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Abstract

Protein function can be predicted from their dynamics, however a more robust and accurate
method is sought-after. An important tool in the analysis of protein dynamics are Markov
state models, which approximate the meta-stable states of a system and the transition
rates between these states. The construction of a Markov state model from a protein
trajectory follows a protocol consisting of several steps: coarse graining the trajectory,
counting the transitions between each states and estimating the corresponding transition
rates. It is desirable to automate and optimize this process, using benchmark trajectories
which should yield known meta-stable states and transition times. This Master’s thesis
describes the developement and validation of a Brownian dynamics simulation, utylizing
adjustable potential landscapes. The simulation is used to generate trajectories functioning
as said benchmarks. An example of applying the Markov state model generation method to
a benchmark trajectory is discussed.

Keywords: Biophysics, Protein Dynamics, Dynasome, Brownian dynamic simualtion,
Markov state models, PyEMMA.
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1. Introduction∗

As proteins are some of the fundamental building blocks of any biological system[1], and
their diverse functions determine the very structure and behavior of all biological systems,
the ability to accurately predict the function of a protein is a sought-after goal in many
branches of the natural sciences. One common predictor of protein function is their structure,
derived in large part from their amino acid sequence. Thus, the similarity of two amino acid
sequences - their homology - can be used as a rough predictor of their biological functions[2].
Strong relations also exist between protein structure and their function.

Another connection that is sought-after is the relation between protein dynamics and their
function. A promising approach to the prediction of protein function from their dynamic
properties was made by Hensen et al (2012)[3]: they analyzed the trajectories of a group of
112 proteins, produced by molecular dynamic simulations. The proteins were simulated for
100 nano seconds, and their trajectories analyzed to yield 34 different observable quantities,
which were used to assign points in a 34-dimensional corresponding to each protein. Using
dimensionality reducing methods such as Principal component analysis (PCA), they were
able to group proteins together and predict their function with a success rate of 57% to
61% based only on their proximity in the reduced dynamic space (Table 1.1). They refer to
the space of a protein dynamics as the Dynasome.

In our research group, we employ a different method for comparing the dynamics of proteins.
This method uses Markov state models (MSM) to approximates the meta-stables states
of a system and the transition rates between them, from trajectories of proteins simulated
by molecular dynamics. One protocol for derivation of an Markov state model uses time
structure based independent component analysis (TICA) and k-means clustering to coarse-
grain the trajectories, and employs a Bayesian method to estimate the transition rates in
the system. This thesis is aimed at a first step of streamlining this process.

∗Parts of the following introduction are based on a previous report I submitted as part of my work at
the Theoretical and Computational Biophysics department at the Max Planck Institute for Biophysical
Chemistry.
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1. introduction

To that aim, suitable strategies need to be employed so Markov state models can be
constructed in a consistent and robust way. However, it is difficult to form a single robust
method of Markov state models generation without prior knowledge of the affects of different
parameters and employed method in the Markov state model generation process. For
example, how do different data clustering techniques perform? Is there an optimal technique
that yields consistent, reliable results? A knowledge of the limitations of each step in the
Markov state model generation process is also desirable.

Answering some of these and related questions can be done by developing a method
that generate trajectories which yield known results when subjected to the Markov state
models generation process. Brownian dynamic simulations provides a relatively simple way
of generating trajectories that emulate the state space of a protein’s dynamics and the
transitions between the states.

By carefully choosing the potential landscapes in which the simulations are generated,
trajectories of known thermodynamics and kinetic properties can be generated. An analysis
of these trajectories by the same Markov state models generation method can then be
performed, and the results compared to the expected results from the trajectories. This
way, parameters and methods which are employed in the Markov state models generation
process can be optimized, and the limits of each method can be tested.

This Master’s thesis describes the development of a generalized Brownian dynamics simu-
lation, and the methods employed to validate it. It uses a simple method of constructing
potential landscapes that yield any number of meta-stable states in single-, two- and
higher-dimensional spaces. It also discusses one example of employing the Markov state
models generation method to a trajectory generated by the simulation and some limitations
encountered in the process.
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Table 1.1.: Prediction rate by function class in the Dynasome study by Hensen et al.
Numbers in brackets indicate the result of a cross validation test.
Taken with caption from [3].

Class # of proteins Correct predictions
Dynamics Structure Combined

Glycosidases 17 12 (11) 0 (0) 5 (4)
Esterases 13 4 (2) 6 (6) 0 (0)
Serine Proteinases 11 6 (6) 6 (5) 9 (9)
Metallopeptidases 6 4 (0) 0 (0) 5 (4)
Calcium-binding 5 2 (0) 4 (3) 4 (4)
Toxins 5 2 (0) 5 (5) 2 (0)
Signalling 5 4 (0) 1 (0) 2 (0)
DNA/Transcription 4 3 (2) 0 (0) 3 (0)
Peptidases 3 2 (0) 3 (3) 3 (3)
Total large groups (gray rows) 41 54 % (46 %) 29 % (27 %) 34 % (31 %)
Total small groups 28 61 % (7 %) 47 % (39 %) 68 % (39 %)
Total 69 57 % (30 %) 36 % (32 %) 48 % (35 %)

3



1. introduction

4



2. Theoretical Foundation

This chapter introduces the theoretical basis for the methods which were employed in the
Master’s thesis. The first section of the chapter is adapted with changes from the same
section of a previous Master’s thesis which was written by a member of our research group
[4]. That work is in turn based on chapters 3 and 4 of a book on Markov state models [5].

Throughout this thesis, a specific set of units is used, both for theory and in simulations. We
first set kBT = 1, which means, since the SI units of energy are kg m2 s−2, that kg=s2 m−2.
Next we set kg = 1, and thus m = s. Lastly, setting m = 1 yields a unit less scheme, used
throughout the thesis, which measures energy in multiples of kBT .

2.1. Markov State Models of Protein Dynamics

A commonly used method in the analysis of protein dynamics is estimating a Markov state
model (MSM) that represents the structure of the system and the probabilities to transition
between its different states. One advantage of using a Markov state model is that it can be
approximated from a large set of relatively short trajectories, as opposed to using longer
trajectories[6]. This allows for parallelization, by running several short simulations at the
same time.

Examining a basic model can allow for a simple explanation of important characteristics
of a Markov state model. The system is made of an ensemble of particles diffusing in a
one-dimensional potential landscape with four potential wells (Figure 2.1A). We define
an operator called the propagator, P (τ), which acts on the probability distribution of the
ensemble at time t to yield the probability distribution of the system at time t+ τ , and is

5



2. Theoretical Foundation

defined as

P (τ) ◦ ρt(y) = ρt+τ (y)

=
∫
Ω

ρt(x) · p (x, y; τ) dx, (2.1)

where p (x, y; τ) is the transition probability density from state x to state y by a lag time τ .

The eigenvectors and eigenvalues of the propagator correspond to the processes in the
system, in decreasing time scales: the first eigenvector, with corresponding eigenvalue λ1,
is the equilibrium distribution of the system (the corresponding timescale of this process
is t1 = ∞). Since propagating the equilibrium distribution by time τ yields the same
distribution, λ1 = 1 (Figure 2.1(D)).

The next eigenvector describes the slowest transition - in the case of the simple model, this
corresponds to crossing the middle barrier (Figure 2.1(A): green barrier, (C): function φ2).
The next two eigenvectors describe crossing the two smaller barriers, respectively (Figure
2.1(A): blue and orange barriers, (C): functions φ3 and φ4). The rest of the eigenvectors
correspond to much faster processes: essentially, diffusion within the potential wells. The
separation between the first 4 eigenvectors and the rest is clearly visible as a gap between
λ4 and λ5 in Figure 2.1D.

Generally, the relation between the timescales of processes in a finite Markovian system
and the eigenvalues of the propagator with time step τ is

ti = − τ

log(λi)
, i = 1, 2, . . . , α. (2.2)

The equation above shows that the first eigenvalue λ1 = 1 corresponds to the equilibrium
process, with t1 =∞. Disregarding cases of degeneracy, the rest of the eigenvalues can be
sorted in a descending order λ2 > λ3 > · · · > λα+1 > λα, where for i ≥ 2 the eigenvalues
are in the open interval (0, 1).

The assumption that the propagator is Markovian, i.e. that it has no memory, means that
P (τ) ◦ ρt(x) is dependent only on ρt(x), and that the state of the system after time kτ is
given by applying the propagator k times:

P (τ)k ◦ ρt(x) = ρt+kτ (x). (2.3)

6



2.1. Markov State Models of Protein Dynamics
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Figure 2.1.: An ensemble of particles diffusing between four potential wells. (A) the potential
U(x) with its three barriers signified with the colors blue, green and orange.
(B) The equilibrium distribution of the system. (C) The first 4 eigenvectors,
corresponding to the four slowest processes in the system. (D) The eigenvalues
of the system, the first 4 eigenvalues corresponding to the 4 slowest processes.
Figure recreated from [5].

This property is known as the Chapman-Kolmogorov equation, and it can be used to
validate the Markovianity of the system. P (τ) ◦ ρt(x) can be written as a projection on the
eigenvectors {φi} of P (τ):

P (τ) ◦ ρt(x) =
∞∑
i=1

λi · 〈φi | ρt(x)〉µ · ρt(x), (2.4)

where the scalar product 〈u(x) | v(x)〉µ is defined as

〈u(x) | v(x)〉µ =
∫
Ω

v(x)u(x)
µ(x) dx, (2.5)

where Ω is the state space of the protein dynamics, and µ(x) its equilibrium distribution (i.e.
µ = φ1). This scalar product forces the projection to be hermitian, which means that the
eigenvalues {λi} are real and positive, and that a partition into discrete real and positive
eigenvectors exists.
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2. Theoretical Foundation

Using the Chapman-Kolmogorov equation, a more general form of Equation 2.4 can be
written, valid for any whole number of successive applications of the propagator to the
ensemble density:

ρt+kτ (x) = P (τ)k ◦ ρt(x)

=
∞∑
i=1

λki · 〈φi | ρt(x)〉µ · ρt(x). (2.6)

2.1.1. Construction of a Markov State Model from Protein Dynamics

A closely related operator to the propagator operator is the transfer operator T (τ). The
transfer operator is defined on the functions

ut(x) = ρt(x)
µ(x) , (2.7)

where µ(x) is the equilibrium probability of the system, and is defined as

T (τ) = 1
µ(y)

∫
Ω

p (x,y; τ)µ(x)ut(x) dx. (2.8)

Unlike the propagator, which acts on a probability distribution at time t to yield a probability
distribution at time t+τ , the transfer operator yields functions that relate to the probability
distributions by division in the equilibrium probability. Thus they are flat inside metastable
states, and in essence show the transfer in probability distribution for a specific process.
Figure 2.2 shows this case for the basic system discussed above.

The local flatness inside metastable states allows the approximation of the entire space Ω by
a set of discrete domains (Figure 2.6). A Markov state model can then be approximated by
a matrix by counting the transitions between the different states and how long the system
spends in each state before transitioning, and employing, for example, a Bayesian estimation
method to yield an estimation of the respective transition rates.

8



2.1. Markov State Models of Protein Dynamics
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Figure 2.2.: First four eigenvectors of the propagator (left) and the analogous eigenvectors
of the transfer operator (right). Figure recreated from [5].

2.1.2. Estimating Transition Rates from Transitions Counts

For a system with two states 1 and 2, and a transition 1→ 2 at time t1 (Figure 2.3), an
estimation of transition rate k = k1→2 by a Bayesian approach[7] is given by (see Appendix
C for derivation)

p
(
k | t1

)
= ke−kt1 , (2.9)

with the most likely value of k being

kmax = 1
t1
. (2.10)

1

2

t = 0 t = t1

t

Figure 2.3.: A system transitioning from state 1 to state 2 at time t = t1.

When n transitions 1 → 2 are observed at times {t1, t2, . . . , tn}, and similarity n − 1
transitions 2→ 1 are observed at times {t′1, t′2, . . . , t′n} (Figure 2.5), we can define the time

9



2. Theoretical Foundation
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Figure 2.4.: Probability distribution of the transition rate value when observing a single
transition at time t = t1, using Bayesian estimation. The most likely value of
the transition rate is kmax = 1

t1
.

periods the system spent in state 1 as

∆ti =


t1 if i = 1

t′i − ti−1 if i = 2, 3, . . . , n
. (2.11)

Figure 2.5.: A system transitioning from state 1 to state 2 at time t = t1.

Using the same Bayesian approach as before, the probability distribution of the transition
rate k = k1→2 is then

p
(
k | {∆ti}

)
= kne−kn〈∆ti〉, (2.12)
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2.1. Markov State Models of Protein Dynamics

with the most likely k being
kmax = 1

〈∆ti〉
. (2.13)
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Figure 2.6.: Clustering a trajectory. Top: A trajectory in the space Ω, starting at the
bottom right. Each color represents a different cluster of the space. Bottom:
The resulting clustered trajectory, the state numbers correspond to the clusters
in the top figure.

2.1.3. K-Means Clustering

One of the most widely used methods to group data into clusters is the k-means clustering
method[8]. This method assigns n points to a given number k < n of clusters, such that
the positional variance in each cluster is minimized. Implementing an approximation to the
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2. Theoretical Foundation

k-means method can be done using the following algorithm:

1. Choose k random points from the data set to function as initial centers for the clusters.

2. Assign each point in the data set to its closest center (usually using Euclidean distance),
resulting in k clusters.

3. For each cluster, set the new cluster center as the positional mean of all points in that
cluster.

4. Repeat steps 2 and 3 until convergence, or a pre defined number of iterations, is
reached.

This algorithm is presented visually in Figure 2.7.

Figure 2.7.: Clustering a set of n = 22 points into k = 3 clusters using an algorithm which
implements the k-means method. The steps 1-4 are described in the text.

Applying the k-means method on a space Ω results in a Voronoi tessellation of the space,
having sharp boundaries between the clusters (Figure 2.8a). A slight change of position of
a point can then result in it being assigned to a different cluster (Figure 2.8b).
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2.2. Brownian Dynamics

(a)

y

x
(b)

Figure 2.8.: The k-means method. Left: A two-dimensional space clustered into six clusters,
their centers shown as black rectangles. Right: Clustering a trajectory into two
clusters using the k-means method. Notice in the center of the figure (zoomed-in,
top right) how some parts of the trajectory are clustered as belonging to the
left set, while a human would probably cluster this part as belonging to the
right set.

2.2. Brownian Dynamics

We wish to automate the above method of constructing Markov state models from protein
trajectories and to optimize the methods employed in each step. To that aim, it is useful
to compare the results of applying the method to some benchmark trajectories, which
are expected to yield known results. These benchmark trajectories can be generated by
simulating Brownian dynamics using potential landscapes that can be adjusted for the
number of potential wells and their depth, and the height of the potential barriers between
them. That way, trajectories with known number of metastable states and transition rates
between them can be easily generated.

In Brownian dynamics, particles are modeled as being point-like with a distinct position,
and a velocity that arises from two forces: a potential-derived force referred to as drift force,
and thermal noise. The base equation of motion is[9]

ẋ (t) = − D

kBT
∇U(x) +

√
2DR (t) , (2.14)

13



2. Theoretical Foundation

where D is the diffusion coefficient, kBT is the Boltzmann constant, T is the temperature
of the system and R (t) is a Gaussian process with µ = 0, σ = 1 and 〈R(t)R(t′)〉 = δ (t− t′)
- i.e. at any two times t and t′ the values of R are uncorrelated.

y

x x

Figure 2.9.: Brownian dynamics trajectories in two dimensions. Left: three trajectories
without a drift force. Right: one trajectory with a drift force that has two
potentials wells.

2.2.1. Adjustable Potential Landscapes

Generating trajectories with known amount of metastable states and transition rates
between these states using a Brownian dynamics simulation can be done by choosing
potential landscapes that would yield such trajectories. One way to approach the generation
of adjustable potentials is by "reverse-engineering" of the Boltzmann distribution of a system
in a potential landscape U(x). The Boltzmann distribution is given by[10]

p(x) = 1
Z
e
−U(x)
kBT , (2.15)

where kB is the Boltzmann constant, T is the temperature of the system, and Z a normal-
ization term called the partition function:

Z =
∞∫
−∞

e
−U(x)
kBT dx. (2.16)

14



2.2. Brownian Dynamics

Isolating U(x) from the equation yields∗

U(x) = −kBT log(p(x)), (2.17)

which shows that by a right choice of a desired equilibrium distribution, a potential that will
yield the distribution can be constructed. A convenient choice of p(x) is a sum of Gaussian
functions of the form:

G(x) = Ae−
(x−µ)2

2σ2 , (2.18)

since it is simple to set the center of the Gaussian via µ, its width via σ and its maximum
height via A. In addition, these functions are relatively simple to derive and their integrals
can be calculated analyticaly. Figure 2.10 shows an example of a probability distribution
constructed form three such Gaussian functions, and the potential resulting by applying to
it Equation 2.17.

U(x)

p(x)

x

Figure 2.10.: A potential U(x) constructed from a sum of three Gaussian functions, by the
application of Equation 2.17, and the corresponding probability distribution
p(x).

Another property that makes sums of Gaussian functions desirable for constructing potential
landscapes is that generalizing them to higher dimensions is fairly straight-forward: a general

∗The partition function is absent from this expression since any constant addition to the entire potential
does not affect the force derived from the potential.

15



2. Theoretical Foundation

N -dimensional Gaussian function is of the form

G (x1, x2, . . . , xn) =
n∏
d=1
G(xd), (2.19)

which preserves many of the analytical properties of one-dimensional Gaussian functions
due to the independence of its dimensional components.

2.2.2. Numerical Integration of the Equation of Motion

In order to simulate Brownian dynamics on a computer, a proper time discretization of
Equation 2.14 is required. This can be done by approximating the motion of a Brownian
particle by applying the linear solution of the Smoluchowski equation to small time steps.

The general one-dimensional Smoluchowski equation is of the form[11]

∂

∂t
p
(
x, t | x0, t0

)
= D

[
∂2

∂x2 − β ∂
∂x
F (x)

]
p
(
x, t | x0, t0

)
. (2.20)

For a constant potential U (x) = c, an analytical solution is known[11]:

p
(
x, t | xi, ti

)
= 1√

4πD∆t
exp

−(x− xi +Dβc∆t)2

4π∆t

 , (2.21)

where ∆t = t− ti. This is a Gaussian distribution N (µ, σ) with

µ = xi −Dβc∆t,

σ2 = 2D∆t. (2.22)

Using small ∆t, one can place a particle in position xi and using Equation 2.21 choose a
random number R from a Gaussian distribution with mean and variance as in equation 2.22
as the next position of the particle, i.e.

xi+1 = R = µ+ σR̄, (2.23)

where R̄ is a random number from a normalized Gaussian distribution N (0, 1). Substituting

16



2.2. Brownian Dynamics

Equation 2.22 into 2.23 yields

xi+1 = xi −Dβc∆t+
√

2D∆tR, (2.24)

and substituting c = −∇U (xi) and β = 1
kBT

yields the complete one dimensional discrete
integration scheme for Brownian dynamics in a small time step ∆t,

xi+1 = xi −
D

kBT
∇U (xi) ∆t+

√
2D∆tR. (2.25)

Equation 2.25 can be generalized to any number of dimensions by substituting the position
x with a position vector x and substituting R with a multivariate normal distribution R:

xi+1 = xi −
D

kBT
∇U (xi) ∆t+

√
2D∆tR. (2.26)

2.2.3. Properties of Brownian Systems

Some known analytical properties of Brownian systems will now be briefly discussed. These
properties were used to validate the correctness of the simulation described in the thesis.
The derivation of some properties shown here are found as appendices to the text.

Mean-Squared Displacement

For the case of a flat potential U(x) = c, i.e. when the drift is zero and thermal noise is the
only force present in the system, the mean-squared displacement (MSD) of an ensemble
of non-interacting Brownian particles each with a starting positions x0 is linear with time,
proportional to two times the diffusing constant D (Figure 2.11):

〈
(
x (t)− x0

)2
i 〉 = 2Dt. (2.27)

When the particles are allowed to diffuse in N -dimensions, the coefficient 2 becomes 2N ,
yielding[12]

〈
(
x (t)− x0

)2
i 〉 = 2NDt. (2.28)

17
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Figure 2.11.: 1000 non-interacting Brownian particles diffusing without a drift force in one
dimension. The squared displacements of 10 of these particles are shown as
colored lines. The mean-squared displacement (MSD) of the entire ensemble
is shown as a black line.

Equilibrium Distribution

As discussed in Section 2.2.1, when a drift force derived from a potential U(x) is present in
the system, the probability distribution of finding a particle at position x in equilibrium
is given by the Boltzmann distribution (Equation 2.15). Thus, the probability density of
finding the particle in the closed interval [a, b] is

P[a,b] =
b∫
a

e
−U(x)
kBT dx. (2.29)

Substituting U(x) for a potential of the form discussed in Section 2.2.1 yields

P[a,b] = 1√
2π

∑
i

Aiσi

erf(b− µi√
2σi

)
− erf

(
a− µi√

2σi

) . (2.30)

Since the different dimensional components of an N -dimensional potential of a log-Gaussian
form (the potentials described in Section 2.2.1) are independent, the general N -dimensional
integral over an interval I = I1× I2×· · ·× In = [a1, b1]× [a2, b2]×· · ·× [aN , bN ] is a product

18



2.2. Brownian Dynamics

of the respective one-dimensional integrals; i.e. for a single Gaussian function

PI =
N∏
d=1

∫
Id

Gd(xd) dxd

= (2π)−
N
2

N∏
d=1

Adσd

erf(bd − µd√
2σd

)
− erf

(
ad − µd√

2σd

) , (2.31)

and for a generalized potential composed of m such Gaussian functions:

PI = (2π)−
N
2

m∑
i=1

N∏
d=1

Ai,dσi,d

erf
bd − µi,d√

2σi,d

− erf
ad − µi,d√

2σi,d


 . (2.32)

Ornstein-Uhlenbeck Process

When the drift potential is an harmonic potential U (x) = 1
2kx

2, the system can be described
as an Ornstein-Uhlenbeck process, where the distribution of positions of an ensemble of
particles with the same starting point x0 is a Gaussian of the form[11]

p
(
x, t | x0, t0

)
= N

(
µ (t) , σ (t)

)
, (2.33)

where

µ (t) = x0e
−Dβkt

σ2 (t) = 1
βk

(
1− e−2Dβkt

)
, (2.34)

and β = 1
kBT

. Figure 2.12 depicts the change over time of the mean and variance in position
for several ensembles of particles.

A harmonic potential can be constructed from a log-Gaussian potential by using only one
Gaussian function with µ = 0:

U(x) = −kBT log
(
Ae−

x2
2σ2

)
= kBT

x2

2σ2 . (2.35)
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Figure 2.12.: Mean and variance of the positions of several ensembles of particles diffusing in
an harmonic potential U (x) = 1

2kx
2, with darker colors indicating increasing

values of the product Dβk.

Equating to a standard harmonic potential U(x) = 1
2kx

2 and solving for k yields

k = kBT

σ2 = 1
βσ2 , (2.36)

meaning that the effective harmonic coefficient k is governed by both the temperature and
the variance of the single Gaussian used to construct the potential.

Kramer’s Approximation

The rate at which a Brownian particle escapes a potential well is depended on the shape of
both the well, the energy barrier and their relative heights (see Figure 2.13). This system
has two distinct time scales:

1. The equilibration time τT within the well, i.e. the convergence time to the Boltzmann
distribution assuming the barrier is infinite.

2. The escape time τE, i.e. the mean time it takes the particle to go from the well
through a barrier and to a neighboring well (in Figure 2.13 at x = C).
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2.2. Brownian Dynamics

kAC
kCA

U(x)

x

A B C

∆EAB
∆ECBωA

ωB

ωC

Figure 2.13.: Two potential wells of different depth at x = A,C, with a barrier at x = B.
The barrier height is EAB relative to the well at x = A and ECB relative to
the well at x = C. Redrawn from [11].

For systems in which τE � τT , the barrier must be much greater than kBT , i.e.

∆EAB � kBT, (2.37)

otherwise the transition occurs at the same timescale as the equilibration inside the well.

When the particle has total energy smaller than ∆EAB, it oscillates inside the well A with
frequency ωA. When its total energy is bigger than ∆EAB, the exchange between kinetic
and potential energy is characterized by an oscillation with frequency ωB. These frequencies
depend on the shape of the well (or the barrier), and the mass of the particle:

ωA =
√
U ′′ (x = A)

m
,

ωB =

√√√√∣∣∣∣∣U ′′ (x = B)
m

∣∣∣∣∣. (2.38)

In the simulation presented in the thesis, friction is dominant, i.e. γ
m
� ωB, and thus the
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2. Theoretical Foundation

transition rate kA→C is approximated by[11]

kA→C = mωAωB
2πγ e

−∆EAB
kBT . (2.39)
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3. Methods

3.1. Brownian Dynamics Simulation

3.1.1. Process

The program uses the integration scheme in Equation 2.25 to discretize the Brownian
dynamics Equation of motion (Equation 2.14). The user feeds the simulation with the
following simulation parameters: number of particles n, number of dimensions N , initial
positions {xi}, diffusion coefficient D, temperature β, number of steps τ and time step size
∆t.

In addition, the user specifies the potential U(x) by passing the program a list of parameters
forN -dimensional Gaussian functions. The parameters are (for each Gaussian) the amplitude
A, center µ and width σ of each N -dimensional Gaussian.

The program returns a NumPy ndarray of dimensions τ ×N × n, which represents the
entire N -dimensional trajectories of all the particles.

A general scheme of the program is shown in Figure 3.1. The code for the program can be
found in Appendix A.

3.1.2. Validation

Before using the program in further steps, it had to be validated. The validation was done
by comparing the programs output to four known analytical properties of Brownian systems,
discussed in Section 2.2.3. The validation tests cover both thermodynamic and kinetic
properties of Brownian systems.
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Brownian Dynamics

Parameters

Gaussian functions

U(x)

Trajectories

x(t + ∆t) =

x(t) + D
kBT

U
(
x(t)

)
∆t +

√
2D∆tR

n, τ,∆t, D, β,
{
x0

}

x1(t),x2(t), . . .

{
Gi(x)

}
m Gaussian functions in

N dimensions

Figure 3.1.: Simulation flow: a set of N -dimensional Gaussian functions and other parame-
ters, such as the number of particles n, time step ∆t, temperature via kBT , the
diffusion coefficient D and starting positions {x0}, are fed into the simulation.
After performing τ simulation steps using the integration method (Equation
2.26), the results are output as a NumPy ndarray.

Mean-Squared Displacement

Validation of the thermal noise component of the force was done by simulating an ensemble
of 104 non-interacting particles for 500 time steps in a flat potential, calculating for each
time step the squared displacement from the starting step x0 for each particle, and taking
the mean of these squared displacements:

MSD = 〈
(
x (t)− x0

)2〉. (3.1)

A linear regression of the ensemble mean-squared displacements vs. t was then performed
using one standard deviation in the ensemble square displacements as the error in each
time step. The resulting fit coefficients were recorded, and the process was repeated for 100
different values of the diffusion coefficient uniformly distributed between D = 1 and D = 5.

The slope and error from each linear regression were used as inputs for a final regression,
yielding the relation coefficients between the mean-squared displacement and the diffusion
coefficient D. This relation was then compared to theory (Equation 2.28).
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3.1. Brownian Dynamics Simulation

Table 3.1.: Parameters of the different potentials used in the validation of the equilibrium
distribution of the simulation.

Description Amplitudes Positions Widths

One-dimensional Potentials
Single well 1 0 1
Double well 1,1 -3, 3 1, 1
Two wells 2, 1.5 -3, 2 1, 2
Three wells 2, 0.7, 1 -5, 0, 5 0.7, 1.5, 1

Two-dimensional Potentials
Single well 1,1 0,0 1,1

Equilibrium Distribution

Next, the simulation was tested to check whether it converged to the expected equilibrium
distribution (the Boltzmann distribution, Equation 2.15). Six simulations were run, each
with a different potential, kBT = 1, D = 1, and other parameters as summarized in Tables
3.1 and 3.2.

Analyzing each simulation was done following these steps:

1. Calculating a positional histogram for each particle in the simulation domain, for the
last N steps and using a number of bins as in Table 3.2.

2. Calculating for each bin the mean number of counts µ and their variance.

3. Estimating the standard error by σx̄ =
√

Var
n
, where n is the number of particles.

4. Counting the percentage of bins where the theoretical mean counts is within µ± σx̄.

Ornstein-Uhlenbeck Process

A simple Ornstein-Uhlenbeck process was used as a validation test for the kinetic behavior
of the simulation. Within the program, constructing a one-dimensional harmonic potential
can be done by using a single Gaussian function. Choosing µ = 0 yields an harmonic
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3. Methods

Table 3.2.: Parameters of the different simulations used in the validation of the equilibrium
distribution of the simulation. N is the number of steps, n is the number of
particles, I is the histogram domain and b is the number of bins within I.

Description N ∆t n I b

One-dimensional Potentials
Single well 104 10−2 5× 103 [−4, 4] 200
Symmetric double well [−8, 8]

400Two wells 2.5× 104 10−3 103 [−7, 5]
Three wells [−9, 7]

Two-dimensional Potentials
Single well 3× 105 10−3 50 [−3, 3]× [−3, 3] 100× 100
Two wells 75 [−6, 6]× [−6, 6]

potential
U(x) = kBT

2σ2 x
2, (3.2)

where the harmonic coefficient is k = kBT
σ2 . Setting k = 1 yields

σ =
√
kBT = 1√

β
. (3.3)

This means that in order to set k = 1 one needs to set the width of the single Gaussian
function to be σ =

√
kBT .

Using the above method, 10 sets of simulations were carried out, each set of simulations was
given a different temperature 1

kBT
= β ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5}, and a

harmonic potential corresponding to β. Each set simulated 15 ensembles of non-interacting
particles, composed of between 10 and 5× 103 particles each, all starting at x0 = 1.5. These
ensembles were then simulated for 5× 103 with a step ∆t = 0.001.

The ensemble mean and variance over time for all sets were recorded. In order to check that
no systematic errors affect the system during relaxation, a time interval between far enough
from the start of the simulation on one hand, and from equilibrium on the other hand, was
chosen for each set (Table 3.3). The root mean-squared deviation (RMSD) between the
ensemble mean and theoretical mean (Equation 2.34) was then calculated, and the resulting
relations between the RMSD and the number of particles N for each set were then compared
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3.1. Brownian Dynamics Simulation

Table 3.3.: Ornstein-Uhlenbeck process: time intervals for calculating RMSD between the
ensemble mean and theoretical mean against the number of particles N , for each
set of simulations.

β Time interval

0.25 [3000, 4000]
0.5 [3000, 4000]
0.75 [2000, 3000]
1 [500, 1500]
1.25 [500, 1500]
1.5 [500, 1500]
1.75 [500, 1500]
2 [500, 1000]
2.25 [500, 1000]
2.5 [500, 1000]

to 1√
N
, the expected convergence when no systematic errors are present in the system.

Kramer’s Approximation

Simulating a system that conforms to Kramer’s approximation was done by generating a
log-Gaussian potential utilizing two Gaussian functions with µ = ±M (Figure 3.2). This
configuration yields a barrier height

∆E = M2

2 − log(2) + log
(
1− e−2M2)

, (3.4)

and second derivatives

ωA =

√√√√1−
(

M

cosh (M2)

)2

,

ωB =
√
|1−M2|. (3.5)

(the derivation of these quantities is found in Appendix B)

For each value M ∈ {3.5, 3.51, 3.52, . . . , 4.0}, a single particle positioned at x0 = −M was
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−M 0 +M

U (x)

x

∆E

Figure 3.2.: Kramer’s theorem from log-Gaussian potentials: a potential derived from two
Gaussian functions with A = 1, σ = 1 and µ = ±M is a symmetric double-well
potential.

simulated for a number of steps that were expected to yield ≈ 50 transitions according to
Kramer’s theorem. The following parameters were used: D∆t = 0.001, kBT = 1.

Each trajectory was then coarse-grained by keeping each 1000th step, and was analyzed
using PyEMMA[13] with the following steps:

1. The k-mean method was used to cluster the trajectory into two clusters.

2. The lag time was chosen from a uniformly distributed number of steps between 5 and
250, corresponding to the trajectory length.

3. Using PyEmma’s pyemma.msm.bayesian_markov_model function, a MSM was cre-
ated from each clustered trajectory, and to get an estimation of the timescale
of the crossing process by use of the function bayesian_msm.sample_mean and
bayesian_msm.sample_conf for the confidence interval (68% confidence).

4. The most likely transition rate kmax and the confidence interval
[
k−, k+

]
were calculated

as the inverse of the timescale, and the confidence values of the time scales, respectively.

The trajectories were then modified by removing any transition that lasted less than 100
steps (corresponding to ∆t = 0.1) and were analyzed using the same method as above.
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3.2. Constructing Markov State Models from Simulated Protein Trajectories

Next, the trajectories (with the short-lasting transitions removed) were used to estimate
the transition rates by a Bayesian method:

1. The most likely transition time was estimated as kmax = 1
〈∆ti〉 , where {∆ti} are the

periods of time the particle spent in one well before transitioning to the next well
(Equation 2.12).

2. The confidence interval
[
k−, k+

]
for the value of kmax was calculated numerically via

SciPy’s integrate.quad function, using 1000 values distributed logarithmically
between [0, kmax] and [kmax, 5 · kmax] and solving the following equations for k−, k+:

kmax∫
k−

p
(
k | {∆ti}

)
dk = 0.68

kmax∫
0

p
(
k | {∆ti}

)
dk (3.6)

k+∫
kmax

p
(
k | {∆ti}

)
dk = 0.68

5·kmax∫
kmax

p
(
k | {∆ti}

)
dk. (3.7)

3. The values kmax, k
− and k+ were recorded.

The resulting transition rates and their respective confidence intervals, using both the
PyEMMA estimation method and the Bayesian method, were plotted against M , and
compared to the expected transition rates according to Kramer’s approximation.

3.2. Constructing Markov State Models from Simulated Protein
Trajectories

A brief graphical overview of the general method used in our research group to generate
Markov state models from molecular dynamics trajectories is presented in Figure 3.3.

3.2.1. Analyzing a 2-Dimensional Trajectory Generated by Brownian Dynamics
Simulation

A two-dimensional potential was constructed from four Gaussian functions with parameters
µ1 = (−6,−6) ,µ2 = (0, 0) ,µ1 = (1, 5) ,µ1 = (5, 1) and σ1 = (1.5, 1.5) ,σ2 = σ3 = σ4 =
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MD Simulation

Trajectory

Dimensionality Reduction
and Coarse Graining

Counting Transitions

Estimation of Transition Rates

Transition Matrix T (λ)

(Methods: TICA, K-means clustering)

(Method: Bayesian estimation)

Figure 3.3.: General steps in the construction of Markov state models from protein trajecto-
ries used in our research group.

(1, 1) (See Figure 3.4). A single particle starting at x0 = (0, 0) was allowed to diffuse for
107 steps of ∆t = 0.01, and with the parameters D = 1, kBT = 1.

The analysis of the trajectory was done using the PyEMMA library [13]. The trajectory was
grouped into four clusters using the k-means method via pyemma.coordinates.cluster_kmeans

and the number of trajectory points in each cluster was counted, and the ratios between all
clusters computed. Using pyemma.plots.plot_free_energy , a free energy estimation for
the system was calculated and plotted..

The implied timescales for the slowest transition process were calculated via the func-
tion pyemma.msm.its for 20 time lags uniformly distributed over [1, 700]. A lag time
τ = 75 was chosen, and the mean timescale with its confidence intervals were calculated
by generating a MSM from the clustered trajectory for lag time τ (via the functions
pyemma.msm.bayesian_markov_model , bayesian_msm.sample_mean and
bayesian_msm.sample_conf , respectively).
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3.2. Constructing Markov State Models from Simulated Protein Trajectories

Figure 3.4.: Generating trajectories: the four Gaussian functions that were used to construct
a two-dimensional potential for the validation of the MSM estimation method.
The color indicates the value of the sum of Gaussian functions,

4∑
i=1
Gi(x, y).

The right eigenvectors and eigenvalues of the Markov state model were calulated via
msm.eigenvectors_right , an estimation of the model was generated via
pyemma.msm.estimate_markov_model and the model was validated for conforming to the
Chapmann-Kolmogorov equation (Equation 2.3) via pyemma.msm.plot_cktest .

3.2.2. 2-Dimensional Trajectory Cut to a Single Transition

The trajectory generated in the previous step was cut to the time interval
[
0, 3.73× 103

]
,

such that only one transition forward and one transition back were observed for the
slowest transition process. The trajectory was clustered with the same cluster centers
as for the full trajectory, and the implied timescales were then calculated for the same
lag times as for the full trajectory. Short-lived transitions were then removed from the
cut clustered trajectory, and the implied timescales calculated again in the exact same
way as before. The mean timescale for this process, along with its confidence intervals,
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3. Methods

were calculated by generating a MSM from the clustered trajectory for lag time τ (via
the functions pyemma.msm.bayesian_markov_model , bayesian_msm.sample_mean and
bayesian_msm.sample_conf , respectively).
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4. Results and Discussion

The results are given in two parts: the first part discusses the validation of the simulation
written as part of this thesis. The second part presents one example of applying the Markov
state model formation method to a trajectory generated by the simulation, and a case of
limiting the trajectory to a single transition of its slowest transition process.

4.1. Simulation Validation

Each of the four known analytical properties of Brownian systems discussed in Section 2.2.3
were used to validate the simulation. These validation tests checked both the thermodynamic
and kinetic behaviour of the simulation, and ensure that each of its components conform to
the known properties of Brownian dynamics.

4.1.1. Mean-Squared Displacement

The mean-squared displacement (MSD) validation test was used to determine whether the
thermal noise force term in the simulation behaves according to theory. The simulation
calculates this force in each step as

FNoise =
√

2D∆tR, (4.1)

where the diffusion coefficient D and the time step ∆t are given as inputs to the program,
and R is a random number generated at each step from a uniform Gaussian distribution.

Figure 4.1 shows the MSDs over time for four simulations (out of 100), where the non-
interacting particles experience only thermal noise and no drift and were diffusing in three
dimensions. It can seen that the MSD for each time step in each of these simulations is
much closer to its theoretical value of 6Dt than one standard deviation (bright blue area).
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This was consistent throughout all 100 simulations.
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Figure 4.1.: The mean-squared displacement over time for 4 ensembles, each of 104 non-
interacting particles diffusing in a three-dimensional flat potential. The diffusion
coefficient D of each ensemble is given in the plot. The black line in each plot
represents the theoretical MSD over time, the blue line the ensemble MSD and
the bright blue area is one standard deviation from the ensemble MSD.

The calculated slopes also agree with the theory: for example, for the simulation with
D = 1, the regression calculated slope is 5.9± 0.2, with the expected slope being exactly 6.
The y-intercept is calculated by the regression to be 0.002± 0.04, which is also within the
range of its expected value of zero. This match was observed across all 100 simulations.

To extract back from the simulation the ratio between the slope of the MSD and the
diffusion coefficient D, all calculated slopes and their errors were plotted against the
respective diffusion coefficients in each simulation (Figure 4.2). This yielded a ratio of
5.98± 0.05, which is in agreement with the theoretical value of 6 for three dimensions.

It can also be seen in Figure 4.2 that the errors in the slopes grow with the diffusion
coefficient: this is expected since a higher diffusion coefficient causes the positional variance
of the ensemble to spread faster.

The results of this test demonstrate that within a statistical error, the noise term of the
force in the simulation indeed conforms to theory.
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Figure 4.2.: Slope of the mean-squared displacement over time plotted against the diffusion
coefficient D for 100 simulations, each of 104 non interacting particles in a three
dimensional flat potential. The theoretical value 〈(x(t)−x0)2〉 = 6Dt is shown
as a black line. The resulting ratio of slopes to D is 5.98± 0.05.

4.1.2. Equilibrium Distribution

The tests done to validate the drift contribution in the Brownian motion employed potentials
in one- and two-dimensions, constructed from varying amounts of Gaussian functions with
different amplitudes, means and variances. This was done in order to test that all the
parameters defining the potentials affect the simulations in the correct way.

The systems were run for a length of time that allowed them to reach equilibrium. This
length of time was calculated using Kramer’s approximation: for each potential, the mean
escape time from a potential well over the highest potential barrier was calculated, and the
simulation ran for at least 10 times longer. This ensured that each particle, no matter its
starting point, would have had enough time to escape a well and diffuse to other areas of
the simulation domain.

A histogram of each particle’s trajectory for the last N steps (summarized in Table 3.2)
was then generated, and for each histogram bin the mean and variance of the counts from
all particles were calculated. These quantities were then compared to the expected mean
counts according to the Boltzmann distribution, by multiplying the probability distribution
in the histogram bin with the number of steps N . The results for the one-dimensional
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potentials can be seen in Figure 4.3.
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Figure 4.3.: Ensemble positional histograms for the one-dimensional simulations listed
in Table 3.2. The black dots represent the theoretical mean counts in each
histogram bin, the colored area represents a 1σ deviation from the simulated
ensemble mean position in each histogram bin, exaggerated graphically so that
it can be seen in the figure. Each simulation figure also displays the number of
histogram bins used in the histogram, and the percent of the histogram bins for
which the ensemble mean is within one standard deviation from the theoretical
mean.

These results show that for each one-dimensional potential, the simulated system in equilib-
rium was for at least 70% of the histogram bins within a single standard deviation from the
theoretical mean, measured by the standard error. This in turn means that the only source
of deviation from the theory is statistical noise, otherwise we would expect to see less than
68% match.

The same is true for the two-dimensional simulations, the results of which can be seen in
Figure 4.4. In the case of the single well simulation, the ensemble mean was within the
standard error of the theoretical mean in 68.8% of the histogram bins. For the double well
simulation, the percentage was a bit higher, at 70.4%.

Contrary to the one-dimensional simulations, the two-dimensional simulations used a smaller
number of particles (on the order of magnitude of several tens of particle, compared to
103 particles for the one-dimensional simulations), and were run for longer times. This
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4.1. Simulation Validation

was due to a limitation arising from the calculation of the standard error: increasing the
number of particles n decreases the standard error as a function of 1√

n
, but only increases

the convergence to the theoretical equilibrium distribution up to a limit, which is dictated
by the time step ∆t. Thus, if the equilibration takes longer (and due to computational time
constraints a smaller time step is not desirable) the number of particles must be lowered.

This is evident in the complete standard error form:

σx̄ = σ√
n

=
√√√√ 1

(n− 1) (N∆t− 1)

n∑
i=1

(xi − x̄)2, (4.2)

where n is the number of particles, ∆t the time step and N the number of time steps. Since
the number of particles and the product N∆t affect the standard error in the same way, an
increase in N , if not decreasing ∆t, must be balanced by a decrease in n.

Figure 4.4.: Two-dimensional equilibrium distributions: expected mean counts on the left,
ensemble mean counts on the right. Number of histogram bins and domains
are specified in Table 3.2

The overall results for this validation test confirm that the simulation converges to the
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expected equilibrium distribution in one and two dimensions.

4.1.3. Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process, in which a particle is diffusing in an harmonic potential, is
one of the cases for which a complete analytical solution for the distribution of the particle’s
position over time is known. Therefore, it was chosen as a validation test for the kinetic
behaviour of the simulation.

The mean and variance of 10 ensembles of 104 particles diffusing in harmonic potentials, each
ensemble experiencing a different temperature from 1

kBT
= β ∈ {0.25, 0.5, . . . , 2.25, 2.5},

is shown in Figure 4.5 together with their theoretical values according to Equation 2.34.
The system was tested for different temperatures since this is the main contributing reason
for the rate of relaxation in both the ensemble mean and variance, except the diffusion
coefficient. Since the diffusion coefficient was already validated (Section 4.1.1), it was
unnecessary to validate it again.

Figure 4.5 shows that qualitatively both the ensemble means and ensemble variances follow
their respective theoretical curve. However, it is important to verify that the agreement
is not only qualitative, but that the only deviations from theory occur due to statistical
noise, and have no other source. This was done by varying the amount of particles for
each value of β, keeping all other parameters the same. Figure 4.6 shows for each value of
β the corresponding relation between the number of particles and the root mean-squared
deviation (RMSD) from theory, for a time interval that is dependent on the temperature
(See Table 3.3).

The reason for using different time intervals and not the entire trajectory was two folds: first,
since all trajectories started from an exact location x0 = 1.5, the start of each simulation is
a period were the ensemble had a very short time to "spread out" and increase its variance.
This can cause a bias in the resulting RMSD, shifting it to a lower value. Second, using
a period in which the ensemble already equilibrated missed the point of this validation,
which is to test the kinetic behaviour of the simulation: after all we already know that in
equilibrium the simulation agrees with the theory (as discussed in Section 4.1.2). Therefore,
in each set of simulations the time interval was chosen such that the system had enough
time to diverge from the exact values given, but also it had not yet reached equilibrium.
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4.1. Simulation Validation

If indeed the only source of the deviations is statistical noise, we expect the RMSD to
converge with the number of particles N as 1√

N
. This is translated in a log-log plot as a

linear correlation with slope m = −1
2 . Figure 4.7 shows all the resulting slopes of the log-log

linear regressions for all systems. It demonstrates that within a statistical error all systems
indeed converged to the theoretical ensemble mean values with the correct slope, which is a
strong indication that there are no systematic errors present in the system.

Moreover, the convergence slope indicates that in order to get a desirable accuracy in kinetic
behaviour, a large enough ensemble size should be chosen. This is consistent with the
expected behaviour of a numerical simulation.
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σ2(t) to their theoretical values (black, Equation 2.34) for 10 ensembles of 104

non-interacting particles, each ensemble experiencing a different temperature
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number of particles (log-scale) for each of 10 simulation sets. The theoretical
value -0.5, which corresponds to a slope of 1√

N
is shown as a black line. The

data points represent each set with colors corresponding to the same β values
as in Figure 4.5. The error in slope measurements were taken as the standard
error from the regression.

4.1.4. Kramer’s Approximation

An important step in the generation of a Markov state model for a system is the correct esti-
mation of transition probabilities between its different states. This can be done by counting
the transitions between the states and the transition times, and using an estimation method
(e.g. a Bayesian method) to yield the most-likely transition rate and its corresponding
confidence intervals. Therefore, the simulation was validated for correct transition rates
according to Kramer’s approximation, which states a verifiable numerical quantity for the
transition rates.

Kramer’s approximation applies for a particle escaping a potential well of a known analytical
shape by crossing a barrier, also having a known analytical shape. This configuration
was implemented as a log-Gaussian potential derived from two Gaussian functions with
amplitudes A = 1, width σ = 1 and centers µ = ±M , where M was varied.

There were two constraints on the possible values of M :
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1. The barrier height must be greater enough than kBT (Equation 2.37) for Kramer’s
approximation to apply. Choosing a barrier height ∆E ≥ 5kBT , which can be regarded
as greater enough than kBT in this context, results in approximately M ≥ 3.375.

2. The time scales of the mean escape time increase exponentially as M2, which means
that the number of steps needed for sampling enough transitions grows extremely
fast with the value of M . For example, for M = 4.5,∆t = 0.001, kBT = 1.0, the
number of steps needed for 50 transitions to be sampled is ≈ 9× 108. This presents
a computational limit on the value of M which would yield a result in a reasonable
time period.

Therefore, the values for M where chosen in the interval [3.5, 4], and for each M a single
particle was placed at x0 = M and was allowed to diffuse until it transitioned about 50
times between the two wells. Each trajectory was then analyzed using PyEMMA, according
to the method in 3.1.2. The resulting transition rates can be seen in Figure 4.8.

The transition rates calculated by this method overestimate their theoretical values as
expected from the Kramer’s approximation. This in turn means that the estimated time
scales over-estimate their theoretical values. A look at an example clustered trajectory
reveals the reason: some transitions were extremely short-lived (Figure 4.9). This shifted
down the estimation of the transition times, thus the calculated transition rates increased
in magnitude.

A possible reason for this behaviour is the clustering method. As mentioned in the theoretical
background (Section 2.1), the borders between clusters created by the k-means method are
sharp, which causes some short "intrusions" of the trajectory from one cluster to another to
be counted as full transitions between the clusters. When a particle crossed the potential
barrier at x = 0 and immediately returned to the well it came from, the rate estimation
method counted this as a full transition, when clearly it did not conform to the conditions
set by Kramer’s theorem; specifically, the escape time is defined as the time it takes a
particle which is in equilibrium in one well to jump to the other well and remain in it.
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Figure 4.8.: Transition rate estimation by analysis with PyEMMA, for a single particle in a
symmetric double well potential (blue dots, confidence interval corresponding
to 68%). The rates calculated by the Kramer’s approximation are given as a
red line.
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Figure 4.9.: An example of a trajectory with short-lived transitions between states (marked
with red arrows). The trajectory was generated by the Kramer’s approximation
validation simulation with M = 4.

Therefore, the short-lived transitions were discarded from the trajectory. A "short-lived"
transition was defined as a transition that lasted for less than ∆t = 0.1 (100 steps). The
resulted transition rates were still overestimated in relation to the theory, but closer than
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4.1. Simulation Validation

without the removal of the short-lived transitions (Figure 4.10).

On the other hand, when the transition rates were estimated using a purely Bayesian
method, they were underestimated (Figure 4.11). This method estimated the transition
periods {∆ti} by simply counting the number of concurrent steps in which a particle is in
a positive or negative coordinate before transitioning to a negative or positive coordinate,
respectively.
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Figure 4.10.: Transition rate estimation by analysis with PyEMMA, for a particle in a
symmetric double well potential and removing transitions periods of less than
∆t = 0.1 (green dots, confidence interval corresponding to 68%). The rates
calculated by the Kramer’s approximation are given as a red line.

The overall result is that the transition rates were either overestimated (by the PyEMMA
method) or under-estimated (by the pure Bayesian approach), as seen in Figure 4.12. This
means that the simulation did not pass the Kramer’s approximation test. However, by
tuning the threshold for discarding short-lived transitions, adjusting the purely Bayesian
method by discarding only much shorter lived transitions, or perhaps some averaging of
both - an optimized method which will yield the correct transition rates might be possible.
However, this was not in the scope of this Master’s thesis.
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Figure 4.11.: Transition rate estimation by a purely Bayesian approach, for a particle in a
symmetric double well potential and removing transitions periods of less than
∆t = 0.1 (orange dots, confidence interval corresponding to 68%). The rates
calculated by the Kramer’s approximation are given as a red line.
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Figure 4.12.: Comparison of three methods of estimation of the transition times between
two symmetric wells, from simulated data. The theoretical rate by Kramer’s
approximation is given as a red line. The dashed lines represent the results
of fitting calculated transition rates from three separate methods to the
theoretical rate via a single coefficient - i.e. α · k(M), where k(M) is the
theoretical transition rate as a function of the distance between the center of
the wells and x = 0. The three separate methods are discussed in the above
text.
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4.1.5. Summary of Validation Process

With the exception of the Kramer’s approximation test, the simulation passed the validation
tests it was subjected to. This means that it correctly simulates both the thermodynamic
and also the kinetic properties expected from a Brownian system. While there was no
quantitative agreement to theory in the case of Kramer’s approximation, it was shown that
the probable causes can be solved by optimizing the transition rate estimation method.

As a result, it was deemed possible to use the simulation in the next step discussed in
this thesis: generating trajectories that will be used as benchmarks in the automation and
optimization of the method used to generate Markov state models from protein dynamics.

4.2. Constructing Markov State Model from Simulated Brownian
Dynamics Trajectories

The trajectories generated by the simulation can be interpreted as existing in the state space
of a protein’s dynamics, and be used as benchmarks for testing the different steps in the
process of generating a Markov state model. This part, therefore, presents the generation of
a trajectory that was expected to yield specific states and transition processes, and validated
these properties against the results of the application of the Markov state model generation
method.

4.2.1. Full 2-Dimensional Trajectory

Using the simulation, a trajectory of a single particle was generated using a potential from
four Gaussian functions (Figure 3.4). The potential was set up so that trajectories generated
by it would have two groups of metastable states: the first composed of a single state, and
the second composed of three separate states with equal barriers between them. These
barriers are smaller than the barrier between the three states and the first state. Each
100th point of the full trajectory, colored according to its cluster, can be seen in Figure 4.13,
and the separate x- and y-coordinates of its first 105 steps (t ∈

[
0, 104

]
) in Figure 4.14.
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Figure 4.13.: 2D trajectory points generated by using the potential seen in Figure 3.4,
colored according to their clustering by the k-means method, with the different
clusters labeled.

Figure 4.14.: The same trajectory as in Figure 4.13, shown as a function of time separated
to the x− and y-axes. Many transitions between state 1 (at [−6,−6]) and
states 2− 4 can be seen.
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It is evident from Figure 4.13 that the clusters found correspond to the centers of the wells.
This is confirmed by looking at the cluster centers: (−6.00,−6.03) , (1.0, 5.0) , (5.0, 1.01)
and (0,−0.04). These values are almost identical to the centers of the potential wells at
(−6,−6) , (1, 5) , (5, 1) and (0, 0).

When counting all trajectory points which composed the four clusters, we get approximately

N1 = 4.4× 106[points]

N2 = 2× 106[points]

N3 = 1.8× 106[points]

N4 = 1.9× 106[points]. (4.3)

Thus, according to this clustering, the approximate probability ratios between the states
were

pcount
ij ≈



1 0.5 0.4 0.4

2.2 1 0.9 1

2.5 1.1 1 1.1

2.3 1 0.9 1


, (4.4)

while by integration of the Gaussian functions (according to Equation 2.32) one expects to
see

ptheory
ij =



1 0.4 0.4 0.4

2.3 1 1 1

2.3 1 1 1

2.3 1 1 1


, (4.5)

which is very close to pcount
ij .

Using the function pyemma.plots.plot_free_energy , the free energy can be estimated
from the trajectory (Figure 4.15). This free energy corresponds well to the potential used
(cf. Figure 3.4).

The implied time scale of the slowest transition process, seen in Figure 4.16, seemed to
converge at lag time just smaller than τ = 75, and therefore τ = 75 was chosen as the lag
time for generation of a Markov state model from the trajectory. This yielded a time scale
estimation of 552, with a 95% confidence interval [520, 593].
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Figure 4.15.: Free energy estimation from the trajectory, generated via PyEMMA’s
pyemma.plots.plot_free_energy function.
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Figure 4.16.: Implied time scales of the slowest transition process in the system as a function
of the lag time τ . The light blue area represents a 95% confidence interval
for the values of the implied time scales. The gray area represents implied
time scales smaller than the lag time. The lag time τ = 75 was chosen for
estimation of the transition matrix T (τ).

According to the analysis, the slowest transition process in the system is the transition
between state 1 (at [−6,−6]) and states 2 − 4. This can be seen in Figure 4.17, top.
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4.2. Constructing Markov State Model from Simulated Brownian Dynamics Trajectories

As explained in Section 2.1.1, the eigenvectors of the transition matrix approximate the
eigenvectors of the transfer operator. In the figure the 2nd eigenvector had a positive value
for state 1 (red color), and negative values for states 2− 4 (blue color). This means that the
2nd eigenvector represented a transfer of probability density from state 1 to states 2− 4,
and vice versa.

The next eigenvector had zero value for state 1, and the transfer of probability density is
between states 2 − 3 and 4 - meaning that it corresponds to the process 2, 3 ↔ 4. In a
similar way, the next eigenvalue after that represents a probability density transfer between
states 2 and 3, without the other states participating.

This result is somewhat expected from this system, as the distance (and, thus, the energetic
barrier) between state 1 and states 2− 4 is greater than the distance within states 2− 4.
Therefore, the slowest process indeed should be a transition between state 1 and states 2− 4.
Since the energetic barriers between the states 2, 3 and 4 are all smaller, the next slowest
processes are expected to be between these states. However, we expect to see a symmetry:
the barriers between states 2, 3 and 4 are equal, and so next three processes (2↔ 3, 2↔ 4
and 3 ↔ 4) should be identical. However, due to unequal sampling between these three
states (as evident by pcount

ij ), the result is two eigenvectors which together represent all
possible transitions between the three states (a transition 2, 3↔ 4, and a transition between
the states 3↔ 4).

PyEMMA estimated the implied time scale of the slowest transition process to be t1 = 5522,
with a 95% confidence interval [5194, 5926].

Testing whether the system at a lag time τ = 7.5 conformed to the Chapmann-Kolmogorov
equality (Equation 2.3) can be seen in Figure 4.18. The test checks the that the probability
of being at a state j at times t+kτ if the system was at state i at time t from the trajectory
data is, within an error estimation, the same that is predicted from the Markov state model
by k successive applications of the transition matrix T (τ) to the state of the system. In this
case, the transitions between the state 1, 2 and 3 were tested, and the Markov state model
generated predicted the transition probabilities correctly within a 95% confidence interval.

51



4. Results and Discussion

Figure 4.18.: Testing that the system conforms to the Chapmann-Kolmogorov equality
(Equation 2.3) for lag time τ = 7.5. Each possible transition between the
states 1, 2 and 3 is tested for the probability of it occuring in different lag times
τ , both from the trajectory data and from the transition matrix T (τ = 0.75)
by applying it k successive times to the state of the system.

4.2.2. Cutting the Trajectory to a Single Full Transition of the Slowest Process

Taking the full trajectory from above and cutting it such that only the first transition from
state 1 to states 2− 4 and the first transition back from states 2− 4 to state 1 were present,
yielded the trajectory seen in Figure 4.19.

Using the same method as for the full trajectory, the implied time scales of the slowest
transition process as a function of the lag time τ had "holes" in them (Figure 4.20). Similarly
to the case of the Kramer’s approximation validation test (Section 4.1.4), looking at the
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clustered trajectory, it was evident that there are many short-lived transitions, which were
caused by the trajectory crossing the sharp edges between the clusters for a brief moment
(Figure 4.21).
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Figure 4.21.: The cut trajectory, clustered. Many short-lived transitions from state 1 to
state 2 can be seen (called here "intrusions").

Removing these short-lived transitions resulted in implied time scales that seemed to
converge to a value around t = 2000, but then dropped to a much smaller value starting at
τ = 1.15 (Figure 4.22). This lower value matched exactly to those of the second slowest
process, and indeed starting at a lag time τ = 1.15 PyEMMA found only two transition
processes instead of three (Figure 4.23).

Using the knowledge about a single transition 1→ 2 at time t = 2000, we can use Equation
2.9 to calculate that the resulting time scale should be estimated as tBayes

1 = 2000 as well.
When choosing a lag time τ = 1, PyEMMA estimated t1 to be tPyEMMA

1 = 1972, with a 95%
confidence interval [1646, 2464], in agreement with tBayes

1 .

4.2.3. Summary of the Markov State Model Generation Tests

The process of constructing a Markov state model from trajectories generated by the
simulation discussed in the thesis show that the trajectories indeed generate the expected
number of states. The number of processes expected was not observed, however the resulted
processes covered all expected transition between the metastable states of the system. In
addition, it was shown that the system conformed to the Chapmann-Kolmogorov equation,
and therefore the Markov state model that was generated could be regarded as a good
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approximation of the trajectory. Combined with the results of the Karmer’s approximation
validation test in the previous section, the transition rates might also be included in the set
of confirmed expected properties from the generated trajectories.

All together, these results show that the simulation can be used to generate trajectories
which can be used as benchmarks in both testing and optimizing the Markov state model
generation method.
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Figure 4.17.: Second, third and fourth eigenvectors resulting from the transition matrix
T (τ = 75). Each eigenvector represents a transfer of probability density from
its lower values (blue) to its higher values (red), and vice-versa.
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Figure 4.19.: The trajectory seen in Figure 4.14 cut so that there is one transition from
state 1 to state 2, and one transition back.
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Figure 4.20.: Implied time scales as a function of the lag time τ for the slowest transition
process when the trajectory is cut so that it contains only two such transitions:
one forward and one back. The light blue area represents a 95% confidence
interval for the values of the implied time scales. The gray area represents
implied time scales smaller than the lag time. The lag time τ = 75 was chosen
for estimation of the transition matrix T (τ).
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Figure 4.22.: Implied time scales of the slowest transition process as function of the lag
time τ . Although the value of the implied time scales converged to around
t1 = 2000, at τ = 1.15 there is a sudden drop in value. The light blue area
represents a 95% confidence interval for the values of the implied time scales.
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Figure 4.23.: Implied time scales for all three transition processes as a function of lag time τ .
The time scales are on a logarithmic scale. Starting at τ = 1.15 the analysis
finds only two processes, thus the labeling switches so that the previous second-
slowest process (initially colored in green) becomes the slowest process, and is
thus colored in blue. The third slowest process (colored in red) becomes the
second slowest process, and accordingly it is colored in green. The gray area
represents implied time scales smaller than the lag time.
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The validation tests show that the Brownian dynamics simulation behaves according to
theory, in both the thermodynamic and kinetic senses. It generates trajectories in a space
that can be interpreted as the state space of protein dynamics, and run through the Markov
state model generation method used for the analysis of protein dynamics.

An example was shown how the simulation can be used to generate a benchmark trajectory
which yielded known and expected results when subjected to the aforementioned Markov
state model generation method, such as number of states, their relative population, and the
set of transition processes between them.

It was also shown how the program can be used to detect one possible problem which might
arise when clustering a trajectory by the commonly used k-means clustering method: short
"intrusions" of the trajectory into an area that is clustered as a different state might be
counted as short transitions, and thus lower the overall estimated value of the transition
time scale.

Utilizing this simulation further can be done by systematically testing each step in the
process of generating a Markov state model from protein dynamic (Figure 3.3). For example,
generating trajectories which have extremely small number of transitions for some processes,
and trying to optimize the estimation of the Markov state models in these situations. This
is in fact a problem that was encountered in the course of the Dynasome project in our
group.

59



5. Conclusions and Outlook

60



6. Acknowledgements

I would like to thank Prof. Helmut Grubmüller, my supervisor at the MPI-BPC, for giving
me the chance to work on this project, guiding me throughout it and providing clarifications.

I would also like to thank all members of the Department for Theoretical and Computational
Biophysics at the Max Planck Institute for Biophysical Chemistry, for providing a great and
enlighten work environment at the time period in which I was a member of the department.
Especially, the support (both in the technical and conceptual sense) of Andreas Volkhardt,
Kristian Blom, Malte Schäffner and Nicolai Kozlowski is greatly appreciated.

The feedback given to me at the oral presentation of this project, both by Prof. Bettina
Keller, my supervisor in the FU-Berlin, and Dr. Dirk Andrae, is also greatly appreciated.

And lastly, I would like to thank my wife, Liubov Zakharova∗, for all her love and support.

∗At the time of writing this not yet a PhD, but that is scheduled to change soon.

61



6. Acknowledgements

62



Bibliography

1. Marth, J. D. A unified vision of the building blocks of life. Nature cell biology 10, 1015
(2008).

2. Erdin, S., Lisewski, A. M. & Lichtarge, O. Protein function prediction: towards
integration of similarity metrics. Current opinion in structural biology 21, 180–188
(2011).

3. Hensen, U. et al. Exploring protein dynamics space: the dynasome as the missing link
between protein structure and function. PloS one 7, e33931 (2012).

4. Quetschlich, D. Markov State Models for Comparing Protein Dynamics MA thesis
(Max-Planck-Institute for Biophysical Chemistry, Göttingen, 2016).

5. Bowman, G. R., Pande, V. S. & Noé, F. An introduction to Markov state models and
their application to long timescale molecular simulation (Springer Science & Business
Media, 2013).

6. Prinz, J.-H. et al. Markov models of molecular kinetics: Generation and validation.
The Journal of chemical physics 134, 174105 (2011).

7. Jiang, R., Zhang, X. & Zhang, M. Q. Basics of Bioinformatics (Springer, 2016).

8. Celebi, M. E., Kingravi, H. A. & Vela, P. A. A comparative study of efficient initializa-
tion methods for the k-means clustering algorithm. Expert systems with applications
40, 200–210 (2013).

9. Van Gunsteren, W. & Berendsen, H. Algorithms for Brownian dynamics. Molecular
Physics 45, 637–647 (1982).

10. Landau, L. & Lifshitz, E. Statistical Physics (Course of Theoretical Physics vol 5)
(Pergamon Oxford, 1958).

11. Schulten, K. & Kosztin, I. Lecture notes: ’Non-Equilibrium Statistical Mechanics’
(PHYCS 498NSM), University of Illinois 2000.

12. Briane, V., Vimond, M. & Kervrann, C. An overview of diffusion models for intracellular
dynamics analysis (2018).

63



Bibliography

13. Scherer, M. K. et al. PyEMMA 2: A Software Package for Estimation, Validation,
and Analysis of Markov Models. Journal of Chemical Theory and Computation 11,
5525–5542. issn: 1549-9618 (Oct. 2015).

14. Dhont, J. K. An introduction to dynamics of colloids (Elsevier, 1996).

15. Song, Y. et al. Finite element solution of the steady-state Smoluchowski equation for
rate constant calculations. Biophysical Journal 86, 2017–2029 (2004).

16. Rosen, M. I. Niels Hendrik Abel and equations of the fifth degree. The American
mathematical monthly 102, 495–505 (1995).

17. Kloeden, P. E. & Platen, E. Numerical solution of stochastic differential equations
chap. 9.1 (Springer Science & Business Media, 2013).

18. Sander, C. & Schneider, R. Database of homology-derived protein structures and
the structural meaning of sequence alignment. Proteins: Structure, Function, and
Bioinformatics 9, 56–68 (1991).

19. Dukka, B. K. Structure-based methods for computational protein functional site
prediction. Computational and structural biotechnology journal 8, e201308005 (2013).

64



Appendices

65





A. Simulation Code

# NumPy and SciPy
import numpy as np
from numpy import exp, sqrt, pi, log
from scipy.special import erf

# For progress bar
from tqdm import tqdm_notebook, tqdm

import sys

# For saving and loading potentials
import pickle

# For multi-dimension integration
import itertools

# Constants
sqrt2pi = sqrt(pi)
sqrt2 = sqrt(2)
s2p = sqrt(2*pi)
s2p_1 = 1.0/s2p

class gaussian():
"""
Represents a Gaussian function.
Initialized with N dimensions by setting up
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A. Simulation Code

the values of A (amlitude), M (center) and S (width).
"""
def __init__(self, A, M, S):

if not A.shape == M.shape == S.shape:
raise ValueError('Amplitude, Mean and Varience \

must have the same shape.')
return

self.A = A
self.M = M
self.S = S
self.dim = A.shape[0]

def get_1d_value(self, x, dim):
"""
Returns the function's value at position x along
the dimension dim.
"""
a = self.A[dim]
m = self.M[dim]
s = self.S[dim]
return a * exp(-(x-m)**2/(2*s**2))

def get_partial_derivative(self, pos, dim):
"""
Returns the function's partial derivative with
respect to dimension dim, at position pos.
"""
a = self.A[dim]
m = self.M[dim]
s = self.S[dim]
return (m-pos[dim])/s**2 * self.get_value(pos)

def get_value(self, pos):
"""
Returns the function's value at position pos.
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"""
return np.prod([self.get_1d_value(x, i)

for i, x in enumerate(pos)])

def integral_1D(self, dim, a, b):
"""
Integrates the function in the closed interval [a,b]
along the dimension dim.
"""
erf_a = erf((a-self.M[[dim]])/(sqrt2*self.S[[dim]]))
erf_b = erf((b-self.M[[dim]])/(sqrt2*self.S[[dim]]))
return s2p_1 * self.A[[dim]]*self.S[[dim]] * (erf_b - erf_a)

def integral(self, I):
"""
Integrates the function over the multi-dimensionsal
closed interval I = [a1,b1]X[a2,b2]X...X[an,bn].
"""
return np.prod([self.integral_1D(d, a, b)

for d, (a, b) in enumerate(I)])

class potential:
"""
Represents a log-Gaussian potential composed
of m Gaussian functions.
Initialized with a list of Gaussian functions
and kBT value.
"""
def __init__(self, gaussians=None, kBT=1):

self.gaussians = gaussians
if gaussians is not None:

self.num_dims = np.max([g.dim
for g in self.gaussians])

self.num_gaussians = len(gaussians)
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else:
self.num_gaussians = 0

self.kBT = kBT

def get_value(self, pos):
"""
Returns the value of the potetnail at
position pos.
"""
val = np.sum([g.get_value(pos)

for g in self.gaussians])
return -self.kBT * np.log(val)

def get_force(self, pos):
"""
Returns the value of the force derived
from the potential, at position pos.
"""
norm_factor = self.kBT / np.sum([g.get_value(pos)

for g in self.gaussians])
force = np.zeros(self.num_dims)
for d in range(self.num_dims):

force[d] = np.sum([g.get_partial_derivative(pos, d)
for g in self.gaussians])

return norm_factor * force

def integral(self, intervals):
"""
Integrates the potential's Gaussian functions
over the N-dimensionsalclosed interval
I = [a1,b1]X[a2,b2]X...X[an,bn].
"""
if len(intervals) != self.num_dims:

raise ValueError('Number of intervals ({}) is different than\
number of dimensions ({})!'\
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.format(len(intervals), self.num_dims))
return np.sum([ig.integral(intervals)

for ig in self.gaussians])

def get_equilibrium_histogram_1D(self, bins, num_steps=1000, dim=0):
"""
Returns a histogram (using argument bins) representing
the 1-dimensionsal equilibrium distribution of the potenrial,
calculated by the Boltzmann distribution.
"""
I = np.array([self.integral([[bins[i], bins[i+1]]])

for i, b in enumerate(bins[:-1])])
return I / np.sum(I) * num_steps

def get_equilibrium_histogram_2D(self, bins_x, bins_y, num_steps=1000):
"""
Returns a histogram (using argument bins) representing
the 2-dimensionsal equilibrium distribution of the potenrial,
calculated by the Boltzmann distribution.
"""
# Create intervals from bins
intervals_x = [[bins_x[i], bins_x[i+1]]

for i, _ in enumerate(bins_x[:-1])]
intervals_y = np.array([[bins_y[i], bins_y[i+1]]

for i, _ in enumerate(bins_y[:-1])])
interval_list = [intervals_x, intervals_y]

# Create an array of all possible 2D intervals
intervals = np.array(list(product(*interval_list)))

shape = (bins_x.shape[0]-1, bins_y.shape[0]-1)
I = np.array([self.integral(interval)

for interval in intervals]).reshape(shape)
return I/np.sum(I) * num_steps
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def save(self, filename):
"""
Saves the potentials to the file filename.
"""
with open(filename, 'wb') as file:

pickle.dump(self, file, pickle.HIGHEST_PROTOCOL)

def load(self, filename):
"""
Loads the content of filename
(must be a saved potential).
"""
with open(filename, 'rb') as file:

new = pickle.load(file)
self.gaussians = new.gaussians
self.num_dims = np.max([g.dim

for g in self.gaussians])
self.kBT = new.kBT

class zero_potential(potential):
"""
A potential U=0.
"""
def __init__(self):

pass

def get_force(self, pos):
return pos * 0.0

def simulate(params, notebook=False):
"""
Simulation. Integrates the Brownian dynamics
equation of motion, using the potential and
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parameters given in params.
"""
num_steps = params['num_steps']
num_dim = params['num_dim']
num_dim_sqrt = np.sqrt(num_dim)
num_particles = params['num_particles']

A = params['Ddt'] / params['kBT']
B = np.sqrt(2*params['Ddt'])
U = params['potential']

xs = np.zeros(shape=(num_steps, num_dim, num_particles))
xs[0,:,:] = params['x0']

if notebook: # For jupyter notebook
sim = tqdm_notebook(range(1, num_steps))

else:
sim = tqdm(range(1, num_steps))

for t in sim:
drift = np.zeros(shape=(num_dim, num_particles))
for i in range(num_particles):

drift[:,i] = A * U.get_force(xs[t-1,:,i])
noise = B * np.random.normal(size=(num_dim, num_particles))
xs[t,:,:] = xs[t-1,:,:] + drift + noise

return xs
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B. Derivation of Transition Rates via Kramer’s
Approximation for Symmetric Double Log-Gaussian
Potential Wells

−M 0 +M

U (x)

x

∆E

Figure B.1.: Symmetric double potential well.

A potential U (x) = − log
(
e−

(µ+x)2
2 + e−

(−µ+x)2
2

)
represents two identical wells at x = ±µ

(Figure B.1). The height of the barrier at x = 0 (labeled B) is therefore

∆E = U (x = 0)− U (x = ±µ)

= log
(
1 + e−2µ2)− log

(
2e−

µ2
2

)

= µ2

2 − log (2) + log
(
1 + e−2µ2)

. (B.1)
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B. Derivation of Transition Rates via Kramer’s Approximation for Symmetric Double Log-Gaussian Potential Wells

The second derivative of U (x) is

U ′′ (x) = −4µ2 + 2 cosh (2µx) + 2
2 cosh (2µx) + 2 , (B.2)

and thus

U ′′ (x = 0) = 1− µ2

U ′′ (x = µ) = 1−
(

µ

cosh (µ2)

)2

, (B.3)

meaning

ω1 =

√√√√√√1−
(

µ

cosh(µ2)

)2

m
, ω2 =

√√√√∣∣∣∣∣1− µ2

m

∣∣∣∣∣. (B.4)

All together, by Kramer’s theorem we get (for D = 1, kBT = 1 and thus γ = 1)

kA→C =

√√√√√
1−

(
µ

cosh(µ2)

)2
 |1− µ2|

2π exp
[
−µ2

2 + log (2)− log
(
1 + e−2µ2)]

. (B.5)
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C. Derivation of Transition Rates Between Two States

C.1. Single Transition

Let R (t) be a trajectory of a system, which at times 0 ≤ t < t1 is found at a state labeled
1, and at times t = t1 is found at a different state labeled 2 (Figure C.1).

1

2

t = 0 t = t1

t

Figure C.1.: A system transitioning from state 1 to state 2 at time t = t1.

The distribution of the transition rate k = k1→2 is given by p
(
k | t1

)
. According to Bayes’

theorem
p
(
k | t1

)
∝ p

(
t1 | k

)
p (k) . (C.1)

The likelihood p
(
t1 | k

)
can be derived by time discretization of the trajectory R (t) with

time step ∆t (Figure C.2). For each time step the probability of staying in state 1 is
p = 1− k∆t, and, thus, the total probability of staying in state 1 for n steps is

p = (1− k∆t)n

=
(

1− kt1
n

)n
, (C.2)
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1

2

t = 0 t = t1

t

∆t

n∆t

Figure C.2.: A discretization of the system.

since n∆t = t1. The probability of transitioning once is k, and therefore the total discreet
probability of transitioning at exactly t1 = n∆t is

p
(
t1 | k

)
= k

(
1− kt1

n

)n
, (C.3)

which in the limit ∆t→ 0 (i.e. n→∞) converges to

p
(
t1 | k

)
= ke−kt1 . (C.4)

Setting the prior to
p
(
log (k)

)
= 1 (C.5)

yields (since p (x) dx = p (y) dy)
p (k) = 1

k
. (C.6)

Plugging equations C.4 and C.6 into equation C.1 yields

p
(
k | t1

)
∝ e−kt1 . (C.7)
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C.1. Single Transition

Let us now set k = eτ , and observe the change to the posterior:

p
(
τ | t1

)
∝ p

(
k | t1

) dk
dτ

= e−e
τ t1eτ

= e−e
τ t1+τ . (C.8)

The most likely τ is found where d
dτ p

(
k | t1

)
= 0. The derivative of p

(
τ | t1

)
is

d
dτ p

(
τ | t1

)
∝ (1− t1eτ ) e−e

τ t1+τ , (C.9)

and solving for p
(
τ | t1

)
= 0 yields

τ = log
(

1
t1

)
⇔ k = 1

t1
, (C.10)

which is the expected result, as rate is the inverse of timescale. Figure C.3 shows a graphical
representation of p

(
k | t1

)
.

0
0

p
(k

|t
1
)

k

kmax = 1
t1

Figure C.3.: Distribution of p
(
k | t1

)
for a single transition observed at t = t1, derived using

a Bayesian method.
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C. Derivation of Transition Rates Between Two States

C.2. Many Transitions

For a sequence of n transitions 1→ 2 at times {t1, t2, . . . , tn} and n− 1 transitions 2→ 1
at times

{
t′1, t

′
2, . . . , t

′
n−1

}
, we define the set of time periods ∆ti in which the system was in

state 1 before transitioning to state 2:

∆ti =


t1 if i = 1

t′i − ti−1 if i = 2, 3, . . . , n
. (C.11)

We then set the likelihood as the product of the separate likelihoods from each of the time
periods {∆ti} (here k = k1→2):

p
(
{∆ti} | k

)
=

n∏
i=1

p
(
∆t1,∆t2, . . . ,∆tn | k

)
(C.12)

Figure C.4.: Five transitions 1→ 2 at times ti, and four transitions 2→ 1 at times t′i.

As with equation C.7, we can now calculate the probability distribution p
(
k | {∆ti}

)
using

Bayes’ theorem, and utilizing the same prior:

p
(
k | ∆t1,∆t2, . . . ,∆tn

)
∝

n∏
i=1

p
(
∆ti | k

)
· p (k)

=
n∏
i=1

ke−∆tik

= kne−k
∑n

i=1 ∆ti

= kne−nk〈{∆ti}
n
i=1〉. (C.13)
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C.2. Many Transitions

The most likely value of k is then given by

kmax = 1
〈∆ti〉

. (C.14)

81





Declaration

I hereby declare that I have written the present thesis independently, without
enlisting any external source/resources other than those specified, and that
I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Göttingen, December 2, 2019

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peleg Bar Sapir


	introduction
	Theoretical Foundation
	Markov State Models of Protein Dynamics
	Brownian Dynamics

	Methods
	Brownian Dynamics Simulation
	Constructing Markov State Models from Simulated Protein Trajectories

	Results and Discussion
	Simulation Validation
	Constructing Markov State Model from Simulated Brownian Dynamics Trajectories

	Conclusions and Outlook
	Acknowledgements
	Bibliography
	Appendices
	Simulation Code
	Derivation of Transition Rates via Kramer's Approximation for Symmetric Double Log-Gaussian Potential Wells
	Derivation of Transition Rates Between Two States
	Single Transition
	Many Transitions


