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1 Introduction

Protein structures, which are determined by X-ray crystallography or nuclear mag-
netic resonance (NMR) spectroscopy, are often presented as 3D ribbon diagrams
showing α-helices, β-sheets and loops in colorful images. One can easily identify
structured and less structured regions, but from the biological point of view this
depiction is misleading: most proteins are no static objects and have to perform
very specific movements to fulfill their task. Hence, knowledge about its dynam-
ics is critical for an in-depth understanding of a protein’s function. Or, to use the
words of the authors of a recent review on this topic: the dynamic landscape is the
“personality” of a protein [7].
Advanced experimental setups, e.g., those using the Förster resonance electron
transfer (FRET) mechanism [4] can provide a tool for measuring the distance be-
tween two selected residues. A more suitable method is NMR spectroscopy [16].
Since new methods use isotopical labels to measure the movement of the side
chains, NMR can provide nearly complete information about the dynamics of a
protein up to a time scale of milliseconds. But the fastest time scales of pico- and
femtoseconds are still not accessible by NMR. Often, an in silico experiment is the
method of choice for collecting dynamic information. Advances in software and
hardware efficiency during the last years allow to perform molecular dynamics
(MD) simulations over a time scale of several 100 nanoseconds.
The classification of proteins based on structural similarities is widely used and
accepted. But the question whether the structure of these molecules induce a com-
parable order among the proteins has not been addressed in full detail. This work
closes this gap by an analysis directed to the detection of relations between the
structure and the dynamics of a protein. For this purpose, multiple observables
obtained from MD simulation trajectories of over 100 different proteins were eval-
uated. In this data no evidence of a natural order in the space of protein dynamics
can be found. However, in comparison with a structural classification, an influ-
ence of the structure on the dynamics can be detected. These results suggest that
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the structural features of a protein only partially determine the dynamics.

1.1 Related Work

Another approach dedicated to protein dynamics is the “Dynameomics” project by
the Daggett group at the University of Washington. According to the website1 the
objective is “to characterize the native state dynamics and the folding / unfolding
pathway of representatives from all known protein folds by molecular dynamics
simulation”. The first steps leading to this ambitious aim are several hundred MD
simulations and the creation of a database containing all the data. To ensure com-
parability the simulations are carried out according to standard protocols. With
respect to the multi-dimensional nature of the data and due to the fact that the
database will mainly be used for the analysis with transactions being a rare event,
the project uses an Online-Analytical-Processing (OLAP) approach [14].
There are some major differences between the Dynameomics project and the work
presented here. First of all, the project’s current main objective is the creation of a
database, whereas we focus on the analysis of the MD data. Moreover, the length of
the simulations used for this works is about 100 ns, and according to the statistics
given on the Dynameomics website the average simulation time is 11,8 ns. Thus,
only short-term dynamics can be captured by these data.

1http://www.dynameomics.org
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2 Materials and Methods

2.1 MD simulations

A representative subset of 112 proteins was selected for MD simulations. All sim-
ulations were carried out using GROMACS version 3.3.1-2 [2, 15] and the OPLS-aa
force field [13]. The tip4p explicit water model [12] was used and physiological
sodium chloride concentrations were chosen. Each trajectory has a length of 110ns
which yields data in the order of 7 terabyte in total.
The initial phase of the whole project, prior to the analysis presented here, has been
conducted by Jürgen Haas3, who carried out the simulations, and Gert Vriend2,
who helped to select a representative set of proteins.

2.2 Observables

From the simulations, numerable observables have been calculated, which can be
divided into two categories. On the one hand, there are structural observables
which describe the static properties of a protein (section 2.2.1). On the other hand,
some observables characterize the protein dynamics. The latter can be further sub-
divided into those which are and those which are not based on a principal compo-
nent analysis (sections 2.2.2 and 2.2.3).

2.2.1 Structural observables

SCOP class

To obtain a structural subsumption of the simulated systems the “Structural Clas-
sification of Proteins” (SCOP) database [17] was queried and the corresponding
classes were extracted. All assignments in the SCOP database are purely based on

3http://www.mpibpc.mpg.de/home/grubmueller/ihp/aalumni/jhaas/
2http://swift.cmbi.ru.nl/gv/start/index.html
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structural and sequential data, which is evaluated by humans. Thus, the SCOP
class is not a real observable obtained from the trajectories but a starting point for
a structural classification. In total, five classes are covered by the representative
set. Table 2.1 shows the distribution of the systems over the classes.

SCOP class Count

all α 12
all β 33
α / β 27
α + β 30
small 10

Table 2.1: Distribution of the simulated systems over the SCOP classes

Unlike the name implies, the all α and all β proteins are not purley made of α-
helices or β-sheets. But the major fraction of them consists of these secondary struc-
tures (a remarkable exception is discussed in section 3.1). The α / β class contains
proteins which are dominated by parallel β-sheets and close-by α-helices. In con-
trast, the proteins of the α + β class display antiparallel β-sheets and segregated α

and β regions. Finally, the “small” systems are governed by metal ligand, heme,
and/or disulfide bridges.

Secondary structure counts

Secondary structures play an important role concerning the 3D structure of a pro-
tein and thus a structural classification must take their presence or absence into
account. Therefore, α-helices, β-sheets and turns have been counted under the
condition that they are present during more than 50% of the simulation time per
residue.

Radius of gyration

A value capturing the overall change of size of a molecule is the average deviation
from the mean radius of gyration Rg which is defined as the root mean square
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deviation from the center of mass. The formula is given by:

Rg =

√√√√ 1
N

N

∑
j=1

(rj − (
1
N

N

∑
i=1

ri))2 ,

where ri is the position of the ith atom and N is number of atoms.

2.2.2 Dynamic observables: PCA-based observables

Principal component analysis (PCA) is a well-known and widely used technique
for dimension reduction. This method reduces the complexity of the data while it
maintains as much variance as possible [11]. In MD simulations, it is commonly
used to identify collective degrees of freedom which govern most of the protein
dynamics. This is due to the observation that the so-called “essential subspace”
consists of roughly 5-10% of the collective degrees of freedom, which have been
shown to describe as much as 90% of the total atomic displacement [1]. To capture
the features of this essential subspace, several PCA-based observables are included
in the analysis and described in the following.

Application of the principal component analysis

After the removal of translational and rotational motions, the covariance matrix
C of the recorded Cα-atoms positions was computed. Finally, the eigenvectors ai

and their corresponding eigenvalues λi were obtained by diagonalizing C and thus
solving the eigenvalue problem Ca = λa.

Eigenvalues and slope of eigenvalue spectrum

The most straightforward observables which can be obtained from the PCA are
the eigenvalues. They quantify the movement along the eigenvectors and thus de-
scribe the general dynamics of the protein. As we want information on the essential
subspace only, no more than the first 10 eigenvalues were recorded. Another ob-
servable related to the eigenvalues is the slope of the middle third of the eigenvalue
spectrum. This value indicates how fast the eigenvalues are decreasing. If the pro-
tein undergoes directed movements in few directions the slope will be low. But if
the protein performs undirected movements in diverse directions the slope will be
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high. The slope has been determined using a linear fit which additionally yielded
a quadratic error. In the case of exponentially decreasing eigenvalues the linear
slope is misleading, because the values are decreasing much faster than indicated.
Therefore, the quadratic error is included in the set of observables.

Cosine content

The cosine content was used as a measure of random diffusion [9, 8]. The higher
the cosine content along an eigenvector the greater is the similarity to a random
diffusion. Consequently, this indicates the presence of long-term dynamics which
may not have been fully explored by the simulation.

Autocorrelation function

The fluctuation along an eigenvector can be regarded as an oscillation in a har-
monic potential. Assuming that the fluctuation is a random process X with mean
µ and the value at time t is given by Xt the autocorrelation function

ACFX(δ) = E[(Xt − µ)− (Xt+δ − µ)]

can be used to calculate correlation values depending on the given time shift δ. A
least square fit to these values with the function

F(t) = e−β t
2 · (cos(ωt) + β

sin(ωt)
2ω

)

yields two variables (β and ω), which can be used in conjunction with the protein
mass m to determine the theoretic friction f and spring constant k of the harmonic
oscillation:

k =
√

4ω2m2 + β2m2

f = βm

An example is shown in figure 2.1. The autocorrelation of the movement along the
first eigenvector (blue graph) is fitted (red graph), and thus a damped oscillation
becomes visible.
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Figure 2.1: The autocorrelation along the first eigenvector (blue) and the corresponding fit
(red) obtained from the simulation of an eye lens protein (PDB code: 1DSL)

Goodness of fit with a Gaussian

To shed light on the question whether the dynamics along the first eigenvectors
are caused by harmonic equilibrium fluctuations or protein specific movements,
a Gaussian has been fitted on each PCA mode. The quality of the fit ŷ has been
assessed by an R2 statistic, which is given by:

R2 = 1− ∑i(yi − ŷi)2

∑i(yi − ȳ)2 ,

where yi denotes the i-th data point and ȳ the mean. A low value indicates a poor
fit and thus an anharmonic fluctuation - and vice versa.
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Ruggedness of the energy landscape

The “ruggedness” is a value indicating the ruggedness of the energy landscape
based on the eigenvalues of a time-dependent PCA [5]. Plotted against the eigen-
value index, the ruggedness shows a characteristic curve for each protein. A
quadratic fit has been applied to these plots. The mean of the kurtosis and the
skewness of these fits represent the actual variables used in the further analysis.
As the ruggedness has been introduced very recently, it is not yet well-known by
the community.

2.2.3 Dynamic observables: Non-PCA based observables

Solvent accessible surface (SAS)

The protein surface accessible to the solvent has been determined by a probe sphere
with a radius of 0.14 nm. This observable is highly dependent on the number of
residues: In the case of globular proteins, the surface increases with the sequence
length. To correct this issue, the SAS has been divided by the number of residues of
the corresponding protein, which yields the solvent accessible surface per residue.
The standard deviation of this value is a measure for the capability of a protein to
change its conformation.

Root mean square deviation

The root mean square deviation (RMSD) of the Cα-backbone can be used to com-
pare two conformations of the same protein in terms of structural similarity. In the
case of an MD simulation, a reference structure has to be chosen to which all other
snapshots are compared. This observable is based on the time-averaged protein
structure.

Root mean square fluctuation

The Root mean square fluctuation (RMSF) indicates the flexibility of a molecule in
general. For an atom a the RMSF is given by:

RMSFa =
1
T

T

∑
t=1

(xa
t − xa)2 ,

8



where T is the total number of time steps, xa
t is the position of atom a at time t and

xa is the mean position of atom a. This value has been calculated for all Cα-atoms
of the protein and the sum, the mean and the standard deviation of these values
were included in the further analysis. Furthermore, the position of the minimum
relative to the sequence length is recorded.

RMSF Entropy

The entropy of the RMSF is a measure indicating to what extend the fluctuation is
concentrated inside a protein. In analogy to the textbook definition of the entropy,
the definition of the RMSF entropy S is chosen as follows:

S = − 1
∑ R ∑(R · ln(R)) + ln(∑ R) ,

where R is the vector of RMSF values. Unfortunately, this term has a high depen-
dency regarding the sequence length as can be seen in figure 2.2. For the further
analysis this has been corrected by subtracting the natural logarithm of the se-
quence length.

2.2.4 Preprocessing and normalization

The observables have been selected to capture all possible dynamic features of a
protein. Nevertheless, they may correlate with each other or with structural ob-
servables. Thus, the set was carefully reviewed prior to the further analysis to
avoid the introduction of artifacts or biases into the results. Special attention was
paid to possible correlations with the sequence length. This is due to the fact that
we want to obtain the abstract dynamics, which does not depend on the size of the
protein. Furthermore, trivial correlations have been removed, which is outlined in
the following.
The matrix on figure 5.1 in the appendix shows Spearman’s rank correlation coeffi-
cient [20] for all pairwise combinations of observables. Multiple strong correlations
can be identified and most of them appear in blocks of related observables. Nearly
all of these blocks can be removed by selecting a representative observable out of
this subset. In the case of the solvent accessible surface we decided to discard the
minimum and the maximum and keep the mean and the standard deviation. The
same applies to the RMSD and the RMSF. From the radius of gyration and the
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Figure 2.2: The protein sequence length plotted against the entropy of the RMSF exhibits
a nearly perfect logarithmic dependency. Each dot represents a protein and
is colored according to the SCOP class. PDB codes of some extreme values
are shown, too: a plant seed protein (1CRN), a cold shock protein (1C9O), the
human prion protein (1QLX), a hydrolase (1SAT) and a polymerase (1XWL).

structure count observables only the standard deviations remained in the set, be-
cause the means are regarded as structural observables. The friction and the spring
constant of the autocorrelation function are highly correlated with each other, too.
Hence, we choose to skip the spring constant. Next, all observables depending on
the sequence length are divided by the number of residues. Furthermore, all stan-
dard deviations are converted to relative standard deviations by dividing them by
their corresponding mean. To further decorrelate the data, the mean RMSF is di-
vided by the mean RMSD. Moreover, the sum of the RMSF and the standard devi-
ation of the RMSD are divided by the standard deviation of the radius of gyration.
Finally, the data has been mean centered and normalized to unit variance.

2.3 Clustering and cluster validation algorithms

The analysis of the data described in the previous sections is performed using a
variety of methods and algorithms which are outlined in the following.
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2.3.1 k-Means

K-Means (algorithm 1) is an iterative clustering algorithm which clusters N data
points into K partitions. It assumes, that the data points are elements of a vector
space and that there is a distance function which calculates the distance between
two data points. In this work, the well-known euclidean distance is used. The
clusters are represented by the mean of the associated data points. Initially, the
K means are each randomly set on one of the data points. Then each data point
is associated with its nearest mean and the position of the means are updated ac-
cordingly. This procedure is repeated as long as points move from one mean to
an other or until the maximum number of iterations (100 in our case) is reached.
Finally, the best run, in terms of the minimum mean distance to the cluster centers,
is chosen from 1000 independent runs.

Input: N Data Points, Number of Cluster K, Maximum iterations m
Output: K Clusters
Random initialization of all means;
while Movement of means > 0 and number of iterations ≤ m do

Recalculate the position of each mean;
Assign all data points to nearest mean;

Algorithm 1: K-Means Algorithm

2.3.2 Silhouette value

Invented as a graphical display for non-hierarchical cluster methods, a silhouette
plot [19] contains a bar for each point in a data set. All bars are grouped by cluster
and represent the silhouette value for their corresponding data point. Assuming
the existence of a distance function d (e.g. euclidean distance) and a partitioning
which associates data point i with a cluster A of size NA, the average dissimilarity
of i to all other objects of A is given by

a(i) =
1

NA − 1 ∑
j∈A,j 6=i

d(i, j) .

11



Furthermore, the minimum average dissimilarity of i to all objects of an other clus-
ter B is given by

b(i) = min
B 6=A

(
1

NB
∑
j∈B

d(i, j)) .

Finally, the silhouette value

s(i) =
b(i)− a(i)

max(a(i), b(i))

is defined as the quotient of the difference and the maximum of these two values.
This expression can take values between -1 and 1. The average silhouette value s̄
gives an estimation of the overall clustering quality. To calculate b(i) the presence
of at least one more cluster is required. Hence, s(i) is defined for two or more
clusters, only.

2.3.3 Connectivity and variance

Connectivity and variance [6] are two conflicting measures which should be min-
imized by an optimal clustering. The connectivity measures how many close-by
data points lie within the same cluster as a data point i. This is done by evaluating
the function

WeightNeighbori(j) =

1
j i f Ci 6= CNearestNeighbouri(j)

0 else

which is related to the nearest neighbor classifier. It returns a weight of 1
j if the

j-th neighbor belongs to the same cluster as i and zero else. The connectivity for a
partitioning C with N data points is given by:

Connectivity(C) =
N

∑
i=1

L

∑
j=1

WeightNeighbori(j) .

Where L is the maximum number of nearest neighbors to be evaluated. L is set to
10 for the remainder of this work.
In contrast to the connectivity, the variance within a cluster is a measure for the
compactness of a clustering. For a set of clusters C containing N data points in
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total and a distance function d the variance is defined as:

Var(C) =
√

1
N ∑

Ck∈C
∑

a∈Ck

d(a, µk) .

Here, µk denotes the mean of all points associated with a cluster.
To get a visual impression of the clustering quality for different numbers of clus-
ters, the connectivity is plotted against the variance. An optimal solution is ex-
pected to minimize both measures and thus the resulting graph should display a
“knee” at the corresponding number of clusters. Ideally, this point marks a pareto-
optimal solution according to the two measures.

2.3.4 Jump method

Inspired from the information theoretic concept of distortion, Sugar et. al. pro-
posed a cluster validation called “jump method” [21]. In this method the distortion
dK is estimated for different numbers of clusters K. Next, a transformation power
Y has to be selected. Using this value, the distortion is transformed to “jumps”

JK = d−Y
K − d−Y

K−1 with d−Y
0 = 0 .

If an appropriate Y is chosen, the optimal number of clusters is the value which
maximizes JK. The inventors of the method state that a typical value of Y is equal
to the half of the dimensionality of the data. In the case of strong correlation, which
is present in most real world data sets, Y may be much smaller due to the decreased
effective dimensionality. Fortunately, multiple values of Y can be probed efficiently
and validated by visual inspection of the jump plots. In this work, the original
implementation of the method provided by the authors is used 1.

2.3.5 Adjusted Rand index

In contrast to the validation methods presented up to now, the adjusted Rand in-
dex [18, 10] relies on external information. It compares the clustering result to a
given labeling and is corrected for chance. If a completely random clustering is
evaluated, the expected value is zero. In the case of a perfect agreement, it takes
the value one.

1http://www-rcf.usc.edu/~gareth/research/
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3 Results and Discussion

3.1 Structural classification

The SCOP classification is based on structural and sequential data and thus does
not necessarily agree with the structural properties featured by a protein during
an MD simulation. To verify the consistence of the SCOP classification with the
structural properties, scatter plots of the relevant observables are discussed in this
section.
In particular, the fraction of residues forming an α-helix or a β-sheet is an impor-
tant criterion for the classification. Figure 3.1 shows the β-sheet content plotted
against the α-helix content. The first three SCOP classes (all α, all β and α / β) are
clearly separated from each other. However, the two remaining classes do not form
clusters in this plot.
On closer inspection, one exception can be spotted: a nuclease, which is labeled
with its PDB code 1SNO in the plot, is classified as all β but contains a significant
fraction of α-helices. The most likely explanation is that the annotator chose the
β-barrel to be the dominating feature of the protein. Another interesting aspect is
highlighted in figure 3.1: The cyan dots in the yellow box on the left hand side
mark proteins, which are labeled α + β by the SCOP classification, though they
contain hardly any β-sheets. This seems to be a contradiction to the definition of
the class. Whereas, CATH [3] (which is a protein classification database similar to
SCOP) assigns the class “Mainly Alpha” to all the proteins in question. Both cases
make clear that the task of structural protein classification is not solved unambigu-
ously yet. But aside from these minor drawbacks, the classification is suitable for a
comparison with a classification based on dynamic observables.
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Figure 3.1: The β-sheet content plotted against the α-helix content for all simulated pro-
teins. Each point represents a protein and is colored according to its SCOP class.
The inset shows the 3D structure of the nuclease with the PDB code 1SNO which
contains a β-barrel (yellow part). The yellow box on the left marks some α + β
proteins which do not contain any β-sheets.

3.2 Structural influence and protein dynamics

In this section, two major questions are addressed. The first part takes a closer
look at a possible partitioning of the proteins in the space of dynamics. For this
purpose, an unsupervised learning algorithm is applied to the data and the results
are validated by multiple cluster validation methods. In the second part, the ef-
fect of the proteins’ structure on its dynamics is investigated. One the one hand,
this is done by comparing the discrete assignment of the clustering with the SCOP
classification. On the other hand, all simulated proteins are compared with each
other, based on the structural and dynamic observables described in the previous
chapter.

3.2.1 Partitioning of protein dynamics

The dynamic observables were selected to incorporate as much information on the
protein dynamics as possible. But due to the high dimensional nature of the data,
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an interpretation is not an easy task and requires the use of data mining methods.
In particular, a k-Means algorithm was deployed to find natural clusters. An in-
herent problem to all clustering algorithms is the question of the correct number
of clusters. In the case of the data at hand, one possibility is to choose as many
clusters as SCOP classes are present in the data set. Unfortunately, this may bias
the results if this number is not appropriate. Therefore, all numbers of clusters up
to ten are probed and the performance is evaluated by the three cluster validation
algorithms described in section 2.3. At first, the full data set with all SCOP classes
is analyzed. In a second step, we study a reduced set to minimize the effect of pos-
sible misclassified proteins in terms of the SCOP class on the classification. This
set consists of the three SCOP classes which form groups as shown in the previous
section.
For each number of clusters from one to ten, the k-means clustering yielded a par-
tition of the full set. These partitions are evaluated by the three cluster validation
algorithms presented in section 2.3. Each algorithm produced the performance
graphs shown in figure 3.2. All graphs give no reason to the assumption that a nat-
ural partitioning of the data exists. In more detail, the overall average silhouette
(topmost graph) takes very low values, indicating an inadequate clustering accord-
ing to the original description of Rousseeuw [19]. Note, that the silhouette value
for the trivial partitioning with only one cluster is not defined. Thus, this point is
missing in the graph. Furthermore, the middle graph shows the connectivity plot-
ted against the variance. Unfortunately, all clusterings minimize only one of the
measures and a pareto-optimal solution can not be identified. The decrease of the
connectivity at 6 clusters can be explained by outliers which gain their own clus-
ter at this point. Finally, the jump method has its maximum at one cluster, which
suggests the absence of any natural clustering. Due to the nature of the method,
it takes greater values when the maximum number of clusters is approached. The
transformation power was chosen to be 3.5 by sampling a wide range of the vari-
able and by visual inspection of the resulting graphs. Interestingly, nearly the same
results were yielded by the analysis of the reduced set (figure 3.3). Due to the ab-
sence of the outliers, the connectivity anomaly does not occur anymore.
These results indicate that there are no natural groups in the data. In particular,
no evidence can be found which would suggest the clustering to be influenced by
the number of SCOP classes present in the data set. Under the assumption that the
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chosen observables adequately describe the the protein motion, this leads to the
conclusion that the effect of the structure on the dynamics is not strong enough to
induce the formation of distinguishable clusters.
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Figure 3.2: The performance graphs of three cluster validation algorithms for the full set are
shown. Top: Number of clusters against silhouette value; Middle: connectivity
against variance with number of clusters as label; Bottom: number of clusters
against the jumps. See section 2.3 for a detailed description of the methods.
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3.2.2 Influence of structure on the dynamics

Though the structure does not seem to dominate the dynamics of a protein it may
at least have some influence. Figure 3.4, which shows the projection of the full
data set on the plane spanned by the two first principal components, can give an
intuition on the effect. The points are colored according to the SCOP classes of
the proteins. At first glance, most SCOP classes seem to be more or less randomly
distributed in the space of the dynamics. But leaving aside the two outliers, the
proteins classified as small, form a cluster nearby the all α proteins.
To further investigate the distribution of the SCOP classes, the fraction of proteins
belonging to a specific class in a cluster has been counted (figure 3.5). Interestingly,
each class clearly dominates one cluster in case of the reduced set (chart A). On the
contrary the α + β class gets more scattered when it is clustered together with the
reduced set (chart B). As suggested by the PCA scatter plot, chart C shows that the
small proteins share a cluster with the all α proteins. Finally, the full set displays
all characteristics expressed in the other charts (chart D). In theory, all these dis-
tributions may be products of coincidence. Therefore, the SCOP labeling and the
cluster results are compared using the adjusted Rand index, which is corrected for
coincident similarities. Depending on the number of clusters, the index reached
values between 0.07 and 0.1. To verify this outcome, the adjusted Rand index for
random permutations of the clustering labels is calculated, too. This is equivalent
to the clustering of random data with the same characteristics as the original data.
As predicted by theory, values an order of magnitude smaller, and zero if averaged
over multiple runs, were obtained for the random data.
This analysis reveals the effect of the structure on the protein dynamics, which
could not bee seen in the clustering results. Furthermore, it gives an explanation
for the bad performance of the k-Means algorithm. Though the structure influences
the dynamics of a protein, the effect is not strong enough to create distinguishable
groups in the dynamic space. One can think of multiple other parameters which
may impact the protein dynamics, too. On the one hand, there are physical and
chemical conditions like temperature, pressure and pH-value. For example, cold
shock proteins do not start to perform their task until temperature falls below a
specific value. On the other hand, biological factors like the presence or absence of
other proteins influence the protein. Hence, the structure seems to be just one of
many factors which influence the dynamics of a protein.

19



small

α + β

α / β

all β

all α

S
ec

on
d

p
ri

n
ci

p
al

co
m

p
on

en
t

First principal component
−8 −6 −4 −2 0 2 4 6

−12

−10

−8

−6

−4

−2

0

2

4

6

Figure 3.4: The full data set is projected on the plane spanned by the two first principal
components. Again, the points are colored according to the SCOP class.

20



A B

α + β

small

α / β

all β

all α

F
ra

ct
io

n
of

th
e

S
C

O
P

cl
as

s
(%

)

1 2 3
0

20

40

60

80

100

1 2 3 4
0

20

40

60

80

100

C D

F
ra

ct
io

n
of

th
e

S
C

O
P

cl
as

s
(%

)

Cluster Number

1 2 3 4
0

20

40

60

80

100

Cluster Number

1 2 3 4 5
0

20

40

60

80

100

Figure 3.5: Frequency distribution of the SCOP classes under different clustering condi-
tions: A) reduced set with 3 clusters, B) reduced set and α + β proteins with 4
clusters, C) reduced set and smallproteins with 4 clusters, D) full set with five
clusters

21



4 Conclusion

Based on MD simulations of a wide variety of proteins, numerable observables
have been created and prepared to reflect all dynamic features. On the one hand,
these observables were analyzed using an unsupervised learning algorithm and
different validation methods. On the other hand, the data has been used in con-
junction with a structural classification to uncover and quantify the influence of a
proteins’ structure on its dynamics. As the cluster analysis did not reveal any nat-
ural groups, but the effect of structural properties is still noticeable, we draw the
conclusion that the dynamics must be significantly influenced by other parameters
like temperature or the presence of further proteins.

4.1 Outlook

The work presented here can be extended in multiple directions. Only one fac-
tor influencing the protein dynamics has been addressed. The elucidation of the
other parameters is still an open issue. Moreover, the structural classification and
comparison can be improved. One possibility is to use structural alignment tools
to compare and group proteins based on structural features. Such a method can
capture even more complex similarities, e.g. beta barrels.
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5 Appendix

5.1 Table of abbreviations

ACF Autocorrelation function
FRET Förster Resonance Electron Transfer
MD Molecular dynamics
NMR Nuclear magnetic resonance
PCA Principal component analysis
RMSD Root mean square deviation
RMSF Root mean square fluctuation
SAS Solvent accessible surface
SCOP Structural Classification of Proteins
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5.2 Additional figures
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Figure 5.1: Correlation matrix of all dynamic observables and the sequence length before
decorrlation and normalization. See chapter 2 for a detailed description.
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