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der Georg-August-Universität zu Göttingen

Vorgelegt von

Gunnar Schr öder
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”I accept the universe!”
– Margaret Fuller

1

Introduction

Proteins are abundant in all organisms and are involved in almost all cellular
processes. They have functions such diverse as building the cytoskeleton,
catalyzing chemical reactions, controlling cell signaling, performing muscle
contraction, and many others.1,2 Structural biology aims at gaining in-
sight into the function of proteins by determining their three-dimensional
structures, which is typically done by x-ray crystallography3,4 or nuclear
magnetic resonance (NMR) spectroscopy.5,6 Furthermore, protein motions,
particularly their conformational dynamics, regulate and often constitute
protein function. Therefore, a large variety of experimental and theoret-
ical techniques aims at probing the internal dynamics of proteins, with a
particular focus at the picosecond to microsecond timescale.3

NMR,7 electron paramagnetic resonance (EPR),8 neutron scattering,9,10 as
well as fluorescence spectroscopy11–14 have indeed provided much insight in
this respect. Fluorescence spectroscopy, in particular, in combination with
site-directed fluorescent labeling became an established tool in molecular
biology and biochemistry to investigate the dynamics and interactions of
biomolecules.15 The fluorescent labels, or dyes, are bound to proteins typ-
ically via cysteines. To attach a dye to a specific position in the protein,
the present amino acid at this position is therefore mutated into a cysteine
prior to labeling. Two of the most important optical techniques are fluores-
cence resonance energy transfer (FRET)16 and fluorescence anisotropy (or
depolarization),17–19 which both will be studied in detail within this work
and will be briefly be introduced in Chap. 2.

FRET is a distance-dependent interaction between two dye molecules in
which electronic excitation is transferred from an excited donor molecule to

7
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Figure 1.1: Fluorescence spectroscopy in combination with site-directed labeling
can be used to study structure and dynamics of single biomolecules. (A) and
(B) Fluorescence resonance energy transfer (FRET) experiments measure the dis-
tance between two dyes. Determination of intramolecular distances (A) reveals
conformational changes and intermolecular distances give information on interac-
tions between differently labeled biomolecules. (C) The motional freedom of a
protein-attached dye, indicated by the green cones, depends on the conformational
dynamics of the protein to which the dye is attached. Fluorescence anisotropy
experiments therefore detect conformational changes.

an acceptor molecule (see Fig. 1.1 A and B). The FRET efficiency, which
is obtained from the separately detected light intensities of the donor and
the acceptor, depends on the distance (as well as on the relative orientation
of the dyes) and is sensitive at a length-scale of about 10–75 Å.20,21 Thus,
FRET experiments allow to determine intra- and intermolecular distances
within and between biomolecules.11,14 Moreover, the labeling with FRET
pairs of many different protein sites yields multiple intramolecular distances,
which then can be used to build a three-dimensional model of the protein
via triangulation.22,23

Single molecules
For a few years, it is possible to measure individual fluorescent photons from
a single dye molecule in solution. Big advances have been achieved since the
first successful detection of a molecule labeled with multiple fluorophores by
Hirschfeld in 1976.24 Several groups have contributed to the improvement
of single-molecule detection techniques with only a single fluorophore.25–34

Single-molecule methods became particularly popular in the last years, be-
cause they offer the chance to determine distributions of observables, like
in this case the distance between two dyes, rather than just ensemble av-
erages as obtained from conventional bulk measurements. Therefore, sub-
populations of distances can be resolved, which reveals exciting insights into
conformational substates and dynamics.11,20,35

Single molecule detection in fluorescence spectroscopy is achieved by using
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a confocal microscope setup to focus a laser beam to a very tiny excitation
volume of about one femtoliter. The dilution of the dye molecules is chosen
to maximize the number of events, where only one single dye passes through
the excitation volume. For a dye attached to a protein of e. g. 30 kD, the
mean passage time is in the millisecond range and is longer for larger pro-
teins, due to the larger diffusion coefficient. Typical dyes used in fluorescence
spectroscopy have a fluorescence lifetime of a few nanoseconds. Therefore,
during the passage of the dye-protein system through the laser focus, sev-
eral hundred measurements can be perfomed, yielding a few hundred arrival
times of the detected photons, all emitted by the same dye.

The small number of obtained photons is the main drawback from which
single-molecule experiments suffer in general, which implies low statistical
accuracy. The additional information on the distribution of the measured
quantity has thus to be paid for by an increase of the statistical uncertainty.
Therefore, methods have to be developed, which particularly account for
limited or noisy data from single-molecule experiments. In this context,
maximum likelihood approaches have been successfully applied to several
related problems,36–42 but not to the case at hand. In this work, we will
therefore use a maximum likelihood approach to address the problem of
distance determination from single-molecule FRET experiments.

Time-resolved distance
One example of particularly noisy data is the detection of photon arrival
times from single molecule fluorescence experiments.43–45 Fluorescence in-
tensity variations are obtained from these photon arrival times,23,46,47 which
allow to track distance changes R(t) between the two dyes, and hence to
monitor conformational motions of the studied biomolecule.46,47 If, how-
ever, one wants to achieve millisecond time-resolution,23,48,49 only very few
photons are available to determine the distance, therefore the statistical
noise is considerable.

In the conventional analysis, the required FRET intensities are computed
from photon counts in time windows.23,50,51 For a typical window size of
1 ms, however, the small number of only 10 . . . 50 photons per window23

implies considerable statistical uncertainty (’shot noise’52) and thus limits
the time resolution for R(t). Furthermore, the choice of the window size is
somewhat arbitrary and only guided by the requirement to trade off shot
noise and time resolution. Finally, the traditional method saliently assumes
a uniform a priori probability for the FRET intensities (rather than for the
distances). Therefore, and contrary to what one might intuitively assume
at first sight, the traditional method cannot be considered a model-free ap-
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proach, but introduces a non-physical bias to the distance measurement. In
Chap. 3, we thus develop a maximum-likelihood theory to reconstruct R(t)
from the photons recorded in single molecule FRET measurements, which
does not suffer from any unwanted bias and additionally yields rigorous error
bounds.

Time-resolved fluorescence anisotropy
In contrast to FRET, which probes the distance between two dyes, fluo-
rescence anisotropy experiments probe the rotational motion of one dye.
This is achieved by exciting the dye, or an ensemble of dyes, using a short
polarized laser pulse. If the dye has a certain mobility, it will emit the
photon in a possibly changed orientation after typically a few nanoseconds.
The changed polarization of the emitted light with respect to the exciting
light is detected in the experiment. Time-resolved fluorescence anisotropy
experiments therefore provide information on both, motional freedom and
dynamics of a fluorophore.53,54 This can be exploited to probe the local
environment of the dye, e, g. , a protein, which affects the rotational motion
of the dye.

Fluorescence anisotropy experiments are frequently used to study protein
conformational dynamics taking advantage of naturally occurring fluoro-
phores, like tryptophan residues 55–61 as well as artificially introduced flu-
orescent probes.41,59,62,63 Other biomolecular systems like membranes64–72

or DNA73–76 were also studied by fluorescence anisotropy.

Figure 1.1 C illustrates how the mobility of a dye is then restricted by the
presence of the protein. This restriction of the mobility will usually depend
on the structure and electrostatics of the protein surface to which the dye is
attached, as indicated by the two different cones. Unfortunately, analysis of
the obtained anisotropy is not straightforward. Therefore, models have been
proposed to facilitate the interpretation. The situation shown in Fig. 1.1 C
usually is described by the wobbling-in-a-cone model, which assumes that
the dye diffuses freely inside the depicted cone. Unfortunately, it is often
impossible to show if this simple model is actually justified. Furthermore
the dynamics of the dye, which is probed in the experiment, is affected
by the motion of the protein fragment to which it is attached. Therefore,
the anisotropy yields information on the local protein structure and con-
formational changes as well as on the local protein flexibility. The simple
wobbling-in-a-cone model, thus, has to be extended to also include the flex-
ibility of the protein, which is the subject of Chap. 2.
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MD-simulation as a model-free approach
Many results obtained by fluorescence anisotropy experiments depend on the
particular choice of the model used for their interpretation. A model-free
approach, therefore, would enable one to drop these assumptions and thus to
provide more accurate interpretations of the experiments at the molecular
level. The subject of Chaps. 6 and 7 is to check to what extent molecu-
lar dynamics (MD) simulations of the full anisotropy experiment can serve
that purpose. To this aim, we have carried out MD simulations of the com-
plete experimental system including a protein, a protein-attached dye and
an explicit solvent environment, which allow to extract the individual con-
tributions to the depolarization and to analyze the dye-protein interactions
in detail. From this simulation, the fluorescence anisotropy of the dye can
be calculated and compared to the experiment, which also allows to directly
validate the simulations.

In a similar spirit, but at faster time scales, MD simulations of tyrosine,77

tryptophan61,78–84 and phenylalanine85 containing proteins have been used
to predict the fluorescence anisotropy decay function. Simulations of free flu-
orophores in a solvent could reproduce temperature and solvent dependence
of the experimental fluorescence anisotropy.86,87 The rotational diffusion
of tryptophan in water has been simulated and its dependency on differ-
ent water models discussed.88,89 The anisotropy of a fluorescein bound to
the Fab fragment has been calculated from relatively short (174 ps) MD-
simulations.90

Here, and in contrast to the previous studies, the focus is on the interaction
and dynamic coupling between the protein fragment and the attached dye.
In addition, determination of dye conformation often is a key to the interpre-
tation of fluorescence spectroscopy experiments. We will also study to which
extent dye conformations can be obtained by MD simulations, which would
therefore provide valuable information complementary to the experiment.

Bacteriorhodopsin as a test system
The system studied here is the well-known membrane protein Bacterio-
rhodopsin (bR), which is considered a prototype for a large class of mem-
brane proteins, the G-protein coupled receptors (GPCR), since they share
the heptahelical transmembrane motif. The GPCRs are used by many cell
signaling pathways to convert external and internal stimuli into intracel-
lular responses. The dynamics and flexibility of surface exposed protein
segments of these GPCRs have been shown to play a central role in molec-
ular recognition and activation of the receptor.91 Investigation of the local
protein surface dynamics and flexibility can thus provide much insight into
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Figure 1.2: The membrane protein bacteriorhodopsin. The system studied in this
work comprises the two highlighted helices A and B of bacteriorhodopsin and a
fluorescent label, which is covalently attached to a cysteine in the loop connecting
both helices.

the mechanism of the binding of ligands to the protein surface. The impor-
tance of the surface loops for recognition and binding of ligands has been
suggested.92 Therefore, fluorescence anisotropy experiments have been car-
ried out by U. Alexiev (FU Berlin) and co-workers, to study the dynamics
of the surface loops bR.13 This study revealed temperature and pH depen-
dent conformational changes of the loop. Unfortunately, only the relative
mobility of the surface loops could be determined.

Our aim is to gain insight into these fluorescence anisotropy experiments
by providing an interpretation of the experiment in atomic detail. We will
particularly address the question, which processes influence the reorienta-
tional dynamics of the dye and thus contribute to the observed anisotropy
decay, and how to extract information on the protein conformational dy-
namics from the anisotropy decay curves. Finally, we ask if and to what
extent, vice versa, the attached dye affects the unperturbed loop dynamics.
This effect is commonly — and necessarily — assumed to be negligible. The
present study offers the chance to test this assumption.

Analysis of the correlation of the dye-protein dynamics is crucial
For studying the interactions between the dye and the protein, which lead
to the characteristic anisotropy of the dye, careful analysis of the correlation
of the dye-protein is crucial. The main focus is here on the question which
parts or modes of the motion of the protein affect the dye motion, and are
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x1

x2 Figure 1.3: Sketch of an ensemble of protein
structures (gray circles) in 3N -dimensional
configurational space, projected onto two di-
mensions, x1 and x2. Principal component
analyses yield a linear principal coordinate
(solid line). But often a curvilinear coordi-
nate (dashed curve) should be more suitable
to describe the shape of the ensemble.

therefore probed by the dye motion and, thus, by the experiment. The
question is, of course, how this mode should be extracted from the ensemble
of dye/protein structures obtained by the MD simulation.

To answer this question and following a statistical mechanics approach, a
dye/protein structure containing N atoms is described by a single point in
the 3N -dimensional configurational space. An ensemble of these structures
is then represented by a ’cloud’ of points in the, usually high-dimensional,
configurational space. Figure 1.3 illustrates a two-dimensional projection of
such a ’cloud’. Large — and usually collective — conformational motions or
structural rearrangements of the dye/protein system manifest themselves as
large extensions of the ensemble ’cloud’ in the configurational space. Those
’relevant’ or ’essential’ motions are to be distinguished from high-frequency
but small-amplitude thermal fluctuations, the details of which are usually
functionally irrelevant.

The widely used method to obtain a principal coordinate describing the
largest conformational motion (solid line in Fig. 1.3), is the principal compo-
nent analysis93,94 (PCA). The obtained principal component (or coordinate)
maximizes the variance of the ensemble projected onto this coordinate, i. e.,
it yields the direction of the largest extension of the ’cloud’ in the configu-
rational space. This principal coordinate has the convenient property, that
it correlates best with the given dataset (the ’cloud’), i. e., the motion along
this principal coordinate is optimally correlated with the largest motion of
the dye/protein system. Thus, to find the best correlated mode of motion,
the largest extension of the structural ensemble has to be determined.

However, the PCA is not optimal for this purpose in this case for two reasons.
First, the PCA yields a linear coordinate, whereas typical motions, especially
those of the dye, are clearly nonlinear, which requires the determination
of principal curvilinear coordinates (dashed line in Fig. 1.3). Second, the



14 1. INTRODUCTION

principal coordinate obtained by the PCA maximizes the correlation with
the ensemble in the complete configurational space, whereas we are here
interested in the correlation between two configurational subspaces (dye and
protein). Therefore a generalization of the PCA is required.

In Chap. 5, we develop a method, which particularly accounts for the non-
linearity of the conformational motions and which enables one to calculate
correlations between configurational subspaces.

This work is organized as follows: After an introduction to the theory of
FRET and fluorescence anisotropy in Chap. 2, the maximum likelihood
method to obtain distance trajectories from single-molecule FRET experi-
ments is presented (Chap. 3). Then, the method of MD-simulation is intro-
duced in Chap. 4. In Chap. 5 the method to calculate principal curvilinear
coordinates and correlations is presented. Chap. 6 describes simulations of
free dyes in different solvents to test the dye and solvent force fields, which
are used in Chap. 7, where the simulation of a protein-attached dye is pre-
sented. Finally, Chap. 8 summarizes the results of this work and gives an
outlook on future challenges.



”It is theory that decides what can be observed.”
– Albert Einstein

2

Theory of Fluorescence Anisotropy
and Fluorescence Resonance
Energy Transfer

In this chapter, we introduce the main concepts of fluorescence anisotropy
and fluorescence resonance energy transfer, on which this work is based.
First, the basic principle of fluorescence anisotropy experiments is presented,
then a simple model to describe the anisotropy of a protein-attached dye
is derived. It is then explained, how the fluorescence anisotropy can be
obtained from molecular dynamics simulations. Finally, the theoretical basis
of distance determination between two dyes by fluorescence resonance energy
transfer is presented.

2.1 Fluorescence Anisotropy

Fluorescence anisotropy, which was first described by Perrin,95 is based on
the observation that when a small fluorescent molecule is excited with plane-
polarized light, the emitted light is largely depolarized because molecules
tumble rapidly in solution during their fluorescence lifetime.

In a time-resolved fluorescence anisotropy experiment an ensemble of dyes
is excited using a polarized laser pulse, as shown in Fig. 2.1. Those dyes are
excited, that have their transition dipole moment oriented roughly parallel
to the exciting laser pulse, since the probability of excitation is proportional
to cos2 ω, where ω is the angle between the transition dipole moment of the

15



16 2. THEORY OF FLUORESCENCE ANISOTROPY AND FRET

Figure 2.1: Fluorescence anisotropy experiment. The dye is excited by a polarized
laser pulse. The dye then undergoes rotational diffusion during its fluorescence
lifetime. Finally, the dye emits a photon in a possibly changed orientation. Two
polarization detectors yield the parallel (I‖) and perpendicular (I⊥) part of the
emitted light, with respect to the incident polarization (I‖).

dye and the polarization of the incident light. This process is called pho-
toselection. During their fluorescence lifetime of typically few nanoseconds,
the dyes might undergo rotational diffusion. The dyes then emit the light
in a possibly changed orientation. The resulting rotation of the polarization
plane is detected by two polarization detectors, which yield two intensity
signals; I‖ for the parallel and I⊥ for the perpendicular part of the emitted
light (cf. Fig. 2.1).

The fluorescence anisotropy r(t) at time t after excitation of the fluorophore
is defined as

r(t) =
I‖(t)− I⊥(t)
I‖(t) + 2I⊥(t)

, (2.1)

where I‖(t) and I⊥(t) are the parallel and perpendicular fluorescence in-
tensities, respectively, with respect to the field vector of the exciting light
pulse. Assuming an ensemble of fluorophores with random isotropic initial
orientations, r(t) is given by96,97

r(t) =
2
5
〈P2 [µa(s) · µe(s + t)]〉s (2.2)

where µa(t) and µe(t) are normalized vectors oriented along the absorption
and emission dipole moments, respectively. Here, assuming a sufficiently
ergodic MD-trajectory, the ensemble average 〈 〉s will be approximated by
a time-average. P2(x) = 1

2(3x2 − 1) is the second-order Legendre polyno-
mial. In the simplest case of isotropic rotational diffusion of a fluorophore,
the anisotropy shows a mono-exponential decay to zero with a decay time φ,
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dye
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transition dipole dye cone
protein surface

dye cone
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Figure 2.2: Cone-in-a-cone model. The two upper figures indicate a motion, which
is due to the protein flexibility, superimposed to the standard wobbling-in-a-cone
model. The lower figure visualizes, how the protein flexibility is described in the
cone-in-a-cone model by the protein cone (gray), within which the dye cone (red)
freely diffuses.

the rotational correlation time, which directly depends on the rotational dif-
fusion coefficient. If the motional freedom of a dye is restricted, e. g., when
attached to a protein, the anisotropy will typically not decay to zero. A com-
mon model to describe such restricted rotational diffusion is the wobbling-
in-a-cone model,97 where the transition dipole is assumed to diffuse freely
inside a cone, as shown in the upper part of Fig. 2.2. In this case, the
anisotropy r(t) can be approximated by

r(t) = r0

[
(1−A∞)e−t/φ + A∞

]
, (2.3)

where r0 = 0.4 P2(cos λ), with λ being the angle between the absorption
and emission dipole moment. A∞ is a parameter describing the degree of
motional restriction and is therefore related to the (half-)cone angle θmax by

A∞ =
r∞
r0

=
[
1
2

cos θmax(1 + cos θmax)
]2

. (2.4)

Note that a large value of A∞ corresponds to a small cone angle, and for
isotropic diffusion, A∞ vanishes. Assuming an isotropic overall tumbling
motion of the whole dye-protein complex with a rotational correlation time
φG, the anisotropy of the protein-attached dye is then given by

r(t) = r0

[
(1−A∞)e−t/φ + A∞

]
e−t/φG . (2.5)

Furthermore, the local flexibility of the protein is an additional source of
reorientation of the dye. A simplified description, which also includes the
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protein flexibility is shown in Fig. 2.2. The dye wobbles in the dye-cone,
while the protein surface is changing its orientation and thereby reorienting
the dye-cone itself. If the local dye motion and the protein dynamics can be
assumed to be uncoupled, this effect can be accounted for by considering a
second decay factor,81

r(t) = r0

[
(1−A1)e−t/φ1 + A1

] [
(1−A2)e−t/φ2 + A2

]
e−t/φG , (2.6)

which can be interpreted as a wobbling in a cone, which itself wobbles in a
further cone (see lower part of Fig. 2.2), hence this model is referred to in
this text as the cone-in-a-cone model.

For the analysis of fluorescence anisotropy experiments, often a sum of ex-
ponentials is used,

r(t) =
∑

i

Bie−t/ϕi , (2.7)

which however cannot be intepreted directly as independent decay compo-
nents, that contribute to the anisotropy.

2.1.1 Fluorescence anisotropy from the simulation

The change in the orientation of the transition dipole moment µ(t) of the
dye leads to the decay of the anisotropy r(t), as described by Eq. 2.2. The
absorption dipole moment µa(t) in the coordinate frame of the dye is ob-
tained from the CIS calculation of the dye, as described in Sec. 4.3, and
is oriented along the long-axis of the three-ring system of the chromophore
shown as the red arrow in Fig. 4.2. A difference between the absorption
and emission dipole moment, described by the angle λ, leads to an over-
all reduction of the anisotropy r(t) by a factor P2(cosλ), where P2 is the
second-order Legendre polynom. The initial anisotropy at t=0 is therefore
r0 = 0.4 P2(cosλ). The measured initial anisotropy is 0.37, which corre-
sponds to an angle λ = 10o. Since we are only interested in the shape of
r(t) and not in the initial anisotropy r0, we set the transition dipole moment
µ(t) = µa(t) and plot r(t)/r0, which is thus normalized to 1. The orientation
of this transition dipole moment vector is calculated for each snapshot of
the MD trajectory from the instantaneous orientation of the dye yielding a
trajectory of the transition dipole vector µ(t). Then the anisotropy r(t) is
calculated using Eq. 2.2 from a time average of µ(t).



2.2. FLUORESCENCE RESONANCE ENERGY TRANSFER 19

Distance R
0

0.2

0.4

0.6

0.8

1

FR
E

T 
ef

fic
ie

nc
y 

E

R0

transition dipole moment

energy transfer

Donor 
Acceptor

A B

Figure 2.3: Fluorescence resonance energy transfer. (A) Excitation energy is trans-
ferred from the donor to the acceptor dye. (B) The transfer efficiency E depends
on the distance R between the two dyes. The efficiency is most sensitive to distance
changes near the Förster radius R0.

2.2 Fluorescence Resonance Energy Transfer

Fluorescence Resonance Energy Transfer (FRET) was first described by
Förster in 1948.16 It is a powerful tool to measure distances between two
dyes, a donor and an acceptor, in the range of 10–75 Å (see Fig. 2.3 A).20

The excitation energy is transferred from the donor to the acceptor via an
induced dipole–induced dipole interaction. The transfer efficiency E (see
Fig. 2.3 B) is given by

E =
1

1 + (R/R0)6
, (2.8)

where R is the distance between the dyes and R0 is the Förster radius,
which denotes the distance at which 50% of the energy is transferred to
the acceptor. Figure 2.3 B indicates, that the highest resolution of distance
determination is achieved, if the distance R is close to R0, since then the
transfer efficiency E is most sensitive to distance changes. R0 depends on
the particular properties of the dyes as well as on the relative orientation:

R6
0 = (8.79× 10−25)κ2n−4φdJda , (2.9)

where κ2 is the orientation factor (discussed in more detail below), n is the
refractive index of the medium between the two dyes, which is generally
assumed to be 1.4 for proteins,98 φd is the quantum yield of the donor,
which is defined as the ratio of the number of photons emitted to the num-
ber absorbed, and Jda represents the overlap integral of the donor emission
spectrum with the acceptor absorption spectrum, illustrated in Fig. 2.4 A
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Figure 2.4: (A) Overlap integral (gray area) of the donor emission spectrum with
the acceptor absorption spectrum. (B) Visualization of the angles used to define
the orientation factor κ2. d and a are the transition dipole moments of the donor
and acceptor, respectively, and rda is the normalized vector connecting the two
dyes.

and defined by

Jda =

∞∫
0

fD(λ)εA(λ)λ4dλ , (2.10)

where εA(λ) is the molar extinction coefficient of the acceptor and fD(λ) is
the fluorescence spectrum of the donor normalized on the wavelength scale

fD(λ) =
FDλ

∞∫
0

FDλ(λ)dλ

, (2.11)

where FDλ is the donor fluorescence per unit wavelength interval.98 All
parameters appearing in Eq. 2.9 can be determined experimentally except
for the orientation factor κ2, which is illustrated in Fig. 2.4 B and defined
by

κ2 = [d · a− 3 (d · rda)(a · rda)]
2 , (2.12)

where d and a are the transition dipole moments of the donor and acceptor,
respectively, and rda is a normalized vector connecting the two dyes. An
equivalent alternative definition is

κ2 = (cos θT − 3 cos θD cos θA)2 , (2.13)

where the angles θT , θD, and θA are defined in Fig. 2.4 B.

The transfer efficiency therefore depends on both the distance and the rela-
tive orientation. Thus, in general, the distance cannot be directly obtained
by measuring the transfer efficiency. To overcome this problem, usually, one
attaches the fluorescent dyes to the biomolecules via long flexible linkers.
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The highly flexible dyes then ensure an averaging of dye orientations, which
in this case leads to κ2=2/3. The transfer efficiency then depends only on
the donor–acceptor distance.

The FRET efficiency can be obtained by measuring either the fluorescence
intensities or the fluorescence lifetimes of the donor with and without the
acceptor, which is expressed by

E = 1− Ida

Id
= 1− τda

τd
, (2.14)

where Ida and Id are the measured intensities in the presence and absence
of the acceptor, respectively, and τda and τd are the fluorescence lifetimes in
the presence and absence of the acceptor.

In the case of single-molecule measurements, the determination of the FRET
efficiency becomes more complicated due to a limited number of detected
photons, which is the topic of the next chapter.
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”Wo viel Licht ist, ist starker Schatten.”
– Johann Wolfgang von Goethe

3

Maximum Likelihood Trajectories
from FRET experiments

Recently, time-resolved FRET experiments have matured to a level that al-
lows one to record arrival times of individual photons from single molecules.11,20,23,35,50,99–101

From the arrival times, fluorescence intensity variations, ID(t) and IA(t), are
obtained,23,46,47 which, using Eq. (2.8), allow one to track distance changes
R(t) between the two dyes, and hence to monitor conformational motions
of the studied biomolecule.46,47

In the conventional analysis, the required FRET intensities are computed
from photon counts in time windows23,50 (cf. also Ref. 51). For a typi-
cal window size of 1 ms, however, the small number of only 10 . . . 50 photons
per window23 implies considerable statistical uncertainty (’shot noise’52) and
thus limits the time resolution for R(t). Furthermore, the choice of the win-
dow size is somewhat arbitrary and only guided by the requirement to trade
off shot noise and time resolution. Finally, the traditional method saliently
assumes a uniform a priori probability for the FRET intensities (rather than
for the distances). Therefore, and contrary to what one might intuitively
assume at first sight, the traditional method cannot be considered a model-
free approach. Rather, because the distance R depends non-linearly on the
intensities, Eq. (2.8), the assumed uniform intensity distribution transforms
into a non-uniform distance distribution,

p(R) =

(
R
R0

)5

[
1 +

(
R
R0

)6
]2 . (3.1)

This distribution is centered at the Förster radius and has a half width of

23
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Protein

acceptor dye

donor dye

r(t)R(t)

Figure 3.1: Typical single molecule FRET experiment. A donor and an acceptor
dye molecule are attached to a protein that exhibits conformational dynamics. By
probing the inter-dye distance trajectory R(t), measurement of the FRET efficiency
provides time-resolved information on the dynamics of the studied protein (arrows).

about 1
3R0, implying preferred distances near R0; it describes the unjustified

bias introduced by the conventional analysis.

In many cases where only limited or noisy data are available, the maximum-
likelihood approach has been successfully applied.36–42 In this chapter, we
develop a maximum-likelihood theory to reconstruct R(t) from the photons
recorded in single molecule FRET measurements. In particular, we aim at
calculating the time-dependent probability distribution P (R, t|{tDi , tAi }) for
the distance R during a measurement of length ∆T , given that nD photons
from the donor dye have been recorded at times tDi , i = 1 . . . nD, and nA

acceptor photons at times tAi , i = 1 . . . nA. Finally, we will extract an
effective diffusion coefficient for the biomolecular motion from the FRET
data. As an example, the method will be applied to a recorded photon
burst from a FRET measurement of donor and acceptor dyes attached to
the flexible domains of the neuronal fusion protein syntaxin-1a.23

3.1 Theory

To that aim, in a first step we consider a statistical ensemble of distance
trajectories, {R(t)}, and compute for each full trajectory the conditional
probability P [R(t)|{tDi , tAi }] that R(t) is realized for the given photon regis-
tration times. Assuming Bayesian statistics, this probability is given by the
a priori probability P [R(t)] for each trajectory and the conditional proba-
bility that the nA +nD photons are observed at the measured time instances
for given trajectory,

P [R(t)|{tDi , tAi }] ∝ P [R(t)]P [{tDi , tAi }|R(t)] . (3.2)
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To evaluate these two distributions, the time interval ∆T is discretized into
N bins [τj−1, τj ], j = 1, . . . , N , and subsequently N → ∞ is considered.
The time discretization τ := τj−τj−1 = ∆T/N is always chosen fine enough
such that not more than one photon per interval [τj−1, τj ] is recorded.

For a discretized trajectory R1, . . . , RN , where Rj is the distance at time
1
2(τj−1 + τj), the conditional probability to observe the recorded photon
pattern E1, . . . , EN is

P [E1, . . . , EN |R1, . . . , RN ] = τnA+nD

N∏
j=1

wj , (3.3)

where the probabilities wj are chosen according to which of the three possible
events Ej [donor-photon is recorded (’D’), acceptor-photon is recorded (’A’),
or no photon is recorded (’0’)] occurs during [τj−1, τj ],

wj =


ID(Rj)[1− τIA(Rj)] for ’D’,
IA(Rj)[1− τID(Rj)] for ’A’,
[1− τID(Rj)][1− τIA(Rj)] for ’0’.

(3.4)

Here, IA(Rj) and ID(Rj) are specified from Eq. (2.8), and the required
(average) total intensity I0 = IA(t) + ID(t) = (nA + nD)/∆T is estimated
from the recorded number of photons. Note that for the nD +nA events ’D’
and ’A’, the wj denote probability densities, which have to be scaled by τ

to obtain the desired probabilities, hence the prefactor in Eq. (3.3).

For the a priori probability P [R(t)] ∝ limN→∞ P [R1, . . . , RN ], we assume
that R(t) results from a one-dimensional diffusion process with effective
diffusion coefficient D. This is realistic, e.g., for the overdamped millisec-
ond opening and closure domain motions of the solvated macromolecule at
hand.23 The discretized version is a random walk with transition probabili-
ties

gj+1|j ∝
1√

4πDτ
exp

[
−(Rj+1 −Rj)2

4Dτ

]
. (3.5)

Note that this implies that all possible distances are assigned equal a pri-
ori probabilities, which is reasonable if the energy landscape that gov-
erns the distance distribution is unknown. If there is additional informa-
tion on the energy landscape, this can be incorporated into gj+1|j in a
Smoluchowsky-type generalization. Note also that two or three dimensional
diffusion of the dyes can be described in a similar manner by an appropriate
effective energy landscape that accounts for the projection of the higher-
dimensional diffusion onto the one-dimensional distance coordinate R(t).
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Thus, P [R1, . . . , RN ] =
∏N

j=2 gj|j−1, and Eq. (3.2) reads

P [R1, . . . , RN |{tDi , tAi }] ∝ w1

N∏
j=2

gj|j−1wj . (3.6)

In a second step the probability distribution for the distance Rk at times
(τk−1 + τk)/2 is calculated by integration over all other distances,

P (Rk|{tDi , tAi }) ∝
∫
· · ·

∫
dR1 . . . dRk−1dRk+1 . . . dRNP [R1, . . . , RN |{tDi , tAi }] .

(3.7)
Using Eq. (3.6) and rearranging integrals, one obtains

P (Rk|{tDi , tAi }) ∝ FkwkBk (3.8)

with
Fk =

∫
dRk−1gk|k−1wk−1

∫
dRk−2 · · ·

∫
dR1g2|1w1,

Bk =
∫

dRk+1gk+1|kwk+1

∫
dRk+2 · · ·

∫
dRNgN |N−1wN .

(3.9)

The above two equations obey the recursion relations

Fk =
∫

dRk−1gk|k−1wk−1Fk−1 ,

Bk =
∫

dRk+1gk+1|kwk+1Bk+1 ,
(3.10)

which, in the continuum limit (i.e., τ → 0, τj → t, and rk → r), trans-
form into forward and backward Schrödinger-type equations that resemble
generalized diffusion equations for Fk → F (r, t) and Bk → B(r, t),

∂tF (R, t) = lim
τ→0

{
∂2

R [(1 + τWτ (R, t))F (R, t)]

+ [Wτ (R, t) + τ∂τWτ (R, t)]F (R, t)} ,

∂tB(R, t) = − lim
τ→0

{
∂2

R [(1 + τWτ (R, t))B(R, t)]

+ [Wτ (R, t) + τ∂τWτ (R, t)]B(R, t)} ,

 (3.11)

where, to ensure convergence, wk has been written in the form wk = 1 +
τWτ (R, t). For the derivation of Eqs. (3.11), the recursion relations Eqs. (3.10)
have been expanded in τ up to first order, using ∂τgk|k−1 = D∂2

Rk−1
gk|k−1 =

D∂2
Rk

gk|k−1, and partial integration in R, noting that F (R, t) and B(R, t)
as well as their derivatives with respect to R vanish for R → ±∞.

Solving Eqs. (3.11) yields, after normalization, the desired probability dis-
tribution to find the distance R at time t,

P (R, t|{tDi , tAi }) ∝ F (R, t)[1 + τWτ (R, t)]B(R, t) . (3.12)
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By combining the three definitions for wj , Eq. (3.4), into one expression us-
ing a Gaussian limit representation for the δ-function, δ(t−t′) = limτ→0 hτ (t−
t′), with

hτ (t− t′) =
1√
2πτ

exp
[
−(t− t′)2

2τ2

]
, (3.13)

and neglecting higher orders of τ , one obtains

Wτ (R, t) = [ID(R)−1]
nD∑
j=1

hτ (t−tDj )+[IA(R)−1]
nA∑
j=1

hτ (t−tAj )−I0 . (3.14)

With this expression, Eqs. (3.11) reads

∂tF (R, t) = lim
τ→0


∫

dR′g(R−R′, τ)∂2
R′

F (R′, t)

1+τ [ID(R′)−1]
nD∑
j=1

hτ (t−tDj )+

τ [IA(R′)−1]
nA∑
j=1

hτ (t−tAj )

+

∫
dR′g(R−R′, τ)F (R′, t)

ID(R′)−1
τ2

nD∑
j=1

(t−tDj )2hτ (t−tDj )+

IA(R′)−1
τ2

nA∑
j=1

(t−tAj )2hτ (t−tAj )− I0

 . (3.15)

A similar expression is obtained for B(r, t). For times t, for which no photon
arrives, Eq. (3.15) simplifies to

∂tF (R, t) = D∂2
RF (r, t)− I0F (R, t) ,

∂tB(R, t) = −D∂2
RB(R, t) + I0B(R, t) ,

(3.16)

with solutions that propagate in time according to

F (R, t) = e−I0(t−t′)

∫
dR′F (R′, t′) exp

[
− (R−R′)2

4D(t− t′)

]
B(R, t) = eI0(t′−t)

∫
dR′B(R′, t′) exp

[
− (R−R′)2

4D(t′ − t)

] (3.17)

for t > t′ and t < t′, respectively. To also include the photon arrival times
tj , note that

lim
τ→0

(t− tj)2hτ (t− tj)/τ2 = lim
τ→0

hτ (t− tj) + lim
τ→0

τ2∂2
t hτ (t− tj) = δ(t− tj) ,

(3.18)
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where the second term is ∝ ∂2
t δ(t−tj) and is dropped, because

∫ ε
−ε δ′′(x)dx =

0. This gives rise to additive singularities in Eqs. (3.16) of the form F (R, t)[(ID(R)−
1)]δ(t − tj), due to which F (R, t) and B(R, t) exhibit discontinuities at all
tj ,

lim
t→(tDj )+

F (R, t) = ID(R) lim
t→(tDj )−

F (R, t),

lim
t→(tAj )+

R(R, t) = IA(R) lim
t→(tAj )−

F (R, t),

lim
t→(tDj )−

B(R, t) = ID(R) lim
t→(tDj )+

B(R, t),

lim
t→(tAj )−

B(R, t) = IA(R) lim
t→(tAj )+

B(R, t).


(3.19)

Eqs. (3.17) and (3.19) are the main result of this chapter. Starting with the
boundary condition F (R, 0) = 1, Eqs. (3.17) and (3.19), when alternatingly
applied, propagate F (R, t) in time from one photon arrival to the next.
Similarly, starting from B(R,∆T ) = 1, B(R, t) is propagated in reverse
time direction, which, by using Eq. (3.12), yields P (R, t|{tDi , tAi }) for all
times t. Note that, from Eqs. (3.19), the discontinuities in F (R, t) and
B(R, t) cancel in Eq. (3.12), such that P (R, t|{tDi , tAi }) is non-differentiable,
but continuous also at t = tj .

3.2 Results and Discussion

As an example, Fig. 3.2(b-d) shows the application of our theory to the 230
photon arrival times (wedges) from a 10ms single molecule photon burst
recorded in a FRET measurement, for which donor and acceptor dyes have
been covalently linked to the flexible domains of the neuronal fusion protein
syntaxin-1a,23 as sketched in Fig. 3.1. Three different diffusion coefficients
D have been chosen. Each of the three plots shows, gray-shaded, the time
dependent distance distribution P (R, t|{tDi , tAi }), together with the average
distance (bold) and 1σ intervals (dashed). As expected from Eq. (2.8),
larger distances are obtained for higher donor and lower acceptor photon
intensities. For comparison, Fig. 3.2(a) shows the traditional method, which
directly uses Eq. (2.8) with intensities and error bars evaluated in successive
time bins,102 here of 0.5 ms width.

Apparently, the choice of D is critical. For small values, the distance can
change only slowly. Therefore, it does not fully reflect the significant inten-
sity fluctuations encoded in the recorded photon arrival times, and rather
yields smooth trajectories with small amplitude. For very small values (be-
low 0.01 × 10−14 m2/s), the distance distribution becomes time indepen-
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Figure 3.2: (a) Intensity-based calculation of donor/acceptor distances R(t) from
a set of 230 photon arrival times (wedges) with R0 = 6.5 nm23 using Eq. (2.8);
intensities are obtained from 0.5 ms bins. (b-d) Time dependent distance probability
distributions P (R, t|{tDi , tAi }) (gray-shaded) calculated from the same set for three
different diffusion coefficients D. Also shown are average distance trajectories (bold)
and 1σ intervals (dashed). The inset shows the (normalized) likelihood P (D) as a
function of D; three arrows denote the three chosen values for D.
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dent and approaches the distance given by the average intensities (data not
shown). Increasing D entails fluctuations of correspondingly increased fre-
quencies. These fluctuations arise from both intensity fluctuations due to
actual distance variations and (undesirable) probability fluctuations due to
the broadening of F (R, t) and B(R, t) between subsequent photons. As can
be seen from Eqs. (3.17), the latter become relevant for 4D > I0σ

2, where σ

is the width of P (R, t|{tDi , tAi }). The lower panel in Fig. 3.2 shows an exam-
ple for which, due to the large D chosen, the data are apparently over-fitted.
In between these two limiting cases, an optimal value for D is expected to
provide the best description of the data [Fig. 3.2(c)].

That optimal value was determined by calculating the agreement between
the obtained time-dependent distance distribution and the measured photon
arrival times as a function of the chosen D. Such type of cross-validation
underlies, e.g., the free R value used to assess the accuracy of macromolecular
X-ray structures.103 In a similar spirit, one photon k was excluded from the
FRET data, and a new distance distribution

Pk(Rk) ≡ Pk(Rk, tk|{tDi , tAi , i 6= k}) (3.20)

was obtained for the arrival time tk of the excluded photon. Using this
distribution, the likelihood Pk(D) for the actually observed photon k was
determined for varying D,

Pk(D) ∝
∫ ∞

0
dRkPk(Rk)ID/A(Rk) , (3.21)

with ID/A chosen according to the type of the excluded photon. Assuming
that for different photons k chosen to be omitted, the obtained likelihoods
Pk(D) are statistically independent, one obtains from the maximum of the
(normalized) joint likelihoods P (D) ∝

∏
k Pk(D) (inset of Fig. 3.2) a diffu-

sion coefficient D = 0.2 × 10−14 m2/s that describes the measured photon
arrival times best. In the figure, no scale for P (D) is given to avoid its
erroneous interpretation as the (absolute) probability that D is the correct
diffusion constant.

Clearly, the fewer photons are available, the less information on R(t) can be
obtained. As an extreme case, Fig. 3.3(a) shows the result of our analysis
with only every fourth photon from the original data used. As expected,
the distance distribution becomes broader, and only some of the features
seen in Fig. 3.2 remain. Yet, despite the very small number of photons used
(58), our analysis still reveals a statistically significant distance fluctuation
at the 1σ level. This finding suggests that a correspondingly improved time
resolution can be achieved by our method.
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Figure 3.3: (a) Distance distribution for a reduced set of 58 photons (wedges)
and D = 0.2 × 10−14 m2/s; notation as in Fig. 3.2. (b) Re-calculated distance
distribution (gray-shaded) for a hypothetical set of 230 photons (wedges) that has
been calculated from the original average trajectory in Fig. 3.2(c), also shown in
bold here; D = 0.2 × 10−14 m2/s. The dashed lines denote the 1σ interval for the
re-calculated distance distribution.

To check whether the width of the calculated distance distribution correctly
describes the actual statistical uncertainty, we have finally used the average
trajectory calculated from the original data [thick line in Fig. 3.2(c)] to
create a new (hypothetical) set of 230 random photon arrival times obeying
Eq. (2.8). Thus, for these data, the underlying trajectory is known. From
that set, a new distance distribution was re-calculated and compared with
the correct trajectory [Fig. 3.3(b)]. As can be seen, most of the correct
trajectory (bold) stays within the 1σ-range of the re-calculated distance
distribution, thus showing the reliability of our method.

We have developed a theory that enables reconstruction of nanometer dis-
tance trajectories from single molecule single photon FRET recordings. In
contrast to the commonly used method of window averaging, the full single
photon information is used, and rigorous error bounds are obtained. Fur-
thermore, the method is expected to be robust with respect to variation of
the excitation intensity I0, e.g., due to diffusion of the particle through the
laser focus. In addition, our approach allows to extract an effective diffusion
constant from the FRET recordings and thus avoids the usual ad hoc choice
of an averaging interval for the determination of intensities. Finally, the
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likelihood approach avoids the severe bias of usual distance determination
due to the salient assumption of uniform a priori probabilities for the FRET
intensities, which implies, via Eq. (2.8), preferred distances near R0. A soft-
ware package that implements this theory (’FRETtrace’) can be downloaded
from the web-page of the author.



”Force is not a remedy.”
– John Bright

4

Molecular Dynamics Simulation
Method

The MD-method has been extensively described in the literature; a good
review gives Ref.104 In this chapter the basic principle is sketched, followed
by a description of the used algorithms to improve the efficiency of the
calculations, to treat the system boundaries, and couplings to a heat and a
pressure bath. Finally, the parametrization of the Alexa488 dye, which will
be used later in this work, is described.

4.1 Principle

The goal of molecular dynamics (MD) simulations is to describe the atomic
motions of molecular systems containing about 103 to 106 interacting atoms.
The exact treatment of this problem requires the solution of the time-
dependent Schrödinger equation. However, this is even for small systems
of more than ten atoms computationally too expensive. To be able to de-
scribe larger systems, like a protein in its solvent environment, basically
three approximations are necessary.

The first approximation is based on the fact, that electrons move much
faster than nuclei, due to their much smaller masses. Therefore, the elec-
tronic degrees of freedom can be separated from the degrees of freedom of
the nuclei, which is called Born-Oppenheimer approximation.105,106 The
resulting time-independent Schrödinger equation for the electrons can then
be solved for fixed nuclei positions. This yields an effective potential, which

33
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Figure 4.1: Energy terms, which constitute a molecular force field for use in molecu-
lar dynamics simulations: (A) Bond-stretching and (B) bond-angle vibrations, (C)
out-of-plane motions, (D) dihedral angles, (E) van der Waals, and (F) Coulomb
interactions. The interatomic interactions are illustrated on the left, the corre-
sponding energy terms are shown in the middle, and plotted on the right.

depends only on the nuclei positions, and which describes the influence of
the electron dynamics on the nuclei motion.

In the second step, this effective potential is approximated by a semi-empirical
molecular force field, which comprises a large number of functionally simple
energy terms. These energy terms are shown in Fig. 4.1 and include bond-
stretching (A), bond-angle (B), out-of-plane (C), and dihedral-angle (D)
potentials, which approximately describe the properties of covalent bonds,
and which therefore are called bonded interactions. Furthermore, the long-
range non-bonded interactions are also considered: The Lennard-Jones107

potential (E) models the Pauli repulsion, which prevents atoms from pen-
etrating each other, and induced dipole interactions, collectively termed
van der Waals interactions. The electrostatic interaction between charged
atoms is described by the Coulomb potential (F). The parameters used in
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such force fields, like, e. g., equilibrium bond-lengths b0, force constants Kb,
partial charges, and van der Waals radii, are obtained from experiments
as well as from quantum-chemical calculations in a self-consistent way.108

The parameterization is done for small and simple molecules regarded as
the building blocks of large molecules; in the case of proteins the param-
eters are optimized for individual amino acids and short peptides. Most
experimental data used for force field development come from x-ray crys-
tallography, IR- and NMR-spectroscopy.104 In this way, many different
force fields has been developed (CHARMM,109 GROMOS,110 AMBER,111

MM3,112 CFF,113 SPASIBA,114 etc. ) for the description of different classes
of molecules, like, e. g., proteins, DNA, or carbohydrates. In the end, the
usage of such empirical force fields is justified by its ability to reproduce and
to predict experimental results.115

In the third approximation the dynamics of the nuclei is described classi-
cally instead of solving the time-dependent Schrödinger-equation. All atoms
are thus described as point masses, which move in the given force field
F(r1, . . . , rN ) according to the Newtonian equations of motion

mi
d2ri(t)

dt2
= Fi(r1, . . . , rN ) = −∇iV (r1, . . . , rN ) , (4.1)

where mi and ri is the mass and the position of the i-th nucleus (i =
1, . . . , N), and Fi the force on atom i and N the number of atoms. V (r1, . . . , rN )
denotes the used force field.

The classical description is appropriate, if the thermal energy is distinctly
larger than the energy gaps between neighbored quantum states of the sys-
tem. For the harmonic oscillator, as an example, this requirement means
that if kB T � ∆E = hf (kB: Boltzmann constant; T : temperature; ∆E:
energy difference of neighbored states; h: Planck constant; f : vibrational
frequency) the classical description is sufficient. Motions at a characteristic
timescale of a few picoseconds and longer, thus, allow to be described classi-
cally. However, the fast motions in molecular systems, like bond-stretching
vibrations with a typical frequency of f ≈ 30 − 60ps−1, cannot be accu-
rately treated by classical mechanics. Furthermore, processes occuring at
low temperatures also cannot be adequately described, since the quantum
mechanical character of the low-energy nuclei motions becomes more pro-
nounced.

The conformational motions of interest in this work take place on picosecond
or longer timescales and therefore can be described well within classical
mechanics.
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4.2 Computing Trajectories

The simulations done in this work were performed using the GROMACS
software package.116 The algorithms and methods used by this software will
be introduced in the following.

4.2.1 Integration Method

A prerequisite for describing the dynamics of a molecule by means of the
Newtonian equations of motion is a proper initial structure and initial atomic
velocities. Structures with an atomic resolution are usually obtained from
x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy.
Protein structures can be found in the Brookhaven Protein Data Bank,117,118

which contain up to now more than 26 000 structures. Small simple molecules
can be build using molecule editors.119–122

Based on these initial conditions, Newton’s equations of motion are numer-
ically solved iteratively in small time steps ∆t. In the present work, the
leap-frog algorithm123 was employed. The advantage of this method is its
numerical stability and, in contrast to the Runge-Kutta method,124 that the
expensive force calculation is done only once per integration step.

The algorithm calculates positions r at time t and velocities v at time t−∆t
2 ,

v(t +
∆t

2
) = v(t− ∆t

2
) +

F(t)
m

∆t (4.2)

r(t + ∆t) = r(t) + v(t +
∆t

2
)∆t . (4.3)

The time step ∆t has to be much smaller than the period of the fastest
vibration in the system, which is typically the bond-stretching motion of
the hydrogen atoms of 10–20 fs. Therefore, the time step is usually chosen
to 1 fs. Larger time steps are possible by using constraints, which will be
described in Sec. 4.2.5.

4.2.2 Solvent Environment

Solvent molecules strongly affect the properties of proteins and polymers.125–128

In this work, the solvent molecules are explicitly described in the simula-
tions, although the computation of the solvent dynamics is very expensive;
it makes about 80–90% of the computation time. Thus, many models have
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been proposed to treat the solvent effects implicitly.129–135 In the following
we will discuss why, in the present work, the explicit description of solvent
molecules is indispensable.

Solvent molecules influence the properties of the solute in many different
ways. First, polar solvent molecules force the solute to minimize its hy-
drophobic surface, which may strongly affect the conformation of the solute.
This hydrophobic effect can be approximated in implicit solvent models by in-
troducing a hydrophobic surface dependent energy term to the force field.136

Furthermore, the dielectric shielding of molecular charges due to the polariz-
ability of the solvent can be roughly described by using a dielectric coefficient
εr > 1 (εwater ≈ 80 and εmethanol ≈ 30).

Another, much more computationally expensive, method to describe the di-
electric shielding is to solve the linearized Poisson-Boltzmann equation at
each point of the simulation system.127,130,137 Besides these electrostatic
effects, the dynamics of the solute is influenced by the viscosity of the sol-
vent. Langevin dynamics138,139 principally allows to describe this effect by
introducing noise and friction forces.140–142

However, the translational and rotational diffusion depends on the particular
interactions between the solvent and the solute. Since in this work the
rotational diffusion of a dye molecule attached to a protein shall be studied in
detail, the dye-solvent interactions must be described as accurate as possible.
Moreover, the solvent properties in the vicinity of a protein, like, e. g., the
viscosity, might significantly differ from its bulk properties.143–145 Therefore,
the usage of explicit solvent molecules in this work is necessary.

4.2.3 System Boundaries

In molecular dynamics simulations the studied system has to be many or-
ders of magnitude smaller than in the experiment to be computationally
tractable. To minimize artefacts from the system boundaries, which be-
come important for such small system sizes, appropriate boundary condi-
tions have to be chosen. Different solutions have been suggested to prevent
the solvent molecules from evaporation, to counterbalance the arising high
pressure due to the surface tension and to avoid preferred orientations of
the solvent molecules on the surface.146–150

In the present work, periodic boundaries overcome any surface artefacts.
For periodic boundaries, the simulation volume represents a space-filling
box which is surrounded by translated copies of itself. Possible shapes of
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the unit cell can be a cuboid, a dodecahedron, or a truncated octahedron. In
a box with periodic boundaries, a molecule that leaves the box on one side,
immediately reenters the box on the opposite side. In this way, the simula-
tion system does not have any surface. However, artefacts may arise from
the artificial periodicity, since the molecules also interact with their periodic
images due to the long-range electrostatic interactions. These artefacts are
minimized by increasing the box size.

In the present work, a rectangular box was chosen for all simulations. The
choice of the box size is a trade off between minimization of artefacts from
the periodic boundaries and minimization of the computational effort.

4.2.4 Temperature and Pressure Coupling

The molecular dynamics calculated by solving the Newtonian equations of
motion conserves the total energy of the system (NVE ensemble). Whereas
in real systems a molecular subsystem of the size studied in the simula-
tion constantly exchanges energy with its surrounding. To be more close
to reality, this energy exchange should therefore be introduced to the sim-
ulation. In addition, numerically solving the Newtonian equations leads to
discretization and rounding errors, which introduces numerical noise, i. e.,
random forces, which heat up the system.

It is thus necessary to control the temperature T of the system, which should
remain close to a given target temperature T0. Several methods have been
proposed for this purpose.151–153

In this work, the Berendsen thermostat153 was used, where the coupling to
a heat bath is achieved by correcting the actual temperature according to

dT

dt
=

T0 − T

τ
, (4.4)

which leads to a strongly damped exponential relaxation of the temperature
towards the target temperature T0 with a time constant τ . The change of
the temperature is achieved by rescaling the velocities of each atom every
step with a time-dependent factor λ given by

λ =

√
1 +

∆t

τT

(
T0

T
− 1

)
. (4.5)

The time constant τ depends on the parameter τT

τ =
2CV τT

NfkB
, (4.6)
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where Nf denotes the total number of degrees of freedom, CV the heat
capacity, and kB Boltzmann’s constant. In all explicit solvent simulations
presented in this work, the target temperature T0 and the coupling time
constant τ were chosen to 300 K and 0.1 ps, respectively.

In addition to the heat bath coupling, real biological systems are subjected to
a constant pressure of usually 1 atm. Therefore, in the simulations, isobaric
ensembles were generated by using a similar approach as for the temperature
coupling. Now the pressure is corrected in each step (Berendsen barostat153)
according to

dP

dt
=

P0 − P

τp
. (4.7)

The pressure thus relaxes exponentially to the target pressure P0, which was
chosen to 1 atm in all simulations. The pressure correction is achieved by
scaling the coordinates by a factor µ, given by

µ = 1− ∆t

3τp
κ(P0 − P ) , (4.8)

where κ is the isothermal compressibility of the system.

4.2.5 Improving efficiency

The calculation of a trajectory by molecular dynamics simulations is compu-
tationally very expensive. Especially if long-range pair interactions shall be
calculated exactly, since then the computational effort would scale quadrat-
ically with the number of atoms. For the calculation of a 20 ns trajectory
of 50 000 atoms including all interactions exactly, about 6 · 1016 floating
point operations would be necessary. Assuming a typical (actual) computing
power of 1.0 Gflops/s (floating point operations per second), the calculation
would take about 40 years. In the following, several methods to improve
the efficiency of the calculation, which are implemented in the used simula-
tion software GROMACS, are described. All these methods, which include
efficient treatment of long-range interactions, enlarging the time step, paral-
lelization, and the use of compound atoms, allow the abovementioned 20 ns
trajectory to be calculated in only a few months.

Efficient calculation of non-bonded forces
The most time consuming part of MD simulations is the calculation of elec-
trostatic and van der Waals interactions (cf. Fig. 4.1), since all atomic pair
interactions have to be considered; the computation thus scales as O(N2)
with the number N of atoms.
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A simple method to improve the efficiency is to introduce a cut-off func-
tion,109 where only interactions of atoms that are closer than a specified
cut-off distance (typically 10–12 Å) are considered. This method reduces
the cost to O(N). This is a good approximation for the short-range van
der Waals potential, whereas for the long-range electrostatic potential the
neglect of interactions with distant atoms has been shown to cause artefacts
in the structure and dynamics of proteins.154–160

To avoid such artefacts, we used the Ewald method,161 which was first intro-
duced to describe long-range interactions of the periodic images in crystals
and which is therefore particularly useful to describe systems with periodic
boundaries.

Here the slowly converging sum of the electrostatic potential

Vq =
∑
{n}

∑
αβ

qαqβ

4πε0εrrαβ,n
(4.9)

= Vdir + Vrec + Vo , (4.10)

where n is the box-vector, is replaced by two fast converging sums Vdir in
the direct and Vrec in the reciprocal space and a constant term Vo. In this
way, relatively small cut-off distances of about 1 nm in direct space and 10
wavenumbers in reciprocal space can be chosen. The computational cost of
the Ewald summation still scales with O(N2). An improved extension of the
Ewald summation is the particle-mesh Ewald (PME)162,163 method, which
is implemented in GROMACS. It uses the fast Fourier transform (FFT) for
the calculation of the reciprocal sum and was used in all explicit solvent
simulations described in the present work.

Increasing the integration timestep
As has already been discussed, the maximum integration time step is limited
by the smallest oscillation period found in the simulated system, which is
typically due to bond-stretching vibrations. However, these bond-stretching
vibrations are in the quantum-mechanical ground state and are therefore
better represented by a constraint than by a harmonic potential. All bond
lengths are thus constrained using the LINCS algorithm,164 which, after an
unconstrained integration step, rescales the bond lengths to their equilibrium
lengths. The next fastest motions that remain, are the bond-angle vibrations
with a typical period of about 20 fs. Thus, the integration time step can be
increased to 2 fs, which fortunately leads to both a more correct description
of the dynamics and an improved efficiency.
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Parallelization
The computation time of an MD simulation can be further decreased by per-
forming the calculation on several processors in parallel. This is achieved
by distributing the atoms among the processors such that the data trans-
fer, which is mainly due to the long-range interactions, is minimized, while
on the other hand, the workload of each processor is maximized. In this
work, all simulations were done using the two processors of double processor
PC’s, which have a very high data transfer rate due to the shared memory
architecture.

Compound atoms
Since the interactions of nonpolar hydrogen atoms with its surrounding is
only weak, it has been shown, that the implicit description of these hydrogen
atoms by so called compound atoms does not significantly affect the physical
properties of the system.165 Therefore, the hydrogen atom and the heavy
atom, to which it is bound, is merged to a compound atom with modified
partial charges and van der Waals parameters. In this work, e. g., the methyl
group (CH3) in the methanol solvent is described by such a compound atom,
which reduces the total system size by a factor of two. In contrast, the
polar hydrogens interact strongly with its surrounding, in particular via the
important hydrogen bonds, and are therefore described explicitly.

4.2.6 Minimization and Equilibration

The aim of minimization and equilibration is to generate a state of the
simulation system with those atomic positions and velocities, which are close
to the equilibrium at a specified temperature and where the energy is equally
distributed among all degrees of freedom.

Molecular dynamics simulations usually uses initial protein structures de-
termined by x-ray crystallography or NMR spectroscopy. The experimental
structures have a limited resolution of typically 1.0 to 3.0 Å. Thus, these
structures often suffer from deformations of bonds or bond-angles or strong
van der Waals overlaps. A simulation starting from such a slightly per-
turbed structure, would quickly destabilize the whole system. To avoid this
artefact, all systems were energy minimized prior to starting the dynam-
ics simulation, using a steepest descent method to reach the nearest local
minimum on the energy surface and thus relaxing all deformations.

During the subsequent equilibration, the system is coupled to a heat bath,
as described in Sec. 4.2.4, which should bring the system to the desired
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temperature where it further relaxes. If the system reaches an equilibrium
state is monitored by plotting relevant observables, like the root mean square
deviation, as described in the next section. If the drift of such relevant
observables is absent or small the system is considered to be equilibrated.

4.2.7 Relevant observables

To decide, whether a simulation system is equilibrated, besides the individ-
ual energy terms, often the root mean square deviation (rmsd) of the actual
structure to a reference structure is considered

rmsd = min
{T,R}

√√√√ 1
N

N∑
i=1

[
(xi − x0

i )2 + (yi − y0
i )2 + (zi − z0

i )2
]

, (4.11)

where xi, yi, zi and x0
i , y

0
i , z

0
i are the cartesian coordinates of atom i of the

actual and the reference structure, respectively, and {T,R} is the set of all
translations and rotations.

The mean square fluctuation (rmsf) of an atom i during the simulation time
T = M ·∆t

rmsfi = min
{T,R}

√√√√ 1
M

M∑
j=1

[(xi(tj)− x̄i)2 + (yi(tj)− ȳi)2 + (zi(tj)− z̄i)2] ,

(4.12)
gives information on the local flexibility of a protein (x̄i, ȳi, z̄i are the mean
positions of atom i during the time T ).

4.3 Parameterization of the Alexa488 dye

In this work, MD simulations of the fluorescent dye Alexa488 (C5 maleimide,
Molecular Probes) were carried out. Since there are no force field parameters
available for this molecule, they had to be developed, which is described in
the following. Because the motional restriction of the dye due to the protein
is mainly determined by steric hindrances and electrostatic interactions, we
paid particular attention to those force field parameters which sensitively
affect these quantities, i. e., van der Waals parameters and partial charges.
The van der Waals parameters are almost independent of the chemical en-
vironment and are thus taken for corresponding atom types from the Gro-
macs force field. The aliphatic chain, the linker region of the dye, is already
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Figure 4.2: Chemical structure of the fluorescent label Alexa488. The red arrow
indicates the transition dipole moment.

parametrized in the Gromacs force field, therefore all these already exist-
ing force field parameters were used for the linker. In the following, thus
only the headgroup of the dye is considered, where the linker is replaced
by a methyl group approximately retaining the chemical environment of the
headgroup. For the quantum chemical calculation of the partial charges it
is important to note, that the experiment observes the dye during the time
between absorption and emission, therefore the dye parameters for the first
excited state have to be determined. The most accurate method for the
calculation of partial charges uses density functional theory (DFT), which
is however only able to describe the electronic ground state. We therefore
decided for the following strategy: Firstly, the ground state of this molecule
was calculated using density functional theory (DFT) implemented in the
DMol program166 with the DNP basis set and the BLYP functional. Then
both, the ground and first excited state were calculated using CIS/STO-3G
with the GAUSSIAN program (ab-initio)167 and also PM3 (semi-empirical)
with the program MOPAC.168 Atomic charges from all calculations were
obtained by fitting to the electrostatic potential (ESP).169 The differences
of the charges between the ground and first excited state obtained from the
ab-initio and semi-empirical calculations were averaged and added to the
charges from the DFT calculation. To assure compatibility to the protein
force field, all 20 amino acids were calculated using the same DFT method
as for the dye and compared to the partial charges assigned to the amino
acids in the Gromacs force field. From that, a mean scaling factor of 0.7
was obtained, which was then used to scale the dye charges. Subsequently,
the charges were shifted to retain the correct total charge of 2e. To ac-
count for the symmetry of the dye, the charges were finally symmetrized.
The geometry obtained from the ab-initio calculation was used to derive the
equilibrium force field parameters of the bond lengths and angles. The force
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constants describing the chemical bonds in the headgroup of the dye, which
are rather responsible for the molecular vibrations than for the interaction
with the protein, were defined according to chemically similar groups from
the Gromacs force field. The Alexa488 dye is only available as a 5,6-isomere
(cf. Fig. 4.2); we only used the 5-isomere in the simulation, assuming only
minor dependence of the dye dynamics on the choice of the isomere.



”My curves are not crazy.”
– Henri Matisse

5

Principal Curvilinear Coordinates
and Correlations

In this chapter we develop a method to calculate principal curvilinear co-
ordinates of molecular ensembles. This method will also allow, in the case
of the protein-attached dye, to determine the mode of the protein motion,
that is mostly correlated with the motion of the dye. The results of this
calculation are shown in Chap. 7.

Structural ensembles of biomolecules obtained by molecular dynamics (MD)
simulations or Monte-Carlo calculations generally comprise a large amount
of data with a complex high-dimensional structure. Their efficient and ad-
equate analysis is a prerequisite for gaining physical insight into dynamics,
thermodynamics, and biological function from the ensemble. For this pur-
pose, within the framework of statistical mechanics, the structure of an
N -atomic biomolecule, e. g., a protein, is often described by a single point in
the 3N -dimensional configurational space. Typical ensembles thus contain
103 − 105 structures in a 102 − 104 dimensional configurational space.

Large extensions of the ensemble ’cloud’ (see Fig. 5.1 A) in this configu-
rational space represent large conformational motions. The largest confor-
mational motion can be described by a principal coordinate, which is the
degree of freedom along which the ensemble has the largest extension.

The established and widely used approach is the principal component anal-
ysis93,94 (PCA) to obtain the principal coordinate in the configurational
space. To this end, the covariance matrix C =

〈
(x− x̄)(x− x̄)T

〉
of carte-

sian fluctuations of the system is calculated from the ensemble of protein
structures x ∈ IR3N and subsequently diagonalized. The obtained eigenval-

45
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ues describe the variances of the ensemble along the corresponding eigen-
vectors. The eigenvectors with large eigenvalues thus describe the essential
motions, i. e., those which contribute most to the atomic fluctuations, and
in this sense are principal coordinates of the protein. It has been shown
that for a protein usually around 1% of the eigenvectors account for 90% of
the total root mean square fluctuations of the protein,94 which means the
dimension of the ensemble can be drastically reduced without loosing the
important structural features of the protein.

In the following, we focus only on a single principal coordinate, i. e., on
the first eigenvector which corresponds to the largest eigenvalue and which
maximizes the variance of the ensemble along this eigenvector. Furthermore,
this eigenvector has the property that it also minimizes its root mean square
deviation from the ensemble. Therefore, the motion along this (linear) prin-
cipal coordinate is best correlated with the ensemble, with respect to all
other possible linear coordinates.

It is remarkable that this approach is quite successful despite the fact that
the essential coordinates obtained by PCA are linear. However, typical
conformational motions in proteins are often more complex and frequently
involve rotations of domains around hinge axes or dihedral angles of the
protein backbone, which suggests that curvilinear coordinates, or ’principal
rotations’ should be more suitable to describe complex protein motions by
as few degrees of freedom as possible. Especially the dye motion studied in
this work is highly nonlinear.

Our goal here is to determine a mode of motion, that is 1. nonlinear and
2. best correlated to a specified subspace of the configurational space. The
PCA is in both respects not sufficient for this purpose. In this chapter we
will therefore develop a new method, which particularly accounts for these
two requirements. The strategy for that is to design a method to calculate
principal curvilinear coordinates from molecular ensembles and then, after
that, to extend this method to also allow for the calculation of the mode of
motion, that is correlated with a configurational subspace.

Roughly, our approach identifies a pre-specified number of prototypic struc-
tures (PS) aj , that characterize the main shape of the ensemble xi (black
circles in Fig. 5.1 A). The aim is to position these PS along the largest ex-
tension of the ensemble, such that moves along them capture the principal
motions of the protein. Then, the PS can be used to construct a curvilinear
coordinate, e.g. using a cubic spline function (dashed line in Fig. 5.1 A).

The PS are calculated as local ensemble averages, i. e., each structure of
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Figure 5.1: Two-dimensional sketch of how to derive curvilinear principle coordi-
nates. (A) An ensemble of protein structures {xi} (gray dots) is approximately
described by a specified number of PS aj (black dots) suitably positioned along the
main extension of the ensemble and thus capturing the essential conformational
motions of the protein. A cubic spline (dashed line) through the PS aj yields the
principal curvilinear coordinate. (B) Two possible assignments (solid and dotted
lines) between randomly chosen xi (hollow dots) and the PS a(n)

j (solid dots) at
the n-th iteration are shown. The assignment is chosen such that the mean square
distance is minimized (solid lines).

the ensemble contributes to the averages with a different weight, which de-
pends on its position in the ensemble. This approach is similar in spirit to
clustering and vector quantization algorithms,170 which are used for data re-
duction, data compression, and pattern recognition.171–173 But in contrast
to cluster algorithms, the goal here is not a minimal-error-representation of
the ensemble, but, rather, to construct a curvilinear essential coordinate.
Whereas cluster centers are represented by points, a coordinate is described
by a direction. Thus, to obtain an essential coordinate, a different algorithm
is required, which will be developed here.

In the subsequent theory section, we will first define the local ensemble aver-
ages (or PS). For a test case we will show how this new approach compares
to the PCA. Then, an efficient algorithm to compute the PS is presented
and analyzed. After that, the extension to determine modes of motion corre-
lated with a configurational subspace is presented. The efficient algorithm is
then applied to two example distributions, which is described in the results
section. First, a two-dimensional artificial ensemble is used as an illustrative
example and then, principal curvilinear coordinates of a protein ensemble
are calculated using different numbers of PS.
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5.1 Theory

We assume an ensemble of M protein structures {x1, . . . ,xM} obtained by
an MD-simulation or Monte-Carlo calculation (gray dots in Fig. 5.1). Since
one is generally interested in the internal configurational motions only, we
further assume that the ensemble is fitted to a reference structure, in order
to eliminate the global translations and rotations of the molecule.174

The main idea of this approach, which distinguishes it from traditional clus-
ter algorithms, is that a large number of randomly chosen k-tuples of struc-
tures probe the shape of the ensemble and, therefore, by averaging over all
these crude estimates, the ’average’ shape of the ensemble can be obtained.
The k PS {a1, . . . ,ak}, which shall represent the main shape of the ensemble,
as shown in Fig. 5.1 A, are determined iteratively. We denote the iteration
steps by a superscript. As a starting point, random structures are chosen
for the a(0)

j . This first guess is then refined until the a(n)
j are converged. In

each iteration step n, the updated a(n)
j is calculated as an average over an

ensemble of k-tuples, which is generated from the original ensemble of pro-
tein structures in two steps; 1) selection and 2) permutation. First, one of
the

(
M
k

)
possible selections S

(l)
1 , . . . , S

(l)
k (l = 1, . . . ,

(
M
k

)
) is randomly cho-

sen, which yields a k-tuple {x
S

(l)
Πl(1)

, . . . ,x
S

(l)
Πl(k)

} of structures (hollow circles

in Fig. 5.1 B). Then, in the second step, from the k! possible assignments
of the xi to the a(n)

j (dotted lines), we choose the one (solid lines), that

minimizes the mean square distance to the assigned points a(n)
j , i. e., for

each selected k-tuple l, the permutation Πl is determined, that fulfills the
following assignment condition

k∑
j=1

|a(n)
j − x

S
(l)
Πl(j)

|2 != min . (5.1)

A crucial issue here is that, apparently, the choice of the permutation de-
pends on the actual estimate (iteration step) for the PS a(n)

j . This assign-
ment procedure is repeated for a large number of k-tuples, and improved PS
an+1

j are calculated as an average over all structures xi, that were previously
assigned to the corresponding an

j ,

a(n+1)
j =

〈
x

S
(l)
Πl(j)

〉
l

, j = 1, . . . , k . (5.2)

We call this method LMLA, since Localized Mean structures are calculated
by using a Linear Assignment of tuples of structures. In the calculation of
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Figure 5.2: Example of
weight functions corre-
sponding to prototypic
points from the LMLA-
method. (A) An ensemble
of points xi (black dots)
is distributed according
to a given 1-dimensional
probability density (solid
line). (B) and (C) show
two and three weight
functions pj(xi), which
correspond to the two and
three prototypic points aj

(black dots) and which
are used in Eq. 5.3.

this average, each structure xi appears as often as it has been assigned to an
j ,

which accounts for multiple selections. Note that the average structure of the
ensemble is equal to the average structure of the PS 〈aj〉j = 〈xi〉i, since each
structure in a k-tuple is selected the same number of times. The iteration
is repeated until the a(n)

j are converged, e. g. , until |a(n+1)
j − a(n)

j | < ε .
Typically only three to ten steps are necessary to yield sufficiently converged
PS.

We were not able to show rigorously that the PS converge to a unique solu-
tion in any case, but extensive numerical tests suggest that this is actually
the case. In particular, even for quite different starting values a(0)

j we never
observed that the PS got trapped within a local minimum.

Fig. 5.2 illustrates the multiple selections mentioned above for a simple one-
dimensional ensemble of 50 points {xi} (black dots Fig. 5.2 A), which are
distributed according to an arbitrary probability distribution (solid line).
For this ensemble, the above described iteration was carried out for two and
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three prototypic points. The obtained two and three points aj are shown
as crosses in Fig. 5.2 B and C, respectively. The functions pj(xi), shown in
Fig. 5.2 B and C, are obtained by counting how often the structure xi has
been selected and assigned to aj . After normalization

∑
i pj(xi) = 1, the

function pj(xi) gives the probability that xi is assigned to aj , if xi is part
of a randomly chosen k-tuple of points. Eq. 5.2 can thus be written as a
weighted sum

a(n+1)
j =

∑
i

xipj(xi) . (5.3)

The weight functions pj(xi) indicate how each point xi contributes in Eqs. 5.3
and 5.2 to the calculation of the prototypic points aj .

5.1.1 Comparison of LMLA with conventional PCA

For the special, most simple case of just two PS, our approach yields a
linear principal coordinate and, therefore, should behave similar to the con-
ventional PCA. In this subsection we analyze if this is actually the case.
Only if the two methods are sufficiently similar, our LMLA approach with
more than two PS can be considered a proper generalization of the PCA. For
the PCA, the first eigenvector (the one with the largest eigenvalue) maxi-
mizes the variance of the ensemble along this eigenvector.175 An equivalent
formulation is that the PCA minimizes the root mean square deviation of
the ensemble from the first eigenvector.

To identify the quantity that is optimized by our LMLA method, we focus
on the special case of a two-dimensional configurational space. We assume
a given probability distribution ρ(x), which describes the ensemble of struc-
tures considered above. It will be convenient to combine the two PS a1 and
a2 into one four-dimensional vector a = (a1, a2, a3, a4) (see Fig. 5.3 A). For
the general case, a k-tuple in N -dimensional space is described by a single
vector in (Nk)-dimensional space.

The aim is now to calculate the stationary points a(∞) = 〈xρ〉 by appro-
priately averaging over the given distribution ρ. To that end, recall the
assignment condition, Eq. 5.1, which in this two-dimensional case reduces
to

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 + (x4 − a4)2

≤ (x1 − a3)2 + (x2 − a4)2 + (x3 − a1)2 + (x4 − a2)2 . (5.4)

Each x = (x1, x2, x3, x4), that does not fulfill this equation, is permuted,
i. e. , mapped onto the permuted structure. Since only two PS are used, there
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Figure 5.3: (A) Sketch of a two-dimensional probability distribution ρ(x) with two
prototypic points obtained by the LMLA-method, which are positioned along the
largest extension of the distribution. (B) Schematic plot of the integration volume
(hatched area) defined in Eq. 5.4 and used in Eq. 5.5. Permutation of two points x1

and x2 means mirroring with respect to the dividing hypersurface g, which depends
on the prototypic points a1 and a2. (C) A one-dimensional probability distribution
(dashed line) and its corresponding weight function w(x) (solid line), according
to Eq. 5.13. The dotted line visualizes the integral

∫ x2

−x2
dx4ρ2(x4) appearing in

Eq. 5.13.

are only two permutations possible. Therefore, all x that fulfill Eq. 5.4 lie in
a half-space of the four-dimensional configuration space, which is schemati-
cally shown as the hatched area in Fig. 5.3 B.

If the prototypic points are assumed to be already converged, i. e., if n is
sufficiently large, such that a(n+1)

j ≈ a(n)
j , then the calculation of the average

corresponding to Eq. 5.2 in this case is

 a1
a2
a3
a4

 = 2

∞∫
−∞

dx1

∞∫
−∞

dx2ρ(x1, x2)

∞∫
−∞

dx3

β∫
−∞

dx4ρ(x3, x4)

 x1
x2
x3
x4

 , (5.5)

where the factor 2 is due to the normalization of ρ and to the fact that
the integration is carried out only in the half-space, which is defined by the
integration limit β

β ≡ (x1 − x3)
a1 − a3

a2 − a4
+ x2 . (5.6)

The integration limit β is obtained by solving Eq. 5.4 for x4.

For further simplification, we assume ρ to factorize, i. e., ρ(x1, x2) = ρ1(x1)ρ2(x2),
and both, ρ1 and ρ2 to be even, i. e., ρ1(x) = ρ1(−x) and ρ2(x) = ρ2(−x).
It is shown in the Appendix I that then a2 + a4 = 0 and β = x2 and
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a1 = a3 = 0, such that Eq. (5.5) simplifies to 0
a2
0
a4

 = 2

∞∫
−∞

dx1

∞∫
−∞

dx2ρ1(x1)ρ2(x2)

∞∫
−∞

dx3

x2∫
−∞

dx4ρ1(x3)ρ2(x4)

 x1
x2
x3
x4

 ,

(5.7)
which yields

a2 = 2

 ∞∫
−∞

dx1ρ1(x1)

  ∞∫
−∞

dx3ρ1(x3)


×

 ∞∫
−∞

dx2ρ2(x2)x2

x2∫
−∞

dx4ρ2(x4)


= 2

∞∫
0

dx2ρ2(x2)x2

x2∫
−x2

dx4ρ2(x4) .

(5.8)

The transformation of the integration limits is described in Appendix II.
Since a2 = −a4 and ρ2 is even,

a2 − a4 = 2a2 = 4

∞∫
0

dx2ρ2(x2)x2

x2∫
−x2

dx4ρ2(x4) (5.9)

⇒ a2 =

∞∫
0

dx2ρ2(x2)x2

x2∫
−x2

dx4ρ2(x4) (5.10)

This is the result of the LMLA approach, that is to be compared with the
result from the PCA,

σ =

∞∫
−∞

dx2 ρ2(x2) x2
2 . (5.11)

To interpret Eq. 5.10, we assume ρ to have a shape similar to a gaussian
function, i. e., ρ is centered around its average value, with the maximum
near the center, and with a compact support. This assumption does not
involve severe restrictions, since ensembles of protein structures are often
gaussian-like distributed, at least in a first approximation. Then function ρ

does not vary much in the center region and therefore the right integral in
Eq. 5.10 becomes

x2∫
−x2

dx4 ρ2(x4) ∼ x2 for small x2, (5.12)
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and the integral in Eq. 5.10 becomes the variance, and therefore yields the
same result as the PCA. For large x the integral in Eq. 5.12 becomes inde-
pendent of x2, i. e., large extensions are less weighted in Eq. 5.10 than in
the normal variance. By introducing a weight function

w(x) =
1
x2

x2∫
−x2

dx4ρ2(x4) , (5.13)

Eq. 5.10 then becomes

a2 =

∞∫
−∞

dx2 ρ2(x2)x2
2w(x2) (5.14)

In this respect, our approach, in Eq. 5.10, represents a generalized variance.
For w(x) = 1 the expression for the normal variance is recovered. Fig. 5.3 C
shows the relationship between ρ(x), which is in this example a gaussian dis-
tribution, and the corresponding weight function w(x). The weight function
w(x) is approximately constant around the center of the gaussian distribu-
tion and decays to zero in the more distant region. For the determination
of the principal curvilinear coordinate, our approach concentrates more on
the shape of the center regions of the ensemble than the PCA does.

5.1.2 An efficient algorithm

The iteration to determine the PS, as described above, requires the calcu-
lation of a multidimensional average value in each step. The number of
selections in Eq. 5.2 is

(
M
k

)
, which becomes very large due to the combi-

natorial explosion, even for typical ensembles using only few PS. Thus, the
calculation of the sum in Eq. 5.2 is often intractable. We therefore present,
as an alternative, a faster yet approximative algorithm, which refines the PS
and calculates the average according to Eq. 5.2 simultaneously. This new
algorithm generally yields a solution with sufficient accuracy for defining a
suitable principal curvilinear coordinate. The idea is that the average over
the selected k-tuples is now calculated stepwise and the actual guess for the
PS is updated after each step, instead of calculating the complete average
for one refinement step of the PS, as was done previously. Fig. 5.4 shows
two steps of this algorithm for the two-dimensional case using only two PS
a1 and a2.
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Figure 5.4: Schematic plot of two steps of the efficient LMLA-algorithm for two PS
in two dimensions. In the n-th step, the actual guess for the PS is a(n)

1 and a(n)
2 .

The randomly chosen pair (x
S

(n+1)
1

,x
S

(n+1)
2

) is assigned to the actual pair of PS

to yield the lowest rmsd. The new PS (a(n+1)
1 ,a(n+1)

1 ) are obtained by the update
formula Eq. 5.16. Note that the stepsize becomes continuously smaller in each step,
ensuring the convergence of the PS.

The algorithm in detail reads:

1. Choose a random k-tuple {a1, . . . ,ak} of structures from the ensemble
as the inital guess for the PS. Set n = 1.

2. Choose another k-tuple {x
S

(n)
1

, . . . ,x
S

(n)
k

} randomly out of the ensem-
ble.

3. Determine the permutation Πn, that minimizes the mean square de-
viation

k∑
j=1

|a(n)
j − x

S
(n)
Πn(j)

|2 != min . (5.15)

4. Calculate the average for all new aj

an+1
j =

n an
j + x

S
(n)
Πn(j)

n + 1
, j = 1, . . . , k . (5.16)

5. Set n = n + 1 and go to step 2 until the PS are converged.

The assignment problem is solved here by using the Hungarian method.176

Note that each xi is weighted equally in the mean value and note that here
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again the mean value of the PS aj is equal to the mean value of all selected
structures x

S
(n)
j

:

〈aj〉j =
〈
x

S
(n)
j

〉
n,j

. (5.17)

5.1.3 Correlations

We have used the described LMLA-method to determine a principal curvi-
linear coordinate which best represents the largest conformational motion.
This is the mode of motion that is best correlated with the ensemble in the
complete configurational space K. To analyze what motions of the protein
affect the motion of the dye attached to it, however, we have to answer a
somewhat different question, namely: Which collective mode of motion is
best correlated with only a subspace of the configurational space?

Recall that in the LMLA-method, the essential step to introduce information
on the correlation of the PS with the ensemble is the assignment step (see
e. g. Eqs. 5.1 and 5.15). This step assures that mainly ’neighbored’, and
thus correlated structures are averaged to generate the PS. Now we want
the PS to be correlated with the extension of the ensemble only within a
specific subspace D. Therefore, the mean square distance in the assignment
condition Eq. 5.1 is now calculated in the subspace D,

k∑
j=1

[ ∑
m∈D

(
a

(n)
j (m)− x

S
(l)
Πl(j)

(m)
)2

]
!= min . (5.18)

Note that in contrast, the averages in Eqs. 5.2 and 5.16 are of course still cal-
culated in the complete configurational space, since the principal coordinate
shall also describe the protein and not only the dye.

For illustration, we discuss two extreme cases (Fig. 5.5): In the first case
(Fig. 5.5 A), the ensemble in the complemented space Dc (D ∪ Dc = K),
which here is the one-dimensional x-subspace, is uncorrelated with the en-
semble in the subspace D, the yz-space; in the second case (Fig. 5.5 B), it
shall be fully correlated. To better visualize the three-dimensional structure
of the two sets, projections of the ensembles onto the xz- and yz-subspace
are also shown.

In the first case, the depicted ensemble has the largest extension in x-
direction. The red vector is the principal coordinate obtained from the
conventional LMLA-algorithm using two PS, where the assignment is done
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Figure 5.5: Two ensembles showing extreme cases of correlations. Projections of
the ensembles onto the xz- and yz-subspace are also shown. In (A), the coordinates
y and z are highly correlated, but the x-coordinate is not correlated with the two
others. In (B), all three coordinates are highly correlated. The red vectors are
the principal coordinates, calculated using the conventional LMLA-algorithm and
therefore describe the largest extension of the ensembles. The blue vectors are the
principal coordinates, that are best correlated within the yz-subspace.

in the complete configurational space. It therefore points in x-direction,
capturing the largest extension and yielding the highest correlation with the
given dataset. Obviously, the y- and z-coordinates are highly correlated,
whereas the x-coordinates are neither correlated with the y- nor with the
z-coordinates. The blue vector describes the mode of motion which is best
correlated with the ensemble in the yz-subspace. In the second case, all
three coordinates x, y, and z are correlated. The red and blue vectors are
calculated like in the previous example. The red vector is therefore again
oriented along the largest extension of the ensemble. However, the blue vec-
tor now adopts about the same orientation, since all coordinates are highly
correlated.

5.1.4 From prototypic structures to curvilinear coordinates

Once the PS are determined, they are used to generate a cubic spline, which
represents the principal curvilinear coordinate. To calculate this spline, first,
the PS have to be put in order. This is achieved by determining the shortest
path connecting all PS in the configurational space. This problem is referred
to as the Traveling Salesman Problem,177,178 a well-known problem in graph
theory. If only a small number of PS are used, it is feasible just to calculate
the length of all possible paths and then to choose the shortest one. Two
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additional points are then constructed by extrapolating linearly the first
two and the last two PS, ensuring the spline function generated from this
extended set of PS to cover the whole ensemble, as shown in Fig 5.1 A.

5.2 Results

The LMLA-algorithm for the calculation of principal curvilinear coordinates
is applied, as a first illustrative example, to an artificial two-dimensional
ensemble, built up from three gaussian distributions with different weights
(0.5,0.3,0.2), shown in Fig. 5.6 A.

The distribution is represented by an ensemble of 10 000 points, therefore
the partial distributions 1,2 and 3 contain 5000, 3000 and 2000 points, re-
spectively. The calculation of the PS was done using 10 000 steps of the
LMLA-algorithm. The PS then converged to a relative stepsize of less than
0.01%. As already stated above, the efficient algorithm is an approximation
to the exact solution. For the here considered examples, the relative error in
the determination of the PS by this efficient algorithm is smaller than 1%.

First, only two PS (crosses) are used, yielding a linear coordinate (solid
line). For comparison, the result of the PCA is also shown in Fig. 5.6 A
(dashed line). The difference between both vectors illustrates the difference
in the weight function w(x), as described in the previous section. In the
LMLA-algorithm the distant points in the ensemble are weighted less in the
mean calculation. That means, the LMLA-coordinate describes the partial
distributions 1 and 2 better than the PCA-coordinate, but gives less weight
to the points of the partial distribution 3, since these are more distant to the
total mean position of ρ(x). This effect vanishes for symmetric distributions;
in this case both methods would result in the same vector.

Fig 5.6 B shows the same ensemble as in Fig. 5.6 A, but now three (crosses)
and four (circles) PS are used. Curvilinear principle coordinates are obtained
by generating a cubic spline from the set of three (dashed line) and four (solid
line) PS, as described in the previous section. Apparently, they describe the
ensemble much better than the linear coordinate. The rmsd of the ensemble
points to the PCA-coordinate is 1.95, whereas it is 1.38 and 1.33 for three
and four PS.

In the second example, our algorithm is applied to an ensemble of protein
structures. The CONCOORD program179 was used to calculate an ensem-
ble of 500 structures of the Bovine Pancreatic Trypsin Inhibitor (BPTI),



58 5. PRINCIPAL CURVILINEAR COORDINATES AND CORRELATIONS

Figure 5.6: (A) Comparison between the PCA (solid line) and the LMLA-algorithm
(dashed line) in a two-dimensional artificial ensemble, which is built up from three
gaussian distributions indicated by the dotted ellipsoids. The obtained PS (crosses)
define a linear coordinate (dashed line). (B) The use of more probe points leads to
a curvilinear principal coordinate, which more accurately describes the ensemble.
Three (crosses) and four (circles) PS are used to construct cubic splines (dashed
line and solid line, respectively).

which comprises 58 residues. Its conformational space has 1356 dimensions.
CONCOORD generates an ensemble of protein structures from a given set
of distance restraints, originating, e. g., from hydrogen bonds or hydropho-
bic contacts. For this ensemble, curvilinear coordinates are calculated as
described above using different numbers of PS (2-8). As a measure of how
accurately the coordinate describes the ensemble, we calculate the root mean
square distance (rmsd) of all ensemble structures to the spline. The distance
of one ensemble point to the spline is shown in Fig. 5.6 B for illustration.
The better the coordinate describes the overall shape of the distribution,
the smaller is the perpendicular deviation of the ensemble structures from
the spline.

Fig. 5.7 shows the rmsd of the BPTI ensemble to the spline functions gen-
erated from two to eight PS. The linear vector obtained by two PS shows
a slightly larger rmsd than the first eigenvector from the PCA (dashed hor-
izontal line), since the PCA exactly minimizes this rmsd value. However,
three PS already yield a slightly better coordinate, while the advantage
becomes more obvious when using more than three PS.

Note that the rmsd value is calculated in the high-dimensional conforma-



5.2. RESULTS 59

2 4 6 8
# prototypic structures

0.23

0.24

0.25

0.26

 R
M

S
D

 (n
m

)

Figure 5.7: The root mean square distance (rmsd) from the points of the protein
ensemble to a principal curvilinear coordinate obtained by different numbers of
PS (black dots). Note that for two PS, the coordinate is linear, whereas all other
principal coordinates are curvilinear. The rmsd to the linear coordinate obtained
by a PCA (dashed line) is also shown for comparison.

tional space and therefore, relatively large changes of the rmsd in a small
configurational subspace are hidden by the contributions of the other di-
mensions to the rmsd.

Just as an illustration, one could imagine the change of the rmsd from
0.231 nm for the LMLA-algorithm using eight PS to 0.256 nm for the PCA to
be due to a modification of the ensemble instead of changing the coordinate.
As a modification, we choose a variation of the width of the ensemble in just
one dimension, the whole rmsd change is then due to only this one dimension.
For example, if an 3N -dimensional isotropic gaussian distribution, centered
at the origin, with a variance σ = 1 is extended in one dimension by a factor
of two, the rmsd from the origin changes by a factor of

√
(3N + 1)/3N . For

the protein ensemble, the same change in the rmsd as above (0.231 nm to
0.256 nm) would be observed, if the width of the ensemble is extended in
one dimension by a factor of about 300. That shows the extent to which our
principal curvilinear coordinates improve the description of the ensemble,
compared to the PCA.

In this work, only a one-dimensional principal curvilinear coordinate has
been determined. If a higher dimensional essential conformational subspace
of a molecular ensemble is required, we suggest an iterative approach. First,
a one-dimensional principal curvilinear coordinate is calculated as described
before, then the ensemble is projected onto this coordinate, then the LMLA-
method is again applied to the projected ensemble, yielding a second prin-
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cipal curvilinear coordinate, and so on.

5.3 Discussion

For the selected cases analyzed above, our LMLA-algorithm yields a princi-
pal curvilinear coordinate of molecular ensembles, which describes the main
molecular motion better than the PCA. For a small ensemble of protein con-
formations, which is e. g. distributed around the native structure, a harmonic
approximation of the distribution is often adequate, in which case the linear
principal coordinate obtained by PCA is sufficiently accurate. However, for
the analysis of bended ensembles describing, e. g., large scale conformational
motions of proteins or systems where the nonlinear motions are of particu-
lar interest, like the motion of a dye, which is studied in this work further
below, the LMLA should, therefore, be particularly useful.

Furthermore, the LMLA-approach offers the possibility to study correla-
tions between motions of different parts of the studied system, like in this
work a dye and a protein. This approach is generally applicable to all kind
of molecular ensembles to calculate, e. g., correlations of protein-ligand or
protein-protein motions. Moreover, this method could also be used to iden-
tify the particular mode of motion of a protein, which is correlated with any
given property of the protein, like, e. g., radius of gyration, rmsd, or water
accessible surface.

The LMLA-algorithm differs from conventional clustering algorithms, in
that the focus is extracting the shape and extension of an ensemble, while
cluster algorithms typically aim at finding the positions of cluster centers.
However, it is similar to clustering algorithms in that both reduce a large
dataset by representing its main features using a small number of proto-
typic points or cluster centers, respectively. Although the LMLA-algorithm
is not optimized for finding cluster centers, it might also be applicable in
the framework of vector quantization for codebook generation. Since many
vector quantization algorithms suffer from a local minimum problem, our
algorithm might be advantageous in this respect, because in extensive nu-
merical tests our algorithm never got trapped within a local minimum.
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5.4 Appendix I

Here we show that, if ρ1 and ρ2 are even and a2 6= a4, then Eq. (5.7) yields
a2 + a4 = 0 and a1 = a3 = 0. First note that Eq. 5.5 can also be written as

a1

a2

a3

a4

 = 2

∞∫
−∞

dx3

∞∫
−∞

dx4 ρ(x3, x4)

∞∫
−∞

dx1

∞∫
γ

dx2 ρ(x1, x2)


x1

x2

x3

x4

 .

(5.19)
The integration limit γ

γ ≡ (x3 − x1)
a1 − a3

a2 − a4
+ x4 (5.20)

is now obtained by solving Eq. 5.4 for x2. The integration is here carried
out over the same half-space as defined by β in Eq. 5.6.

Eqs. 5.5 and 5.19 give for a2 and a4

a2 =

∞∫
−∞

dx1ρ1(x1)

∞∫
−∞

dx2ρ2(x2)x2

∞∫
−∞

dx3ρ1(x3)

β∫
−∞

dx4ρ2(x4) (5.21)

a4 =

∞∫
−∞

dx3ρ1(x3)

∞∫
−∞

dx4ρ2(x4)x4

∞∫
−∞

dx1ρ1(x1)

∞∫
γ

dx2ρ2(x2) , (5.22)

where β and γ are defined by Eqs. 5.6 and 5.20, respectively. Permutation
of x2 and x4 and the change of the latter integration limit to the negative
range (since ρ2 is even) leads to

a4 =

∞∫
−∞

dx3ρ1(x3)

∞∫
−∞

dx2ρ2(x2)x2

∞∫
−∞

dx1ρ1(x1)

δ∫
−∞

dx4ρ2(x4) ,

with δ = −[(x3 − x1)
a1 − a3

a2 − a4
+ x2] .

(5.23)
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With x2 for −x2 substituted, the upper integration limit σ becomes β, hence
a4 = −a2. To show that a1 = a3, the same transformations as above are
done for

a1 =

∞∫
−∞

dx1ρ1(x1)x1

∞∫
−∞

dx2ρ2(x2)

∞∫
−∞

dx3ρ1(x3)

β∫
−∞

dx4ρ2(x4) (5.24)

and

a3 =

∞∫
−∞

dx3ρ1(x3)x3

∞∫
−∞

dx4ρ2(x4)

∞∫
−∞

dx1ρ1(x1)

∞∫
γ

dx2ρ2(x2) , (5.25)

which corresponding to Eq. 5.23 yields

a3 =

∞∫
−∞

dx3ρ1(x3)x3

∞∫
−∞

dx2ρ2(x2)

∞∫
−∞

dx1ρ1(x1)

δ∫
−∞

dx4ρ2(x4). (5.26)

Now the substitution of x2 for −x2 yields a3 = a1, which immediately leads
to β = x2. Using Eq. 5.5, this then gives a1 = a3 = 0, due to the assumed
symmetry of ρ1.

5.5 Appendix II

Here we show that for ρ(x) an even function, the following equation holds

∞∫
−∞

dxρ(x) x

x∫
−∞

dyρ(y) =

∞∫
0

dxρ(x) x

x∫
−x

dyρ(y) . (5.27)

The integral on the left side can be divided into parts:

∞∫
−∞

dxρ(x) x

x∫
−∞

dyρ(y) =

∞∫
0

dxρ(x) x

−x∫
−∞

dyρ(y)

+

∞∫
0

dxρ(x) x

x∫
−x

dyρ(y) +

0∫
−∞

dxρ(x) x

x∫
−∞

dyρ(y) . (5.28)
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Substituting this expression in Eq. 5.27, the integral on the right side of
Eq. 5.27 cancels with the second term on the right side of Eq. 5.28, which
yields

∞∫
0

dxρ(x) x

−x∫
−∞

dyρ(y) +

0∫
−∞

dxρ(x) x

x∫
−∞

dyρ(y) = 0 . (5.29)

The second term can be written as

0∫
−∞

dxρ(x) x

x∫
−∞

dyρ(y) = −
−∞∫
0

dxρ(x) x

x∫
−∞

dyρ(y) (5.30)

= −
∞∫
0

d(−x)ρ(−x) (−x)

−x∫
−∞

dyρ(y) (5.31)

= −
∞∫
0

dxρ(x) x

−x∫
−∞

dyρ(y) . (5.32)

Substituting this expression into Eq. 5.29 proves Eq. 5.27.
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”All good things are wild, and free.”
– Henry David Thoreau

6

Fluorescence Anisotropy of a
Free Dye

The fluorescence anisotropy is related to the rotational diffusion of a dye.
Molecular dynamics (MD) simulations should be able to describe this diffu-
sional motion, from which the anisotropy can be obtained, as described in
Sec. 2.1.1. In this chapter, we study if and to what extent MD simulations
allow to predict the fluorescence anisotropy of a dye and if the used dye and
solvent force fields are appropriate for this purpose. To this aim, simulations
of free dyes in methanol and water were carried out and compared to experi-
mental results180 via the fluorescence anisotropy. For our study, we used the
Alexa488 dye, which was also used in the experiment described in Chap. 7.
The parametrization of this dye is described in Sec. 4.3. For comparison,
we also used the rhodamine 6G dye, for which force field parameters were
available.181

6.1 Molecular dynamics simulations

MD simulations of the dyes Alexa488 and rhodamine 6G in methanol and
different water models were carried out. In all simulations, the dye was
free to undergo translational and rotational diffusion within the (periodic)
simulation volume. All MD simulations were performed using the GRO-
MACS simulation software.116 The SPC182 and SPC/E183 water models
and the methanol parameters, which are included in the GROMACS force
field, were used. The Alexa488 and rhodamine 6G systems additionally con-
tain two sodium and one chloride ions, respectively, to use the same ion/dye

65
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ratios as in the experiments. All systems were energy minimized to obtain
the starting configuration for the simulations. The solvent and the dye were
jointly coupled to an external temperature bath of 300 K with a relaxation
time of 0.1 ps.153 In all simulations the system was weakly coupled to a pres-
sure bath of 1 atm with isotropic scaling and a relaxation time constant τp =
1 ps. Bond lengths were constrained to their equilibrium lengths using the
LINCS algorithm.164 This allows a 2 fs time step for the leapfrog integration
scheme. For the Lennard-Jones interactions, a cutoff distance of 1 nm was
applied. Electrostatic interactions between charge groups at a distance less
than 1 nm were calculated explicitly, and the long-range electrostatic in-
teractions were calculated using the Particle-Mesh Ewald method162 with a
grid spacing of 0.12 nm and a fourth-order spline interpolation. Coordinates
of all atoms were saved every 1 ps for further analysis.

A list of all performed simulations is shown in Tab. 6.1. For each simulation,
the fluorescence anisotropy decay was calculated, as described in 2.1.1. The
rotational correlation time was then obtained by fitting a single exponential
function to the anisotropy decay curve.

Dye Solvent N T
1) Alexa488 methanol 1315 2.6 ns
2) Alexa488 SPC water 4673 8.5 ns
3) Alexa488 SPC water 17147 1.5 ns
4) Alexa488 modified charges SPC water 4673 50 ns
5) Rhodamine 6G SPC water 4036 5.0 ns
6) Alexa488 SPC/E water 4673 4.5 ns
7) Alexa488, no constraints SPC water 14073 8 ns
8) Tryptophan SPC water 4656 7 ns

Table 6.1: List of simulation systems, with the total number N of atoms and the
simulation time T .

In simulation 4, the partial charges of the Alexa488 were modified to increase
the polarity of the headgroup of the dye. This was achieved by decreasing
the partial charges of the inner atoms and increasing the charges of the outer
atoms by 10%. This modification intended to reflect the maximum uncer-
tainty expected for the partial charges calculated in 4.3. In simulation 7, no
bond length constraints (LINCS) were used. In simulation 8, a tryptophan
using the GROMACS force field parameters solvated in SPC water was cal-
culated. The absorption and emission spectra of tryptophan are due to two
low-lying excited states (ILa and ILb), which have different transition dipole
moment orientations. For the comparison of the calculated anisotropy with
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the experiment, the absorption and emission were assumed to be solely due
to the ILa state.184

6.2 Results

The calculated rotational correlation times of the dye for the various systems
are shown in Tab. 6.2. The experimental values are also given for compari-
son. Additionally, Fig. 6.1 shows the calculated anisotropy decay curves of
Alexa488 in methanol and water (simulations 1 and 2) as solid lines (green:
methanol and blue: water). The rotational correlation times are φ= 51 ps
for the dye in water and φ= 86 ps in methanol (see also Tab. 6.2). Fig. 6.1
also shows an exponential fit to the measured time-resolved fluorescence
anisotropies of Alexa488 in aqueous solution and in methanol at 300 K
(dashed lines).180 The measured rotational correlation times are 170 ps and
210 ps in water and methanol, respectively.

System sim exp
1) Alexa488 in methanol 86 ps 210 ps180

2) Alexa488 in water (SPC) 51 ps 170 ps180

3) Alexa488 in large box (SPC) 45 ps 170 ps180

4) Alexa488 modified charges (SPC) 60 ps —
5) Rhodamine 6G in water (SPC) 89 ps 210 ps185

6) Alexa488 in water (SPC/E) 67 ps 170 ps180

7) Alexa488, no constraints (SPC) 52 ps 170 ps180

8) Tryptophan (SPC) 15 ps (ILa) 19 ps186

Table 6.2: Resulting rotational correlation times from the simulations compared to
the corresponding experimental values.

As can be seen, the correlation times in the simulation are generally by
about a factor of 3 smaller than in the experiment. This effect of too fast
rotational diffusion of small molecules in simulations is well known and has
already been discussed in the literature.88,89,186 It was found that the rota-
tional correlation time of tryptophan in SPC water is by about a factor of
two smaller than the experimental value.88 Furthermore, the self-diffusion
coefficients of several solvent models have been shown to be too high.187,188

Several reasons for this systematic deviation are conceivable: Inappropriate
solvent or solute force field parameters, artefacts from the periodic bound-
aries, the use of bond-length constraints, inadequate treatment of electro-
static interactions, lack of unpolar hydrogens due to their implicit descrip-
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Figure 6.1: Anisotropy decay curves from the simulation (solid lines) and exponen-
tial fit curves to the experimental anisotropies (dashed lines) for the dye in water
(blue) and methanol (green).

tion by compound atoms, and finally the coupling to a heat bath. In the
following, we will discuss these possible reasons in more detail.

The solvent properties that mainly influence the rotational diffusion of a
solute are supposed to be the viscosity, which is related to the self-diffusion
coefficient, and the rotational diffusion of the solvent molecules, which is
related to the dipole relaxation time. It has been found that the self-diffusion
coefficient for the popular water models SPC, TIP3P, and TIP4P is too high
and the dipole relaxation times are too small, indicating a too high mobility
of the solvent molecules.187

To calculate the self-diffusion coefficient and the dipole relaxation time for
the solvent force fields used in this work, we have carried out two 2 ns
simulations of 327 methanol molecules and of 895 SPC-water molecules. The
self-diffusion coefficients from the simulations are 4.2·10−5 cm2/s for water
and 3.0·10−5 cm2/s for methanol, and the experimental values are 2.3·10−5

cm2/s and 2.4·10−5 cm2/s,189 respectively. The dielectric relaxation time
is 6 ps for water and 13 ps for methanol, whereas the experiment yields
9 ps and 56 ps,190 respectively. That means, both the translational and the
rotational diffusion of the solvent molecules are too fast in the simulation
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compared to the experiment, which definitely contributed to the accelerated
rotational diffusion of the dye in simulations 1 and 2.

Note, that the rotational correlation time of Alexa488 in SPC/E water (sim-
ulation 6) is only slightly higher than in SPC, although the physical proper-
ties of SPC/E (self-diffusion coefficient 2.8·10−5 and dipole relaxation time
9.7 ps) agree very well to the experimental values.187 Thus, the self-diffusion
coefficient and the dipole relaxation time are apparently not solely respon-
sible for the correct description of the rotational diffusion of the solute.

To address the question to which extent the rotational diffusion of the dye
is sensitive to the dye force field parameters, first, we simulated in addition
to the Alexa488 dye, also the rhodamine 6G dye181 (simulation 5) and the
fluorescent tryptophan (simulation 8), whose force field parameters were
determined independently from each other in slightly different ways. For
both dyes, the anisotropy was calculated and compared to experiment, as
for Alexa488.

The calculated rotational correlation times for both excited states of tryp-
tophan, ILa and ILb, are 15 ps and 22 ps, respectively, and agree well to the
values obtained from MD simulations by Daura et. al.,88 14 ps and 20 ps,
respectively. For the tryptophan, the ILa value, which is to be compared
to the experiment,88,184 is smaller than the experimental value of 19 ps.186

For rhodamine 6G the calculated rotational correlation time of 89 ps is also
smaller than the experimental value of 210 ps. The results show that also
for these two molecules, the rotational diffusion is significantly faster than
in the experiment.

The second test of the influence of the dye parameters on its rotational
diffusion is done in simulation 4, where the partial charges of Alexa488 are
modified, as described in Sec. 6.1. The resulting rotational correlation time
of 60 ps indicates that an inaccuracy in the parametrization of the dye
cannot explain the discrepancy between simulation and experiment. This
is in agreement with Daura et. al., who found almost no sensitivity of the
rotational correlation to the total charge of the solute molecule.88

Any possible artefacts due to the periodic boundaries should depend on
the system size. The influence of the system size is tested in simulation
3. The resulting rotational correlation time of 45 ps does not indicate any
effect of the system size and thus, the periodic boundaries are probably not
responsible for the mismatch between simulation and experiment.

Simulation 7 tested the influence of using bond-length constraints, but here
the result clearly shows no difference between the constrained (simulation
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2) and unconstrained simulations (simulation 7). This is in agreement with
Fuller and Rowley, who found that the effect of internal model flexibility is
small even in polar fluids.191

The influence of the treatment of the electrostatic interactions is not studied
here. However, it has actually been shown to affect the rotational diffusion,
but the magnitude of this influence is much smaller than the effect of the
solvent viscosity.89 The question whether the rotational diffusion of the
solute is effected by the method of temperature coupling has been studied
by Daura et. al.88 From simulations of tryptophan in SPC/E water with
solute and solvent coupled jointly or individually to a heat bath, they could
not observe a major difference.

The nonpolar hydrogens were implicitly described by using compound atoms,
to ensure compatibility with the GROMACS protein force field, which will
be used in the next chapter. The influence of this lack of unpolar hydrogens
was not studied here, but is potentially not neglectable.

All these studied possible reasons for the discrepancy between the calculated
and measured rotational correlation times suggest that the solvent force field
parameters are mainly responsible for the too fast rotational diffusion of the
dyes. Unfortunately, the details of this effect are unclear and need to be
further investigated. Nevertheless, the differences between the simulation
and the experiment for the considered observables are similar for the studied
solvent force fields.

Comparison of Alexa488 in water and methanol
As can be seen in Tab. 6.2, the dye shows faster rotational diffusion in wa-
ter than in methanol, in the simulation as well as in the experiment. This
behavior was unexpected, since the viscosity of water [1.002·10−3 Pa s (at
293 K)] is larger than that of methanol [0.587·10−3 Pa s (at 293 K)]. Fur-
thermore, the same experiment with fluorescein shows the expected behavior:
the measured rotational correlation times are 140 ps in methanol and 170 ps
in water.

To explain this inverse solvent effect for Alexa488 the structure of the dye
in the simulation was analyzed in more detail. It has been observed that
the extension of the dye, represented by the distance d defined in Fig. 6.2 A,
strongly depends on the solvent. Fig. 6.2 C shows the extension of the dye
during both simulations in methanol (green curve) and water (blue curve).
The distance d fluctuates between 0.7 nm and 1.6 nm. The correspond-
ing dye conformations are shown in Fig. 6.2 A and B for d=1.6 nm and
d=0.7 nm, respectively. The headgroup of the dye is rather stiff, thus the
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Figure 6.2: Extension of the Alexa488 dye molecule in water and in methanol. The
extension is represented by the distance defined in (A) (red arrow). This distance
is plotted versus time for the water (blue) and methanol (green) simulations. (B)
shows the conformation, the dye mainly adopts in water, which corresponds to a
distance of 0.8 nm.

change of the length is only due to the flexible linker, a hydrophobic chain.
The average length of the dye in methanol of about 1.5 nm is clearly larger
than that in water of about 1.0 nm (thick horizontal lines).

This observation can be interpreted as a minimization of the water exposed
hydrophobic surface. In water, the hydrophobic chain minimizes the water
accessible surface by coiling up and consequently reducing the effective size
of the molecule, which can indeed explain the observed faster rotational
diffusion of Alexa488 in water than in methanol. The lack of this flexible
hydrophobic chain in fluorescein explains why in this case this inverse solvent
effect was not observed.
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Summary
In this chapter we studied the dynamics of free dyes, with a particular fo-
cus on the Alexa488 dye, which will also be used in the next chapter. The
rotational diffusion of the dyes were found to be too fast compared with the
experiments. Possible reasons for that were systematically addressed, from
which we concluded that the solvent force field parameters were mainly re-
sponsible for the too fast rotational diffusion. Details of this effect are not
fully understood yet and have to be further studied. Since the discrepancy
between simulation and experiment for the considered observables is similar
for the methanol and SPC force fields, we assume this deviation to be sys-
tematic. Thus, we assume the rotational correlation time of a dye in these
methanol and SPC models to be generally too fast by a factor of about three.
Nevertheless, the simulations of Alexa488 in methanol and water were able
to describe an inverse solvent effect, which showed that MD simulations can
really contribute to the interpretation of experimental results.



”If you walk, just walk. If you sit, just sit.
But whatever you do, don’t wobble.”

– Yunmen

7

Probing Protein Flexibility by
Fluorescence Anisotropy

The mobility and dynamics of a protein-attached dye is influenced by the
presence of the protein. This change of the dye dynamics is governed by
the protein structure and dynamics and can be measured by fluorescence
anisotropy experiments, such that the dye can be used as a probe. However,
the information gained in these experiments is rather indirect and is usually
interpreted in terms of models like the wobbling-in-a-cone model described
above. Here, our aim is to gain direct insight into fluorescence anisotropy
experiments using MD simulations that should provide interpretations of the
experiments in atomic detail. We particularly address the question which
processes influence the reorientational dynamics of the dye and therefore
contribute to the observed anisotropy decay, and how to extract information
on the protein conformational dynamics from the anisotropy decay curve.
Additionally, we ask if and to what extent, vice versa, the attached dye
affects the unperturbed protein dynamics, e. g., of flexible loops. Today,
this pertubation is commonly and necessarily assumed to be negligible. The
present study offers the chance to test this assumption. Here, we studied
the Alexa488 dye (C5 maleimide, Molecular Probes) (cf. Fig. 4.2) attached
to the loop connecting the helices A and B of bacteriorhodopsin (bR). To
reduce the system size, only the AB fragment of bR was used for both the
simulation and the experiment.

This chapter is organized as follows: First the simulation setup is presented
and then, after a description of the used methods, the conformations of
the dye on the protein surface are analyzed in Sec. 7.2.1. In Sec. 7.2.2
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Figure 7.1: Simulation system setup. The AB-helix fragment of bacteriorhodopsin
is shown in ribbon representation (blue) overlayed with a ball&stick representation
of the protein atoms. The dye, shown in green, is attached to the loop connecting
the two helices. The dye-protein system is solvated in methanol (grey spheres).
The methanol box is cut out, to visualize the dye and the protein, embedded in the
solvent.

the influence of the dye on the protein dynamics is studied by comparing
simulations with and without attached dye. The correlations of the dye
and protein motions are analyzed in detail in Sec. 7.2.3. In Sec. 7.2.4, the
simulated anisotropy decay is compared to the experiment. Finally, we will
discuss if and to what extent the cone-in-a-cone model, which was presented
in Chap. 2, provides an appropriate description.

7.1 Methods

7.1.1 The simulation system

MD simulations of the Alexa488 dye covalently bound to position S35C
of the AB-fragment (residues 8–71) of bacteriorhodopsin (bR) solvated in
methanol were carried out. This system comprises 18752 methanol molecules,
64 amino acids, 52 dye atoms and two sodium ions, which summarizes to
56 933 atoms in total (see Fig. 7.1).
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The simulation was performed using the GROMACS simulation software116

with the united-atom GROMACS force field, describing non-polar hydrogens
implicitly via compound atoms. The methanol parameters were taken from
the GROMACS force field. The force field parameters for the dye had been
determined as described in section 4.3. The system was energy minimized
to obtain the starting configuration for the simulations. All simulation pa-
rameters were chosen as for the free dye simulations (cf. section 6.1), except
for the coupling to the heat bath; here the solvent was separately coupled
to a heat bath of 300 K with a relaxation time of 0.1 ps. It has been shown
that the AB-fragment solvated in an organic solvent (methanol/chloroform
(1:1)) adopts a conformation similar to its structure in bR,192 therefore the
initial structure of the AB-fragment of bacteriorhodopsin was taken from
the crystal structure, PDB entry 1AP9.193

7.1.2 Probability distribution of the dye from a vacuum
simulation

To sample the conformational space of the dye more efficiently than could
be done in room temperature MD simulations with explicit solvent, vacuum
simulations at 1000 K with implicit solvent were carried out. The central
oxygen atom in the headgroup of the dye (cf. Fig. 4.2) was chosen to repre-
sent the conformation of the dye. The simulation then yields a probability
distribution phigh of this atom at high temperature. Since the electrostatic
interaction between the dye and the protein predominantly governs the con-
formational equilibrium of the dye, it was calculated for each conformation
visited in the simulation. To account for the dielectric properties of the thin
methanol layer between the dye and the protein, that was left out in the vac-
uum simulation, a dielectric coefficient of ε=10 was used for the calculation
of the electrostatic energy.194 A probability distribution was obtained from
the Boltzmann-factor using the calculated electrostatic energy and correct-
ing for the dye distribution phigh from the vacuum simulation,

pele ∝ exp[−(Eele − kBThigh ln phigh)/(kBTroom)] (7.1)

with Thigh=1200 K and Troom=300 K. On the one hand, the high tempera-
ture and the loss of friction due to the missing solvent drastically improve
the sampling. On the other hand, the free energy landscape of the dye is
perturbed due to the missing solvent. Therefore, the obtained probability
distribution pele (of the central oxygen atom of the dye), which is shown in
Fig. 7.3 C, is expected to yield only a rough estimate for the occupancy.
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7.1.3 Correlation analysis

The component of the motion of the dye, that is correlated with the mo-
tion of the protein, was calculated using the LMLA-algorithm described in
Chap. 5. This algorithm yields a specified number k of so called ’prototypic
structures’ (PS) in the conformational space, which are positioned along
the largest extension of the molecular ensemble, thus capturing the main
conformational changes of the system.

In this work, three PS (conformations of the dye-protein system) were cal-
culated using the LMLA-algorithm, and the assignment (see Chap. 5) in
Eq. 5.15 was done in the subspace of the dye. These three PS define a col-
lective curvilinear coordinate in the complete configurational space, which
is best correlated with the motion of the dye. These PS are called subspace-
correlated PS, to distinguish them from the PS obtained from the conven-
tional LMLA-algorithm, which are called complete-space-correlated PS. This
curvilinear coordinate is a nonlinear combination of the cartesian coordi-
nates of all atoms. The magnitude of each component in this nonlinear
combination corresponds to its correlation with the motion of the dye (see
Sec. 5.1.3). The magnitude of each component is quantified by the B-factor
of each atom in the set of the three PS. The B-factors Bi are related to the
mean square fluctuations 〈∆r2

i 〉 by

Bi =
8π2

3
〈∆r2

i 〉 (7.2)

In this calculation, a high B-factor is due to a high correlation, but also
due to a high flexibility of the atom itself. To account for this effect, the
B-factors calculated from the set of the complete-space-correlated PS are
substracted from those of the subspace-correlated PS. Thus, these corrected
B-factors become independent of the flexibility of the atoms and therefore
depend only on the correlation. Note that the obtained B-factors, although
being directly related to the correlation of the protein with the dye motion,
are only a relative measure for the correlation, i. e., they show which residue
motion is more correlated than others, but no absolute correlation value is
obtained.

7.1.4 Analysis of depolarization timescales

To study the characteristics of the fluorescence depolarization on different
timescales, we calculated a position-dependent contribution to the depolar-
ization of the dye. To this aim, we considered only five degrees of freedom
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of the dye trajectory: the position of the dye xm, represented by the cen-
ter of mass of the headgroup of the dye, and the normalized vector of the
transition dipole moment µ(t). To gain information on the timescale of the
correlations, we compared the trajectory to a smoothed trajectory, where
the fast fluctuations were averaged out and only the slow components of
the dye dynamics remained. The smoothing, using a gaussian kernel with
a standard deviation of σ= 40 ps, was done only for the transition dipole
vector, whereas the positions of the dye remained unchanged. This yielded
a trajectory µs(t), where the slow components in the dynamics of the dye
orientation are emphasized.

In Eq. 2.2 the anisotropy r(t) is calculated as a time-average over P2(µ(t′) ·
µ(t′+ t)). The anisotropy r(t) is therefore obtained, basically, by comparing
all orientations of the dye with its orientations after time t. We define these
contributions to the depolarization as

ξ(t′) ≡ P2

[
µ(t′) · µ(t′ + t)

]
, (7.3)

where for the analysis in this work, a fixed time lag t= 50 ps was chosen. We
now assign this contribution ξ(t′) to the position of the dye xm(t′) at time
t′. This yields a function ξ[xm(t′)], which is a position-dependent measure
for the mobility of the dye. A large value of ξ means, that the dye does not
change its orientation much at xm(t′) compared to the time t′+ t, whereas a
low value indicates a jump between the orientation at xm(t′) and xm(t′+ t).
Thus, a value corresponding to the orientational flexibility is assigned to
each position of the dye. The same calculation is also done for the smoothed
trajectory µs(t), yielding the corresponding function ξs[xm(t′)].

7.1.5 Orientation distribution of the dye

The orientation distribution (cf. Fig. 7.11) is represented as a histogram on
the surface of a sphere, built up of cones pointing towards the average center-
of-mass position of the headgroup of the dye. An irregular grid consisting of
500 sample directions gj was used to approximate the density of orientations
pj with a gaussian kernel

pj =
n∑

i=1

exp
[
|ri · gj |/(2σ2)

]
, (7.4)

using a variance σ2 = 0.025, where n is the number of frames of the trajectory
(10 000 for conformation A and 5000 for conformation B), and ri is the
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normalized transition dipole vector of the i-th frame. The lengths of the
cones were chosen to be proportional to pj and then scaled to lie in the
range [5.0,8.5] Å.

All structures from the trajectory, used to calculate the orientation distri-
bution of the dye in conformation A, were aligned to minimize the rmsd of
the loop residues 30–42, since here, the local wobbling of the dye in the loop
frame is of interest. For the distribution in conformation B the structures
from the trajectory were aligned to minimize the rmsd of the helical residues.

7.1.6 Statistical error of MD from brownian dynamics

The rotational diffusion of a single normalized vector, which represents the
transition dipole moment of the dye in the dye-cone, and the diffusion of
the dye-cone in the protein-cone is calculated numerically. This yields a
trajectory of the single vector, which is chosen to be of the same length as
the MD-trajectory of the dye-protein system (16 ns). From this trajectory
the anisotropy decay is calculated as described above (Sec. 2.1.1). The rota-
tional diffusion coefficients and cone angles for the dye- and the protein-cone
are chosen such that the parameters obtained by fitting the cone-in-a-cone
model (Eq. 2.6) to the anisotropy are comparable to the parameters ob-
tained from the MD-simulation in Tab. 7.1. Then 230 trajectories were cal-
culated, which yields distributions of the cone-in-a-cone parameters, shown
in Fig. 7.9. The diffusion coefficients used in this brownian dynamics simu-
lation are 0.0018 ps−1 and 0.0003 ps−1 for the diffusion in the dye cone and
in the protein cone, respectively. The (half-)cone angles are chosen 45o and
50o for the dye and protein cone, respectively.

7.2 Results

7.2.1 Dye conformations

Fig. 7.1 shows the simulation system. It includes the Alexa488 dye attached
to the S35C position of the AB-helix fragment (residues 8–71) of Bacte-
riorhodopsin (bR) solvated by 18 752 methanol molecules and two sodium
ions. The total simulation time was 26 ns. Fig. 7.2 shows the rmsd of the
backbone atoms of the helical part (residues 10–29 and 43–61). The rmsd
reaches a relatively low mean rmsd value of 0.12 nm after only about 20 ps,
which indicates that the α-helical structure remains very stable during the



7.2. RESULTS 79

0 2 4 6 8 10
Time (ns)

0

0.05

0.1

0.15

0.2

R
M

S
D

 (n
m

)

Figure 7.2: Root mean
square deviation of the
backbone atoms of the
helical residues (residues
10–29 and 43–61) from
the inital x-ray structure
during the first 10 ns of
the simulation.

simulation. Furthermore, the root mean square fluctuation (rmsf) around
the mean structure of about 0.02 nm indicates a low flexibility of the pro-
tein. In contrast, the loop connecting the two helices shows a much higher
flexibility than the helical regions, which is discussed further below.

The initial dye conformation was chosen to point away from the surface
(cf. Fig. 7.1). After about 500 ps, the dye reaches conformation A, shown
in Fig. 7.3 A, where it is loosely bound via non-covalent interactions to the
protein surface for about 16 ns. It then detaches from the surface and flips
back on the other side into conformation B, shown in Fig. 7.3 B, where it
stays for the rest of the simulation. In conformation B, the dye is much less
flexible than in conformation A, as quantified by the rmsf of 0.15 nm and
0.23 nm, respectively. In conformation A, the dye adopts two conforma-
tional substates, shown in Fig. 7.4 (’up’ and ’down’). During the residence
time of 16 ns in conformation A, the dye flips back and forth three times
between these two substates, which significantly contributes to the mobility
of the dye. This complex and hierarchical motion is apparently insufficiently
described by a simple wobbling-in-a-cone model.

Unfortunately, the occupancy of conformations A and B cannot be inferred
directly from the simulation, since only one transition was observed. As a
substitute for this lack of reversibility, high temperature vacuum simulations
were carried out to sample the conformational space of the dye more effi-
ciently. From these simulations, a room temperature probability distribution
pele of the dye positions based on the electrostatic dye-protein interactions
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Figure 7.3: The protein from the side view with different dye conformations: The
dye adopts conformation A (A) for the first 16 ns of the simulation and shows a
relatively high mobility. In conformation B (B), where the dye remains for the rest
of the simulation, the dye is much less flexible, since it is more tightly attached to the
two helices. (C) The probability distribution of the dye calculated from the vacuum
simulations is visualized by red isosurfaces on two different contour levels, which
encloses 60% and 90% of the probability density (solid and transparent surfaces,
respectively).

Figure 7.4: Transitions of the dye between two sub-conformations ”up” and ”down”
of conformation A on the nanosecond timescale. The restriction of the mobility of
the dye in both conformations is quite similar.
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Figure 7.5: Root mean square fluctuations of the protein backbone for the protein
with the bound dye (dotted line) and without the dye (solid line). The black bar
on top denotes the loop residues.

is derived, as described in 7.1.2. Fig. 7.3 C shows an isosurface of pele in red.
The electrostatic interaction between the dye and the protein suggests that
the dye is more probable in conformation A than in B. In agreement with
this result is the fact that the negatively charged dye has contact to two
lysines (colored blue in Fig. 7.3 C) in conformation A, while it only has con-
tact to one lysine in conformation B. In addition, as will be described further
below, the calculated fluorescence anisotropy of the dye in conformation A
agrees much better with the measured one than it does in conformation B.
Thus, we assume the dye to be most of the time in conformation A.

7.2.2 Influence of the dye on the loop flexibility

To address the question if and to what extent the dye influences the protein
conformation and dynamics, we compared the simulation described above
to a 5 ns simulation of the same system without the dye. We focussed on the
change in the flexibility of the protein and in particular of the loop region,
where the dye is attached to. The flexibility is quantified by the root mean
square fluctuation (rmsf) of the backbone, shown in Fig. 7.5 for the protein
with bound dye (dotted line) and without the dye (solid line). For the
calculation of the rmsf the trajectory was fitted onto a reference structure
using only the helical residues. The black bar on the top denotes the loop



82 7. PROBING PROTEIN FLEXIBILITY

residues. As can be seen, the overall shape of both curves is quite similar.
Only the loop residues show a slight decrease of the flexibility, while the rest
of the protein is not affected by the dye. The dye decreases the rmsf of the
loop residues only by about 15%. Therefore, the assumption that the dye
does not influence the protein dynamics is, at least for this case, justified.

7.2.3 Dye-protein correlation

An important question, which can also be answered by simulation is, which
region and which motion of the protein is actually probed by the dye. To
this aim, we have to determine which mode of the observed protein dynam-
ics correlates best with the dye motion. Fig. 7.6 shows the protein colored
according to the correlation with the dye motion, calculated as described
in 7.1.3 . The residues which are most correlated with the dye motion are
shown in red, blue means no correlation. Note that the obtained measure
of correlation is only relative, i. e., we only learn which atoms move more
correlated than others. Although the dye is bound to residue 35, the neigh-
boring residues 33 and 34 show the highest correlation, i. e., their flexibility
is mainly probed by the experiment.

To see the reason for this, note that the fluorescence anisotropy is determined
by the motion of the chromophore of the dye molecule, which is located in
the headgroup of the dye. This headgroup is, as observed in the simulation,
in close contact and bound via non-covalent interactions to the residues 33
and 34. We therefore conclude that this contact gives rise to the observed
high correlation.

In constrast, residue 35 shows only a minor correlation, which was unex-
pected, since the dye is covalently bound to this residue. This finding sug-
gests that the relatively long flexible linker of the dye impedes any correla-
tion. From this we conclude that influences of the dye on the protein dy-
namics are mainly due to non-covalent interactions between the headgroup
of the dye and the protein.

The region around residue 45, in the middle part of the left helix (helix B)
in Fig. 7.6, also shows a significant correlation, whereas the helix connecting
this residue to the loop does not show any correlation. This could be ex-
plained by assuming that small conformational changes of the helix lead to
larger conformational changes of residue 45. Then, the motion of the helix,
that is supposed to be correlated with the dye motion, but such small in
amplitude that it cannot be identified in Fig. 7.6, could strongly affect the
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Figure 7.6: The Alexa488 dye attached to the loop in the protein. The protein is
colored according to the relative correlation of its motion with the motion of the
dye. Atoms showing a high (low) correlation are shown in red (blue).

motion of residue 45. In this way, a small correlation of the helix could be
amplified in residue 45.

One goal of this work, as mentioned above, was to identify the component
in the anisotropy decay r(t) of the dye that is governed by and, hence,
yields information about, the protein dynamics. This component in the
anisotropy is due to a component of the dye motion which is correlated with
the protein motion. In general, there are different possible processes leading
to a depolarization of the fluorescence. Typical sources of depolarization
are, e. g., the fast wobbling of the dye with a rotational correlation time of
100-300 ps and the overall tumbling motion of the whole protein including
the attached dye with a rotational correlation of a few nanoseconds up to
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the microsecond range, depending on the size of the protein.

The timescale of the dye-protein correlation shall be studied in the following,
to be able to identify the component in the anisotropy decay that is due to
the interaction of the dye with the protein. To this aim, we calculated, as
described in Sec. 7.1.4, a position-dependent contribution to the depolariza-
tion of the dye for the original trajectory ξ[xm(t′)], as well as for a smoothed
trajectory ξs[xm(t′)], where the fast fluctuations are averaged out and only
the slow components of the dynamics remain. Fig. 7.7 shows the result of
this calculation. A bottom-up viewing direction is chosen to overlay the dye
positions with the loop residues. The ribbon in the foreground depicts the
backbone of the protein, colored according to the correlation with the dye
motion, as in Fig. 7.6. The ”cloud” in the background is built up by all the
positions the center of mass of the dye visited during the simulation. This
”cloud” in Fig. 7.7 A is colored according to the contribution to the depolar-
ization ξ(xm). A red colored region represents a high depolarization, which
can be interpreted as a high mobility of the dye at this position. A blue color
indicates a low mobility of the dye. The coloring of the position distribu-
tion in Fig. 7.7 B is calculated using the smoothed trajectory and therefore
shows the contribution to the depolarization of the slow components of the
dye dynamics ξs(xm).

As can be seen, for the original trajectory (Fig. 7.7 A), the mobility of the dye
is rather position-independent. In contrast, for the smoothed trajectory, the
mobility becomes position-dependent, and the dye shows a higher mobility in
the vicinity of those residues of the protein which were previously identified
to correlate most with the motion of the dye (red colored backbone). In
summary, there is a slow component of the dye dynamics, which is correlated
with the protein motion.

To estimate which rotational correlation time corresponds to this slow com-
ponent, the anisotropy decays for both trajectories were calculated. The
fastest decay times from the original and from the smoothed trajectory are
120 ps and 300 ps, respectively. The 120 ps decay time presumably origi-
nates from the fast local wobbling of the dye. Apparently, this fast wobbling
motion is suppressed in the smoothed trajectory. The slow depolarizing com-
ponent which is correlated with the protein motion and therefore contains
information on the protein dynamics, therefore must correspond to a corre-
lation time of at least 300 ps, or larger, as described in the next section.
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view
ing direction
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Figure 7.7: Analysis of the timescale of the dye-protein correlation. (A) and (B)
The ribbon in the foreground depicts the protein backbone looking from the bottom
to the top of the protein, as illustrated in (C). The backbone is colored according
to the correlation of the protein motion with the dye motion, as in Fig. 7.6. The
’cloud’ in the background shows all the positions that are visited by the dye during
the simulation. The coloring of this ’cloud’ is according to the contribution to the
depolarization, i. e., basically the mobility. Red, green and blue indicate high, mid
and low mobility of the dye at a certain region. This coloring is calculated from
the original (A), and from a smoothed (B) trajectory.
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7.2.4 Comparison of simulation and experiment

In the measured fluorescence depolarization curve, shown in Fig. 7.8 A (solid
line), three decay components can be resolved: two faster components (about
300 ps and 800 ps) are assumed to arise from the dye motion relative to
the protein, where the slower of these two components is suggested to be
influenced by the local protein flexibility, as described in the previous section.
The third (slowest) component of about 5 ns originates from the overall
tumbling motion of the protein-dye complex.

The three decay components are difficult to spot in Fig. 7.8 A, since this
curve is convoluted with the instrument response function (IRF) with a full
width at half maximum (FWHM) of 48 ps. The inset in Fig. 7.8 A shows a
logarithmic plot of the anisotropy decay. From the fit to the experimental
curve using a sum of three exponentials (Eq. 2.7) convoluted with the IRF as
the model function, we obtained the parameters shown in Tab. 7.1 (’fit 2’).
Since a fit of the cone-in-a-cone model (Eq. 2.6), convoluted with the IRF,
to the experimental curve was not available, the cone-in-a-cone parameters
in Tab. 7.1 (’fit 1’) are derived by fitting Eq. 2.6 to the three-exponential
fit curve. The parameters A1 and A2 are related to the (half-)cone angles
of the dye- and the protein-cone, respectively (cf. Eq. 2.4), and are given in
parenthesis.

Fit 1 exp sim Fit 2 exp sim
A1 0.35 (46o) 0.39 (44o) B1 0.221 0.22
φ1 0.35 ns 0.12 ns ϕ1 0.296 ns 0.12 ns
A2 0.15 (59o) 0.32 (47o) B2 0.097 0.17
φ2 1.65 ns 0.98 ns ϕ2 0.805 ns 0.82 ns
φG 5.0 ns ∞ B3 0.0065 0.01

ϕ3 5.0 ns ∞

Table 7.1: Results from the fits to the experimental and simulated anisotropy decays
(cf. Fig. 7.8) using two different model functions. Fit 1 uses Eq. 2.6 which describes
the cone-in-a-cone model. Values in parenthesis are the corresponding cone angles
(Eq. 2.4). Fit 2 uses a sum of three exponentials as in Eq. 2.7.

As discussed above, for the comparison of the anisotropy, the first part of
the simulation (about 16 ns), where the dye is in conformation A, was used
to calculate the anisotropy decay curve, as described in Sec. 2.1.1. For direct
comparison with the experiment, first, the three-exponential model Eq. 2.7
was fitted to the simulated anisotropy (Fig. 7.8 B). The obtained parameters
are shown in Tab. 7.1 (’fit 2’). Since we are here not interested in the overall
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Figure 7.8: Anisotropy decays from the simulation and from the experiment, nor-
malized by the initial anisotropy r0. (A) Measured anisotropy decay (convoluted
with the instrument response function). (B) Anisotropy of the dye in conforma-
tion A (solid line) and in conformation B (dotted line) calculated from the original
trajectory. The dashed line shows the fit curve of the cone-in-a-cone model to the
experimental curve, using the parameters shown in Tab. 7.1. (C) Anisotropy in the
protein frame for conformation A (solid line) and for conformation B (dotted line),
calculated from a trajectory, that is fitted onto a reference structure. The dashed
line shows the same fit curve as in (B), except for the global rotational correlation
time φG, which is here set to infinity. This curve thus corresponds to the measured
anisotropy in the protein frame.
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tumbling motion of the dye-protein system, this motion is suppressed by
fitting all protein structures to a reference structure. The elimination of the
overall tumbling allows for a fit using two instead of three exponentials (cf.
Eq. 2.6), which improves the quality of the parameters for the local motion of
the dye. The anisotropy calculated from the fitted trajectory was then fitted
by Eq. 2.6, setting φG = ∞, which corresponds to an infinitely slow global
rotational diffusion. The result of this fit is also shown in Tab. 7.1 (’fit 1’).
Assuming the local dye motion and the global motion of the protein to be
independent, both fits, to the measured and to the simulated anisotropy,
should yield the same parameters for the local dye motion, described by the
parameters A1, φ1, A2, and φ2 from Eq. 2.6.

The agreement of the fit parameters between experiment and simulation is
quite good, although again, the rotational diffusion in the simulation is too
fast. The speedup in the rotational diffusion in the simulation here is com-
parable to what was observed for the free dye (cf. Chap. 6). The amplitude
A1, which describes the dye-cone angle in the cone-in-a-cone model, matches
quite well, indicating the simulation to accurately describe the local wob-
bling of the dye. The second amplitude A2 will be analyzed in more detail
in the next section.

The correlation time φG of the global rotation of the protein was obtained
from the experiment, as described above, by fitting the cone-in-a-cone model
(Eq. 2.6) to the anisotropy decay. The simulation offers the chance to calcu-
late the correlation time φG directly from the rotational diffusion coefficient
DG of the protein by φG = 1/(6DG). The rotational diffusion coefficient was
calculated from the simulation DG = 4.3 ·10−5ps−1, which yields φG=3.9 ns.
This is in good agreement with the experimental value of 5 ns.

7.2.5 Analysis of the statistical error

The limited length of the calculated trajectory (16 ns), which means a lim-
ited statistics in the sampling of the configurational space, causes a statisti-
cal error in the calculation of the anisotropy decay and therefore also in the
fitted cone-in-a-cone parameters.195

The straightforward approach to estimate this error would be to calculate
many similar MD-trajectories and to analyze the variance of the parameters
obtained from each of the trajectories. Unfortunately, the calculation of just
one trajectory required already four months of computer time, so this option
is not practicable.
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Figure 7.9: Distribution of amplitudes A1 and A2 and rotational correlation times
φ1 and φ2 from the Brownian dynamics simulations in the cone-in-a-cone model to
estimate the statistical errors of the obtained parameters.

Instead, we used an approach, which is principally the same as the one
suggested before, but differs in the way the trajectories are obtained. As-
suming the dye dynamics be sufficiently well described by the cone-in-a-cone
model, the MD simulation is substituted by a brownian dynamics simulation
of the transition dipole moment diffusion in the cone-in-a-cone model (cf.
Sec. 2.1), as described in Sec. 7.1.6. From this brownian dynamics simu-
lations 230 trajectories were obtained, from which anisotropy decay curves
were calculated. These were then fitted by Eq. 2.6 yielding parameters from
which histograms are calculated and plotted in Fig. 7.9. The variances of
the obtained parameters are measures for their statistical errors.

The error of the fast rotational correlation time ∆φ1= 5 ps is significantly
smaller than of the slow correlation time ∆φ2= 120 ps, since the larger
rotational diffusion coefficient leads to a better sampling of the dye-cone.
From the errors of the amplitudes ∆A1 = ∆A2 = 0.02 errors of the cone
angles ∆θ1 = ∆θ2 = 1o can be derived.

7.2.6 Anisotropy within the loop frame

The two faster components of the anisotropy decay were above assumed to
be due to the local wobbling of the dye on the surface of the protein. It was
further assumed that the slower one of these two components is due to the
flexibility of the loop to which the dye is attached.
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Figure 7.10: Calculated anisotropy of the dye in conformation A in the protein
frame (solid line) and in the loop frame (dashed line). The inset shows several
superimposed protein structures from the trajectory, which is fitted onto the loop
residues.

These assumptions are tested now by determining the motion of the dye
relative to the loop. To this aim, the dye coordinates are transformed into
the coordinate frame of the loop. This is achieved by fitting all structures
from the trajectory onto the loop residues (30–42). The inset in Fig. 7.10
shows several protein snapshots of this fitted trajectory. This trajectory
describes the motion of the dye, that is uncorrelated with the motion of the
loop.

The anisotropy decay within the loop frame rloop(t) calculated from this
trajectory is shown in Fig. 7.10 (dotted line). The solid line shows the
simulated anisotropy decay in the protein frame rprotein(t) (the trajectory
was fitted onto the entire protein-dye system), which is the same curve as
the solid line in Fig. 7.8 C. The difference between both curves describes the
reorientation of the dye due to the loop flexibility. The influence of the loop
flexibility is expressed in terms of a decay component in the framework of
the cone-in-a-cone model by

rprotein ≈ rloop(t)
[
(1−Aloop)e−t/φloop + Aloop

]
. (7.5)

If we assume rprotein(t) to contain only two decay terms, namely a wobbling-
in-a-cone motion of the dye and the loop flexibility, then rloop(t) will contain
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only one decay term. Equation 7.5 then directly corresponds to Eq. 2.6 from
the cone-in-a-cone model. That means, Aloop and φloop should be the same
as A2 and φ2.

Fitting Eq. 7.5 to the anisotropy in the protein frame rprotein(t) yields
Aloop=0.77 and φloop=1370 ps. The obtained Aloop parameter corresponds
in the wobbling-in-a-cone model to a cone angle of 23o (Eq. 2.4), which is in
good agreement with the flexibility of the loop observed in the simulation,
as will be discussed in the next section.

Obviously, Aloop is significantly larger than A2, which means the corre-
sponding cone angle is smaller, which indicates that there must be a second
decay component in the anisotropy in the loop frame rloop(t), that addi-
tionally contributes to the depolarization and which depolarizes on a similar
timescale of about one nanosecond.

Since we observed a flipping of the dye between two orientations in confor-
mation A, as described above (cf. Fig. 7.4), which occurs roughly on the
same time scale as the slow correlation times φloop and φ2 compared to
3 orientation flip events in 10 ns, we propose this process to be the miss-
ing additional component in the anisotropy decay. That means, that there
are two processes, contributing to the slow component in the experimen-
tal anisotropy, the flipping of the dye orientation and the loop flexibility,
which both occur at the same timescale and therefore cannot be resolved
experimentally. The straight use of the cone-in-a-cone model to interpret
the measured anisotropy decay would therefore overestimate the absolute
amplitude of the loop flexibility. Nevertheless, changes in the loop flexi-
bility are observable in the experiment, as has been shown by Alexiev and
co-workers.13

7.2.7 Orientation distribution of the dye

To test whether the wobbling-in-a-cone model is appropriate to describe
the local wobbling of the dye, the orientation distribution of the transi-
tion dipole moment was calculated for both dye conformations (A and B).
Fig. 7.11 shows this orientation distribution, calculated as described in 7.1.5.
The distributions both are centered around one distinct maximum, and the
width of the distribution in conformation A is broader than in conforma-
tion B. The shape of both distributions is well approximated by a gaussian
distribution. The standard deviation of the distribution in conformation A
and B is 44o and 29o, respectively. The cone angles obtained by a strict
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Figure 7.11: Orientation distribution of the transition dipole moment of the dye in
both conformations A and B, represented by cones placed at the surface of a sphere.
The color and the length of the cones denote the frequency that the transition dipole
moment adopts a certain direction (red, green, and blue means high, mid, and low
frequency, respectively). The two orientation distributions are centered at the mean
position of the dye in conformation A or B, respectively.

wobbling-in-a-cone analysis of the simulated anisotropy, 40o and 27o for A
and B, respectively, agree very well to the effective widths of the gaussian
distributions, as has already been shown.196 That means the cone angle from
the wobbling-in-a-cone model is able to describe the fast local wobbling of
the dye, if interpreted as the effective width of a gaussian distribution.

7.3 Summary of dye/protein simulations

The simulation of the Alexa488 dye attached to the loop within the AB-
fragment of bacteriorhodopsin revealed two possible conformations of the
dye. It was observed that the mobility of the dye differs significantly in
these two conformations. Additionally, the anisotropy determined from the
simulation in one of the two conformations (B) (cf. 7.3) is much higher
than the measured anisotropy. In contrast, the anisotropy in the other
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conformation (A) agrees very well with the experiment. Since the sampling
of the electrostatic energy surface (Sec. 7.1.2) shows that conformation A is
electrostatically favored, and, therefore, more populated, we obtained good
agreement with the experimental data.

By comparison with a second simulation of the protein without the dye,
the influence of the dye on the flexibility of the protein was determined and
found to be small, because as the only significant difference between the
fluctuations of the protein backbone a small decrease (≈ 15%) of the loop
flexibility due to the bound dye was observed. This finding supports the
usual assumption made in the experiments that the dye does not influence
the protein.

To study, vice versa, how the dye motion is influenced by the protein, corre-
lations between the dye and the protein motion were analyzed in more de-
tail, using the LMLA-algorithm (Chap. 5). This calculation revealed those
residues that affect the dye motion and which are therefore mainly probed
in the experiment. In contrast to what one might intuitively assume, we
found that the dye motion does not primarily probe the residue to which it
is covalently bound. Instead, it interacts mainly with the two neighboring
residues, 33 and 34. This information is crucial for the interpretation of the
experiment and cannot be inferred from the expriment alone.

Overall, the agreement between the calculated and the measured anisotropy
is very good. The calculated anisotropy in the protein frame shows two
decay components of 120 ps and 980 ps. The first decay time is attributed
to the rotational diffusion of the dye in the solvent (methanol), although
it is slightly slower than for the free dye (86 ps), presumably due to the
attachment of the protein. Indeed, such increase of the rotational correla-
tion time of the bound compared to the free dye also has been observed in
the experiment (210 ps compared to 300 ps). This effect is probably due
to the decreased solvent diffusion in the vicinity of the protein.144,145,197

Furthermore, the corresponding cone angle from the cone-in-a-cone model
matches to the cone angle observed within the (moving) coordinate frame
of the loop. From this, we conclude that this fast component is due to the
local wobbling of the dye.

The second component of 980 ps has initially been attributed to the protein
flexibility. This assumption is supported by the analysis of the timescale of
the dye-protein correlation, which found, that the motion of the dye, that
is due to the protein flexibility, leads to an additional decay component in
the anisotropy with a rotational correlation time larger than 300 ps. To
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further test this assumption, the anisotropy was calculated in the coordi-
nate frame of the loop, which allowed to directly assess the influence of
the loop flexibility onto the anisotropy. It was found that the decay time
of the depolarization induced by the loop (1370 ps) is indeed close to the
second component, but its amplitude is much smaller compared to the sec-
ond component and, therefore, the application of the cone-in-a-cone model
overestimates the corresponding cone angle. Thus, the loop motion alone
is obviously not sufficient to account for the second component. Rather,
we propose the missing additional contribution to the depolarization on the
timescale of about one nanosecond to be due to the transition of the dye
between the two conformational substates (”up” and ”down”), which we
observed in our simulations. Thus, by differentiation between these two
processes (the loop flexibility and the conformational transition of the dye)
we provided an interpretation that is not accessible by the experiment alone.

Our assignment of the decay components is partly consistent with the assign-
ment in the experiment, which was done by studying different fragments of
bR.13 Besides the free dye, the fluorescence anisotropies of the dye bound to
only the loop-fragment, to the AB-fragment, and finally to the complete bR
in micelles have been measured. The fast component (local wobbling of the
dye) was the same in all experiments, whereas the slowest component (over-
all tumbling) increased with the size of the fragment. For the AB-fragment
and the whole bR, an intermediate decay component was identified, which
had been assigned solely to the loop flexibility. Our results showed that
this assignment overlooked the contribution from the slow conformational
dynamics of the dye. Further evidence for the rotational correlation time of
the loop determined in this work and in the fluorescence anisotropy experi-
ment is provided by NMR experiments, which show that the backbone N–H
vectors are involved in an intermediate motion close to 1 ns.198

So the main result is that actually two processes, loop flexibility and con-
formational dye dynamics, contribute to the measured depolarization decay
at the timescale of one nanosecond. Straightforward application of the con-
ventional cone-in-a-cone model to the anisotropy decay curve, therefore,
overestimates the cone angle of the protein cone, i. e., the loop flexibility. In
contrast, we have shown that cone-in-a-cone model provides an appropriate
and accurate description of the local wobbling of the dye.



”Science... never solves a problem
without creating ten more.”

– George Bernard Shaw

8

Summary & Discussion

Fluorescence spectroscopy in combination with site-directed fluorescent la-
beling of biomolecules like proteins or DNA has become a standard tool
in molecular biology and biochemistry to study interactions and conforma-
tional dynamics of biomolecules. The goal of this work was to contribute,
by analysis and simulation, to the structural interpretation of fluorescence
anisotropy and fluorescence resonance energy transfer (FRET) experiments
at the atomic level. To this aim, different approaches have been developed
and applied.

The first step aimed at improving the analysis of single-molecule FRET
experiments. Single-molecule methods demand for analysis methods which
particularly account for the typically small number of observed events. In
the case of single-molecule FRET experiments, the challenge is to determine
the distance and distance fluctuations of two fluorescent dyes from only few
detected photons.

The usual approach employs window averaging to obtain a time-dependent
intensity from the measured single photons. Here the problem is the uncon-
trolled statistical error due to shot noise, thus, the error bars of the obtained
distance trajectory are unknown. In addition, we have shown, however, that
this method introduces an artificial bias to the obtained distance, since it
assumes a uniform a priori probability of intensities.

To overcome these problems, we developed a maximum-likelihood theory to
reconstruct distance trajectories from single molecule FRET experiments.
This yields a probability distribution of trajectories, from which rigorous
error bounds are obtained. In contrast to the conventional window averag-

95
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ing, our theory assumes a uniform a priori probability of distances, which in
the absence of knowledge on distances before the measurement is the most
reasonable assumption.

In this work the focus was on FRET experiments that measure inter- or
intra-biomolecular distances. Since the underlying motions, such as trans-
lational motions or conformational dynamics of proteins, are known to be
diffusive in nature, this extra knowledge is explicitly used in our approach.
This allows, in addition, to determine an effective diffusion coefficient for
the distance changes observed in the experiment.

Several extensions of this method are conceivable, which, e. g., concern
position- and dye-dependent detection efficiencies. Furthermore, if there
is already some knowledge about the free energy landscape along the dye-
distance affecting conformational motion, it should be possible to include
this knowledge into our theory to further enhance the distance determina-
tion. The quite recent development of two-step FRET allows to measure
the distances between three dyes simultaneously,199 and thus to probe cor-
relations of conformational dynamics.200 An extension of our theory to also
describe this two-step FRET method is straightforward and would be a valu-
able contribution to the interpretation of such experiments. Finally, since
low count rates are a notorious problem of single molecule experiments in
general, we expect our approach to be of wide applicability.

In a second contribution, we developed the LMLA-algorithm to compute
principal curvilinear coordinates from molecular ensembles. To extract main
structural features of an ensemble generated by a molecular dynamics (MD)
simulation, the common approach is the principal component analysis (PCA),
which yields a linear principal coordinate. However, in this work, as in many
other situations, the motion of interest was the rotational dynamics of a fluo-
rescent dye, which demanded for principal curvilinear coordinates. Whereas
the principal coordinate obtained by the PCA maximizes the variance of
the ensemble along this coordinate, we could show that our approach maxi-
mizes a generalized variance. This method should also be particularly useful
for describing conformational changes in proteins, particularly (nonlinear)
rotations of domains around hinge axes or dihedral angles of the protein
backbone.

We tested our method using an artificial two dimensional distribution as
well as an ensemble of structures of the protein BPTI (bovine pancreatic
trypsin inhibitor), generated by the CONCOORD program. We found that
the LMLA-algorithm indeed yields a coordinate which describes the ensem-
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bles in these test examples significantly better than the conventional PCA.
Furthermore, and as an extension to the usual PCA, our method allows to
answer the question which mode of motion is best correlated with the mo-
tion in a specified conformational subspace. It is this feature which could
be used to great advantage in this work to study the dye-protein correla-
tion, and which should be applicable to a wide range of processes like, e. g.,
protein-protein or protein-ligand interactions.

The third contribution concerned MD simulations of fluorescence anisotropy
decay experiments. First, simulations of two different free dyes (Alexa488
and rhodamine 6G) in methanol and in different water models were per-
formed, to show the general ability of MD simulations to calculate the fluo-
rescence anisotropy of a dye and to test the used solvent and dye force field
parameters.

These initial tests provided promising evidence, that it is indeed possible to
calculate the fluorescence anisotropy of a dye from MD simulations. We were
actually able to predict an unexpected inverse solvent effect of the Alexa488
dye: The dye shows a larger rotational correlation time in methanol than
in water, although the viscosity of methanol is smaller than that of water.
This finding has been confirmed by experiment. Additionally, the MD sim-
ulations revealed this effect to be due to the conformational dynamics of
the hydrophobic chain in the Alexa488 dye. This example showed that MD
simulations can actually help to interpret fluorescence spectroscopy experi-
ments.

In all simulations, the dyes had rotational correlation times that were too
small as compared with the experiment, i. e., the rotational diffusion in the
simulation is systematically too fast, at least for such small molecules as
the dyes under investigation. In contrast, the discrepancy of the rotational
correlation times of a protein between simulation and experiment is much
smaller. Test simulations suggested that this discrepancy is due to inac-
curacies in the solvent force field. The details of this effect are not fully
understood, however, and need further investigations.

In close collaboration with U. Alexiev (FU Berlin), who performed the fluo-
rescence anisotropy experiments, we performed simulations of the Alexa488
dye attached to the loop region of the AB-fragment of bacteriorhodopsin
solvated in methanol. From these simulations, we were able to determine
the conformation of the dye, which was a prerequisite for all following in-
vestigations.

A critical assumption for the interpretation of fluorescence spectroscopy ex-
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periments is, that the fluorescent label does not influence the dynamics of
the protein. This assumption is necessary, but difficult to test. By compari-
son of the backbone root mean square fluctuations from a simulation of the
AB-fragment with and without the dye, we found that the dye changes the
dynamics of the protein by approximately 15%, such that the abovemen-
tioned assumption, at least for the case at hand, seems justified.

By using our LMLA-algorithm to study the dye-protein correlations, we
were able to identify those residues, whose motion is correlated with the dye
motion and which are therefore probed in the experiment.

From the MD simulations, the anisotropy of the dye has been calculated
and compared to the measured anisotropy. The overall agreement between
the calculated and the measured anisotropy decay curves is very good. Our
analysis of the anisotropy decay revealed three decay times, which are due
to different motions, the fast wobbling of the dye, which is uncorrelated
with the protein motion, an intermediate component, which was shown to
be partially correlated with the protein motion, and the overall tumbling
motion of the protein. The intermediate component in the anisotropy decay,
that initially was assumed to be due to the loop flexibility, was shown to
be also due to slow conformational dynamics of the dye. An important
consequence is that the straightforward application of the cone-in-a-cone
model would overestimate the amplitude of the loop motion considerably.

If it is that difficult to investigate protein dynamics by fluorescence spec-
troscopy, why not using different techniques like, e. g., NMR spectroscopy?
First, the theories of NMR relaxation and fluorescence anisotropy decay are
very similar, and thus, the methods developed in this work can be applied in
both fields. Moreover, there are indeed particular advantages of fluorescence
spectroscopy experiments that make it an approach complementary to other
techniques: The size of the studied biomolecules is not restricted, which is
the case in NMR spectroscopy. Furthermore, it can be used to study single
molecule dynamics, which already provided much insight to structural het-
erogeneities in many cases.11,20,47 In addition, fluorescence spectroscopy in
vivo offers the great chance of monitoring conformational dynamics within
a living cell.

The interpretation of fluorescence spectroscopy experiments is difficult, and
it often requires knowledge of dye-biomolecule interactions in atomic de-
tail, which is hardly available from the experiments. As has been shown in
this work, molecular dynamics simulations are actually able to provide the
required information. With this first step we have opened a new applica-
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tion field of MD simulations to help interpret experimental results, which
can be extended towards the combination of different single-molecule tech-
niques like simultaneous application of atomic force microscopy or patch
clamp methods with fluorescence spectroscopy. The growing importance of
single-molecule experiments demands for the development of more sophis-
ticated techniques, which poses considerable challenges to experiment and
theory. These can be met most successfully by close collaboration between
experimentalists and theoreticians, as shown in this work.
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T. Restle, R. S. Goody, , and C. A. M. Seidel. Multiparameter single-molecule
fluorescence spectroscopy reveals heterogeneity of hiv-1 reverse transcriptase:
primer/template complexes. Proc. Natl. Acad. Sci. USA, 100:1655–1660,
2003.
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