important. Therefore, the simplification offered by pre-whitening is not applied and FCA is

restricted, in analogy to principal component analysis (PCA), to orthogonal transformations. This

restriction to rotations conserves the geometry of the conformational ensemble. In particular, volumes

are left unchanged enabling, e.g., straightforward computation of free energy surfaces for FCA modes.

Note that ICA algorithms generally do not separate independent quasi-harmonic modes[169] due

to the applied pre-whitening. These harmonic modes, however, are a well-known feature of protein

dynamics[89], and should be captured. Therefore, it is important to stress that FCA succeeded in their

separation, nonetheless.

For brevity we do not present extensive comparison of the performance of the devised algorithm

with other available algorithms. Nevertheless, we compare our algorithm to MILCA, which outper-

forms a large number of ICA algorithms[165]. At first sight both, MILCA and our algorithm, are

similar, but they actually differ in important aspects.

The main difference lies in the treatment of MI. Here, the sum of single dimensional entropies,

Eq. (4.4), is minimized directly, whereas MILCA minimizes pairwise MI. At first glance, this is

equivalent, i.e., in analogy to Eq. (4.4) MILCA uses

∆I(ϕ) = I [Rij(ϕ)x]− I [x] = I [x̃i, x̃j ]− I [xi, xj ] . (4.6)

However, this implicitly involves estimation of two-dimensional entropiesH [xi, xj ] andH [x̃i, x̃j ],
which cancel out because the rotationRij(ϕ) leaves them invariant. Moreover, computed in this

way, ∆I(ϕ) is prone to statistical errors. As discussed above, MI is quite sensitive to numerical

estimation errors due to the near cancellation of large entropies. Because of these inaccuracies, the

right hand side of Eq. (4.6) becomes highly rugged, such that identification of the global minimum

becomes difficult. To counteract this, MILCA has to evaluate∆I(ϕ) at 150 intermediate angles, and

has to apply smoothing by Fourier filtering before it determines the minimum[165]. Such counter-

measures were not necessary in a minimization of∆I(ϕ) using Eq. (4.4), which needed typically just

20 evaluations ofH [x̃i] +H [x̃j ] in a single rotational plane.

A further difference to MILCA is the applied systematic choice of rotational planes, which in-

creases convergence speed.
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Figure 4.4: Projections of MD simulation of T4L onto the first 9 PCA (left) and FCA modes (right), respectively.

4.4 Extraction of functional motion with FCA

4.4.1 Conformational motion of lysozyme analyzed with FCA

Having established that the FCA algorithm works correctly we now proceed and apply FCA to a

real system. To this end we chose T4 lysozyme (T4L). Essential for the function of T4L is a large

conformational motion of the two domains, allowing the substrate to enter and the products to leave the

active site[153, 154, 156, 155]. The ensemble of T4L structures gained from a117ns MD simulation

was treated with FCA and, for comparison, also with PCA.

Figure 4.4 shows the time-series of projections onto PCA (left) and FCA (right) modes. There are

remarkable differences for most of the modes. In contrast to PCA modes, the fluctuations in the FCA

modes are most of the time very small until a relatively large transition occurs.

We note that in Fig. 4.4 PCA modes are sorted by fluctuation amplitude, whereas FCA modes are

sorted by anharmonicity (cf. Methods). This direct comparison of the differently ranked modes is

justified, since the ranking scheme is an essential part of the respective methods. Nevertheless, the

most anharmonic PCA modes did not show any FCA-like patterns, either (results not shown).

Now we turn to projections of the ensemble T4L onto pairs of PCA and FCA modes. These

kind of projections are often used for exploratory data analysis, because in this presentation cluster of
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Figure 4.5: Projections of MD simulation of T4L onto pairs of PCA modes. The coloring of the points corre-
sponds to that in Fig. 4.6, i.e., a projection belonging to a certain structure of the protein has the same color in
all plots of the two figures.

points indicate conformational substates.

Fig. 4.5 shows projections of the ensemble to pairs of the first PCA-modes. In 5 of the shown

projections, such a clustering can be anticipated. Nevertheless, most clusters overlap strongly, such

that only in the projection to mode-pairs 3:2 and 5:1 an assignment of points to their respective clusters

would be indisputable. In contrary, clusters in the analogous projections to pairs of FCA-modes

(Fig. 4.6) are numerous and show a pronounced separation.

Strikingly, the projections to pairs of FCA-modes adopt often the shape of the letterL. Thus, FCA

tends to describe transitions between two conformational substates with a single FCA mode. For

instance, mode 2 describes a transition towards the cyan and purple clusters (visited between50 ns–

70 ns, as seen from Fig. 4.4), and mode 9 describes transitions from the dark red to the light red cluster

(2 ns–8 ns).

For PCA modes the situation is very different. For example, the transition along FCA mode 2 is

described by PCA modes 2 and 3, and to a lesser extent also by PCA mode 4. This transition is further

obfuscated, because motions which do not contribute to it are also mapped onto PCA modes 2 and 3,



4.4. EXTRACTION OF FUNCTIONAL MOTION WITH FCA 55

−2 0 2
−1

0

1

mode 2

m
od

e 
1

mode2:1

−2 −1 0 1
−2

0

2

mode 3

m
od

e 
2

mode3:2

−1 0 1 2
−2

0

2

mode 4

m
od

e 
2

mode4:2

−0.5 0 0.5
−2

0

2

mode 5

m
od

e 
2

mode5:2

−5 0 5
−1

0

1

mode 6

m
od

e 
1

mode6:1

−0.5 0 0.5
−5

0

5

mode 7

m
od

e 
6

mode7:6

−1 −0.5 0 0.5
−1

0

1

mode 8

m
od

e 
1

mode8:1

−1 −0.5 0 0.5
−1

0

1

mode 9

m
od

e 
1

mode9:1

−1 −0.5 0 0.5
−2

0

2

mode 10

m
od

e 
2

mode10:2

Figure 4.6: Projections of MD simulation of T4L on pairs of FCA modes. The presented pairs of FCA modes
were selected by a rule based on pair correlations and anharmonicity (cf. Sec. 4.2.3). The projection belonging
to a certain structure of T4L has the same color in all plots. The colors were chosen freely.

causing large background fluctuations during the whole simulation length (cf. Fig. 4.4).

Nevertheless, some FCA modes are very similar in nature to PCA modes, for instance FCA mode 6

corresponds to PCA mode 1.

To visualize which motions are described by selected FCA modes, Fig. 4.7 shows superpositions

of 3 structures obtained by projecting theCα motion of T4 lysozyme on the respective FCA mode.

FCA mode 1 corresponds to a local swiveling motion of the 3 N-terminal residues (cf. Fig. 4.7a),

whereas FCA modes 2 and 3 described a similar motion of the C-terminus (not shown). FCA mode 4

and FCA mode 9 depicted in Figures 4.7b and 4.7d, respectively, describe collective motions involving

the whole C-terminal domain. FCA mode 6 depicted in Figure 4.7c — and the identical PCA mode 1

— yield a highly collective motion of the whole protein.

The presented projections of the T4L ensemble to FCA modes showed a much improved res-

olution of conformational substates with respect to PCA modes. Furthermore, transitions between

substates are described by single FCA modes, which suggests that FCA is particular suitable to yield

conformational coordinates, to describe such transitions in a dimension reduced approach.
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(a) FCA mode 1 (b) FCA mode 4

(c) FCA mode 6 (d) FCA mode 9

Figure 4.7: Superposition of 3 configurations obtained by projecting theCα motion of T4 lysozyme onto the
respective FCA mode.
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Figure 4.8: Free energy surfaces of neu-
rotensin dynamics: The smoothed trajec-
tory is plotted (black) on top of the free
energy surface (colors) in a projection to
(a) two PCA and (b) two FCA modes,
respectively. The smoothing by convo-
lution with gaussians of width (10-20ps)
pronounces transitions and suppresses intra
substate motion. The two arrows in (a) de-
note two unsuccessful transition attempts,
which due to a projection artifact are falsely
shown to reach conformational state A, see
text.

4.4.2 Reduced description of conformational transitions of neurotensin with
FCA

In chapter 8 we will develop a CLD model of the conformational motion of the hexapeptide neu-

rotensin. To this end, we need to define a low-dimensional conformational subspace, which resolves

the relevant conformational states. As discussed in Chapter 2 PCA is a good candidate to extract suit-

able conformational coordinates for this purpose. Nevertheless, as shown above, FCA modes yield an

improved resolution of the substates and less modes are needed to describe a transition. Here, we will

compare both methods, and focus in particular on the pathways of transitions in relation to the free

energy surface estimated for the selected pair of modes.

Figure 4.8a shows the free energy surfaces of two PCA modes estimated from a100 ns MD sim-

ulation (NT1) of the peptide. Two major conformational states, denotedA andB, can be identified

as two extended basins on the free energy surface. They are connected by a channel of relatively low

free energy bearing a putative transition state at(s1, s2) ≈ (−0.5,−1), which is∼ 1kT lower in en-

ergy than the remaining transition region. One would expect to find that most transitions between the



58 CHAPTER 4. FULL CORRELATION ANALYSIS

Figure 4.9: In analogy to Figure 4.8, this
plot shows the smoothed trajectory on top
of the free energy surface of neurotensin for
the pair of FCA coordinates that yields the
most pronounced separation of conforma-
tional states.

two conformational states use this channel. However, the contrary is true. The overlayed smoothed

trajectory shows that allsuccessfultransitions take place in the region between−0.5 < s2 < 1.5,

where the energy is about1kT higher than the putative transition channel. In fact, only two crossing

attempts (arrows), which are moreoverunsuccessful, use the putative lowest free energy path. Despite

their apparent visit of the low energy region of state A they recrossed the barrier immediately.

Including more PCA modes into the analysis explained this behavior. Instead of reaching stateA

the system remained in a protuberance of conformational state B, whose projection just happened to

overlap with the projection of conformational state A. Obviously, this overlap caused the emerging of

a spurious low free energy channel from A to B, as will be discussed in more detail in Sec. 8.4.

We tested, if FCA improves the situation. Indeed, in Fig. 4.8b the two conformational states are

well resolved and the channel of lowest free energy agrees with the actual pathways of the observed

transitions. Moreover, FCA mode 22 revealed a sub-structure of conformational state A, which was

not resolved by the PCA modes. This sub-structure will be resolved in Chapter 8, too, by using a

curved conformational coordinate.

To dispel any doubts about the validity of the comparison, we have previously plotted those FCA

modes (3 and 22), which were most parallel with PCA modes 1 and 2. However, this pair of modes

was not selected by the automatic protocol of FCA described in Sec. 4.2.3. Instead, Figure 3.3 depicts

the free energy surface of the fourth of the automatically selected pairs, which was chosen, because

from the 9 inspected pairs it displayed the most pronounced clustering. It separates each of the confor-

mational states A and B into 3 sub-clusters. Moreover, in this FCA projection the transition pathways

also agree well to the low free energy valleys.

The presented results indicate that FCA modes have a lower tendency than PCA modes to produce

artifacts in low dimensional free energy surfaces that result from overlapping projections of confor-

mational states. Thus, FCA extracts from MD simulations relevant collective coordinates, which are

well suited to describe conformational dynamics of proteins within the CLD framework.
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Figure 4.10: Inner product matrices between FCA and PCA modes of T4 lysozyme. In the left plot the FCA
modes are sorted by anharmonicity and in the right by motional amplitude.
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Figure 4.11: Inner products between FCA and PCA modes of neurotensin. In the left plot the FCA modes are
sorted by anharmonicity and in the right by motional amplitude.

4.4.3 Comparative analysis of PCA and FCA modes

The previous sections have shown remarkable differences between projections of protein dynamics

onto FCA or PCA modes. The results suggested that collective coordinates extracted with FCA pose

a superior alternative to principal components. To single out the properties of FCA modes, which are

responsible for the observed improvements, we systematically characterized the differences between

FCA and PCA modes.

We started by comparing their directions and, therefore, quantified their colinearity by inner prod-

ucts. The inner products between PCA and FCA modes of T4 lysozyme are depicted in Fig. 4.10 and

those of neurotensin in Fig. 4.11. On the left hand side the FCA modes are sorted by anharmonicity

as it was prevalent in the previous sections, and on the right hand side they are sorted by the motional

amplitude. The figures show that anharmonicity-ordering of FCA modes is obviously less suitable for
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Figure 4.12: Motional amplitude of PCA
and FCA modes of T4 lysozyme (T4L) and
neurotensin (NT). FCA modes are enumer-
ated by motional amplitude.
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Figure 4.13: Collectivity of the motion de-
scribed by PCA and FCA modes of (a) T4
lysozyme and (b) neurotensin. FCA modes
are enumerated by motional amplitude.
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a detailed comparison. Therefore, and to forestall any confusion, we will enumerate in the following

both, FCA and PCA modes, by motional amplitude.

For T4 lysozyme, Fig. 4.10b shows that almost all FCA modes have a different direction than PCA

modes. In particular, from the low numbered PCA modes only the direction of mode 1 and mode 6 are

colinear to FCA modes. Nonetheless, it is evident that specific FCA modes are generally contained in

a low-dimensional subspace spanned by PCA modes of similar amplitude. For instance, FCA mode

7 has contributions from PCA modes below 30, whereas FCA mode 50, is a mixture of PCA modes

between 30 and 65. Thus, the PCA and FCA subspaces of large amplitude modes overlap to a large

extent, although the directions of their respective basis vectors differ strongly.

Also for NT the PCA modes contributing to an FCA mode have a similar amplitude

(cf. Fig. 4.11b). In contrast to T4L, no FCA mode is collinear to a PCA mode. Despite this, the PCA

contributions to the first 10 FCA modes are evenly divided between the low indexed PCA modes,

indicating an overlap of the large amplitude subspaces, as observed already for T4L.

An important and often exploited property of principal components of protein ensembles is the fast
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Figure 4.14: The collectivity of PCA and FCA modes is plotted against their anharmonicity. The color gradient
from blue to red is in accordance to an increasing motional amplitude of the respective modes.(a) T4 lysozyme.
(b) neurotensin; the arrows mark those modes which have been used in Sec. 4.4.2 to determine the free energy
surface in the respective figures.

decrease of their fluctuational amplitude. Figure 4.12 shows that for both test systems the motional

amplitude of FCA modes did not differ significantly from that of PCA modes, although FCA optimizes

mutual information instead of the motional amplitude. Therefore, similar to PCA, the first few FCA

modes describe a major part of the total atomic displacement of the protein ensemble[50].

Aiming for functional relevant motions we are generally not interested to extract modes which

describe very local motions, e.g., displacement of singleCα-atoms or the flip of single side chain di-

hedrals. Hence, we compared the collectivity of FCA and PCA modes. Low-indexed PCA modes are

likely to be highly collective modes, since they maximize the motional amplitude, which is generally

the larger the more atoms are involved. FCA, in the contrary, has a less direct link to collectivity. In-

deed, Fig. 4.13a shows that three FCA modes of T4L have a relatively low collectivity. These modes

describe the swiveling motion of either 3 C-terminal or 3 N-terminal residues (cf. Fig. 4.7a). The two

rather localized PCA modes describe also such swiveling motions of the terminal residues, but are

less dedicated to it, such that their collectivity is slightly higher than that of their FCA counterparts.

However, all other FCA modes have a similar collectivity as PCA modes. For NT the collectivities of

FCA and PCA are very similar, too (cf. Fig. 4.13b). Unexpectedly, for NT the most localized modes

were obtained by PCA.

So far no significant differences between properties of FCA and PCA modes have been observed.

On the contrary, their anharmonicity, Eq. (4.5), differs strongly. In particular, Fig. 4.14, a scatter plot

of anharmonicity and collectivity of modes, reveals for both test systems a cluster of modes of high

collectivity and high anharmonicity, which is almost exclusively populated by FCA modes.

Possibly, the high anharmonicity is responsible for the improved resolution of conformational

states obtained by FCA, which was observed in the two previous sections. The arrows in Fig. 4.14b

denote modes that have been used in the previous section to obtain free energy surfaces for NT.



62 CHAPTER 4. FULL CORRELATION ANALYSIS

Indeed, the two PCA modes, which were unable to resolve the conformational states sufficiently well

(cf. Fig. 4.8a), show both a lower anharmonicity than their corresponding FCA modes. Thus, the

improvement seen in Fig. 4.8b can be attributed to the increased anharmonicity of FCA modes. The

other two labeled FCA modes improved the resolution of conformational substates even further, which

is indicated by their nearly maximum anharmonicity.

Note that the amplitude of the modes, which is color coded into the figure, is uncorrelated with

both, collectivity and anharmonicity. High amplitude modes are found in any region of the plot, even

for those FCA modes with a low collectivity and a high anharmonicity that describe the irrelevant

swiveling motion of the terminals. Hence, FCA modes that are likely to describe functional relevant

motions can be selected by means of a combination of high collectivity and high anharmonicity. This

criterion is superior to a selection based purely on amplitude.

4.4.4 Remaining correlations between modes

At last we investigated to what extent pairs of modes were correlated. Figure 4.15a shows that only

the first 10 PCA modes of T4L were highly correlated(rMI > 0.2). These correlations were not sig-

nificantly reduced by FCA (cf. Fig. 4.15b). However, the small correlations, which occur sporadically

between higher indexed PCA modes were completely removed by FCA.

For NT the situation differs in two aspects (cf. Fig 4.15d-f). First, all PCA modes of NT are

correlated considerably, as seen in Fig. 4.15c. Second, correlations between both, high and low in-

dexed modes, were drastically reduced by applying FCA, as shown by the drastic reduction of the

averagepair correlation (solid lines in Fig. 4.15f). However, themaximalpair correlations (dashed

line) remain high and even increased in some instances.

As seen from the inset in Fig. 4.15e, these remaining correlations constituted small clusters of

coupled modes. Thus, FCA successfully identifies uncoupled motions in NT, but these are described

by multiple linear FCA modes. The reason for this is either that the motion is non-linear, e.g., rota-

tional, or that a further separation into single-dimensional degrees of freedom is not possible due to

strong non-linear coupling.

Why was FCA not able to find a similar separation into uncoupled (multi-dimensional) modes

for T4L? An explanation might be that during the 117ns MD simulation its motion was not sampled

as thoroughly as that of NT, whose simulation was with100 ns comparatively long for the much

smaller peptide. Thus, some modes of conformational motion of T4L were excited only once due to

the short simulation time. For these modes spurious correlations are likely to be detected, because

any coincidental excitation of a different mode yields a correlation of the respective modes in the

generated MD ensemble. Only longer trajectories with repeated excitations of the same modes would

enable separation of true correlations from coincidental motion. In particular, T4L underwent a slow

opening motion of its two domains described by FCA mode 1 (FCA mode 6 in Fig. 4.4a). During half

of the simulation T4L was closed and during the other half opened. Thus, all motions which occurred

only once seem to be correlated with mode 1, which is also reflected by the high number of strong
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Figure 4.15: Correlation between pairs of FCA and PCA modes, respectively. Correlations between pairs of
modesxi,xj are quantified with the generalized correlation coefficientrMI [xi,xj ] for (a-c) T4 lysozyme and
(d-f) neurotensin, respectively.(a,b,d,e)For PCA (a,d) and FCA (b,e) modesxi (horiz. axis) the correlations to
higher indexed modesrMI [xi,xj ]j>i were plotted (gray dots) together with the respective average (solid line)
and maximum (dashed line). The insets show the mutual pair-correlations of the first 30 modes.(c,f) The plots
contrast smoothed curves of the average and maximum correlation to higher indexed PCA and FCA modes,
respectively.
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Figure 4.16: Projections of a 120 dimensional random walk to large amplitude PCA and FCA modes.

correlations of mode 1 to others, as seen in the inset of Fig. 4.15a,b.

4.4.5 Convergence of FCA

In respect to convergence, FCA might suffer from the underlying sampling problem of MD simula-

tions in a similar way as PCA. The remarkable and at first surprising effect of an insufficiently sampled

protein dynamics on its principal components was illustrated by Hess[170, 129], who showed that pro-

jections to principal components obtained from short MD trajectories, as e.g., found in Ref. [50], are

very similar to projections of a random-diffusion to its principal components. In particular, the projec-

tions to the first PCA modes show sine and cosine shaped curves of large amplitude[170, 129], such

as shown in Fig. 4.16. This result allows to identify artificial large amplitude ’features’ in projections

onto principal components, which should not be interpreted as functional motions.

Following these lines, we applied FCA to a random diffusion, too. Projections of the random

diffusion to the resulting FCA modes are shown in Fig. 4.16. These projections show also large

amplitudes and slow transitions, as seen previously for PCA modes. In contrast to FCA modes of the

T4L ensemble the FCA modes of a random diffusion show more gradual transitions (cf. Fig. 4.4). This

suggests that apart from FCA mode 1 all FCA modes of T4L did converge. On the contrary, such a

clear distinction between projections of random diffusion and protein dynamics cannot be established
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for PCA. In particular, projections of the T4L ensemble onto PCA modes show also gradual transitions

(cf. Fig. 4.4) similar to the PCA modes of random diffusion.

4.5 Conclusions

With Full Correlation Analysis (FCA) we have developed a new approach to extract a reduced dimen-

sional description for functionally relevant motion from configurational ensembles. FCA minimizes

the coupling, i.e., correlation between the coordinates. In this way it differs from the well-established

and widely used principal component analysis (PCA), which maximizes the motional amplitude along

the coordinates.

Remarkable differences between the two methods, PCA and FCA, became obvious in a compara-

tive study of MD simulations of two systems, T4 lysozyme and neurotensin.

FCA on the one hand, yields collective coordinates, which are well suited to describe the confor-

mational dynamics of a protein. In particular, FCA aligns the extracted modes along the pathways of

conformational transitions, and, thereby, yields an improved resolution of conformational subspaces.

Moreover, the transition regions of presented free energy surfaces of pairs of FCA modes were con-

sistent with the observed transitional dynamics.

PCA on the other hand, is less suited for a dimension reduced description of conformational dy-

namics. Seeking large amplitude modes, PCA chooses directions for the modes that are often skew

with the conformational transitions. This has the consequence that the structure of the conformational

substates is blurred. Furthermore, due to this skewness more PCA modes are needed to yield a free en-

ergy surface that is consistent with the observed dynamics. In particular, in contrast to FCA, two PCA

modes did not suffice to describe the conformational motion of neurotensin, because two otherwise

separated conformational substates overlapped in the projections to the first two PCA modes. Due to

the overlap an artificial low free energy channel between the two conformational states emerged in a

region, where no transitions occurred due to a high free energy barrier. To reveal this high free energy

barrier a higher number of PCA modes had to be used.

PCA is widely used to extract highly collective modes with a large amplitude of atomic displace-

ment from MD trajectories. We have shown, that these properties are very similar found for FCA

modes, but additionally FCA modes are much more anharmonic, than PCA modes. This increased

anharmonicity reflects the improved resolution of conformational substates. Since functional motion

implies anharmonicity[90], this further suggests that the motion extracted by FCA modes is function-

ally more relevant than that captured by PCA modes.

One usually selects the PCA modes with largest amplitude to analyze protein motion[50]. This

also selects to a large extent for anharmonic modes, since both properties are correlated for PCA

modes[89]. However, irrelevant local motions can also have a large amplitude, e.g., the swiveling

modes extracted by both, PCA and FCA. Moreover, motional amplitude and anharmonicity of FCA

modes were not correlated as it is the case for PCA modes. Therefore, we suggest to rank FCA modes
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by a combination of the two properties, anharmonicity and collectivity, instead of motional amplitude.

Despite our prevalent interest in collective motions it is an advantageous feature of FCA to sepa-

rate off local motions, too, e.g., the swiveling motion of the terminal residues of T4 lysozyme. This

large amplitude motion, which is functionally irrelevant, would otherwise be distributed over many

modes, obscuring thus, the nature of other more relevant motions. PCA also extracted this swiveling

motion, but distributed it over more modes than FCA.

We found it helpful to visualize the matrix of mutual correlations of FCA modes as shown in the

inset of Fig. 4.15e. This analysis revealed, that for neurotensin FCA was able to separate the dynamics

into several uncoupled motions, whereas the same was not possible for the T4 lysozyme. Moreover,

based on these pair correlations we proposed a scheme, which selects those pairs of modes that are

particular suitable to visualize the structure of the essential subspace (cf. Fig. 4.6).

Based on our results, we suppose that FCA can be used in many applications. As shown, FCA

modes are less coupled and allow better separation of conformation substates, but have otherwise

similar beneficial characteristics as PCA modes.

Further work needs to address convergence issues. Firstly, the convergence of the minimization

of mutual information. In particular, it needs to be addressed whether always the global minimum of

mutual information is found, and if similar FCA modes are extracted from a slightly perturbed MD

ensemble. Secondly, the slow convergence of correlations in the configurational ensemble due to the

sampling problem of MD[171] . We suspect that in this respect the convergence properties are very

similar to those of PCA, since we showed that FCA yields, just like PCA, highly anharmonic modes

for a random diffusion[129]. Thus, both, PCA and FCA, suffer from insufficient sampling in the same

way: two motions which are observed only once but coincide are detected as correlated, whereas

further sampling might reveal their independence. Nonetheless, the application of FCA to a random

walk indicated that the ’foot-print’ of an unconverged mode is more distinctly identified in projections

to FCA modes than it is the case for PCA modes.

It has been suggested to use nonlinear coordinates to do PCA[172]. Similarly, it will be rewarding

to combine nonlinear coordinates with the criterion to minimize mutual information.



The great tragedy of science — the slaying of a beautiful hypothesis by an ugly fact.

— Thomas H. Huxley

Chapter 5

Covariation of protein backbone motion: a
comparison between NMR relaxation
measurements and MD simulations

As mentioned previously, correlated motions in proteins are ubiquitous and often essential for protein

function[133]. Collective Langevin dynamics (CLD) directly describes these correlated motions by

choosing suitable degrees of freedom, which are extracted from MD trajectories, e.g., with one of

the two methods, PCA and FCA, proposed in previous chapters. Thus, the ability of CLD to accu-

rately represent correlated motions crucially depends on the quality of the extracted coordinates, and

accordingly on the accuracy of correlated motions in MD simulations used for their extraction.

In this chapter, we investigate means to check the validity of the extracted conformational degrees

of freedom. To this end, one ideally compares with experiments which directly probe correlations.

Such experiments would allow not only verification of an important observable of CLD, but also offer

an experimental access to collective coordinates rendering obsolete extended MD simulations for their

extraction.

Few experimental techniques are capable of providing direct information on collective motions

in proteins. One reasonable approach probes correlations via the diffusive part of the Xray scatter-

ing signal[173, 174]. However, conclusive interpretation of these signals in terms of correlation of

individual atoms or residues proved to be difficult so far[175, 176, 54].

NMR relaxation studies, on the contrary, are a powerful and established method to gain experi-

mental access to fast protein dynamics in atomic detail[177, 178, 179]. Model-free analysis of NMR

relaxation times in particular, yields generalized order parameters for individual bond vectors [180],

which allows to extract information about flexibility and timescales of motions of individual backbone

sites [181] and sidechains [182]. However, hitherto NMR relaxation experiments could only probe the

flexibility of individual bond vectors, whereas correlated motions could not be probed. The recently

proposed method by Mayer et al.[59] promises to overcome this limitation by measuring the covari-

ation of backbone motion by NMR relaxation studies. Specifically, the authors “propose a general

67
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approach to the detection of correlated changes in internal protein motions, which are expected to

reflect the underlying influence of correlated dynamics” [59]. In this approach NMR relaxation data

for a small protein domain of Protein G were obtained for ten mutants of the same residue. The pertur-

bations due to the mutations were reported to cause changes in the measured order parameters, which

were recorded for each individual residue. It has been found that for many residue pairs these changes

are significantly correlated, (Fig. 5.1a) which led the authors to suggest that the observed covariances

reflect underlying correlated atomic motions [59]. Whether and how the measured covariations actu-

ally reflect correlated atomic motion, cannot be resolved by experiment alone, which prevents direct

atomistic interpretation of these types of measurements. The previously developed generalized corre-

lation measure (cf. Chapter 3) enables us to address this issue. We present sub-microsecond molecular

dynamics simulations of the protein G domain, which together with additional NMR data, provide a

comprehensive picture of the correlated atomic dynamics of the protein G domain.

5.1 Methods

5.1.1 Generation of structure ensembles from NMR NOE data

An NMR-NOE structure ensemble of 30 structures was generated using the standard simulated an-

nealing protocol in CNS [183], applying the NOE distance bounds as available from the 3GB1 PDB

entry [184]. In short, individual structures were generated by slow cooling from high temperature

simulations starting from an extended structure and different sets of starting velocities. Each anneal-

ing cycle consisted of 15 ps of torsion-angle MD at high temperature (50 000 K), followed by a 15

ps annealing phase to zero temperature using torsion-angle MD, and a 15 ps annealing phase with

cartesian dynamics, from 2 000 to 0 K. Finally, each structure was energy minimized by 10 cycles

of 200 steepest decent steps. Default parameters for the scaling of the individual energy terms were

used, including the NOE energy term.

5.1.2 Root mean square fluctuations

To analyze the data in the molecular coordinate frame, all structures were fitted to the backbone of

the crystal structure. Root mean square fluctuations (RMSF) for each ensemble were calculated as

RMSFi =
√
〈r2i 〉, whereri is the distance of theith Cα atom from its average position, and the〈 〉

denote the average over the whole trajectory using snapshots recorded every picosecond.

5.1.3 Generalized correlation coefficients

The generalized correlation coefficientrMI introduced in Chapter 3 was used. For MD ensembles

the correlation matrices were computed asrMI [xi,xj ] , where thexi andxj are atomic displacement

vectors between theith andjth Cα-atom, respectively. The correlation matrices of NMR structural

ensembles were computed as linearized correlationsrLMI [xi,xj ], because the low number of available
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structures was not sufficient for numerical estimation of mutual information. The correlations in the

motion of NH-bond vectors were computed by applying the generalized correlation measure to pairs

of the normalized internuclear vectors rather than to pairs of atomic positions. For the correlation of

the NH vectors visibility of the differences in the range near zero had to be enhanced. To this end,

the correlations were weighted by the sigmoidal functionW (x) = 1/ [1 + exp(−λ(x− 0.1))], with

λ = 17 before plotting.

5.1.4 Order parameters

Order parametersS2 are defined as the asymptotic value of internal correlation functions [180]. The

internal correlation functionCint(t) of the NH-bond vector motion is given byCint(t)= 〈P2(cosχ(t))〉,
whereχ(t) is the angle between the internuclear vectorsr(t) and r(0), andr is measured in the

molecule-fixed frame.P2(x) = (3x2 − 1)/2 denotes the second Legendre polynomial. Fluctuations

in the internuclear separation were not included, because the length of all covalent bonds were fixed by

LINCS [28] throughout the simulation. It has been shown previously that the effect of such constraints

on order parameters calculated from simulations is negligible [185].

To estimate statistical errors in the obtained order parameters, we divided the MD trajectories

into N fragments of length 1ns each. For each fragments, internal correlation functionsCs,i
int (t)

were computed for each bond vectori using snapshots taken every picosecond. Parametersχs,i were

computed as the average from 480 ps to 500 ps of the internal correlation functionCs,i
int (t). The order

parameter of bond vectork was computed as the mean ofχs,i over all the fragments, i.e.S2
i =(∑N

s χi
s

)
/N , with the errorbars given by

∆S2
i =

1√
N(N − 1)

 N∑
s

χ2
s,i −

(
N∑
t

χt,i

)2
1/2

.

The results do not change significantly if the fragmentation length is changed from 1ns to longer time

intervals (data not shown).

5.2 Comparison of NMR covariance with correlations in MD sim-

ulations

We carried out two molecular dynamics (MD) simulations of the B1 domain of protein G, with dif-

ferent lengths of 100 and 200 ns, respectively, referred to as GB1/2 and GB1. Correlations of atomic

motions were quantified by correlation matrices calculated from the MD simulations. Figure 5.1c

shows correlation matrices obtained from GB1/2 (above the diagonal) and MD2 (below the diago-

nal), respectively. The similarity of the two matrices shows that the computed correlations are largely

well converged. Full convergence is not reached for residues 37-42, which constitute the loop con-

necting theα-Helix with theβ3-strand. Closer inspection revealed long timescale contributions to
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Figure 5.1: Correlation matrices from NMR experiment and MD calculation.
(a) Correlation matrices taken with permission from Mayer et al.[59]. Data forS2-covariations are
shown above the diagonal, whereas those forτe-covariations are shown below the diagonal. The
black boxes are irrelevant for the present discussion.(b) Correlation matrix computed from an NMR-
structural ensemble.(c) Correlation matrices computed from MD simulations. The correlations com-
puted from GB1/2 are shown below the diagonal, correlations derived from GB1 above the diagonal.
(d) Correlations computed for NH-vector motions. The center shows the simulated B1 domain of
protein G.
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Figure 5.2: Main collective motion as re-
vealed by the principal component analysis
described in the text

the loop dynamics. However, the relevant sub-microsecond timescale probed by NMR relaxation

experiments [186] is well sampled in our simulations.

The matrix is dominated by strong correlations between neighboring residues which show up as a

band along the diagonal. The broad region of high correlation between residues 22 and 38 is caused by

the 1-4 contacts of the centralα-helix. The two bands of high correlation perpendicular to the diagonal

are due to the contacts between different strands of the four-strandedβ-sheet. Strong correlations and

anticorrelations are also found between residues 10-15 of the first hairpin loop and the rest of the

molecule. They are caused by a kinking-out motion of the turn betweenβ-strandβ1 andβ2 together

with a part of theβ-sheet. This motion, hinged around residues 8 and 15, is the main contribution to

the principal collective motion (Fig. 5.2), as revealed by principal component analysis [39, 50].

To test if there is a direct connection between the covariation of NMR order parameters and the

computed correlated atomic motion observed in the simulation, we compared the computed corre-

lation matrices (Fig. 5.1c) with theS2 and theτe based covariation matrices derived by Mayer et

al. [59] (Fig. 5.1a). Overall, the level of correspondence is low. The only feature shared with the

MD simulations is the band of anticorrelated motion between residues 10 to 14, which is present in

the experimental results derived from covariations inτe-order parameters, but is not seen in theS2

derived correlations. Apart from this detail, the overall lack of similarity is striking. The nature of this

discrepancy deserves closer inspection.

5.3 Verification of molecular dynamics simulation through addi-

tional experimental data

On the simulation side, the question is whether the MD simulations describe atomic motions with suf-

ficient accuracy. Potential artefacts include force field inaccuracies and convergence problems[171].

Therefore we compared the root mean squared fluctuations (RMSF) of the two MD trajectories (GB1/2
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Figure 5.3: Root Mean Square Fluctuations
(RMSF) of backbone atoms. The grey line
is the RMSF observed in the NMR ensem-
ble, while the black lines correspond to
the RMSF computed from the two different
MD trajectories. The positions of the ma-
jor RMSF peaks agree well with the exper-
imental data. The fluctuations of the largest
motion, residues 8-15, and of theα-helix
are slightly overestimated by the MD simu-
lations, but overall the flexibility of the re-
maining regions of the molecule is well re-
produced.

and GB1) with the RMSF of a structural ensemble of the B1 domain of protein G obtained from NMR

NOE data [187] (PDB entry 3gb1, see Methods Section). The RMSF profiles obtained form the MD

simulation and the NMR NOE ensemble agree well (Fig. 5.3). Moreover, also the correlation matri-

ces obtained from the simulations (Fig. 5.1c) agree well with the one obtained from the NMR NOE

ensemble (Fig. 5.1b). These agreements are quantified by correlation coefficients of 0.6 and 0.74, for

GB1/2 and GB1, respectively, between the simulation-derived and the NMR-derived results. In con-

trast, the correlation coefficients between all of these matrices and the covariance matrix computed

from order parameters are much smaller, -0.08 and -0.01 for the two MD matrices, and 0.01 for the

NMR NOE matrices, respectively. The good agreement between MD and the NMR NOE ensemble

in terms of the atomic fluctuations and in particular of their correlations renders it unlikely that sim-

ulation artefacts cause the discrepancy with the covariance matrix obtained from order parameters.

That this agreement is not just anecdotal is indicated by a correlation coefficient of 0.6 between NMR

NOE and MD covariance matrix obtained for a different protein, ubiquitin (cf. Fig. 5.6), and by a

correlation coefficient of 0.72 obtained using a different NMR data set for ProteinG (PDB entry 1gb1,

cf. Fig. 5.7).

Because order parameters form the basis for the covariances determined by Mayer et al., it is

necessary to check if the motions probed by order parameters are accurately described by the MD

simulations as well. To this end, we compared the experimentally obtained order parameters [188]

for protein G with order parameters computed from the MD trajectories (Fig. 5.4a). Within the er-

ror bars, the simulations agree with each other as well as with the measured order parameters. The

inset of Fig. 5.4 shows that most differences between the observed and the computed order parame-

ters are below 0.1 with few outliers below 0.2. Overall, the agreement is good, in line with earlier

observations [189, 190, 191, 192].
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Figure 5.4: Comparison of the generalized order parameters (S2) between the MD simulations and the NMR
data set [188]. Computed order parameters (colored lines) with error bars are compared with experimentally
observed order parameters (black line). The inset shows histograms of the order parameter differences between
the MD data sets and the experimental results.
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Figure 5.5: Scatter plots of covariation and correlation matrix elements. In each of these plots we compare
two of the correlation matrices shown in Fig. 5.1; each point represents the two different correlations obtained
with the respective methods for the same residue pair.(a) The correlations obtained from MD simulation, as
depicted in Fig. 5.1c, are plotted against the covariations of order parameters, shown in Fig. 5.1a.(b) The
correlations obtained from MD simulation are plotted against correlations observed in the NMR structural
ensemble (Fig. 5.1b).
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Figure 5.6: Correlated Motions of Ubiquitin. The correlated motions as obtained from MD simulations
(28ns/OPLS/gromacs) are shown above the diagonal, whereas the corresponding correlations obtained from
the NMR-structural ensemble (1D3Z) are shown below the diagonal. The correspondence between the differ-
ently obtained correlations is good, as confirmed by the scatter plot and a correlation coefficient of 0.6.
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Figure 5.7: Correlated Motions of Protein G. The dataset 3GB1 in the protein data base(PDB) contains only
those NOEs which are compatible with additional dipolar coupling data. Here, below the diagonal, we present
the correlated motions obtained from an ensemble generated with all NOEs, as stored in the PDB data set 1GB1.
For comparison, above the diagonal the correlated motions obtained from MD simulation (MD2) as presented
in Fig. 1c. As confirmed by the scatter plot (correlation coefficient 0.72), the good correspondence between
MD simulation and NMR NOE data is not thwarted by the additional NOEs stored in 1GB1.



5.4. ROTATIONAL CORRELATION 75

Therefore we conclude that the simulations provide a comprehensive and accurate picture of the

correlated atomic motion within the protein G domain that is consistent with the available experi-

mental data. The remaining unexplained discrepancy to the covariances derived from NMR order

parameters suggests that these two quantities are in fact notdirectly related. Comparison of all ele-

ments of the MD correlation matrix with the respective covariations of NMR order parameters as a

scatter plot (Fig. 5.5a) confirms this finding. Furthermore, the absence of any detectable structure in

this plot suggests the absence ofanyrelation to this measure of correlated atomic motion.

5.4 Rotational correlation

One, finally, might argue that a more direct comparison between MD and NMR data would rest on

an analysis of the correlation in the orientational fluctuations of NH bond vectors, which are probed

by the NMR order parameters, rather than on the Cartesian coordinates. However, these fluctuations

are already included within the generalized correlation measure described above and, hence, similar

results are expected. Figure 5.1d (below diagonal) shows that this is indeed the case, as quantified

by the low correlation coefficient of 0.05 between NH-vector fluctuations in MD and the covariances

derived from the NMR order parameters.

5.5 Conclusions

In summary, we have demonstrated that for two different proteins correlated motions can be accurately

extracted from MD simulations, that are compatible with the measured NMR data (NOE and order

parameters). However, the correlated atomic motions described by our sub-microsecond molecular

dynamics simulations of the B1 domain of protein G are unrelated to covariations derived from order

parameters. The obtained agreement with independent NMR NOE data and with NH order param-

eters provides strong evidence that the simulations accurately describe the atomic motions and their

correlations at the experimentally relevant timescale. This is further supported by the good qualitative

agreement with recently published residual dipolar coupling experiments [193]. Taken together, the

results render it unlikely that the observed covariances in measured order parameters reflect the un-

derlying influence of the correlated atomic dynamics for the wild type protein. Instead, we speculate

that the measured covariances are caused by correlated structural changes due to the introduced point

mutations, which in turn affect the atomic mobilities. In this framework the experiments would probe

remarkably correlated structural plasticities rather than correlated atomic motions. Further simula-

tions of all the ten studied mutants will thus be required to test this hypothesis and to structurally

characterize the properties of this proposed non-local plasticity.

Furthermore, the results showed that NMR NOE ensembles might offer a good experimental ac-

cess to correlated atomic motion. However, the fluctuation observed in those ensembles has two

sources. The physical fluctuations of the atoms during the experiment, on the one hand, and an un-
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certainty of the measurements, on the other hand. Since we are only interested in the former, it is

necessary to find means by which they can be separated. Thus, to extract correlated motions from

NMR NOE ensemble remains a challenging task. Nonetheless, the approach can be used to falsify

correlations observed in MD simulations, and thus might be useful in the framework of CLD.



I would have thought it impossible to investigate

Brownian motion with such precision

– Albert Einstein

Chapter 6

Equations of Motion for Collective Langevin
Dynamics

In this chapter the framework ofCollective Langevin Dynamics(CLD) is introduced. It combines

the two concepts, generalized collective degrees of freedom and dimension reduced description using

statistical mechanics. The dynamics of the relevant and slow degrees of freedom are actively evolved,

whereas the remaining ones are treated in an implicit manner.

Proper treating of the coupling to degrees of freedom which are not explicitly considered, is es-

sential to yield accurate dynamics of the active subsystem, because it allows energy to be exchanged

constantly between the two subsystems. Consider, for example, transitions in a double well potential.

An isolated degree of freedom in such a potential would either cross the barrier never, if it was low in

energy, or, being high in energy, cross the barrier every single oscillation period. On the contrary, the

a particle in the same potential but coupled to many other degrees of freedom, would oscillate in one

well until it accumulated enough energy from the other degrees of freedom to cross the barrier. On

arrival in the second well the coupling enables a dissipation of the excess energy inhibiting an imme-

diate recrossing. Thus, the constant energy accumulation and dissipation of the considered degree of

freedom has a significant and qualitative impact on the type of its dynamics.

We use statistical mechanics to treat the many remaining degrees of freedom in form of a stochastic

bath, which is coupled to the actively evolved subsystem. The coupling to this bath is modeled by a

stochastic process. As discussed in the Introduction, the treatment of Brownian motion is conceptually

similar, but in contrast to CLD it rests on a clear separation of timescales. The absence of such a gap

in timescales governed by protein dynamics (cf. Chapter 2) has a considerable impact on the statistical

properties of the stochastic process, which models the coupling to the bath.

To fathom this qualitative change briefly consider a system where such a gap existed, e.g., a

Brownian particle. Under this condition an intermediate time would exist, which suffices for the bath

to equilibrate, while its environment determined by the slow degrees of freedom hardly changes. In

particular, the state of the bath is fully determined by the instantaneous state of the slow subsystem,
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such that the effect of the bath can be modeled by a Markovian process. On the contrary, no such gap

exists in the context of protein dynamics, such that the state of the bath depends also on the history

of the slow subsystem. Thus, the accumulative and dissipative forces are not free ofmemory.The

stochastic process describing the coupling to the bath is non-Markovian.

The projection operator formalism developed by Zwanzig[41] and Mori[42] allows a rigorous

treatment of the proposed separation of the overall dynamics into slow degrees of freedom and a

stochastic bath replacing the fast degrees of freedom. According to this formalism the projection

operator is used to split the effect of the fast subsystem onto the slow degree of freedom in two

parts. First, the potential force averaged over the canonical ensemble of the fast subsystem yields a

potential of mean force,and, second, the instantaneous deviation from this average force is captured in

a generalized friction term and a term for the accumulative force, calledrandom force. In the following

we detail how this treatment leads to a Generalized Langevin Equation (GLE). The non-Markovian

dynamics of the stochastic bath are fully accounted for by a generalized dissipative term, which is

a convolution of thememory kernelwith past velocities. The treatment also yields a fluctuation-

dissipation theorem, which enforces a balance between energy accumulation and dissipation.

In the following treatment we will consider non-linear degrees of freedom in full generality. This

enables the use of a curved coordinate in the subsequent application of the CLD model to conforma-

tional dynamics of neurotensin.

6.1 Projection Operator Formalism

Let us first consider the conceptual framework, which we sketch here following[194] to clarify nota-

tion. We start with the full molecular dynamics, which are described by the Hamiltonian

H(x,p) =
1
2

n∑
i=1

p2
i

mi
+ V(x) (6.1)

wherex andp, with componentsxi andpi, respectively, are then-dimensional position and mo-

mentum vectors andmi their masses. A solution of the corresponding canonical equations is de-

fined through an initial value(x0,p0); to each initial condition corresponds a trajectory,ϕ(t) =
ϕ(x0,p0, t). Subsequently the subscript 0 is omitted.

In the framework of the projection operator formalism a dynamical variable[42, 41, 195], mechan-

ical property[194], or physical quantity[196] is defined as a mapping on phase spaceR3N × R3N

A : R3N × R3N −→ R2m

(q,p) 7→ A (q,p) ,

with the2m components denoted byAi, i = 1, . . . , 2m. The spaceD of all dynamical variables is
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endowed with the inner products

〈A| B〉ij =
∫
Aj(x,p)Bj(x,p)ρ(x,p)dxdp.

Hereρ is the canonical distributionρ(x,p) = Z−1e−βH(x,p) with partition functionZ and inverse

temperatureβ. We use the bracket formalism and denote the elements ofD asket-vectors|A〉.
A dynamical variable varies in time through its argument; a dynamical variable whose value at

t = 0 wasA(x,p) acquires at timet the valueA(ϕ(x,p, t)). One can also take a “Heisenberg”

or “Lagrangian” point of view and introduce a time-dependent dynamical variableeLtA, whereL
denotes the Liouville operator defined by the Poisson Bracket

L = {·,H} =
n∑

i=1

(
∂H
∂pi

∂

∂xi
− ∂H
∂xi

∂

∂pi

)
. (6.2)

The propagatoreLt allows us to define the time-dependentket-vector

|A(t)〉 ≡
∣∣eLtA

〉
= A (ϕ(x,p, t)) ,

which obeys the Liouville equation

d

dt
|A(t)〉 = L |A(t)〉 . (6.3)

The projection operator[42]

P = 〈A| A〉−1 |A〉 〈A| (6.4)

allows to separate the time dependence of the dynamical variable into a part within the linear subspace

U spanned by the ket-vectors|Ai〉 and a part within the orthogonal subspaceU⊥ [197],

d

dt
|A(t)〉 = eLtPL |A〉+

∫ t

0
dτeL(t−τ)PL |F (t)〉+ |F (t)〉 , (6.5)

with the random force|F (t)〉 ≡ e(1−P)Lt(1 − P)L |A〉. The random force lies within the subspace

U⊥, i.e.,(1− P) |F (t)〉 = |F (t)〉, which allows to compute

PL |F (t)〉 = PL(1− P) |F (t)〉 = 〈L(1− P)F (t)| A〉 〈A| A〉−1 |A〉 .

Defining thememory functionΓ(t) ≡ 〈L(1− P)F (t)| A〉 〈A| A〉−1[60] Eq. (6.5) becomes the Gen-

eralized Langevin Equation (GLE),

d

dt
|A(t)〉 = PL |A(t)〉+

∫ t

0
dτΓ(τ) |A(t− τ)〉+ F (t). (6.6)

Thus, the dynamics of|A〉 are split into the dynamics withinU and a correction term which describes
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the evolution of the system inU⊥. F (t) is the random force[42] exerted by the uncoupled motion

in U⊥, i.e.,〈F (t)| A (0)〉 = 0, with its realization depending on the chosen initial conditions for the

orthogonal part of the motion. The energy uptake due to the random forceF (t) is counterbalanced by

the generalized friction, as expressed formally by the generalized fluctuation-dissipation theorem

〈F (t)| F (t′)
〉

= 〈A| A〉Γ(t− t′). (6.7)

6.2 Definition of Motion along Conformational Coordinate(s) as

the Observable

Here we propose to apply the projection-operator formalism rigorously to the dynamics of suitably

chosen collective degrees of freedom,

ci = fi(x1, . . . ,xN ), i = 1 . . .m, (6.8)

and derive equations of motion for them. To be specific, and for simplicity of notation, we consider

the dynamics ofonenonlinear collective variable c (m = 1), although the theory can be generalized

to more dimensions in a straightforward manner. The dynamics of the collective degree of freedomc

are best represented by motion along a suitably chosen one-dimensional submanifoldM ⊂ R3N of

the configurational space parameterized byc. However, in practice, at first not afi but a submanifold

M that is able to represent the motion of interest will be chosen, and in turn the collective degree of

freedom is defined as a projection to that submanifold.

To derive the equations of motions for the collective coordinate with the projection-operator for-

malism, the problem is recast in terms of a dynamical variable A with two components. The first

component,A1, is given by the projection of vectorx

A1 : Γ −→ R

(x,p) 7→ c = f(x),

and the second component by the orthogonal projection of the momentump onto the tangential space

Tf(x)M of the manifold to the point corresponding to parameterf(x)

A2 : Γ −→ Tf(x)M

(x,p) 7→ ċ = ∇xf ·M−1p, (6.9)

whereM is a diagonal mass matrix. For a one-dimensional equation of motion, a suitably chosen

reduced massµ is required, which is derived from Eq. (6.9) via the equipartition theorem,
〈
ċ2
〉

=
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(βµ)−1. The mean squared velocity

〈
ċ2
〉

=
∫ (

∇xf ·M−1p
)2
ρ(x,p) dxdp,

consists of a sum of pure terms∼ p2
i and mixed terms∼ pipj . After integration over the momenta the

mixed terms vanish, which allows, via
∫
p2

i dp = β−1mi, to define the reduced mass as

µ =

(∫ n∑
i=1

(
∂f

∂x i

)2 1
mi
ρ(x)dx

)−1

.

6.3 Equations of Motion for Conformational Coordinate(s)

The above definitions allows for the application of the projection operator formalism in order to derive

the equations of motion for the collective degree of freedom(s). To this aim, and exploiting the fact

that the two components of the dynamical variableA are conjugated variables, the system of the two

first order GLEs, Eq. (6.6), is cast into one second order GLE. This is possible because the first

components of random force and memory function vanish, which can be seen from

L |A1〉 =
∑

i

∂H
∂pi

∂f

∂xi
∈ Tf(x)M,

such that the orthogonal part(1−P)L |A1〉 vanishes. Hence, the fluctuation-dissipation theorem, Eq.

(6.7), simplifies accordingly to

〈F2(t)| F2(t′)
〉

= 〈A| A〉 γ(t− t′), (6.10)

with γ(t) ≡ Γ2(t).

The conventional way to proceed from here is to apply the linear projectorP, Eq. (6.4), to the

remaining componentPL |A2(t)〉 of the first term in Eq. (6.6), thus obtaining an effective harmonic

force Ω[198, 42]. However, here we avoid this harmonic approximation by adopting the nonlinear

projection operator originally introduced by Zwanzig[195] and rediscovered recently[199]. Apart

from introducing a dependency ofγ on the ket-vector|A〉, this generalization does not change the

above derivation, Eqs. (6.5-6.6)[199, 197].

To be able to project to a curved conformational coordinate we generalize the operator defined in

Ref. [199] to

P |.〉 =
1

ρc(c, ċ)

∫
|.〉 ρ(x,p) dΩ(c, ċ), (6.11)

with dΩ(c, ċ) := δ (f(x)− c) δ
(
∇xf ·M−1p− ċ

)
dxdp . Here we have defined theconformational

densityρc(c, ċ) as the projection of the density in configurational space onto the conformational coor-
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dinate,

ρc(c, ċ) =
∫
ρ(x,p)

∥∥∥∇xfM−1/2
∥∥∥2

dΩ(c, ċ). (6.12)

The mass matrixM would vanish if mass-weighted coordinates (x̃ =M1/2x andp̃ = M−1/2p )

were used. Since the chosen example comprises masses in the range 12 to 16 atomic mass units and,

therefore, the difference is small, we have not used mass-weighted coordinates in Chapter 8.

Applying the generalized projector shows thatPL |A2(t)〉 is the expectation value of the potential

force acting tangentially toM under all possible realizations of the trajectory and a correction term

due to the curvature of the chosen parameterizationf of M,

PL |A2(t)〉 = − 1
ρc(c, ċ)

∫ [
∇xV · ∇xfM−1 −∇pH · ∇x

(
∇xf ·M−1p

)]
ρ(x,p)dΩ(c, ċ).

(6.13)

Defining the potential of mean forceW (c, ċ) = −β−1 log ρc(c, ċ), we show in the Appendix that its

derivative

∂W

∂c
(c, ċ) = −β−1 1

ρc(c, ċ)
∂ρc(c, ċ)
∂c

(6.14)

yields the right hand side of Eq. (6.13). In the linear case, integration on the momentum part can be

carried out separately, such that the dependence on the velocities,ċ, vanishes. This yields the final

result

PL |A2(t)〉 =
1
µ

∂W

∂c
(c). (6.15)

For reasons of practicality we approximate in the non-linear case by averaging out the dependence on

the velocities.

To cast the resulting equation into the more usual form[43, 200, 201] of a second order GLE, we

setR(t) = µF2(t), and from Eq. (6.6) one obtains

µc̈(t) = − d

dc
W (c(t))−

∫ t

0
dτµγ(t− τ, c)ċ(τ) +R(t), (6.16)

which is, except for the approximation in Eq. (6.15) for non-linearf , theexactequation of motion for

the projected dynamics. Its right hand side is composed of a potential of mean forceW , a general-

ized frictionγ, and a random forceR. The latter two obey the corresponding fluctuation-dissipation

theorem,

〈R(0)| R(t)〉 = µβ−1γ(t). (6.17)

The computation of the random forceR(t) requires solution of a Liouville equation which is far

more complicated than the original unprojected problem. The advantage of the reformulation of the

equations of motion in the form of the GLE, Eq. (6.16), is, of course, that the random force can

be replaced by a stochastic term, i.e., a randomly generated force with similar statistical properties.

In particular, its autocorrelation function has to satisfy the fluctuation-dissipation theorem Eq. (6.7).
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Accordingly, we address in the following the task to extract the three componentsW , γ, andR from

atomistic molecular dynamical simulations.

The potential of mean forceW (c) = −β−1 log ρc(c) is obtained from the configurational den-

sity projected to the chosen collective coordinate(s). Here, the necessary canonical ensembles will

be generated by MD simulations, but, indeed, any method that yields a canonical ensemble can

be used, e.g., replica exchange molecular dynamics (REMD)[73], umbrella sampling[202, 75], or

metadynamics[203].

The generalized friction is extracted from MD simulations. Here relatively short trajectories con-

tain already sufficient information, because the respective memory kernels typically decay rapidly.

The extraction of memory kernels is treated in Chapter 7.

The autocorrelation function of the random force processR(t) is determined by the memory ker-

nel via the fluctuation-dissipation theorem, Eq. (6.17). In Sec. 6.4.1 we present an elegant strategy to

generate a sequence of random numbers which is unbiased apart from a predetermined autocorrela-

tion.

6.4 Integration of the generalized Langevin equation

In order to obtain trajectories of the motion in the conformational subspace we need to integrate the

GLE, Eq. (6.16). The random force processR(t) does not depend on the trajectory and can, thus, be

generated independently of the integration. The most time consuming part of the integration is the

evaluation of the convolution of the memory kernel with the past velocities. Thus, we focussed our

efforts for speeding up the calculation on an efficient computation of this convolution via FFT.

6.4.1 Generation of a random force

To generate instances of the random force processR(t) for a given memory kernelγ(τ) via the

fluctuation-dissipation theorem, we follow the method proposed in Ref. [200], which is exact and

unbiased in contrast to other methods [204, 201, 205]. Briefly, the Wiener-Khintchin Theorem is

exploited, which connects the spectral density

J(ω) =
∫ ∞

−∞
dt 〈R(0)| R(t)〉 e−iωt (6.18)

to the power spectrum

J(ω) =
∣∣∣∣∫ ∞

−∞
dtR(t)e−iωt

∣∣∣∣2 . (6.19)

Hence the average amplitude of the Fourier transformed noise〈|R(ω)|〉 is determined by the memory

functionγ(t) = µβ−1 〈R(0)| R(t)〉. This is achieved by

R(t) =
∫ ∞

−∞
dω
√
JK(ω)z(ω)eiωt,
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wherez(ω) ∈ C are realizations of a normal distribution with unit variance, andJK is the spectral

density corresponding to the given memory function

JK(ω) = mβ

∫ ∞

−∞
dtγ(t)e−iωt.

This method allows generation of noise with arbitrary given autocorrelation.

6.4.2 Integration of the GLE

In order to integrate the GLE we used an algorithm of Tuckerman et al.[206], which is based on the

velocity Verlet scheme[207]

cn+1 = cn + ∆tċn +
(∆t)2

2µ
fn, (6.20)

ċn+1 = ċn +
(∆t)2

2µ
(fn + fn+1) , (6.21)

wherecn = (n∆t) , etc., andfn denotes the force at thenth time step. The force is given by the GLE,

Eq. (6.16), which in discrete notation is written as

fn =
∂W

∂c
(cn)−∆t

n∑
k=0

ωn−kγn−k ċk +Rn, (6.22)

whereωk are suitable quadrature weights (e.g.,ω0 = ωn = 1/2, ωk = 1, if the trapezoidal rule is

used). Substitution of Eq. (6.22) into Eq. (6.20) gives a direct method for obtaining the positions. The

velocity equation, Eq. (6.21), however, requiresfn+1, which involvesċn+1. Therefore, Tuckerman et

al. separated out the unknown term by writing

f ′n+1 := fn+1 + ∆tω0γ0ċn+1.

Replacingfn+1 andfn in Eq. (6.21) and solving foṙcn+1 yields the result

ċn+1 =
ċn + (∆t/2µ)

(
fn + f ′n+1

)
1 + (∆t)2 ω0γ0/2µ

.

In Chapter 8, we require to integrate the corresponding (non-generalized) Langevin equation.

To this end we setω0γ0 = 2γc/∆t andγk = 0 for k > 0, and replaced the random forces by

Rn = (2kTmγc/∆t)−1/2 ξn, where theξn are independent Gaussian random variables with zero

mean and〈ξ2n〉 = 1, and∆t denotes the integration time step.
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6.4.3 Treatment of the convolution integral with FFT

The bottleneck of the integration of the GLE is the evaluation of the convolution sum

Cn =
n∑

k=0

γn−k ċkωk (6.23)

(cf. Eq. (6.22)).

Our wish is to exploit FFT, which allows for the efficient computation of families of discrete

convolutions

sm :=
M−1∑
k=0

γ#
m−kv

#
k , (6.24)

with periodically definedv#
k = v#

jM+k, γ#
k = γ#

jM+k, wherem, j = 0,±1,±2, . . . . The role of

FFT is defined by the discrete convolution theorem, which shows that the discrete Fourier transform

Sl of the sequencesm is the product of the discrete Fourier transformsVl andΓl of v#
k andγ#

k ,

respectively. Thereby, the whole family of convolution sums is computed simultaneously reducing

the complexity of the computation fromO
(
M2
)

to O (M logM)[208, 209]. Thus, for a specific

hard- and software dependentMo the FFT method becomes faster than a direct summation. Here,

on an AMD 1.8GHZ Opteron with the FFTW Library Ver 3.0[210] this cross-over against a direct

evaluation of the sum using the BLITZ++ package[211] was found to be already atMo = 8.

However, a direct application of FFT is hindered, because the family of convolution sums,

Eq. (6.23), differs from the definition of the familysm in two ways. First, the upper limit of

the summation varies with timen∆t, and second, at timen∆t velocities ċk, k ≥ n are not yet

known. Nonetheless, the convolution theorem can be exploited by defining suitable sub-families of

convolution sums[212, 213]

Fν,µ(n) :=
µ−1∑
k=ν

γn−k ċkωk.

Settingv#
k := ċk+νωk+ν , γ#

k := γk, andm = n− ν we get

Fν,µ(m) =
µ−ν−1∑

k=0

γ#
m−kv

#
k .

Furthermore, the upper limit of the summation is extended to2 (µ− ν)−1 without changingFν,µ(m)
by definingv#

k := 0 for k ≥ µ−ν. Thus, from the similarity with Eq. (6.24) withM = 2 (µ− ν) ,we

know that form = 0, . . . ,M − 1 the sub-family of convolutionsFν,µ(m) can be computed efficiently

with FFT.

This computation is carried out as soon asn = µ using just those velocitieṡck, k < µ, which
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are already known. At this time only the latterM/2 of the convolutionsFν,µ(n) are of interest to us,

sinceCn for n < µ has been computed already. In spite of this waste, the simultaneous determination

of the partsFν,µ(n) of theµ − ν subsequent convolution sumsCn for µ ≤ n < 2µ − ν with FFT is

more efficient than a direct evaluation of the complete sum for every integration step.

This efficient computation of subfamiliesFν,µ is exploited for the sequence of convolutionsCn as

follows. The firstMo convolutions are computed by a direct evaluation of the sum, Eq. (6.23). Then

the first FFT convolutionsF0,Mo(n) are carried out. The followingMo ≤ n < 2Mo convolutionsCn

are computed by separatingCn into

Cn = F0,Mo(n) +
n∑

k=Mo

γn−k ċkωk

= F0,Mo(n) + FMo,n(n).

For 2Mo ≤ n < 4Mo we discardF0,Mo(n) and compute insteadF0,2Mo(n). As soon asn >

3Mo an additionalF2Mo,3Mo(n) yields parts of theCn for 3Mo ≤ n < 4Mo. Forn ≥ 4Mo both

sub-families,F0,2Mo(n) andF2Mo,3Mo(n), are expired, and are replaced byF0,4Mo(n), which yields

values for4Mo ≤ n < 8Mo, and so on. In summary

Cn(n) =



F0,n(n) n < Mo

F0,Mo(n) + FMo,n(n) (Mo ≤ n < 2Mo)

F0,2Mo(n) + F2Mo,n(n) (2Mo ≤ n < 3Mo)

F0,2Mo(n) + F2Mo,3Mo(n) + F3Mo,n(n) (3Mo ≤ n < 4Mo)

F0,4Mo(n) + F4Mo,n(n) (4Mo ≤ n < 5Mo)

F0,4Mo(n) + F4Mo,5Mo(n) + F5Mo,n(n) (5Mo ≤ n < 6Mo)

. . .

Therefore, at mostMo − 1 terms of a single convolution sum are computed by direct evaluation,

whereas all the other terms are obtained efficiently with FFT via the sub-familiesFν,µ(n).

6.5 Appendix

In this appendix we show that Eq. (6.14) evaluates to the force termPL |A2(t)〉. To simplify notation,

we use mass-weighted coordinates (x̃ =M1/2x andp̃ = M−1/2p ) and define

δc := δ (f(x)− c)

δv := δ (∇xf · p− ċ) .
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For the proof we will need the relations

∇xf · ∇xδc = δ′(f(x)− c) ‖∇xf‖2 (6.25)

∇xf · ∇xδv = ∇pδv · ∇x (∇xf · p) , (6.26)

which are easily shown by applying the chain rule to the delta-functions.

Consider the derivative ofρ(c, ċ), which appears in Eq. (6.14). As seen from the definition,

Eq. (6.12), its dependence onc is restricted to the delta-functionδc. Therefore,

∂ρ(c, ċ)
∂c

= −
∫
ρ(x,p) ‖∇xf‖2 δ′(f(x)− c) δv dxdp,

which is transformed via relation Eq. (6.25) to

∂ρ(c, ċ)
∂c

= −
∫
ρ(x,p)∇xf∇xδc δv dxdp.

Having brought the integrand into this suitable form, the derivative of the delta-functionδc is easily

removed via partial integration, which yields

∂ρ(c, ċ)
∂c

=
∫
{[(−β)∇xV · ∇xf +∇x · ∇xf ] δv +∇xf∇xδv} ρ(x,p)δcdxdp,

where we have used thatρ(x,p) = Z−1 exp (−βH). To remove also the newly appeared derivative

of δv, we employ Eq. (6.26) and integrate partially over momentum space. This yields

∂ρ(c, ċ)
∂c

=
∫
{−β∇xV · ∇xf + β∇pH · ∇x (∇xf · p)} ρ(x,p)δcdxdp,

since the remaining terms

∇x · ∇xf −∇p · ∇x (∇xf · p)

cancel each other out. Thus, comparison with Eq. (6.13) shows that

1
ρ(c, ċ)

∂ρ(c, ċ)
∂c

= −βPL |A2(t)〉 .
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One must have a good memory to be able to keep the promises one makes.

— Friedrich Nietzsche

Chapter 7

Extraction of Memory Kernels from
Molecular Dynamics Simulations

In the previous chapter we have shown that the collective Langevin dynamics (CLD) is governed by

a generalized Langevin equation (GLE). This equation accounts for memory effects of the collective

dynamics by a convolution of past velocities with amemory kernel. The memory kernel decays

rapidly, such that it can be extracted from short MD simulations. In this chapter suitable extraction

methods are developed and evaluated.

In a first step, we neglect the dependence of the memory kernelγ(t, c) on the positionc of the

conformation coordinatec, hence we extract a spatially averagedγ(t). In a second step, we also

investigate methods to extract the fullγ(t, c), since this will allow to improve the CLD model by

considering the spatial dependence ofγ(t, c).

The general strategy is to obtain memory from either a force autocorrelation function (FACF) or

a velocity autocorrelation function (VACF) of the relevant degrees of freedom. The first approach

either exploits the Kubo relation[196] or directly the fluctuation-dissipation theorem, Eq. (6.17). For

the latter one needs to obtain an autocorrelation function ofR(t), i.e., therandom force,which is

detailed in Section 7.5. The second approach exploits the Memory equation, a Volterra-type equation,

which connects the VACFΨ(t) to the spatially averaged memory kernelγ(t). Solving this equation,

however, is not straightforward, hence a detailed investigation is required.

A solution of the Memory equation for a VACFΨ(t) given a memoryγ(t) is straightforward.

One simply integrates the GLE, Eq. (6.16), (settingW ≡ 0), and computes the autocorrelation of the

obtained velocities.

However, we have to consider the inverse problem: Solving the Memory equation forγ(t) with

a given VACFΨ(t) is very challenging indeed, because it suffers from instabilities arising from a

fundamental ill-posedness of the problem. In previous examples, solving the Memory equation for

single particle VACFs[62, 64, 65, 67, 68, 69], the effects of this instability were not as severe as

encountered here. This finding can be attributed to an earlier observation, that the statistical error of

single particle VACFs is much lower than that of VACFs of collective degrees of freedom[214]. Here,

89
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the arising instability cannot be counteracted with ad-hoc measures anymore, as done, e.g., with a 6th-

order interpolation of the VACF by Berne et al.[60], or by application of infinite-precision arithmetics

by Kneller et al.[61].

The instabilities of methods based on the Memory equation have not attracted much attention so

far and were — to our knowledge — never explicitly attributed to the underlying ill-posedness of the

problem. Here we will analyze the ill-posedness in detail, because a thorough grasp of the difficulties

allows to search systematically for solutions. Gaining thus a generalized perspective on the problem

should allow to take advantage of the extensive literature on solution ofinverse problems[215, 216,

217, 218, 219, 220, 221, 222].

The general strategy is to regularize the problem in order to neutralize its ill-posedness. We will

give a short summary about the most important regularization methods and discuss the established

techniques to solve the Memory equation[60, 61] in light of this new view. Furthermore, we propose

new methods to solve the problem, which apply two different regularization techniques.

7.1 The Memory equation

The Memory equation[60, 223, 224], a Volterra-type equation,

d

dt
Ψ(t) = −

∫ t

0
dτγ(t− τ)Ψ(τ) (7.1)

connects the VACF,Ψ(t) = 〈ċ(0)| ċ(t)〉 /〈ċ2〉, with the memory kernel,γ(t). Eq. (7.1) is obtained

from the GLE, Eq. (6.16), without the potential (W ≡ 0) by application ofµ−1
〈
ċ2
〉−1 〈ċ(0)| and

noting that〈F (t)| A (0)〉 = 0.

The VACFΨ(t) can be computed readily from MD simulations. Thus, the memory kernelγ(t)
can be extracted by solving Eq. (7.1) given aΨ(t). Note, however, that this usual form of the Memory

equation[60, 223, 224] yields an adulteratedγ(t), due to the additional velocity correlations, which are

caused by the inertial motion of the system within the free energy surface and not by memory effects

due to the eliminated degrees of freedom. We, therefore, suggest to consider the contribution from the

potential separately: the additional term to Eq. (7.1) takes the form of a velocity/force correlation,

Π(t) ≡ µ−1
〈
ċ2
〉−1

〈
ċ(0)

∂W

∂c
(c(t))

〉
, (7.2)

and serves to quantify the accuracy of the usual approximation Eq. (7.1).

Indeed, in the application to neurotensin reported in Chapter 8Π(t) was found to be some magni-

tudes smaller than the other terms involved and was neglected. Therefore, for simplicityΠ(t) ≡ 0 in

the following discussion, although an extension of the presented methods to non-zeroΠ(t) is straight-

forward.

Note that an unjustified treatment withΠ(t) ≡ 0 andW ≡ 0, although consistent, alters the
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Figure 7.1: The memory equation is ill-
posed. The plot shows three memory ker-
nels, as defined by Eq. (7.7). The inset
shows their corresponding VACFs, which
are indistinguishable.

resulting memory kernel in the impractical and counterintuitive way that it does not decay to zero

anymore. E.g., a motion of a massm in a harmonic potentialW = 0.5ωc2 can be accurately described

by a GLE withW ≡ 0, but thenγ(∞) = ω/m asymptotically.

For completeness, we note that an alternative Memory equation can be obtained following

Berkowitz et al.[66] by applyingµ−1 〈c(0)| to the GLE which leads in our case to

〈ċ(0)| ċ(t)〉 = µ−1

〈
c(0)

∂W

∂c
(c(t))

〉
−
∫ t

0
γ(t− τ) 〈c(0)| ċ(t)〉 . (7.3)

However, we do not consider this any further, because it contains slowly converging positional con-

tributions to the autocorrelation functions.

7.2 Ill-posedness of the Memory equation

Solving the Memory equation, Eq. (7.1) for the memory kernelγ given a VACF with statistical noise is

challenging, because this type of equation, i.e., a Volterra equation of 1st kind, is known to suffer from

various degrees ofill-posedness[225]. This means our problem does not fulfill Hadamard’s definition

of well-posedness,i.e., at least one of the following properties does not hold[215]

For all admissible data, a solution exists (7.4)

For all admissible data, the solution is unique (7.5)

The solution depends continuously on the data (7.6)

To illustrate in which way these properties are violated by the considered problem we go through them

one at a time.

First, clearly a small perturbation of the velocity autocorrelation function might renderΨ̇(0) 6= 0,

which means that Eq. (7.1) hasno solutionanymore due to a vanishing integral on the right hand side
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for t = 0.

Uniqueness also poses a problem here, which is illustrated with a simple example in Figure 7.1.

The plot shows three memory kernels generated by

γ(t) = 100e−t2/2σ + 2δ(t), (7.7)

with σ = 2, 20, 200, respectively. The inset shows that the corresponding three VACFs obtained

numerically are identical up to deviations on the order of the statistical error. Seen as an analytical

problem the inverse problem is well-posed, however, here it must be considered from a practical point

of view. In particular, on finite intervals and with the presence of noese, the inverse problem hasno

uniquesolution for the VACF shown in the inset of Figure 7.1, which in turn also means that it does

not depend continouslyon the data.

The usual remedy for this is a transformation of a Volterra equation of first kind

Ψ̇(t) =
∫ t

0
γ(τ)Ψ(t− τ)

to a Volterra equation of second kind[226]

Ψ(0)γ(t) = −Ψ̈(t)−
∫ t

0
Ψ̇(t− τ)γ(τ)dτ,

which can be achieved by a simple differentiation. Although the differentiation itself increases the

destabilizing effect of the noise in the data this transformation is often advantageous. It usually renders

the problem more stable, because in the resulting equationγ(t) would depend continuously on the

(noisy) dataΨ̈(t)[225]. However, here the integranḋΨ(t − τ) is also effected by noise such that

the instability remains vigorous: denoting the noise in the input dataΨ̇(t) and Ψ̈(t) by δ and ε,

respectively, we note that in

γ(t) = −Ψ̈(t) + ε(t)−
∫ t

0
Ψ̇(t− τ)γ(τ)dτ −

∫ t

0
δ(t− τ)γ(τ)dτ

the last integral might become rather large rendering the problem instable.

Taken together, we have shown that the considered problem isill-posed on finite intervals. In

absence of uniqueness a physical interpretation of the resulting memory kernels has to be treated with

care. Nonetheless, any solution would have the desired effect to yield accurate dynamics, and thus we

go further and regularize the problem.

7.3 Regularization of Inverse Problems

We now briefly introduce the main regularization techniques following[215] and investigate their ap-

plicability for the problem at hand. In order to simplify the following discussion, let us first introduce
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some notation. The Memory equation is reformulated asKf = g by setting

g = −Ψ̇(t)

K (·) =
∫ t

0
Ψ(t− τ) · (τ)dτ

f = γ(t)

The strategy is to define a new but related problem which fulfills Hadamard’s definition of well-

posedness. As first step we secure the first two conditions, i.e.,uniquenessby singling out the

smoothest solution, andexistenceby requiring only that the equation is solvedoptimally.

Formally, the solution to this new problem is denoted asf † = K†g. K† is called the Moore-

Penrose inverse[215] defined to yield the solutionf † which minimizes theL2-norm
∥∥Kf †−g

∥∥
2

and a

certain side constraintΩ(f) =
∥∥L (f − f0

)∥∥
2
. Since we aim in our application for smooth solutions,

we setf0 = 0 and choose the second derivative operatorL = ∂2/∂t2.

However, the Moore-Penrose inverse does not abolish the severe problems of numerical instabili-

ties encountered in attempts of numerical solutions, which are due to thenon-continuous dependence

of the solutionf † on the datag. One has to go further and regularize the problem, i.e., replace the still

ill-posed Moore-Penrose Inverse by a family of well-posed problems, whose solutions approximate

the proper result[215].

Regularization aims at approximatingf † for a specific right hand sideg in the situation that the

exact datag is not known precisely, but that only an approximationgδ with∥∥∥gδ − g
∥∥∥ ≤ δ

is available[215]. BecauseK†gδ is not a good approximation ofK†g due to the ill-posedness, one

seeks approximationsf δ
α, which, on the one hand, continously depend on the noisy datagδ and can,

thus, be computed in a stable way, and, on the other hand, fulfill

f δ
α −→ f †,

for vanishing noise-levelδ and an appropriately chosen regularization parametersα(δ,gδ).A regular-

ization technique, therefore, has to specify how a solutionf δ
α should be obtained in a stable way from

the noisy data and how the regularization parameterα is chosen. Note that often the exact noise-level

δ is not known, such thatα has to be chosen purely on the grounds ofgδ.

Many different regularization methods fitting this general framework have been developed, some

yield the solution directly for a given regularization parameter, whereas others yield the familyf δ
α

iteratively.

In the following the popularTikhonovandLandweberregularizations are evaluated as represen-

tatives of a direct and an iterative method, respectively. Additionally, a different approach regularizes
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by projection to a finite dimensional subspace, i.e., by decreasing the degrees of freedom. This can

be achieved by discretization, collocation or approximation through certain models, and is often com-

bined with other regularization methods. In Section 7.3.3 we gain a rather strong regularization by

allowing only solutions compatible to a three parameter family of memory functions. Another appli-

cation of this regularization technique is reviewed in Section 7.3.4; Kneller et al. projected to a finite

dimensional solution-space by using auto-regressive models with up to 1000 parameters[61].

7.3.1 Discretization of Memory equation

In this section the discretization of the Memory equation is introduced, which is a technical but nec-

essary step for the following numerical treatment. We explicitly account for a possible delta-function

contributionγ(t) = 2γcδ(t)+ γ̆(t). The added term yields a memory free contribution to the dissipa-

tive forces. As seen from the fluctuation dissipation theorem, Eq. (6.17), this leads also to contribution

of random forces with a uniform spectrum, i.e., white-noise. Inserting this in the Memory equation

Ψ̇(t) = −γcΨ(t)−
∫ t

0
Ψ(t− τ)γ̆(τ)dτ

the discretizationΨi = Ψ(i∆t), Ψ̇i = Ψ̇(i∆t) andγi = γ̆(i∆t) yields

Ψ̇i = −γcΨi −∆t
i−1∑
k=0

γkΨi−kωik − γiΨ0ωii∆t (7.8)

with quadrature weightsωik, e.g., for the trapezoidal rule

ωik =

1/2 k = 0 v k = i

1 otherwise.
(7.9)

Note thatK̆ has a Toeplitz structure, i.e.,̆Kij = K̆i−j,0 for i > j, if the quadrature weights are

chosen accordinglyωij = ωi−j . This can be exploited by the algorithms to simplify computations.

Note further thatL is constructed to enforce smoothness onγ̆(t) exclusively, i.e., the part of the

memory kernel, which does not contain the delta-function contribution.

7.3.2 Straightforward recursion formulas without regularization

Before we turn to regularization techniques we introduce now un-regularized recursion formulas,

which exploit the Toeplitz structure of the discretization above. Because such a recursion formula

going back to Berne and Harp was used extensively to extract memory kernel’s from MD simulations

of simple liquids[60, 65, 227, 228, 67], we test this approach for its applicability in the context of

CLD.
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f =


γc

γ0

γ1
...

γn−1

 K =


Ψ0

Ψ1

Ψ2 K̆∆t
...

Ψn−1

 L = ∆t−2

 0 1 −2 1

0
... ... ...

0 1 −2 1



g = −


Ψ̇0

Ψ̇1

Ψ̇2
...

Ψ̇n−1

 K̆ =


Ψ0ω00

Ψ1ω10 Ψ0ω11

Ψ2ω20 Ψ1ω21
...

...
... Ψ1ωn−2,n−2

Ψn−1ωn−1,0 Ψn−2ωn−1,1 · · · Ψ0ωn−1,n−2 Ψ0ωn−1,n−1



Volterra 1st kind

The discretized Volterra equation of first kind, Eq. (7.8), can be reorganized, keeping in mind that

Ψ0 = 1, to obtain the iterative formula

γi = − 1
∆tωii

[
γcΨi + ∆t

i−1∑
k=0

γkΨi−kωik + Ψ̇i

]
i ≥ 1 (7.10)

for numerical solution provided thatγ0 is known.

Volterra 2nd kind

The discretization of the Volterra equation of second kind

Ψ̈(t) = −γcΨ̇(t)−Ψ(0)γ(t)−
∫ t

0
Ψ̇(t− τ)γ(τ)dτ,

which is derived from Eq. (7.8) by differentiating. Exploiting the Toeplitz structure it yields the

iterative formula

γi = − 1
1 + Ψ̇0ωii∆t

[
Ψ̈i + γcΨ̇i + ∆t

i−1∑
k=0

γkΨ̇i−kωik

]
i ≥ 0. (7.11)

This equation also defines the starting valueγ0 = −
(
Ψ̈0 + γcΨ̇0

)
/
(
1 + Ψ̇0∆t/2

)
used for both

recursion formulas.
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Method of Berne and Harp

Berne and Harp used Eq. (7.11) withγc ≡ 0 and assumeḋΨ0 = 0[60]. They used a second order

Gregory formula for quadrature, which requires that the first 4 points are obtained via a dedicated

starting method[229]. Furthermore, the first and second derivatives of the VACF are obtained from a

fit to the VACF for the first 4 points, and from local 6th order polynomial interpolations otherwise[60].

7.3.3 Strong regularization by projection

A rather strong regularization is gained by allowing only solutions compatible to the three parameter

family of memory functions

γfit = 2γcδ(t) +Ae−at. (7.12)

The Memory equation, Eq. (7.1), can be solved analytically for this memory function, which yields a

VACF that can be fitted to the data, thereby determining the parameters ofγfit . Moreover, the pairs of

VACF and memory kernel will be used to generate problems with analytically known solution for the

evaluation of numerical methods in Section 7.4.

The equation is solved by means of a Laplace transformation, which simplifies the one-sided con-

volution to a product in Laplace space. In particular, the Laplace transform of the Memory equation

zΨ̂(z)− 1 = −γ̂(z)Ψ̂(z)

yields, together with the Laplace transform of the memory kernelγ̂(z) = γc + A/(z + a), the

transformed VACF̂Ψ(z) = (z + γc +A/(z + a))−1, whose back-transformation is

Ψfit(t) = exp
(
−a+ γc

2
t

)[
cosh(Rt/2) +

a− γc

R
sinh(Rt/2)

]
, (7.13)

with R :=
√
a2 − 2aγc + γc2 − 4A. This VACF is fitted to the MD results to obtain the parameters

γc, a andA

of the model memory functionγfit(t).

7.3.4 Weak regularization by projection to auto-regressive models

The most recently developed approach to compute memory functions from molecular dynamics sim-

ulations was proposed by Kneller and Hinsen[61]. Without explicitly mentioning it, their success in

outperforming the more established methods, e.g. the method of Berne and Harp, results from reg-

ularization by projection (see above). Their strategy is to use an auto-regressive (AR) model for the

underlying stochastic process

x(t) =
P∑

n=1

a(P )
n x (t− n∆t) ,
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whereP denotes the AR-order and∆t the sampling frequency. The coefficientsa(P )
n are obtained

by fitting the AR-model to the computationally obtained VACF, and the Memory equation is solved

via Laplace transformations. As direct consequence of this ansatz the memory function of orderP

rapidly falls off to zero fort > P∆t[61].

Their approach regularizes the problem by reducing the number of degrees of freedom to the

AR-orderP . With high AR orders the regularization is weakened such that the crucial step of their

calculation, the inversion of the Laplace transformed expression of the memory function, becomes

instable. They counteracted this problem by applying a high-precision arithmetic with floating point

numbers having a150-bit mantissa wheneverP > 85[61]. They obtained memory functions for liquid

argon withP = 250[61] and, very recently, for the Fourier transformed particle density of lysozyme

with P = 400 andP = 1000[230].

7.3.5 Regularization by Landweber’s iterations

Landweber’s iterative method exploits that often the direct problemg = Kf is well-posed such that

it can be efficiently and stably evaluated. The iterative scheme

fk = fk−1 + ηKT (g −Kfk−1) , (7.14)

where0 < η ≤ 1 is a suitable relaxation parameter, converges against the solutionfk −→ K†g, and

it has been shown[215] that ∥∥∥fk − f δ
k

∥∥∥ ≤ √kδ,
wheref δ

k denotes the sequence one obtains by replacingg againstgδ in Eq. (7.14). Therefore, the total

error
∥∥f δ

k −K†g
∥∥ has two components, anapproximation errorconverging to zero, and adata error

of the order of at most
√
kδ. Consequently, for small values ofk the data error is negligible and the

iteration seems to converge against the exact solution. When
√
kδ reaches the order of magnitude of

the approximation error the available solutionf δ
k starts to deviate again from the exact solutionK†g.

This behavior is known assemi-convergence[215].The regularizing property of this method ulti-

mately depends on a reliable stopping rule for detecting the transient from convergence to divergence.

The stopping rule has, therefore, the role of the regularization parameterα. The convergence, how-

ever, is slow, such that the principle was advanced to theaccelerated Landweber iterationand the

ν-method[231, 232].

Lets consider whether and how this scheme can be applied to the problem at hand. A direct

numerical solution of the Memory equation, Eq. (7.1), ifγ is known, suffers from similar instability

problems[225] as the solution of the inverse problem, and, therefore, nothing would be gained by

applying Landweber’s iteration in this way.

Nevertheless, as noted previously, the VACFΨ corresponding to a given memory kernelγ can

be stably obtained by stochastic integration of the GLE, Eq. (6.16). However, this operationΨ =
F(γ) is non-linear, i.e.,F (γ1 + γ2) 6= F (γ1) + F (γ2). Thus, the update rule for the linear case,
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Eq. (7.14),ηKT (g −Kfk−1), which is the negative gradient of the linear error‖g −Kfk−1‖2, would

have to be replaced by the negative gradient of the non-linear error‖Ψk−1 − F (γk−1)‖2, which is

disproportionate harder to compute. Furthermore, each evaluation ofF (γ) involves a costly stochastic

integration of the GLE. Consequently, this iterative scheme, and any of its accelerated variants could

not straightforwardly be applied to the problem at hand.

7.3.6 Tikhonov regularization

The Tikhonov regularization[216, 233] technique defines a regularized solutionf δ
α as the minimizer

of a weighted combination of the residual norm and the side constraint. In this combination

min
{∥∥∥Kf − gδ

∥∥∥2
+ α2Ω(f)

}
, (7.15)

calledTikhonov criterion,the regularization parameterα controls the weight given to minimization of

the side constraint relative to minimization of the residual norm. Clearly, with our choices off0 = 0
andL the second derivative operator, a largeα favors smooth solutions at the cost of a larger residual

norm, while a smallα has the opposite effect.

The solution is obtained from the equivalent formulation

min


∥∥∥∥∥
(

K

λL

)
f −

(
g

αLf0

)∥∥∥∥∥
2
 ,

which yields thenormal equation

(
KTK + α2LTL

)
f = KTg + αLTf0. (7.16)

In the caseL = I andf0 ≡ 0 this can be simplified using singular value decomposition, which

yields two orthonormal matricesU,V, such thatK = UΣVT, with Σ a diagonal matrix. Then the

normal equation can be written as[(
UΣVT)T

UΣVT + α2I
]
f =

(
UΣVT)T

g

V
[
Σ2 + α2I

]
VTf = VΣUTg

f = V
[
Σ2 + α2I

]−1 ΣUTg.

In the general caseL 6= I one either transforms the equation into the standard form such thatL = I or

transforms the normal equations using generalized singular value decomposition (GSVD)[218]. Here

we employed the latter approach.

GSVD yields for a givenp × n + 1 matrix L and an + 1 × n + 1 matrix K the orthonormal

matricesU ∈ Rn×n+1,X ∈ Rn+1×n+1 andV ∈ Rp×p, such that
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K = U

(
Σ 0
0 In+1−p

)
X−1

L = V (M, 0)X−1.

Σ andM arep × p diagonal matrices:Σ = diag(σ1, . . . , σp), M = diag(µ1, . . . , µp). Then the

regularized solutionf δ
α is given by

f δ
α =

p∑
i=1

σi(
σ2

i + µ2
iα

2
) (uT

i g
δ
)
xi +

n+1∑
i=p+1

(
uT

i g
δ
)
xi,

with ui, xi denoting the i-th column ofU andX, respectively[218].

Note that, with a single GSVD suffices to compute solutions for all regularization parameters.

An alternative method to solve the normal equations uses Hausholder transformations and Givens

rotation and is described elsewhere[215]. A more efficient implementation is gained by exploiting

the Toeplitz structure ofK[234, 217]. However, we were not concerned with efficiency in the eval-

uation of this method, and used GSVD because an implementation could be obtained readily for

MATLAB(tm)[218].

7.3.7 Sequential Tikhonov regularization

Solution of the Tikhonov criterion, Eq. (7.15), becomes computationally very costly, if large matrices

are involved, i.e., the operation count isO(n3), wheren is the dimensionality of the discretized

equations. Sequential Tikhonov regularization[219] exploits the Toeplitz structure, i.e.,Kij = Ki−j ,

by separating the problem into smaller overlapping Tikhonov problems. Applying this approach to the

Memory Equation, we took advantage of this idea, and enhanced the method to have smooth solutions

across the separation boundaries.

Assuming the equation has been solved forγc, γ0, . . . , γi−1, i > 0, we separate from the sum in

thel-th equation

Ψ̇l = −γcΨl −
l∑

k=0

γkΨl−kωlk∆t

the part, which is already determined by the previously solved values ofγ

Ψ̇l = −γcΨl −
i−1∑
k=0

γkΨl−kωlk∆t−
l∑

j=i

γjΨl−jωlj∆t.
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This allows formulation of a new Volterra equation

Ψ̇l + γcΨl +
i−1∑
k=0

γkΨl−kωlk∆t = −
l∑

j=i

γjΨl−jωlj∆t,

which becomes clearer (sic) after reassigning indices. Sett := j − i+ 1 andp := l − i+ 1, then

Ψ̇i+p−1 + γcΨp+i−1 +
i−1∑
k=0

γkΨp+i−1−kωp+i−1,k∆t = −
p∑

t=1

γt+i−1Ψp−tω(p+i−1)(t+i−1)∆t.

adopts the typical form of a Volterra equation by definition of a new unknownβ
(i)
t := γt+i−1 and

replacing the known left hand side byh(i)
p

h(i)
p =

p∑
t=1

β
(i)
t Ψp−tω̂pt∆t, (7.17)

whereω̂pt := ω(p+i−1)(t+i−1). For trapezoidal rule

ω̂pt =

1/2 p = t

1 sonst
.

This new Volterra equation, Eq. (7.17), with the operator matrix

Kseq=



Ψ0ω̂11

Ψ1ω̂21 Ψ0ω̂22

Ψ2ω̂31 Ψ1ω̂21
...

...
... Ψ1ω̂r−1,r−1

Ψr−1ω̂r,1 Ψr−1ω̂r,2 · · · Ψ0ω̂r,r−1 Ψ0ω̂r,r


can be solved using standard Tikhonov regularization forp = 1, . . . , r. Note thatKseq is independent

of i such that a single GSVD suffices for all overlapping subproblems. For every sequential step

the firstm < r new results are stored,γp+i−1 = β
(i)
p p = 1, . . . ,m, and the others discarded.

Then a new left hand side,h(i+m)
p , of Equation 7.17 is computed, and the process is repeated with

i −→ i+m. The overlapm and the look-aheadr can be chosen freely.

To allow the regularization criterion to act also upon the connection points, we extended the seq.

Volterra equation, Eq. (7.17), such that the two last points of the previous step are included and kept

fixed. This is achieved by using for all but the first subproblems the operator matrix
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Figure 7.2: An example of an L-curve. The
plot shows the residual norm and the norm
of the side-constraint for a wide range of
regularization parameters. (This L-curve
was obtained for solutions of the test-
problem ’Realistic’ in Sec. 7.4.2).

K̃seq=

 C 0 0
0 C 0
0 0 Kseq


and the vector̃h(i) =

(
Cβ

(i−1)
m−1 , Cβ

(i)
m , h

(i)
1 , ..., h

(i)
r

)
, whereC = 1000α guarantees that the first two

points of the subproblem are not altered.

In summary, this scheme allows to break down ann-dimensional minimization problem into sev-

eral pieces ofr dimensional problems. Due to theO(n3) complexity of the GSVD the sequential

computation is much faster, although in every stepr −m of the computed values are discarded.

7.3.8 Choice of regularization parameter by means of L-curve

In Figure7.2we show an example of a popular graphical tool for determination of the optimal regular-

ization parameterα. For a wide range ofα the so-calledL-curveplots the residual norm
∥∥Kf − gδ

∥∥2

of the solution against its side constraintΩ(f) in double logarithmic form[235, 236].

At the corner of the L-curve, in the illustration at
(
3.6, 10−2

)
, is the optimal balance between

residual norm and the regularizing side constraint.

The vertical part of the L-curve corresponds to solutions whereΩ (f) is sensitive to changes in

α, whereas the horizontal part correspond to a region where the changingα affects the residual norm∥∥Kf − gδ
∥∥2

more strongly. The absence of such a corner would indicate that the regularization

criterion should be chosen differently. Automatic rules for identification of that corner exist[236, 237].

7.4 Evaluation of methods to solve the Memory equation

In the previous sections several methods to extract memory functions from VACFs were introduced.

Here, we evaluate these methods by means of VACFs whose corresponding memory kernelγ(t) is
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Table 7.1: Parameters to define velocity
autocorrelation functions by Eq. (7.13) for
testing.

Slow Slow-White Fast Fast-White Realistic

a 1 0.1 0.5 0.1 1

γc 0 2 0 0.2 13

A 1 1 3 3 30

known analytically.

To this end, we generated five memory functions using Eq. (7.12) and computed the corresponding

VACFs via Eq. (7.13). This choice of examples is justified, because it will be shown in Chapter 8 that

Eq. (7.13) fits the VACF of collective motion of neurotensin remarkably well, and that a CLD model

based on this fit predicts conformational transition rates accurately. Thus, basic features of VACFs

obtained for collective motion that are relevant to CLD are captured by this family of functions.

The first four example VACFs, that are, ’Slow’, ’Slow-White’, ’Fast’, and ’Fast-White’, were cho-

sen to sample a spectrum of fast and slow decay, whereas the last example ’Realistic’ was motivated

by the typical set of parameters one obtains from fitting Eq. (7.13) to VACFs obtained from MD

simulations (cf. Table 8.1).

One of the parameters, shown in Table 7.1, i.e.,γc, is crucial. It controls a fast initial drop of

the memory function, which will be shown to be rather pronounced in the MD results. To elucidate

whether this fast initial drop was responsible for problems with the evaluated algorithmsγc was set to

zero in two test examples (Slow and Fast).

7.4.1 Method of Evaluation

The parameter sets shown in Table 7.1 were used to generate memory functions with a sampling time

step of∆t = 10 fs. The GLE, Eq. (6.16), was integrated numerically withW ≡ 0, reduced mass

µ = 1 and the inverse temperatureβ = 1 to generate GLE trajectories of5 ns length, from which

VACFs were computed. Note that the resulting VACF does not depend onµ andβ, becauseW ≡ 0.

The recursion formulas of first and second kind, Eq. (7.10) and Eq. (7.11), respectively, were

solved iteratively with quadrature weights of the trapezoidal rule, Eq. (7.9). The starting values were

determined from numerical first and second derivatives of the VACF (cf. Sec. 7.3.2), and the parameter

γc by fitting, Eq. (7.13), to the data.

For evaluation of the autoregressive method we used the respective routines of the program

nMoldyn[238] withP = 250 and two different time-steps,∆t = 0.1ps and∆t = 0.01ps.

Our method based on sequential Tikhonov regularization was applied with look-ahead

r = 600 and overlapm = 350 (cf. Sec. 7.3.7). The parameterγc and the starting value via

γ(0) = −
(
Ψ̈(0) + (γc)2

)
/ (1 + γc∆t/2) were determined by fitting Eq. (7.13) to the data. These

two parameters were subsequently held constant during the optimization of the Tikhonov criterion,

Eq. (7.15). In a second application of sequential Tikhonov regularization to the example ’Realistic’

γc andγ(0) was not predetermined by fitting. The regularization parameterα = 54 was determined

from the L-curve (cf. Sec. 7.3.8) of the ’Realistic’ example, and was used also for all other test
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Figure 7.3: Velocity autocorrelation func-
tions of test examples. Thesolid lines are
statistically perturbed VACF (see text). The
dashedlines or the respective color denote
the corresponding unperturbed VACF. The
insetshows selected curves enlarged.

examples.

7.4.2 Results

The generated example VACFs are shown in Figure 7.3. They contained the statistical noise typical

in applications to MD data. This is made obvious in the inset, which shows small fluctuations of

the generated VACF, whereas the analytical VACF (dashed), Eq. (7.13), was zero. These perturbed

example VACFs will challenge the memory extraction methods in a realistic manner.

The four panels of Figure 7.4 show the memory functions computed for the first four VACFs with

the following four different methods:

A first kind recursion, Eq. (7.10)

B second kind recursion, Eq. (7.11)

C autoregressive (AR) model by Kneller et al., Sec. 7.3.4

D sequential Tikhonov regularization, Sec. 7.3.7

The overview shows that all methods yielded accurate memory kernels from the VACFs ’Slow’ and

’Fast’. However, the examples with a fast initial drop, i.e., ’Slow-White’ and ’Fast-White’, were only

solved satisfactorily by sequential Tikhonov regularization (cf. Fig 7.4d). In the following the results

shown in Figure 7.4a-d are detailed for each method separately:

MethodA, which does not regularize, yields solutions for examples withγc > 0, which fluctuated

around the analytical solution. Moreover, the memory for ’Slow’ deviated from the correct solution

in form of a small dipt < 0.05 ps.

MethodB relies also on a recursion formula without regularization, but was based on the second

kind Volterra equation, which is often considered to be more stable (cf. discussion above, or Refs. [60,

225]). Nonetheless, this method was not able to solve any of the examples with fast initial drop. In
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Figure 7.4: Memory functions computed for the first four test-examples (see legend). The dashed lines de-
note the analytical solution for the unperturbed VACF, whereas the solid lines denote the numerical solution
obtained from the statistically perturbed VACF. The evaluated methods are as follows (see also text):(a) re-
cursion formula first kind(b) recursion formula second kind(c) autoregressive models(d) sequential Tikhonov
regularization. The inset in (b) shows the same data on a larger scale.

Figure 7.5: Memory functions of test ex-
ample ’Realistic’ computed with different
methods (see legend). The dashed curve in-
dicates the analytical solution of the unper-
turbed data. The inset shows the same data
with enlarged time axis.
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ample ’Realistic’ computed with sequential
Tikhonov regularization without fit to deter-
mineγ(0) andγc. The dashed curve indi-
cates the analytical solution of the unper-
turbed data.

these cases the numerical solutions blew up very fast (cf. inset Fig. 7.4b) due to the noise in the data.

Accordingly, the same algorithm accurately solved the Memory equation, provided the unperturbed

VACF, Eq. (7.13), and its analytical derivatives were used as input (not shown).

Both of the previous recursion formulas were also tested with quadrature weights derived from

the midpoint rule, which did not improve the results. We also tested the established method of Berne

and Harp[60], which is based on the same recursion formula as method B (cf. Sec. 7.3.2), but uses a

higher order quadrature to increase numerical accuracy. Despite the increased effort solutions of the

notorious cases blew up, too (results not shown).

Figure 7.4c shows the solutions obtained with the AR method (C). They are more accurate than

those of the second kind recursion formula B, but did not improve upon the first kind recursion A.

Moreover, the character of the solution abruptly changes att = 2.5ns. This is caused by the inability

of this approach to capture correlations in the VACF, which go beyondt = P∆t. This early cut-

off can be avoided by increasing either∆t or the AR-orderP . The computationally effort increases

strongly withP , however. Already withP = 250 the computation was drastically slower than all the

other methods tested, hence a further test with a higher AR-order was not deemed necessary. Instead

we will solve the ’Realistic’ example also with a larger time-step (see below).

Figure 7.4d shows the memory kernels obtained with methodD, sequential Tikhonov regulariza-

tion. All curves match the analytical solution, although small deviations are seen for the example

’Slow-White’. In particular the fast oscillations, observed in all solutions of alternative methods, do

not emerge here.

Finally, all methods were applied to the data set ’Realistic’ that resembled the VACFs from MD

simulations most closely. Fig. 7.5 shows the memory kernels obtained with the respective method.

Also for this example, the most accurate solution was obtained with sequential Tikhonov regulariza-

tion. As seen from the enlargement in the inset, it accurately resolves the fast initial decay and starts

the slower decay at the correct value.

The simple recursion formula (method A) also yields a fairly accurate solution. However, it is
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superposed with fast oscillations and deviates from the analytical solution for very small times (see

inset).

The AR memory kernel is not only superposed with fast oscillations, but is also too low on average

and deviates for small times with high amplitude aberration towards negative values. Also in this

example, the AR-solution abruptly changes its character att = 2.5 ns, due to the cut-off of the AR-

model. To avoid this cut-off without increasing the computational effort, a second AR-solution was

obtained with a ten times larger sampling time-step, that is∆t = 0.1 ps. However, the coarse sampling

drastically decreased the performance (cf. Fig. 7.5).

The sequential Tikhonov method determined the starting valueγ(0) andγc by fitting to Eq. (7.13).

Since the examples were generated with the same equation, this method might be over-adapted to the

used examples. Therefore, we also evaluated an alternative implementation of this method, which does

not rely on this fit. Instead, all valuesγ(0),γc and theγ(ti) were directly determined by minimization

of the Tikhonov criterion. Indeed, as seen in Figure 7.6, this yields an accurate memory function, too.

7.4.3 Discussion and Outlook

We showed that our method, based on sequential Tikhonov regularization, robustly retrieved all an-

alytically known solutions of all test examples including the one that closely resembled the realistic

VACF obtained from MD. In particular, it was robust against the statistical perturbations present in

the input data.

On the contrary, none of the established methods was able to accurately solve all problems. These

methods failed exactly in those cases where the analytical solution initially dropped to a small fraction

of its starting valueγ(0), i.e.,γc > 0. This drop causes a large discretization error in the convolution

part of the Memory equation, since its decay time is smaller than the used discretization (∆t =
10 fs). An explicit treatment of the drop as a delta-function contribution to the memory improved the

numerical stability but did not remove it. Thus, the solution cannot be represented sufficiently well

in the discretized form. This explains why only regularization techniques, which look for anoptimal

solution were successful. Accordingly, the effect of the discretization error, which is equivalent to a

considerable perturbance of the input data, explains the emergence of strong oscillations in the un-

regularized results. Note that the initial drop, and thus the concomitant numerical problem, does not

arise in single-particle memory kernels[62, 64, 65, 67, 68, 69].

The AR-method did not cope with the notorious problems, although it applies a regularization

controlled by its AR-order parameter. To increase the strength of its regularization would require to

lower the AR-orderP . This, however, would decrease the cut-off timet = ∆P , which was already to

low with P = 250. Furthermore, the method was computationally very slow due to its application of

infinite-precision arithmetics. Thus, this method does not pose a valuable approach in the framework

of CLD.

The method based on sequential Tikhonov regularization allows to use a fit of Eq. (7.13) to the

given VACF to determine the starting valueγ(0) and the friction constantγc. These two parameters
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are excluded from the subsequent co-optimization of the solution and the regularization criterion. In

this way one can exploit that the VACFs of MD simulations are well fitted by Eq. (7.13). In Chapter 8

this method is, therefore, used in this form to determine the memory kernels for the CLD model of

the conformational motion of neurotensin. In cases, where Eq. (7.13) badly fits the data, the Tikhonov

criterion is instantaneously optimized forγ(0) andγc together with the other valuesγ(ti). For the

presented test examples both approaches worked equally well.

We propose to test further criteria for regularization. Asymptotically vanishing memory functions

can be favored by weighting with a suitable function, e.g., minimizing a side constraintΩ (γ) =∫ t
0 γ(t) (1− exp (−t/τ)) dt. Moreover, the accuracy of the fast initial decay of the memory kernel

might suffer from a strong smoothing. Therefore, one could relax the enforcement of smoothness

for small times, while keeping it up for larger times. Moreover, further knowledge about memory

functions, e.g., that it has only positive Fourier-coefficients or that
∫∞
0 γ(t)dt =

(∫∞
0 Ψ(t)dt

)−1
[223],

can be used.

Finally, accuracy might be improved by simultaneously minimizing the Tikhonov criterion for

several independently obtained VACFs, instead of applying the method to their average.

7.5 Determination of memory via force autocorrelation

functions

We now turn to the alternative strategy extracting a memory kernel from an MD simulation via a force

autocorrelation function (FACF). The FACF of therandomforceR(t) is fundamentally related to the

memory functionγ(t) via the fluctuation-dissipation theorem, Eq. (6.17). However, only the total

forcef(t) can be directly computed from MD simulations.

One possible approach uses the Kubo-relation[196] to relate the FACF of the total force with the

FACF of the random force. We do not pursue this approach though, because results were found to be

unconvincing for collective motions in a previous study[239].

Instead, we employ afixed-particleor infinite-massapproximation[63, 70], which allows to sep-

arate the random forceR(t) from the total forcef(t). To this end,f(t) acting in direction of a

conformational coordinatec frozen atc ≡ c0 is recorded during a dedicated MD simulation. The

employed constraint rendersċ ≡ 0, such that the frictional forces vanish from the GLE, Eq. (6.16).

Thus,f(t) = −W ′(c0) +R(t), which allows to compute the random force asR(t) = f(t)− 〈f(t)〉.
We tested this approach at the example of the conformational motion of the peptide neurotensin,

which will be discussed in the next Chapter. A one-dimensional conformational coordinate will be

developed as active subspace for a CLD model, which is used here to test the extraction of memory

via FACFs.

Note that this extraction method is particular interesting, because it allows to compute the depen-

dence of the memory functionγ(t, c) on the positionc, which was neglected so far. This approach

enables us to either justify this approximation or to improve the accuracy at a later stage by using
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γ(t, c) for the CLD model. Here we perform a preliminary investigation of the dependence of the

memory function on the position of the conformational coordinate.

7.5.1 Methods

To compute FACFs in the fixed particle approximations the collective coordinate was constrained

using the Essential Dynamics SAMpling (EDSAM) module of GROMACS[97, 114]. We extended its

implementation to correct the projected forces for translational and rotational motion, as explained in

Sec. 2.3.2.

The curved conformational coordinatec of the one dimensional CLD model of neurotensin, intro-

duced in Chapter 8 was fixed at 60 evenly spaced positionsc (zi) i = 1, 21, 41 . . . , 1181, wherez and

i refer to the discretization chosen for the coordinate in Sec. 8.2.1.

The MD simulations of neurotensin were set up as described in Sec. 2.3.1 with all but the collective

degree of freedom free to move. At every integration step (∆t = 2 fs) the MD forces in cartesian space

corrected for translational and rotational motion were projected onto tangentsti to the conformational

coordinate in pointsc (zi). The tangentsti were described with mass-weighted coordinates, hence the

corresponding reduced mass wasµ = 1. For every fixed position, 5 trajectories of2 ns were generated.

Starting structures were randomly chosen from those structuresxj of NT1, whose projection was close

to the root pointzi of the respective tangentti, i.e.,|ti · (xj − zi)| < 0.1 nmu−1/2.

FACFsC(i)
RR(t) = 〈R(0)| R(t)〉 were computed from the projected and centered forcesR(t) =

f(t) − 〈f(t)〉 and averaged over the five trajectories. They determined the memory function via the

fluctuation-dissipation theorem, Eq. (6.17), asγ
(i)
FACF(t) = µ−1βC

(i)
RR(t).

Decay timesτ (i)
env of the memory function were computed from its negative part as

τ
(i)
env = 2

∫
γ<0

(
γ

(i)
FACF(t)

)2
tdt∫

γ<0

(
γ

(i)
FACF(t)

)2
dt
,

and a corresponding ’enveloping’ curve, was plotted ase
(i)
γ = exp (−t/τi) .

Running averagesg(t) of a functiong(t) were computed by convolution with a Gaussian kernel,

i.e.,g(t) =
∫∞
0 g(t− τ)kσ(τ)dτ , wherekσ = (2π)−1/2 σ−1 exp(−t2/σ2).

7.5.2 Memory kernel from constrained particle force autocorrelation function

Now we proceed and extract memory kernels for the curved collective coordinate of the conforma-

tional motion of neurotensin. Numerous ACFs of forces acting on different fixed positions along the

conformational coordinate were obtained (see Methods). A typical FACF is shown in Fig. 7.7, which

depictsγ(691)
FACF(t) obtained at positionc = 0.58 of the coordinate.

After a fast initial drop from6000 ps−1 to2500 ps−1 the FACF oscillated strongly. The oscillations

decayed on aτenv = 0.23 ps time-scale. All FACFs obtained at other positions showed the same
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Table 7.2: Results of fit of Eq. (7.18) to
smoothed memory functionsγ(t)(σgauss=
0.1 ps). The standard deviationσ indicates
the range of values obtained for the 60
memory functions derived from FACFs.

γVACF γFACF± σ

τ1 0.09 ps (0.09± 0.008) ps

τ2 1.75 ps (1.5± 0.3) ps

τ3 64 ps (21± 13) ps

a1 242 ps−1 (200± 44) ps−1

a2 24 ps−1 (40± 10) ps−1

a3 3.4 ps−1 (10± 7) ps−1

oscillating behavior and a similar decay time (not shown).

For comparison consider a VACF-derived memory kernel of the same conformational motion,

e.g.,γI , which is extracted from MD in Chapter 8 and re-plotted here in Fig. 7.9 asγVACF. Apparently,

FACF-derived memory functions are strikingly dissimilar to VACF-derived memory functions. In

particular, the strong oscillations are not present in VACF derived memory kernels.

To check if the FACF-derived memory is consistent with the conformational dynamics, nonethe-

less, we generated a CLD trajectory with this memory and computed its VACF. The result was quite

unexpected. Fig. 7.8 contrasts the VACF, which corresponds to the oscillating memory, to the VACF

of the free MD (dashed line), which corresponds toγVACF. Despite the enormous differences of the

memory kernels the two VACFs are very similar.

The consistency of the resulting CLD dynamics suggests that both kinds of memory kernels share

common features. Indeed, these were found by eradicating the strong oscillations of the FACF via

smoothing with a Gaussian kernel of widthσ = 0.1 ps. As shown in Fig. 7.9, the running average

γFACF(t) closely resembled the running average of the VACF-derived memory functionγ̄VACF(t). In

particular, fitting both functions to the sum of exponentials

y(t) =
3∑

j=1

aj exp (−t/τj) (7.18)

revealed that the timescales of both, the fast and the medium decay,τ1 andτ2, respectively, agreed

remarkably well (cf. Tab. 7.2). Only, for long timest > 30 ps both curves deviated significantly. The

inset of Figure 7.9 shows thatγFACF(t) slowly approached zero, whereas the VACF-derived memory

functionγI did not.

Furthermore, the area under both curves, i.e., the effective friction constantsγeff =
∫
γ(t)dt were

with (250± 100) ps−1 for the FACF-derived similar to249 ps−1 and187 ps−1 for the VACF derived

kernelsγI andγII , respectively (cf. Sec. 8.6).

Thus, properties of the smoothed memory functions are comparable between FACF- and VACF-

derived memory kernels. Furthermore, a spatial dependence of such properties observed for FACF-

derived memory kernels is likely to hold true for memory functions in general.
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7.5.3 Spatial dependence of memory functions

To elucidate the dependence of memory functions on the position of the collective coordinate, FACFs

were obtained at 60 different positions.

The effective friction constantγeff(c) fluctuated strongly, as shown in Figure 7.10. To allow a

judgment about its spatial dependence, a relative volatility of the effective friction was computed

as the fraction of its standard deviation over its mean. The relative volatility of40% suggests a

moderate spatial dependence. However, the large deviations from the running average, seen in the

figure, indicate that the effective friction constants are not converged despite a10 ns sampling for

each position.

The time constants for the fast decay, obtained from a fit to Eq. (7.18), are shown in Figure 7.11a.

They fluctuated much less around their running average, such that its changes can be considered as

significant. The low relative volatility of8% indicates a small spatial dependence of this property.

Interestingly, a similar spatial dependence is observed for the decay timeτenv(c) of the strong oscilla-

tions of the non-smoothedγFACF (cf. Fig. 7.11b). This suggests that the latter probes a similar property

of the memory function asτ1.

The amplitudea1 of the fast decaying term in the fit function, Eq. (7.18), is shown in Fig. 7.12.

The minor deviations from the running average indicate a good convergence and the relative volatility

of 15% a small spatial dependence.

The relative volatilities of22% and60% for the time constants of medium and slow decay, re-

spectively, suggest an increased spatial dependence for the long time memory effects. However the

strong deviations from their running averages (not shown) indicate a bad convergence, and thus an

overestimation of the spatial dependence.

7.5.4 Discussion

We obtained memory kernels of a collective coordinate from MD simulations via the FACF of the

constrained dynamics. The results were consistent with those of the alternative approach to derive

memory kernels from the VACF of the free dynamics. In particular, the smoothed FACF-derived

memory kernels gave rise to the same effective friction constant, and agreed in their decay-times.

The FACF-derived memory function was superposed with fast and strong oscillations absent in

the VACF-derived memory functions. Whereas the nature of these oscillations was not completely

resolved, the results indicated that they were due to the constraint rather than reflecting a true property

of the unconstrained dynamics of our interest.

Due to the fixed-particle approximation this method provides a unique possibility to assess the

spatial dependence of memory functions. Exploiting this we analyzed how memory kernels vary at

different positions of the conformational coordinate. The effective friction constantγeff =
∫∞
0 γ(t)dt

changed its value considerably upon moving along the conformational coordinate. This spatial depen-

dence might strongly affect the dynamics, since the effective friction has a dramatic influence on the
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observed transition rates, i.e., on long time dynamics of the CLD model, as will be shown in Chapter

8.

A relatively smooth dependence of the decay time on the position along the conformational coor-

dinate indicated that the values were converged, whereas such a conclusion could not be drawn for the

erratic changes of the effective friction constant, and the two slower decay times. For these, it needs to

be established whether they become smooth at a smaller length scale on the collective coordinate or if

more sampling at a single position is needed for a full convergence. Note, however, that we sampled

already10 ns at a single position.

7.6 Summary and Conclusions

For both possible strategies to obtain memory kernels from MD simulations, i.e., exploiting the

fluctuation-dissipation theorem and solving the Memory equation, we presented solutions. Estab-

lished techniques, on the contrary, were not applicable due to the collectivity of the dynamics, which

gave rise to challenges to the extraction methods not encountered for single particle dynamics.

Two methods (cf. Sec. 7.4) allow to derive the memory kernel from a VACF of a free MD simu-

lation. For this the Memory equation, Eq. (7.1), needs to be solved, which is, however, a challenging

inverse problem requiring regularization. The first method imposes a certain functional form on the

memory kernel, and thus, regularizing strongly, is not able to accurately solve the Memory equation,

but has the advantage of an evident robustness. The second method was devised to solve the Memory

equation accurately by regularizing more softly based on sequential Tikhonov regularization. It accu-

rately computed the memory kernel of a realistic example with analytical known solution in a stable

way. None of the established methods, was stable enough to accurately determine the memory kernel.

The alternative method, discussed in Sec. 7.5, uses the fixed-particle approximation to obtain

the random forcesR(t) directly from an MD simulation constrained at a specific position in the

conformational subspace. This has the advantage to allow assessment of the spatial dependence of

the memory kernel, on the one hand, but implies a huge computational effort, on the other hand. To

obtain memory kernels with this approach, separate MD trajectories need to be computed at numerous

positions in the conformational subspace. Especially for high dimensional conformational subspaces

this becomes intractable.

Our illustrative example demonstrated that the Memory equation does not uniquely define mem-

ory kernels. That this problem is also encountered with realistic memory kernels, became obvious

when we compared a VACF-derived and a FACF-derived memory kernel. Both correspond to a sim-

ilar VACF (cf. Fig. 7.8), but are drastically different, i.e., the latter memory function displayed fast

oscillations, which were not visible in the former.

On which grounds should one decide which is the ’true’ memory kernel? We argue that this is the

wrong question. A characterization of a memory kernel is only physically meaningful with respect to

its impact on the dynamics. Therefore, the question is which properties of a memory kernel determine
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the dynamics and which do not. This suggests to define an equivalence class of memory kernels as

the set of all those memory kernels that yield the same dynamics. The challenge to be addressed is

then the characterization of these equivalence classes without resorting to an integration of the GLE

to yield the dynamics.



It will never be possible to predict conformational transitions in proteins

— Prof. Robert Huber, 4.7.1995

Chapter 8

Collective Langevin Dynamics (CLD) of a
Conformational Transition in Neurotensin

Having described all parts of the CLD framework, we now apply it to a specific system and test it by

comparing suitable observables between the CLD results and reference MD simulations.

As discussed in the introduction such observables are, e.g., velocity autocorrelation functions

(VACFs), positional autocorrelation functions (PACFs) and transition rates. Because VACFs are used

to extract the memory kernel, we focus on the latter two observables, which were not used as input

and, therefore, pose a hard test for the CLD model.

In Section 8.1 we review several possibilities to compute transition rates from a CLD model. In

order to obtain a good estimate for the reference transition rates, however, extensive sampling of the

respective conformational transition with standard MD is necessary. This restricts this type of test

to much smaller systems, e.g., peptides, than CLD aims for. For instance, repeated conformational

transitions were not observed in a450 ns MD simulation of crambin (cf. Chapter 2). Instead, we chose

the hexapeptide neurotensin, because we expected it to undergo sufficiently many conformational

transitions at the MD timescale to allow comparisons of transition rates.

As a first step we modeled the CLD of neurotensin by means of a one-dimensional coordinate.

Whereas from the methodological point of view this appears to be the simplest case, reduction from

3N coordinates to a single one is of course the most drastical case possible and, hence, represents

a hard test. To this end we had to use a curved coordinate, as will be described in subsection 8.4.

Subsequently, free energy and a memory function will be extracted for the chosen coordinate from

explicit MD simulation.

As discussed in Chapter 7, extraction of memory kernels is not straightforward. We proposed two

methods to derive memory kernels from a VACF of short MD simulations by solving the Memory

equation. Since this necessitates solution of an inverse problem, both methods are based on regu-

larization techniques. They differ, however, in the strength of the applied regularization. The first

method, FIT, applies strong regularization by imposing a model function with only 3 free parameters.

The second method, DIR, allows to tune the level of regularization by a parameter that controls the

115
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smoothness of the resulting memory kernels. In this chapter, we test and compare the performance of

the two proposed methods in the context of a real application. To this end, transition rates and posi-

tional autocorrelation functions will be compared between the obtained CLD models and a reference

MD simulation of neurotensin in Sections 8.8 and 8.9.

8.1 Transition rates

To check how accurately the dimension reduced GLE approximates the fully atomistic dynamics, we

will compare conformational transition rates of the CLD model with rates obtained from explicit MD

simulations.

The Arrhenius equation[240]

k = ηe−β∆G†
,

whereβ denotes the inverse temperature, clarifies in which way transition rates are influenced by the

CLD parameters. The importance of the height of the free energy barrier∆G† is evident immediately.

Important too, however, is the pre-factorη, which accounts for attempt frequency, recrossing events

and non-equilibrium effects. The height of the free energy depends on the choice of the conforma-

tional coordinate only, whereas the pre-factor depends on the correct description of memory effects

by the CLD model. Therefore, the check of the transition rates was also used to evaluate the relative

performance of the different approaches to extract memory kernels.

The transition rates for the conformational dynamics governed by the GLE of the CLD model

can be obtained in two ways. Either, the GLE is integrated numerically, which yields a trajectory

whose transitions can be counted (cf. Sec. 8.2.5), or transition rates are estimated directly from the

GLE using Kramers’ Theory[240]. For the latter we follow Kramers’ approach and approximate

the potential of mean force with parabolas at the minimaWα(x) ≈ µω2
αx

2 and at the barrier top

W†(x) ≈ −µω2
†x

2[240]. Then the escape rate is

kα =

(√
γ̂2(ξ)

4
+ ω2

† −
γ̂(ξ)

2

)
ωα

2πω†
exp

(
−β∆W †

α

)
(8.1)

with indexi = A,B for state A and B, respectively and∆W †
α = W † −Wα the height of the barrier.

Hereγ̂(z) denotes the Laplace-transform of the memory kernelγ(t), andξ is subject to the condition

ξ = −
ˆγ(ξ)
2

+

√
ˆγ(ξ)
4

+ ω†. (8.2)

In the case of memory free friction,γ(t) = 2γeffδ(t), Eq. (8.1) simplifies due tôγ(ξ) ≡ γeff, and

adopts the widely known form[240]. For a comprehensive Review, we refer to Ref. [240].
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8.2 Methods

8.2.1 Definition of a one-dimensional curved conformational coordinate

By visual inspection of the projection of trajectory NT1 onto the first three principal components, 8

snapshots{xsel,i}i=1...8 were selected evenly spaced along the observed trace of high conformational

density (Fig. 8.2). To remove any bias introduced by choosing single snapshots out of a large number

of equally reasonable alternatives, averages over allni snapshots
{
xj

sel,i

}
j=1...ni

within a sphere of

radius0.1 nm (in the 3D projection) aroundxsel,i were used. The conformational coordinate was then

constructed by cubic spline interpolation between these averages in the full3N dimensional space.

Subsequent discretization yieldedN = 1200 points{zi}i=1...N .

8.2.2 Projection onto the conformational coordinate

The conformational coordinate defined by the discretized submanifoldM = {zi}i=1...N was param-

eterized by a mapping functionf (cf. Eq. (6.8)), such thatc = f(z1) = 0 andc = f(z1200) = 1,

respectively. All intermediate values were defined via the contour lengthsj =
∑j

k=2 ‖zk − zk−1‖ as

c = f(zj) := sj/sN . Thus, the length unit,L, of the projected coordinate isL = sN , and the metric

of the configurational space is preserved upon projection.

Unfortunately, the straightforward approach to project a pointx onto the point ofM which is

closest in space

P (x) = arg min
z∈M

‖x− z‖ (8.3)

led to several “wrong” projections due to the U-shape of the coordinate. In particular, and as will

be discussed in the Results Section, this simple projection scheme, therefore, resulted in unphysical

discontinuities.

This problem was resolved by additionally considering the time information of the trajectory.

Specifically, snapshots close in time were enforced to yield projections close to each other. To de-

termine the projectionP (ϕ (x,p, ti)), we proceeded as follows. First, both, the discretized confor-

mational coordinatezi and the trajectoryϕ (x,p, ti), were projected preliminary onto the first 100

principal modes (obtained as above) yieldingzi andϕ (x,p, ti), respectively. Second, the final pro-

jection of the trajectory to the curved coordinate was determined via

P (ϕ (x,p, ti+1)) = arg min
z∈I{c(ti),r}

‖ϕ (x,p, ti+1)− z̄‖ , (8.4)

where the interval of the conformational coordinate

I {c(ti), r} = {z ∈M|c(ti)− r ≤ f(z) ≥ c(ti) + r}

defines a window of width 2r centered around the previous result of the projection

c(ti) = f [P (ϕ (x,p, ti))]. Parameter values below 0 or greater than 1 were allowed by extending
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the conformational coordinate linearly at both ends. The window sizer was chosen to trade off

sufficient fast response of the projection with robustness against unphysical jumps; for the 10fs

sampling,r = 1/1200 and for the 1ps samplingr = 1/12. Velocities were projected onto the first

100 principal modes as described above, and subsequently onto the tangent to the conformational

coordinate at the pointP (x(ti)).

8.2.3 Solution of the memory equation

Memory kernelsγ(t) were obtained by solving the Volterra equation of the first kind, Eq. (7.1),

d

dt
Ψ(t) = −

∫ t

0
dτγ(t− τ)Ψ(τ). (8.5)

with the velocity autocorrelation functionΨ(t) = 〈ċ(0)| ċ(t)〉 /〈ċ2〉 computed from the MD simula-

tion.

Integration of this equation is notoriously unstable, as discussed extensively in Chapter 7. To find

physically meaningful solutions we therefore resorted to regularizations.

As described in Section 7.3.3, the first method, FIT, achieves strong regularization by imposing

a model function, Eq. (7.12), with only 3 free parameters,γc, a andA. To obtain these parameters,

the corresponding VACF, Eq. (7.13), was least-squares fitted to the numerically obtained VACF,Ψ(t),
with the curve fitting tool of MATLAB(tm).

The second method, DIR, regularizes weakly by applying sequential Tikhonov regularization to

favor smooth solutions (cf. Sec. 7.3.7). The regularized solution is the minimum of the Tikhonov

criterion, Eq. 7.15, whose regularization parameterα can be chosen from an analysis of theL-curve

(cf. Sec. 7.3.8). However, here theL-curveoptimum of roughlyα = 20 was not very pronounced. In

order to contrast the strong regularization method above with a method, which does not bias the result

too much, we chose with the help of the L-curve the relatively low regularization parameterα = 0.14.

For illustration purposes we also obtained memory kernelsγI-reg andγII-reg with α = 20, but these

memory kernels were not used for the CLD model.

8.2.4 Potential of mean force

To compute the potential of mean forceW along the conformational coordinate,

W (c) = −kT log ρ(c), the densityρ(c) was obtained from the MD ensemble projected to the

conformational coordinate. For this purpose, histograms with 100 bins were determined and

smoothed by convolution with a Gaussian function of widthσ = 0.025 L, where L denotes the length

scale of the conformation coordinate. Outside the sampled range ofc the potential was continued by

a harmonic potentialWharm(c) = 11.5(c− 0.5 L)2 as

Wextend(c) = [1− S(c)]W (c) + S(c)Wharm(c),
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where the switching function is defined by the sigmoidal functionS(c) =
{1 + exp [−50(c− 1)]}−1 + 1 − {1 + exp [−50c]}−1. Forces were computed by linear

interpolation between the numerically obtained derivatives at neighboring discretization points.

8.2.5 Statistics of conformational transitions

Transition rates were determined from the one-dimensional projection of molecular dynamics tra-

jectories to the conformational coordinate or from the one dimensional CLD trajectories by counting.

First, every snapshotc(ti) was assigned to one of the two conformational statess(ti) = A,B and then

the number of changes ofs was evaluated. To account for non-thermalized re-crossings[240] a vari-

able threshold was applied to the low-pass filtered projectionc̃(ti), which depended on the previous

conformations(ti−1)

s(ti) =

{
A s(ti−1) = A ∧ c̃(ti) < 0.66
B s(ti−1) = B ∧ c̃(ti) > 0.36

As low-pass filter we used smoothing with a Gaussian function of widthσ = 40 ps. The transition rate

kαβ for the transitionα −→ β was given bykαβ = nαβ/ (Nα∆t) , wherenαβ denotes the changes of

s(ti) from stateα to stateβ andNα is the number of snapshots for whichs(ti) = α.

The threshold value and the bandwidth of the low-pass filter were chosen manually and introduces

clearly a bias into the obtained rates. However, here we only need to compare rates obtained with the

same method, such that this bias was canceled out. Moreover, other sets of parameters tested did not

change the relative differences between CLD and reference transition rates.

Confidence intervals were determined via the Poisson-statisticPλ(n) = e−λλn/n!, since transi-

tions were rare events. Via
〈
n2
〉

= λ = 〈n〉 the number of observed transitionsn determined the

Poisson-parameterλ and with that an estimate of the error of the transition rate. A 95% confidence

interval in the logarithmic representation was computed by choosing its widthd, such thatPλ(k ∈
[n exp(−d), n exp(d)]) = 0.95. In the case of a large number of observed transitionsn > 60 the Pois-

son statistics was approximated by the error function viaPλ(a ≤ k ≤ b) = Φ(b/γ−1)−Φ(a/λ−1),
with Φ(x) =

∫ x
−∞(2π)−1/2 exp(−x2/2) = 1

2

[
erf
(
x/
√

2
)

+ 1
]
.

8.3 Conformational dynamics of reference MD simulation

Before we start, we have to check whether the conformational dynamics of neurotensin pose a suit-

able test case. This system has been chosen because, in contrast to larger proteins, e.g. crambin or

lysozyme, we expected it to undergo sufficiently many conformational transitions at the MD timescale

to allow comparisons of transition rates.

Indeed, as can be seen in Fig. 8.1, neurotensin underwent several main conformational transitions

A −→ B during the90ns MD simulation, NT1. The Figure shows the matrix of the root mean square

deviation (RMSD) of theCα-atoms for each pair of snapshots of the trajectory NT1. Conformational

states were defined as almost invariant subsets of the configurational space[241]. They are visible in



120 CHAPTER 8. CLD OF CONFORMATIONAL TRANSITION IN NEUROTENSIN

Figure 8.1: Root mean square deviation
(RMSD) of theCα atoms for each pair of
snapshots of trajectory NT1. The RMSD
ranges from zero (white) to0.382nm(dark).
The labels indicate conformational sub-
states, see text.
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the RMSD matrix as distinct bright blocks on the diagonal. Bright off-diagonal blocks indicate that

a certain conformational substate was revisited. Interestingly, as can also be seen in the Figure, the

two main conformational states subdivide further into substates (denoted by primes) as is typical for

proteins[160], thus giving rise to a complex conformational dynamics also within the main states. In

this sense, the system represents a particularly harsh test system for CLD: The CLD model has to pre-

dict correct first passage times without knowledge of the substate dynamics. This lack of knowledge

is of course intrinsic to a reduced dimension approach and it is important to find out how well CLD

can cope with it.

8.4 Construction of a curved conformational coordinate

As a first task, we need to construct a collective coordinate, which resolves both statesA andB. We

start by analyzing the MD ensemble, as projected onto the first three principal components, shown

in Figure 8.2a. Red points represent structures belonging to conformationA, blue points belong

to conformationB, and green points belong to transitions between both states. The shape of this

ensemble was such that no conceivablelinear coordinate would resolve the two conformational states.

In particular, the close blue and red points are separated by a free energy barrier, which cannot be

resolved by a linear coordinate. We therefore constructed the curved coordinate shown in Figure

8.2a (see Methods), which clearly resolves statesA andB. The projection of trajectory NT1 onto
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(a) (b)

Figure 8.2: Projection of the conformational coordinate (thick line) and the configurational ensemble (dots)
onto the first three PCA modes. The colors denote the resulting mapping of snapshotsxi to position on the
coordinatec = f(xi), from red,c ≈ 0, to blue,c ≈ 1. a) whole configurational ensemble NT1b) interval
(70ns-75ns) of NT1, where a substate ofA is visited.
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Figure 8.3: (a) Projection of neurotensin internal motion onto conformational coordinate. This shows the
projection of NT1 onto the conformational coordinate. A number of transitions occur between the clearly
distinguishable two states centered at 0.2 and 0.6, respectively.(b) an example of a CLD trajectory. The plot
shows a90 ns of a trajectory generated by the modelCLDI−fit (cf. Sec. 8.7).
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c

time

wrong projection

(a)

Conformational
Coordinate

project

Centerline

snapshots of trajectory 

time

c

crossing of centerline

(b)

Figure 8.4: Illustration of main sources for artifacts in the projection to a curved coordinate. Snapshots in the
configurational space (circles) are projected (arrows) to a curved coordinate by a pure distance criterion. The
resulting projection is plotted against time under the pictures.(a) A trajectory moves from right to left along one
arm of the coordinate, i.e., the projection is decreasing (cf. plot). However, two snapshots are slightly closer to
the other side of the curved coordinate and, hence, the projection erroneously jumps to large values and back,
although no real conformational transition occurred.(b) In contrast to (a), here a real transition from the low
projection part to the high projection part of the coordinate occurs. However, the trajectory crosses to far away
from the curved coordinate and, therefore, shortcuts the bulge drastically, which results in an artifactual large
jump in the projection, in the moment of crossing of the centerline.

the coordinatec (cf. Fig. 8.3) revealed several well resolved transitions between the conformational

substates A and B, centered aroundc ≈ 0.2 andc ≈ 0.6, respectively. This projection turned out not

to be straightforward, and care had to be taken to avoid possible artifacts.

The more technical aspects of this projection described below are not of direct relevance for the

CLD model; we have included a brief description, nonetheless, to illustrate problems , which typically

arise from the use of curved coordinates as well as their solutions.

The main problem arose from the fact that nodirect transitions between the two main states,A

andB, were seen in the vicinity of the red and blue points (cf. Fig. 8.2a), but onlyindirect ones in the

region of the green points. Therefore, straightforward assignment of each MD structure to the nearest

point of the conformational coordinate would fabricate transitions, as illustrated in Fig. 8.4a. These

spurious transitions would adulterate the reference transition rates used for confirmation of the CLD

model. This problem was solved by taking time-information into account (cf. Methods). Careful

inspection showed that the spurious transitions were indeed eliminated.

Figure 8.2b shows an extreme example. Here, several structures seem to approach stateB in the
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a
(
ps−1

)
γc
(
ps−2

)
A
(
ps−2

)
massµ (u)

NT2 0.78 14.8 49.2 7.3

NT2II 1.1 11.5 27.0 8.9

NTS4 1.06 11.7 28.1 13.33

NTS3 1.45 12.5 43.9 12.94

NTS1 + NTS5 1.04 12.6 33.6 11.1

NTS2 + NTS6 1.32 13.2 35.5 9.84

NTS3 + NTS7 1.24 13.1 35.0 12.52

NTS4 + NTS8 1.07 12.2 30.7 8.78

NTSuneven 1.13 12.9 34.3 11.82

NTSeven 1.18 12.7 32.9 9.31

NTSall 1.16 12.8 33.6 10.56

Table 8.1: Fitting parameters
of velocity autocorrelation func-
tion, Eq. (7.13), obtained for
different trajectories. The pre-
sented parameters for NTS3

and NTS4 were the most ex-
treme of all 500ps trajecto-
ries. The parameters for unions,
e.g., NTS1 + NTS5, were ob-
tained by fitting to an over-
lay of the VACFs of the re-
spective trajectories. The labels
NTSuneven, NTSeven and NTSall

denote NTS1 +NTS3 +NTS5 +
NTS7, NTS2 +NTS4 +NTS6 +
NTS8, and NTS1 + · · ·+ NTS8,
respectively.
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Figure 8.5: Velocity autocorrelations
(VACF) of MD trajectories (solid) and
their respective fits to Eq. (7.13) (dashed).
The inset shows the same data enlarged.

projection onto the first three principal components. Accordingly, these structures would be assigned

to stateB in any purely distance based projection onto the shown curved coordinate. However, as can

also be seen in Fig. 8.1, the RMSD to stateA remains small for all shown structures and large to state

B, such that assignment toB would be wrong. Indeed, as seen from the coloring in Fig. 8.2b, all

snapshots of the substate ofA were correctly allocated to conformationA.

Fig. 8.4b illustrates and explains a second problem (see caption), resulting in discontinuities in the

projected motion. This problem was solved by careful placement of the curved coordinate.

8.5 Velocity autocorrelation function of collective motion

The velocity autocorrelation function (VACF) is required to derive the memory kernels for the CLD

model and, therefore, needs to be extracted from the MD trajectories. Further below we will analyze
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how well this observable is reproduced by the CLD model.

Two VACFs,ΨI andΨII , were obtained from trajectories NT2 and NT2II , respectively (see Meth-

ods). NT2II refers to the interval interval10 ns− 19 ns of the63 ns trajectory NT2. Both VACFs are

shown in Fig. 8.5, together with their respective fits to Eq. (7.13),ΨI-fit andΨII-fit . Both,ΨI andΨII ,

are very similar, which indicates good convergence, and are well approximated by the fits.

Their rapid decay shows that most correlations occur at a picosecond timescale. Furthermore, the

pronounced negative dip in intermediate timescales (0.3 ps< τ < 0.5 ps) indicates resonant behavior

or memory effects in the system. The similarity to the dip in VACFs of simple liquids caused by

caging of the tagged molecule by its immediate neighbors[223] is suggestive.

The medium scale oscillations of the VACFs seen in the inset of Fig. 8.5, however, indicate more

complex dynamics than typically observed for simple liquids. For example, the slowly decaying

oscillatory contributions to the VACF are clearly above the noise threshold seen for larger timesτ >

5 ps, although the difference betweenΨI andΨII indicates that this feature may not be fully converged.

These longer correlations are not captured by our simple fit.

8.6 Extraction of memory kernels

From the VACF, we can now proceed and compute the memory kernel as the essential quantity that

captures the influence of the many degrees of freedom excluded from explicit treatment in the CLD

model. To this aim the Memory equation was here solved using two different methods, FIT and DIR

(cf. Methods 8.2.3).

Figure 8.6a compares the memory kernelsγI and γII computed with DIR with the respective

memory kernels computed with FIT,γI-fit andγII-fit . As described in Methods, method FIT admits

only a certain type of functions for the memory kernel, and hence involves stronger regularization

constraints than DIR, which allows any sufficiently smooth function.

All memory functions drop rapidly to approx. 5% of their initial values atτ ≈ 0, followed by a

decay with a1 ps time constant (a in Table 8.1). Significant differences are also seen. In particular,

the memory kernelsγI andγII — obtained with the less regularizing method DIR — show strong

oscillations, a second slower decay component, and do not approach zero. None of these features is

seen in the memory kernelsγI-fit andγII-fit . These features, therefore, deserve closer analysis.

As can be seen from the left inset in Fig. 8.6a, most details of the fast oscillations differ for

the different trajectories. Rather, they are due to the unconverged medium scale oscillations and

the small scale statistical noise of the VACF, both strongly amplified by the inherent instability of the

Memory equation. Accordingly, they should not be attributed to a physical basis. To aid the remaining

discussion, Fig 8.6b also shows memory kernels, whose oscillations were removed by increasing the

regularization parameterα as defined in Eq. (7.15).

In contrast to the oscillations, both remaining features not seen inγI-fit andγII-fit , the slower decay

component and the lack of complete decay to zero for very long times, are shown in Fig. 8.6b to be



8.6. EXTRACTION OF MEMORY KERNELS 125

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

m
em

or
y 

ke
rn

el
 γ

(τ
) (

1/
ps

2 )

time (ps)

(a)

0 2 4
−20

0

20

40

60

0 10 20

0

10

20
γ
I

γ
I−fit

γ
II

γ
II−fit

0 5 10 15 20 25 30
0

10

20

30

40

time (ps)

m
em

or
y 

ke
rn

el
 γ

(τ
) (

1/
ps

2 )

(b)

γ
I−reg

γ
I−fit

γ
II−reg

γ
II−fit

Figure 8.6: Memory Kernel functions com-
puted from the VACFs shown in Fig. 8.5.
(a) Memory computed with DIR (solid) and
with FIT (dashed). The insets show the
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kernels from the same VACFs, but method
DIR was used with a higher regularization
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comparable for both memory functionsγI-reg andγII-reg. Does this mean that the slow and incom-

plete decay, rather than being due to the amplified noise, actually reflects genuine long time mem-

ory effects? Some insight can be obtained by testing the relation for the effective friction constants(∫∞
0 Ψ(τ)dτ

)−1 =
∫∞
0 γ(τ)dτ [223]. First of all, this shows thatγ has to approach zero sufficiently

fast, such that the effective friction constant is finite. Furthermore, we note that forτ � 5 psγ(τ)
is not well-defined by the Memory equation, becauseΨ(τ) is dominated by noise for these longer

times. We here assume that with optimal statisticsΨ(τ) will vanish, thus neglecting possible long-

time correlations. One consequence is that, settingγ(τ) ≡ 0 for these long times satisfies the Memory

equation equally well. Indeed, the effective friction constants estimated from the shown interval of

γI andγII , respectively, were significantly higher than those derived from the corresponding VACFs

(cf. Tab. 8.2), suggesting a spuriously slow decay of the memory kernels. In particular, utilizing the

relation of the effective friction constant in addition to the Memory equation shows that it is more

reasonable to assume thatγ(τ) ≈ 0 beyond35ps and25ps forγI andγII , respectively, such that the

friction constants correspond to those of the VACFs in Table 8.2. This assumption is supported by

the alternative method to extract memory kernels via force autocorrelation functions, which yielded

memory functions decaying significantly faster thanγI andγII (cf. Sec. 7.5).

These considerations justify the following manipulation. We obtained a new set of memory ker-

nelsγI-tail andγII-tail by manually damping the tail to zero beyond35ps and25ps, respectively.

We finally note that in the present context the termΠ(τ), as defined by Eq. (7.2), of the Memory

equation was neglected. This term, derived from a correlation function between mean force and

velocity, corrects for those velocity correlations, which are caused by the inertial motion of the system

within a non-zero free energy surface rather than by memory effects due to the eliminated degrees of

freedom. Due to the highly diffusive nature of the conformational dynamics of the system at hand, here

the influence of the free energy on the velocities is small and, therefore, also the termΠ(τ) is expected

to be small, implying that it can be neglected to good approximation. Indeed, as shown in Fig. 8.7,

Π(τ) is three orders of magnitude smaller than the VACF-term for smallτ , and for larger times

τ > 5 ps it is one magnitude smaller than the noise in the VACF, which justifies our approximation.

8.7 Conformational dynamics by CLD

In the following three sections we test how well the dynamics along the conformational coordinate is

actually described by the CLD model. Additionally to the memory kernels obtained above, a reduced

mass, and a free energy is required.

The free energy (Figure 8.8a) along the conformational coordinatecwas obtained from the confor-

mational density (Fig. 8.8b) as potential of mean force, averaged over both available MD ensembles,

NT1 and NT2. The reduced massµ was obtained via the equipartition theorem< ċ2 >= (βµ)−1

from the amplitude of the velocity fluctuations (cf. Table 8.1).

Having thus obtained all parameters directly from MD simulations, Collective Langevin Dy-
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namics trajectories were obtained by numerical integration of the generalized Langevin equation,

Eq. (6.16). A single trajectory of 300ns took about 6 minutes on a desktop computer (AMD 1.8GHZ

Opteron), as compared to nearly 5 months for the atomistic MD trajectory of the same length com-

puted on the same hardware.

In the following we analyze the accuracy of the CLD model in terms of suitable dynamical and

thermodynamical observables of the CLD model.

Firstly, we compare the thermodynamic properties to those obtained from the reference MD sim-

ulation. Since all thermodynamic observables of this CLD model can be obtained from its one-

dimensional partition function, it suffices to compare the conformational densityρ with that of the

MD ensembles, projected to the conformational coordinate (cf. Fig. 8.8b). As can be seen, the densi-

ties agreed well with each other, although that of the CLD model was slightly smoother. This result

confirms that the used friction kernel and random forces generated from it satisfy the fluctuation-

dissipation theorem.

Secondly, the dynamics was checked by comparison of the VACF with references from the MD

simulations.

We focus on the evaluation of the CLD models based onΨI , because the results for the CLD

models obtained fromΨII were similar. Figure 8.9 shows the VACFs of the two CLD models usingγI

andγI-fit together with the reference VACF of the MD. All VACFs agree well. In particular, the initial

decay and the position of the dip were well reproduced.

As was expected, the VACF obtained withγI-fit is nearly identical with the fit to the MD VACF

ΨI-fit . Therefore, for this model the quality of the fit determines the accuracy. This restriction

is gone if the method DIR is used to obtain the memory kernels. As shown in the inset of

Figure 8.9 the resulting VACF reproduces the reference very closely. This was quantified by the

deviation
(∫

(Ψ−ΨCLD)2 dt
)1/2

between CLD-VACF and reference, which was smaller for

DIR
(
4.8 · 10−3nm/ps

)
than for FIT

(
8.2 · 10−3nm/ps

)
.

8.8 Prediction of Transition Rates by CLD

It was shown that CLD yields trajectories with accurate conformational densities and VACFs. Al-

though these properties provide a useful consistency check, we do not consider them as a a rigorous

test of CLD, because they were also used as input for the CLD model. In Contrast, transition rates

were not used for the parameterization. As the most rigorous test, we therefore finally check forward

and backward transition rates against references obtained from a long MD simulation.

In the following, we label the results from the different approaches asCLDI, CLDII, CLDI−fit

andCLDII−fit. The first two denote the CLD model whose memory was obtained with DIR fromΨI

andΨII , respectively, and the latter two denote the corresponding CLD models whose memory was

obtained with FIT. In Figure 8.10 transition rates observed from300ns CLD trajectories are shown

(squares) with errorbars indicating their 95% confidence interval (cf. Methods). For comparison, the
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reference transition rates obtained from MD simulations NT1 and NT2 with a total simulation time of

153ns are shown as horizontal lines.

Additionally, transition rates corresponding to the respective CLD models were estimated from

Kramers’ theory. This estimate relies on the generalized Langevin equation of CLD in harmonic

approximation to the free energy. The respective curvatures were determined at the minima ascA =
65
(
βL2

)−1
, cB = 76

(
βL2

)−1
and at the barrier asc‡ = 210

(
βL2

)−1
by fitting parabolas to the free

energy profile (cf. Fig. 8.8). The barrier heights wereW ‡ −WA = 1.5β−1 for the forward transition

andW ‡ − WB = 1.8β−1 for the backward transition, respectively. For all four CLD models two

Kramers-rates were obtained (cf. Theory), one via memory free Kramers’ theory (circles in Fig. 8.10)

and the other by full inclusion of memory effects (stars in Fig. 8.10).



130 CHAPTER 8. CLD OF CONFORMATIONAL TRANSITION IN NEUROTENSIN

∫
γdt (ps−1) 1/

∫
Ψ (ps−1) kA→B

(
10−4ps−1

)
kB→A

(
10−4ps−1

)
MD 1.9 + 1.5/− 0.9 1.4 + 1.1/− 0.6

CLDI 249 147 0.3 + 0.7/− 0.2 0.2 + 0.5/− 0.2
CLDII 187 120 0.7 + 0.7/− 0.4 0.5 + 0.5/− 0.2

CLDI−fit 49 56 2.2 + 1.1/− 0.7 1.4 + 0.7/− 0.5
CLDII−fit 42 30 2.1 + 1.2/− 0.8 1.0 + 0.6/− 0.4

Table 8.2: The first two columns show effective friction constants estimated from input VACFs (ΨI , ΨII , ΨI-fit or
ΨII-fit ) or from corresponding memory functions (γI , γII , γI-fit or γII-fit ). The second two columns show forward
and backward transition rates observed in trajectories of the respective CLD models. The reference transition
rates from the MD trajectory are provided in the first line.

As can be seen from the figure, the transition rates of simulationsCLDI−fit andCLDII−fit fall

well into the range set by the reference trajectory (cf. horizontal lines), whereas the rates ofCLDI and

CLDII fall somewhat outside. The rates obtained with Kramers’ theory did not differ significantly

from the numerical results. Remarkably, all models yielded very similar rates with the memory-free

and the full-memory version of Kramers’ theory. This could suggest that memory-effects do not

influence transition rates significantly for the case at hand, and that integration of equations of motion

could be simplified by replacing the generalized friction by a constant friction,γeff =
∫∞
0 γ(t)dt.

The transition rates obtained with constant friction, however, show that the opposite is true (cf.

diamonds in Fig. 8.10). Integration with a constant friction significantly overestimates the rates

for the modelsCLDI−fit andCLDII−fit, and underestimates those obtained fromCLDI andCLDII.

Therefore, memory effectsdoplay an important role.

It is somewhat surprising that the modelsCLDI andCLDII underestimated the transition rates

despite the fact that their VACF is more accurate. However, the effective friction
∫∞
0 γ(t)dt implied

by the memory kernelsγI andγII is too large (≈ 220 ps−1, as can be seen by comparison with the

estimate of120− 150 ps−1 obtained directly for the VACFs (Table 8.2). Indeed, the memory kernels

γI-tail andγII-tail , whose tail was damped down to zero to correct for this mismatch (see Sec. 8.6)

yielded improved transition rates (crosses in Figure 8.10). Moreover, for the modelsCLDI−fit and

CLDII−fit the transition rates were slightly too high, in agreement with the effective friction being

lower than the estimated range of120 − 150 ps−1 (cf. Table 8.2). This suggests to use the friction

integral as an additional and important regularization criterion for the memory kernel.

The CLD models discussed so far were based on VACFs obtained from simulations NT1 and

NT2, with T > 9ns simulation time. To check if such a long simulation time is actually necessary

to obtain sufficiently accurate memory kernels, we systematically assessed the amount of molecular

dynamics sampling needed. To this end, eight500 ps trajectories, NTSi i = 1, . . . , 8, were generated

from different starting positions (cf. Methods) and used to compute memory kernels via the FIT

method for parameters see Table 8.1. Memory kernels were computed from single trajectories, or

from combinations of two, four or all eight trajectories NTSi, constituting sampling times of500 ps,

1ns,2ns and4ns, respectively. In Fig. 8.11 the transition rates predicted by the CLD model with these
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memory kernels are plotted against used sampling time. All obtained rates were within the range of

and are centered at that of the reference MD simulation. The only exception are the rates obtained

with memory kernels from the shortest sampling time (0.5ns), which are systematically smaller than

the reference MD rate (only the highest and lowest rate were shown). Already for sampling times

t ≥ 1ns the reference rates of the modelsCLDI−fit andCLDII−fit were reproduced. Thus, sampling

as short as1 ns is sufficient to correctly predict transition rates.

8.9 Prediction of positional autocorrelation functions by CLD

The last observable of the CLD dynamics we compared to the reference MD is the positional auto-

correlation function (PACF). Figure 8.12 shows the PACF obtained from MD simulations NT1 and

NT2 covering a total simulation time of153 ns in comparison to PACFs obtained from300 ns CLD

trajectories. We plotted the PACFs of modelCLDI andCLDII−fit with slowest and fastest decay,

respectively, as well as the PACF ofCLDI−fit, which best agrees with the MD result.

The overall decay of all CLD-derived PACFs corresponds to that of the reference PACF from

the MD simulation. Fits to single-exponential decays yield decay times ranging from1.35 ns to9 ns

for the CLD-derived PACFs, which are on the same order of magnitude as that obtained from the

MD-derived PACF (3.3 ns). Remarkably, the decay of the CLD-derived PACFs is systematically too

slow for short timesτ < 0.5 ns, whereas on long times some decays are faster and others slower than

the reference. Moreover, the CLD-derived PACFs are well described by a single exponential decay,

whereas the MD-derived PACF shows two significantly different timescales.

The large spread of the CLD-derived PACFs is striking. In order to rule out that this is due

to unconverged correlations we obtained several independent trajectories for each CLD model and

computed their PACFs. ForCLDI−fit, these are shown in the figure, and their much smaller statistical

variation confirms that the spread of the PACFs is indeed significant.

Furthermore, we compared the decay times of the CLD models with their respective transition
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rates. Correlation coefficients ofr = 0.69 and r = 0.72 for the forward and backward rate, re-

spectively, indicate a weak connection. However, the relatively low value also shows that not all

dynamical properties that are relevant for the transition rates are captured by the PACF. Vice versa,

other dynamical properties, which are described by the PACF, are not reflected in the transition rates.

The large differences between the PACFs are at first sight unexpected because they are

uniquely defined by the corresponding VACFs, which vary much less for the different CLD models

(cf. Fig. 8.9). Note, however, that the PACF is dominated by low frequency components, i.e., long

time correlations, whereas the VACF is dominated by the high frequency components. The fact that

the memory kernels computed from VACFs, therefore, cannot capture the long time correlations

explains the observed spread of the CLD-derived PACFs.

Nevertheless, the large spread of the PACFs indicates a tremendous influence of the memory

kernels on the long-time dynamics. In order to achieve better accuracy the PACF could be used in

addition to the VACF to determine the memory kernel, e.g., solving the alternative Memory equation,

Eq. (7.3). However, here one needs to trade-off the accuracy of the CLD model with the sampling

time to gain the slowly converging PACF.

8.10 Discussion and Conclusions

The presented results show that the CLD model is capable of accurately predicting transition rates of

complex systems. Remarkably, already sampling as short as1ns proved to be sufficient to obtain a

good prediction of transition events occurring on timescales of50ns.

Furthermore, we found that the transition rate was mainly influenced by the effective friction∫∞
0 γ(t)dt. In those cases where the effective friction was accurate, both methods to extract memory

kernels, FIT and DIR (with removed tails), performed equally well. Thus, the reproduction of the

small oscillations of the VACF, which only the method DIR is capable of, was not important for the

transition rate. However, an accurate effective friction alone, i.e., a memory free description, did not

suffice for accurate rates (cf. diamonds in Fig. 8.10). Proper treatment of memory is thus important

on the timescale of the chosen integration step.

Whereas memory effects were important on the short timescales of the integration steps, they were

irrelevant on timescales probed by Kramers’ theory. Indeed, the memory, decaying with (τ ≈ 1ps),

influenced the dynamics over100 integration steps, whereas the fastest timescale seen by Kramers’

theory, i.e.,T ≈ 2π/ω = 9ps is much slower and, therefore, not affected.

To decide which memory extraction method to chose, two different objectives need to be distin-

guished. The aim to predict transition rates computationally efficient is optimally achieved with the

robust method FIT. In particular, VACFs computed from MD trajectories as short as1 ns have sufficed,

here. Anyhow, putative features of the VACF that cannot be captured by FIT do not raise significantly

above noise level before sampling time reaches well above10 ns.

The objective to understand the physical nature of the system via its memory kernel, in contrast,
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is optimally approached with the method DIR, which was able to accurately reproduce all features of

the VACF. A straightforward interpretation of the memory kernel is hindered, however, by artifacts,

such as spurious oscillations and a too slow decay. In Chapter 7 several strategies to improve the

regularization were discussed, which might be able to remove these artifacts.

Positional autocorrelation functions (PACFs), which are dominated by long time correlations,

were not accurately reproduced by the CLD model. This indicates that long time correlations need

to be considered more accurately for determination of memory kernels. However, they cannot be

extracted from the VACF, because it is dominated by the short time correlations. The most promising

strategy, therefore, is to determine the memory kernel via the alternative Memory equation, Eq. (7.3),

which includes positional correlations. An adaption of the method DIR to this Memory equation will

be straightforward.
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Science... never solves a problem

without creating ten more.

— George B. Shaw

Chapter 9

Summary and Conclusions

We have developed Collective Langevin dynamics (CLD) as a consistent framework to describe and

simulate slow collective motions of proteins in an approach with drastically reduced number of de-

grees of freedom and, hence, reduced dimensionality. In this framework the dynamics are separated

into slow and fast degrees of freedom. The dynamics in the slow coordinates are evolved explicitly,

whereas the fast degrees of freedom are treated in an implicit manner.

CLD is a bottom up approach based on first principles in the sense that all relevant information

is extracted from the well validated description of protein dynamics by molecular dynamics (MD)

simulations. Furthermore, it is a systematic approach because the level of coarse graining can be

tuned by the number of degrees of freedom which are explicitly considered. The extreme case of

a one dimensional description is presented here; the other extreme is explicit consideration of all

degrees of freedom and in the CLD framework would trivially reproduce the MD model.

It was shown that suitable slow coordinates can be systematically obtained with principal compo-

nent analysis (PCA) from short (nanoseconds) explicit MD simulations and are stable enough to also

properly describe protein dynamics at much longer time scales. In particular, for crambin ten percent

of the principal components obtained from only a5ns MD trajectory were shown to describe over85%

of the atom displacement observed in a450 ns MD simulation. Furthermore, PCA, if based on the

covariance matrix of the displacement of allheavyatoms (as opposed toCα-atoms only), proved able

to separate timescales to a large extent. In particular, those modes which describe the slow degrees of

freedom are nearly free of contributions from the fast vibrational dynamics.

This partial separation of timescales motivated and justified the application of the projection oper-

ator formalism by Mori and Zwanzig to derive equations of motions for the dynamics of the collective

coordinates. Both, linear (e.g., principal components) and curved coordinates were considered in full

generality. The resulting exact equations of motions take the form of a generalized Langevin equation

with a potential of mean force. Here, we approximate this exact equation by replacing itsnoise term

with a non-Markovian stochastic process that obeys the fluctuation-dissipation theorem. The memory

effects are found to be not negligible and thus are fully accounted for by a generalized frictional force,

135
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whose specific memory kernel is obtained for any dynamical system individually.

We proposed three methods to extract memory kernels from short (few nanoseconds) MD trajec-

tories deriving it from either a velocity autocorrelation function or a force autocorrelation function.

In order to obtain memory kernels from the former we solved a Volterra-type equation. Because this

inverse problem is notoriously difficult to solve and suffers from numerical instabilities, we tested

different levels of regularization. The method FIT applied rather strong regularization, and hence was

very robust against the inherent statistical noise in the VACF. In contrast, the second method, DIR,

regularized only weakly, such that it allowed to capture more details of the VACF. The results indi-

cated that for an accurate description of transition rates, the trade-off should be struck on the side of

stronger regularization, i.e., increased robustness.

The third approach is conceptually simpler, because it exploits the more direct link of the force

autocorrelation function to the memory kernel via the fluctuation-dissipation theorem, but involves

a higher computational effort. Its strength, though, is to probe the spatial dependence of the mem-

ory kernel, which is neglected in the currently used CLD model. Our preliminary investigation of

memory kernels obtained with this method at numerous positions in the conformational subspace of

neurotensin, suggested a substantial positional dependence of the memory. Whether and how strong

this affects the collective dynamics needs to be established in further research.

CLD is complementary and rests upon the many existing enhanced sampling methods to calculate

free energy surfaces such as, REMD[73], umbrella sampling[75, 202] or SMC[74]. All these meth-

ods, by construction, sacrifice dynamics to speed up sampling. We have proposed to reconstruct the

conformational dynamics from the obtained free energy surfaces via CLD. Alternatively, ensembles

obtained from experimental sources like NMR might also be used to estimate a free energy surface.

As a test system, the hexapeptide neurotensin was considered. Explicit treatment in CLD was

restricted to a one-dimensional (curved) conformational coordinate. Comparison of transition rates

obtained from this extremely dimension reduced and, hence very efficient, description with those

obtained from a150 ns MD simulation showed excellent agreement.

Remarkably, this good agreement for the neurotensin peptide was achieved by the most extreme

conceivable dimension reduction, i.e., to only one dimension. A generalized curved coordinate was

required to achieve such a drastic reduction; more than one but less than five linear degrees of freedom

would likely allow to achieve similar accuracy.

We note that similar tests for much larger protein systems would of course be called for to fur-

ther evaluate our approach. However, the requirement of converged reference transition rates from

long MD simulations, severely restricts the size of the test system. For instance, the presented450 ns

simulation of crambin did not contain enough recurring transitions to reliably estimate reference tran-

sition rates, whereas enough transitions occurred in the presented150ns simulation of neurotensin.

Nevertheless, our results indicate that CLD is also capable of accurately describing conformational

dynamics of soluble proteins atµs time scales.

The generality of the treatment allows to apply the CLD framework to model also a water file in
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a protein pore, e.g., aquaporin, gramicidin, etc. The water flux can be measured experimentally, and

is also accessible by sufficiently long all-atom MD simulations. Therefore, such a system is a good

candidate for the next test of the CLD approach. A single collective degree of freedom was able to

describe the motion of the whole chain of water molecules along the pore axis. In this way, elegantly

accounting for the collectivity of the water motion, the CLD model might be able to accurately predict

the water flux.

Our test simulations also demonstrated a large reduction of computational effort by the CLD

method. Here transition rates were accurately predicted for much longer(∼ 50ns) timescales than

needed for extraction of memory kernels (∼1ns). A 300 ns CLD trajectory was obtained in 6 min-

utes on a desktop computer (AMD 1.8GHZ Opteron), whereas a comparable explicit MD simulation

requires 5 months on the same hardware.

CLD yields trajectories with accurate thermodynamical and dynamical behavior, in particular

accurate free energies and velocity autocorrelation functions. By focusing on relevant quantities, our

CLD approach also provides new physical insights into the high-dimensional protein dynamics. The

relative fast decay of the memory kernel of neurotensin agrees with previous findings. For a similarly

sized peptide an upper limit for a time scale on which no memory effect influenced transition rates

was determined to be1 ns[100]. This limit agrees with and is improved by our finding that memory

effects did not play a significant role for transition rates at time scales above10 ps. In focusing at

accurate velocity autocorrelation functions, CLD might be particularly useful for the interpretation of

neutron scattering experiments, which probe these.

The observed deviations of the CLD-derivedpositional autocorrelation functionsindicate that for

this observable memory effects on longer time-scales are important. We further suggest to improve

the accuracy of the required memory kernel by combining positional and velocity autocorrelation

functions for its extraction, because the former probe long time scales and the latter short ones.

We demonstrated that different memory functions can lead to the same dynamics, which ren-

ders their direct physical interpretation problematic. Further research is required to find the ’invariant

properties’ hidden in the memory functions, i.e., those properties that cannot be altered without chang-

ing the dynamics. As possible candidates we suggested effective friction constants and decay times.

Following this line of investigation one would find out which kind of knowledge about the physical

system can be extracted from a memory function.

With the generalized correlation coefficient devised in Chapter 3 we provided a measure to quan-

tify any correlated motion in MD simulations. Thereby, we removed long standing obstacles for

a quantitative comparison of correlations between MD simulations and experiment. As shown, the

hitherto used method suffered from a purely geometrical artifact, such that more than 50% of the cor-

relations remained undetected. The enhanced characterization of the collective motion provided by

the generalized correlation matrix also complements the analysis of collective motions with PCA.

The generalized correlation coefficient was applied to shed light on an experiment that attempted

to measure correlated backbone motion in the B1 domain of Protein G. Recently order parameters
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for ten different mutants of this protein were obtained with NMR relaxation experiments. It was

proposed to interprete the observed covariations of the order parameters as a probe for correlated

motion of the protein backbone. However, our results cast strong doubts on this interpretation. We

speculate that the observed covariations are rather due to remarkably correlated structural plasticities.

Further simulations of all the ten studied mutants will thus be required to test this hypothesis and to

structurally characterize the properties of this proposed non-local plasticity.

As alternative to PCA we developedFull Correlation Analysis (FCA)to gain maximally uncou-

pled collective modes, which shall prove particularly suitable for use within the CLD framework. We

applied this method to extract collective modes for neurotensin, which successfully removed an incon-

sistency previously observed in the free energy surface of the first two PCA modes. Moreover, FCA

aligns the extracted modes along the pathways of conformational transitions. Both results suggest that

FCA is promising for application within CLD.

Besides its use for CLD, we suppose that FCA can be used in many other applications. As shown,

FCA modes are less coupled and allow better separation of conformational substates, but have other-

wise similar beneficial characteristics as PCA modes.

One such application, for instance, could address the long standing problem to compute the con-

figurational entropy of a macromolecule from an MD trajectory[242]. Although the entropy is accu-

rately described by MD simulations, it is infeasible to perform the required non-parametric density

estimation in the high-dimensional configurational space. As a first step in the framework of PCA,

the entropy is estimated by treating all PCA modes as independent oscillators[81, 161]. Obviously

this approximation will improve if we use FCA to extract maximally decoupled coordinates, and treat

those as independent oscillators. However, FCA might enable a more considerable increase of accu-

racy. As shown, the FCA modes of neurotensin separated into relatively uncoupled clusters of less

than ten modes. Since it is possible to accurately estimate the entropy with non-parametric methods

in such low-dimensional subspaces[147, 148], a more accurate estimate of the configurational entropy

might be gained as sum of the non-parametric estimations of the entropy in these subspaces.

Another route to future developments for CLD concerns the number of degrees of freedom that

are explicitly considered. Whereas two or three explicit degrees of freedom can be treated within the

presented CLD framework in a straightforward manner, inclusion of more explicit coordinates will

become impractical due to the high dimensionality of the free energy landscapes, which would render

the non-parametric free energy estimation used here infeasible. As an alternative, weighted sums

of multivariate Gaussians could be used to approximate the ensemble density. A CLD model based

on a similar parametric approximation was already used in this work in the Kramers’ approach, and

its rates agreed well with those obtained from the non-parametric free energy surface. Preliminary

work of the author indicates that a maximum-likelihood estimate of weights, positions and widths of

such Gaussians yields an accurate fit to high-dimensional densities, as checked by a newly devised

high-dimensional goodness-of-fit method.

We finally suggest that the extension to large conformational subspaces might allow on-the-fly
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computations of small regions of the free energy landscape, thereby, alleviating the sampling prob-

lem. In particular, the higher frequency PCA modes behave quasi-harmonically, and are much more

efficiently sampled by MD then the low frequency modes. Thus, a two layered approach for CLD

might be considered, which switches to explicit MD to probe entropic contributions to the free en-

ergy, whenever new, previously unvisited, regions of the conformational subspace are encountered.
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