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1 Introduction

Thanks to the ever increasing capabilities of nowaday’s computer hardware com-
putational methods have established themselves as the third major tool of physics
— beside theory and experiment. This is particularly obvious in biophysics. Here
“all-atom” simulations of biological macromolecules over a nanosecond timescale
have become feasible and contributed significantly to the understanding of bio-
logical processes |6], [10], [42].

Answering the question of what happens on the molecular scale however is only
part of their power. Moreover they can even provide researchers with the answer
to the question why this happens by computing the driving forces of the process
under study.

Under physiological conditions biological pro-
cesses are subjected to constant pressure and
temperature. The same environment is mim-
icked in computer simulations by applying ther-
mostat and barostat algorithms [2] [36]. The
simulation system therefore represents a classical

statistical system whose state space is spanned

by the coordinates ¥ and momenta p of all atoms
in the system. In a simulation Newton’s equa-
tion of motion are solved yielding a trajectory
Z(t;), p(t;). If the simulation is sufficiently long,
the set of all Z(t;), p(t;) will approximate a ther-
Fig. 1.1: An MD simulation modynamic ensemble, i.e., it will be distributed

yields a trajectory (black). For according to a Boltzmann density p (see Fig 1.1
long simulation times, it will ap- for an illustration).

proximate an ensemble of the un-
derlying density (red) The driving forces of the system thus stem from

the thermodynamic potential G = pV +U —T'S,
which is composed of pressure p, volume V', energy U, temperature 7" and entropy
S. Since pV is nearly constant, we will omit this term throughout this thesis and
replace G by the Helmholtz potential ' = U — T'S to simplify notation.

The interplay of the constituents of G can be observed in many biological sit-
uations. A particularly famous one is the hydrophobic effect, which gives rise
to various self-organization phenomena. The fact that lipids in aequous solution
tend to stick together cannot be explained by their pairwise interaction: Lipids
in vacuum do not attract each other. The formation of bilayers is mainly due
to the entropy increase of the solvent. Single lipids impose high constraints on
the water molecules around them thus lowering the entropy of the system. By
self-assembling into a bilayer, these constraints on the water are relaxed. The
water molecules can move freely again. The resulting increase in entropy favors



the bilayer state. The computation of thermodynamical quantities like U or S in
MD simulations is thus essential to answer the question above, namely why an
observed process has happened.

In this work we focus on the calculation of entropies. These are defined as func-
tionals of the phase space density p(Z), i.e, an integral over a function of p ranging
over the whole phase space. This definition already shows what renders their com-
putation extremely difficult. First, the integration over the whole phase space
is computationally infeasible [29]. Second, the phase space density p is not di-
rectly accessible to a simulation. Rather, simulations yield only trajectories, i.e.,
series of points Z(¢;) in configurational space. Assuming that the trajectory is
long enough to approximate an ensemble of the density p, one can use it to cal-
culate ensemble averages of local quantities like the energy. Since, however, the
definition of entropy involves an ensemble average of the density itself, explicit
knowledge of p(Z) is a prerequisite for its computation. One therefore has to
estimate the density p from the trajectory Z(¢;). If the estimated density has
a sufficiently simple functional form, its entropy can be calculated analytically
from the estimate.

This approach has been successfully established for the subspace spanned by the
protein coordinates [24] [40]. A protein in aequous solution usually stays in its
folded state during the whole simulation. In the phase space picture this means,
that the ensemble elements Z(¢;) generated by the MD simulation — regarded
as points in 3N-dimensional space — cluster around a point &, representing the
average folded configuration. In this special case the density p is localized within
a small region and can be sampled sufficiently even by a short simulation. A
good approximation of this density can be obtained by fitting a multivariate
Gaussian distribution to the trajectory. This particular fit function is motivated
by the fact that the free energy landscape around the protein’s average folded
configuration will be dominated by a minimum of the free energy. If this minimum
is approximately harmonic, it will give rise to a multivariate Gaussian distribution
in the phase space region under study. This fit is routinely done in the analysis
of MD simulations [39] [1].

As can be seen from the example of lipid bilayers, solvent entropies play a crucial
role in biological processes. However, the solvent cannot be easily incorporated
into the density estimation. The complications are twofold. First, the motion of
the solvent molecules is diffusive, in contrast to the well localized atomic fluctu-
ations in a protein. The configuration space that has to be sampled is therefore
much too large to achieve convergence. Second, the typically very shallow energy
landscapes generate phase space densities with quite complex topology, which
precludes similarly straightforward analytical approximations.

The goal of this work is to address both problems by effectively "proteinizing”



the solvent. The basic idea is to make use of its symmetry under permutations of
the solvent molecules. For each element of the ensemble, the water molecules are
relabeled such that the permuted configurations fall into a reasonably compact
volume in phase space. To this aim we employ a combinatorial optimization
algorithm [21] which relabels the water molecules such that their average distance
to a predefined reference position becomes minimal.

While not changing any thermodynamic quantities of the ensemble, this approach
should enhance sampling sufficiently to achieve convergence from relatively short
simulations. It should also simplify the topology of the transformed density such
that simple density estimates become applicable. The details of this approach
are discussed in section 3.

In order to evaluate this idea we apply it to two simple yet typical systems, a free
non-ideal gas and the solvation of a particle in this gas. To identify the strengths
and weaknesses of our technique we choose a highly simplified gas model, namely
a system of 2-dimensional repulsive disks moving in a plane.

As a more realistic test case we also apply our method to compute the entropy
of a van—der-Waals gas and the solution entropy of an additional van—-der—Waals
particle in this gas. The technical details of these benchmarks are described in
section 4.

Based on these results we suggest several possible ways to improve our density
estimation. We examine whether existing algorithms might be able to refine
the entropy estimate provided by our method. Here we focus on the technique
of thermodynamic integration which yields precise values of entropy differences
between two given systems. We investigate whether this method could be used in
connection with our method which yields rough estimates of absolute entropies,
i.e., the entropy of one isolated system. As a by-product of these considerations
we propose an improved technique to compute energies from TI trajectories.
Chapter 6.2 contains the details of these studies.

An alternative to finding a better fit function is to retain the Gaussian ansatz but
transform the trajectory such that it fits to it. For this approach to work one has
to find a transformation which leaves the entropy invariant. Such transformations
are conveniently implemented by the motion of an incompressible fluid. As a proof
of principle we apply this technique to a two dimensional test density. We draw an
ensemble of 2D-points from it and move these points along the streamlines of an
Eulerian fluid in order to transform them into a cloud of approximately Gaussian
shape. The cloud’s entropy is then estimated using the established Gauss-fit
methods. This procedure should significantly enhance the entropy estimates.
These proof-of—principle calculations are sketched in chapter 6.4.

In the last chapter we summarize our results and show how the proposed tech-



nique can be further enhanced. We also propose additional applications of the
relabeling procedure.



2 Theory

2.1 Basic concepts

From the statistical physicist’s point of view a simulation box is a set of N 3—
dimensional coordinates ¥, where N is the number of atoms in the box. This
set can be considered as one point 7 in a 3N-dimensional space. The 3N-
dimensional space of these coordinates will be referred to as “configurational
space” below. This concept can be applied to subsystems of the box as well,
e.g., the coordinates ¥p and s of protein and solvent consisting of 3P and 35
dimensions respectively. The configurational space must not be confused with
the phase space, which is the space of the atoms’ coordinates and momenta
(P, 7).

In molecular dynamics (MD) simulations the motion of a system in configura-
tional space is computed using classical mechanics. The atoms are assumed to
be well described by the coordinates of their nuclei (Born—Oppenheimer approx-
imation). The time development of these coordinates is computed by solving the
Newton equations of motion arising from the Hamilton function

7

A(7,p) = 2m

+ V()

where V(Z) is the potential energy of the system describing the interaction of
the different atoms. For this function several empiric models (“force fields”) have
been put forward. [22] [45]. This potential energy V' is often visualized as a high
dimensional energy landscape [35] [15].

—

An MD simulation yields a sequence of points (Z(¢;), p(t;)) in phase space. This
sequence is generally referred to as a “trajectory”. Its points are called configu-
rations. Forces f({;) and energies E(t;) are also computed in an MD simulation.
The simulation system is coupled to a heat and/or a pressure bath. For long simu-
lation times, the trajectory will thus approximate a statistical ensemble. Its data
points (Z(t;), p(t;)) will be distributed according to the canonical distribution [27]

efﬁH(fvm

pE) = ——F— (2.1)

where § = 1/kgT with Boltzmann’s constant kp and temperature 7. Further-
more,

7 — / d3Ni:d3Nﬁ efBH(a?,ﬁ)
r

is the partition function, where fr denotes the integral over the whole phase
space.



Fig. 2.1: Subdivision of the configuration space of a protein into folded and unfolded
states. The probabilities of different states depend on their free energy.

2.2 Definition of statistical quantities

Only rarely are the coordinates  themselves the quantity of interest. More often
one is interested in different “states” of the system such as the folded state of
a protein. In the phase space picture (see Fig. 2.1) these states correspond to
regions, i.e, to continuous sets of coordinates corresponding to a macroscopic
property, e.g., a folded protein.

The stability of such states is governed by their respective probabilities. In the
example of Fig. 2.1 one would consider the folded state as stable if the probability
that, picking a random element of an ensemble, one finds the protein in the folded
configuration is much higher than the probability for the unfolded case. This
probability is given by

J; dNE dNp e PHED) 7 e
Diolded = / d3Nf d?’Nﬁ p(f,ﬁ) _ Jfolded state —.
o folded state Z Z
Introducing the free energy
F=—kgTn(Z) (2.2)

the above stability criterion can be rewritten as
AF = F folded — F, unfolded <K 0

where Fiogeda = k5T In(Ztodea) and Fyntorded = k5T In(Zynfolded )-
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F' can be decomposed into energy U and entropy S by means of the relation

F = / d*Ng d*Np H p(Z,p) + kT / N d*Np p(z, ) Inp(Z,p) =
I

T

= U-T8 (2.3)

The meaning of U is quite obvious: Parts of the phase space with low energy will
be favored. Let us now turn to the interpretation of the second term, entropy:

2.3 Definition and interpretation of entropy

The entropy S is the subject of this work. Its definition follows from Eq. 2.3
S = —kg (Inp) (2.4)

where the functional (-) = [.-p(Z,p) d*"Zd*p denotes the ensemble average.
Due to this integration, also S is a functional mapping a given density p(Z, p) to
a number S

In order to take the logarithm of the density it has to be dimensionless. This is
accomplished by measuring the phase space in units of a reference volume. In
order to be consistent with quantum statistical mechanics, this unit volume has
to be chosen to be Planck’s constant when one seeks to compute entropies of real
systems. As long as one is only interested in the mathematical properties of the
entropy, this factor can be omitted which we will do throughout this chapter.

The properties of S can be understood by considering In(p) for the relevant
domain 0 < p(Z,p) < 1, as shown in Fig. 2.2. It is clear from this figure that
large regions with low density will contribute much to the entropy whereas regions
of high density, which have to be small due to the normalization of p, will yield
smaller contributions. Therefore a large value of S implies that a large region of
phase space is accessible to the system in a given state; a low value signifies that
the system is constrained.

Phenomena like the hydrophobic effect suggest to split S into contributions from
different subspaces of the system. Due to the nonlinearity of S it is in gen-
eral impossible to do this in a physically meaningful way. Nevertheless such a
decomposition is commonly assumed in the MD community.

Dividing the phase space into the subspaces I'p and I'g spanned by the protein and
solvent coordinates and momenta (Zp,pp) and (Zs, ps) the probability density
can be reduced to one subspace by integrating the full density over the other
subspace. Thus

pp(Zp,pp) = /d3N$Sd3NPS p(Zp,Zs, Dp,Ds) (2.5)
N



—-In(p)

Fig. 2.2: In(p) in the relevant domain. Phase space areas with a low density will
contribute much to the entropy. The contribution of areas with a high density is low.
The entropy will therefore be low for localized systems and high for systems which can
access a large part of the phase space.

is the probability to find the system at the P subspace coordinate Zp regardless
of its position in the S subspace.
The entropy of this density can be defined using a definition analogous to Eq. 2.4

Sp = —kpg (In(pp(Zp, Pp)))p

but its physical meaning is limited in the following sense: Two completely different
densities can give rise to the same subspace entropy, even to the identical subspace
density (see Fig 2.3 for a 2x1-dimensional illustration).

Knowledge of S5 and Sp is in general not sufficient to determine the entropy S
of the full system. Only in the special case that the density factorizes,

p(Z,p) = pp(Zp, pp)ps(Ts, Ps), (2.6)
S can be reconstructed from the subspace entropies by means of
S =Sp+Ss. (2.7)

In the general case, correlations between the P and the S subspace may exist
(See Fig. 2.4 for an illustration). In this case the density takes the form

p(f7ﬁ> = pP(fpaﬁp)p5<557ﬁ.5)pcor<f.5'7ﬁ.5‘7 fP,ﬁP)-

8



Xs Xs

Xp Xp
Pp Pp

SN L

*p *p

Fig. 2.3: Limited physical meaning of the subspace entropy. Two completely different
densities with different total entropies can give rise to the same subspace density when
they are projected by means of Eq. 2.5.

X, X,
S Xg Xg S

Ps Xp Xp Ps
pP pP

Xp Xp

Fig. 2.4: Non—additivity of subspace entropies. Two completely different densities can
give rise to the same subspace entropies, even to the same subspace densities. Knowledge
of Sg and Sp is therefore not sufficient to determine the full entropy S.

Its entropy becomes thus

S = Sg+ Sp+ Scor
Accordingly, entropy is additive only in the special case of Eq. 2.6.

In the biological context, these considerations imply that the solvent and protein
contributions to the total entropy S cannot be split up in a physically meaningful
way. Nevertheless, the protein subspace entropy is often computed. Assuming
that the solvent contribution will be approximately the same for all proteins, this
quantity can be used to compare entropies of proteins. This assumption needs
justification and will likely often not hold.

Applying the above considerations to the subspaces of positions and momenta,
however, a decomposition is possible. Since the only p—dependent contribution

9



to the Hamiltonian of a conservative system is
P
Hy, = —— (2.8)

the density factorizes into p— and 7—dependent terms. The entropy, according to
Eq. 2.7, is thus the sum of the ¥— and p~subspace entropies . The latter can be
easily evaluated yielding a constant term.

2.4 Computation of the entropy

The aim of this work is to develop a method for the numerical computation of
the entropy from a molecular dynamics or Monte-Carlo simulation. We are thus
facing the problem: Given an ensemble (Z(t;), p(t;)) distributed according to an
unknown density p(Z, p), estimate its entropy

S = —kp (In(p)) = —kBAd3N5d3Nﬁp(fvﬁ In [p(Z, )] (2.9)

In the following sections we will first review several existing methods tackling
this problem, which we will use later on as building blocks and/or benchmarks
for our approach.

It becomes clear from Eq. 2.9 that entropy cannot be computed in a straight-
forward way, because of two problems already mentioned in the introduction: It
involves an integral over the whole phase space which is computationally infeasible
and it requires knowledge of the density p(Z, p) which is not accessible in a simula-
tion.

There are two main ways to work around this
difficulty: By means of the relation

. 6—5H(f=15)
(@) =

‘ one can reconstruct the density from the en-

ergy, which can be computed in the simulation.
This approach however involves also the par-
tition function Z which is difficult to obtain.
Thermodynamic integration (chapter 2.4.2) is
Fig. 2.5: density (red) versus tra- an entropy estimation method following this ap-
jectory (black) proach. However this method is only capable of
calculating entropy differences.

10



Alternatively, a density can be obtained by fitting an analytical density ansatz

to the trajectory. The following chapter describes the conventional technique of
this kind.

2.4.1 Entropy Estimation using Principal-Component—Analysis

The most successful ansatz for a fit function was put forward by Karplus in
1981 |24]. It makes use of the fact that the entropy can be split into a position—
dependent and a momentum—dependent part, as was explained above. Since the
computation of the latter can be performed analytically the problem reduces to
finding an ansatz for the configurational part of the density.

This is an extremely difficult task if one aims at an ansatz for the whole system
comprising protein and solvent. For the protein subspace however a density
estimation can be put forward, as was done by Karplus in his 1981 paper. Since
all following derivations involve only the protein subspace, we will drop the label
P and denote by ¥ what was formerly ©p. Also the number of degrees of freedom
will be denoted by 3N instead of 3P.

The Karplus ansatz for the density in the protein subspace is based on the fol-
lowing motivation:

One is mostly interested in the entropy of given states of the protein, such as the
folded state. These states are often defined as the vicinity of a local or global
minimum on the free energy landscape, i.e., the energy landscape including the
protein energy as well as the mean contribution of interaction and solvent energy.
In the vicinity of such a minimum Z;, the free energy can be expanded to first
order [14]

1
where U = -&E_ | is the second derivative of F' at ). The density near the

8:137;81']'
minimum will thus be proportional to a multivariate Gaussian function

D7) ox e~ EF) TUGE—70) (2.11)

Karplus suggested to obtain an estimation of the density by fitting a multivariate
Gaussian function to the ensemble.

7 L —L@-3)T c~t (#-%
T = Gowmepet O (2.12)

Since this ansatz is motivated by Eq. 2.11, it is also referred to as quasi-
harmonic approximation
Fit parameters of the ansatz are the function’s center 7y and its 3/N principal

11



2D projection of trajectory

150 ‘ : —

50—

S50

-150
-150

Fig. 2.6: Gaussian function fit to a trajectory. The center of the Gaussian function is
set to the average configuration of the trajectory. The main axes of the Gaussian are
chosen such that they equal the principal components of the trajectory.

components @;, which are the eigenvectors of the covariance matrix C. |C|
denotes the determinant of C.

Fitting this function to a trajectory is computationally inexpensive. The center
Ty is obtained conveniently by averaging over the frames of the trajectory

Ty = (Z(t:)),

(-), here denotes the time average, i.e, the average over all frames of the trajectory.

The main axes are chosen such that they equal the principal components of the
trajectory. This is done by setting the covariance matrix C' equal to the covariance
matrix of the trajectory.

Cij = ((xi — woi) - (x5 — 05)), (2.13)

The entropy of the fitted density can be computed analytically yielding

3

1
S =5 Nkp + gkpln [(27)*N|C] (2.14)

This approach however suffers from a technical problem: The covariance matrix of
atomic fluctuations (Eq. 2.13) usually shows an eigenvalue spectrum as depicted
in Fig 2.7. In particular it contains some small eigenvalues corresponding to
high—frequency motions (like e.g., bond vibrations in the case of a protein). The
determinant |C| in Eq. 2.14 — being the product of all eigenvalues — thus becomes

12



Eigenvalues of the covariance matrix

2000
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(u nmz)
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00 100 200 300 400 500 600 700

Eigenvector index

Fig. 2.7: typical eigenvalue spectrum (taken from a trajectory of a van—der—Waals gas)

very small and gives rise to negative absolute entropies. Entropy differences
however are predicted correctly since in computing

2
AS =S, -8 = 7Bln(|Czl/|01I)

the contributions of the small eigenvalues approximately cancel.

In 1993 J. Schlitter proposed a way to overcome the limitation and to extend
the approach to the computation of absolute entropies [40]. He pointed out that
the problematic high—frequency vibration modes correspond to fast motions like
bond vibrations which are already in the quantum mechanical regime at room
temperature. The density along these coordinates thus cannot be localized more
sharply than the ground state wavefunction of the corresponding oscillator. Since
the entropy of this ground state is zero, quantum mechanics imposes a lower
limit for the entropy. Using the quantum mechanical formula for the entropy
of a harmonic oscillator thus yields a natural way to cut off the low eigenvalues
without disturbing the contributions of the low—frequency movements.

In his paper [40], Schlitter pointed out that in order to treat the multivariate har-
monic oscillator quantum-mechanically, the 3N x 3N mass-weighted covariance
matrix

oi; = (V/Mmim;Tiv;)
has to be considered instead of the pure covariance matrix C' = (x;z;). The
quantum—mechanical entropy can be computed by the eigenvalues (¢?) of this

13



matrix by the relation
kB il /{ZBT€2 9
S5 Zl In (1 + = () (2.15)

This approach is now widely used to compute absolute entropies of proteins.
Since however it still relies on the harmonic approximation, it is not suited for
states of the protein comprising several distinct minima. For the same reason is
not capable of handling the solvent, which is its main drawback.

2.4.2 Entropy Estimation using Thermodynamic Integration

Thermodynamic integration uses the relation between energy and phase-space
density (Eq. 2.1) to compute the free energy or entropy difference between two
systems [25] [46]. We will use it later as a benchmark for our entropy estimation
method and therefore describe it in more detail here. Since free energies are more
often computed than entropies we will sketch this case first.

The key quantity of statistical mechanics is the partition function Z.
7 — / dBNi:d?;Nﬁ efBH(a?,ﬁ)
r
This cannot be estimated from an ensemble (Z(t;), p(t;)), since the finite number

of ensemble elements will in practice never cover the whole phase space. Accord-
ingly, the same holds true for the free energy F' = —kpT'In Z.

However, free energy differences between two slightly different systems can be
computed. Let Hy(Z,p) and Ho(Z,p) = Hi(Z,p) + AH(Z,p) be two slightly
different Hamiltonians of the same coordinates and momenta. Then [44]

AF = —kpThn(eP31) (2.16)

where (-),; denotes the thermal average with respect to Hamiltonian H,. This
approach only works for small differences AH since configurations (7, p) with a
large negative AH (Z,p) contribute much to AF but are unlikely to occur in an
ensemble generated by H.

Free energy differences between two significantly different systems can be com-
puted by splitting the difference Hamiltonian AH into n smaller parts AH, =
AH/n. This defines n + 1 Hamiltonians “between” H; and H,

H() = Hy + ~AH
n

with H(0) = H; and H(n) = H,. Their relative free energy differences AF; =
F; — F;_1 can then be computed by Eq. 2.16.

14



Letting n tend to infinity one can define a continuous procedure to compute free
energy differences. The Hamiltonians “between” H; and H, are then labeled by
a continuous parameter A € [0;1]. A common choice is

H(\) = (1— N H, + \H, (2.17)

Of course, other sufficiently smooth paths in the space of Hamiltonians with
boundary conditions H(0) = H; and H(1) = H, are also possible.
In this limit Eq. 2.16 becomes

A>H(A>

and the free energy difference between H; and H, is obtained by integrating over

this result .
H
AF:—/ d)\<8— > (2.18)
0 OA [, H(\)

The pathway H(\) can be arbitrary, even unphysical. In practice, using Eq. 2.17,
one often chooses it such that particles are created or annihilated by scaling their
interaction Hamiltonians with .

dr
dA

oOH
= —kpT { =
D <6A

Usually, A is increased in every simulation step. Thus in every H(\) the system
is sampled only one step long. The thermal average can thus be dropped which
transforms Eq. 2.18 into the time average

T ONOH OH
AF =— | dt==—==| (t)=-= d) [ =—
[ egm| o= (5],

ot O\
where T is the run length of the simulation and d\ the increment of \ in a
simulation step.

) (1), Bt))

This method can be extended to the computation of entropy differences between
two systems. The derivation is straightforward [37] [44]. By using the definition
of the free energy (Eq. 2.3)

fF d3Ny d3Nﬁ H(f, ﬁ*)efﬁH(f,ﬁ)
T [ d3NE d3Nj e~ 0H (@D

1

=7

U-F)= + kpln / d*NF dPNp e~ PHED)
T

one obtains the following expression for the entropy change

()., [(252) g2, ]

Hy
In this case A cannot be increased in each step of the simulation, since the ther-
mal averages cancel if they are taken only over one step. Instead, one has to

15



perform multiple subsequent simulation runs at discrete values of A\. This is
called multistep perturbation.

It should be noted that thermodynamic integration always computes free energy
or entropy differences of the whole system, whereas the PCA-based entropy esti-
mates are usually applied to subsystems like the subspace of protein coordinates,
since only here the harmonic approximation can be justified.

Thermodynamic integration is not as common for the entropy as it is for the free
energy, mainly because convergence is not as good as in the free-energy case.
Nevertheless we will use it to benchmark and calibrate other techniques for the
computation of entropies.

2.5 Analytical results

Later in this thesis we will apply the entropy estimates reviewed in the previous
sections to several test cases and compare them with our method. For some of
these test cases, analytical results can be derived. This is the aim of this section.

2.5.1 PCA of an ideal gas

This case is considered in [5] and [39] as a benchmark for the Schlitter method.
Since the details are elaborated in both of these references, we will only recall
their main results:

Consider an ideal gas of N non-interacting particles of mass m moving in a cubic
box of sidelength L at temperature 7. The variance of its density is computed
to be

(%) = L*/12

Inserting this result into Eq. 2.15 yields an entropy of

N kgTe? [?
S:%k31n<1+ B¢ —)

— 2.2
R 12 (2:20)

In the case of an ideal gas, the entropy can also be computed analytically from
the partition function. This approach yields the entropy [39]

vV 3

with
h

vV 27rm/<;BT
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being the thermal de Broglie wavelength. Note that in this derivation the particles
are assumed to be distinguishable as stated explicitly in [39]. This assumption is
neccessary since also the PCA is able to distinguish between the particles.

Interestingly, the Schlitter result is found to reproduce the analytical result almost
exactly for large values of the box size. For a box of V' = 22.41 [5] computes an
error of less than 1%. This is surprising because the potential exerted by the box
is far from harmonic as assumed by the harmonic approximation. The small error
suggests that Gaussian fit functions can be applied to a wide range of anharmonic
systems, too.

Since we will need it later, let us compare these two values explicitely for a box
of 2.2 nm side length containing 100 particles of mass m = 39.948 amu at a
temperature of 7" = 300K. Their de Broglie wavelength is

h
A= —— =1.5947-10""m

V2mmkgT

so their exact entropy (Eq. 2.21) is
kJ

mol

e = 13.54
Sa a K

The Schlitter approach (Eq. 2.20) computes an entropy of

kJ
K mol

SSchlitter = 13.98

The deviation from the analytical result is slightly larger than 3%.

2.5.2 Covariance matrix of a system of identical particles

In the case of a system of identical, but interacting particles, the covariance
matrix cannot be computed fully analytically. However some of its properties
can still be derived. In particular, its eigenvectors can be proven to belong to
certain subspaces. Since we will study gases of interacting particles in this thesis,
we will derive these properties in detail.

Consider a system of N identical interacting particles in d dimensions with posi-
tion vectors @;,7 € {1,... N} grouped together to one Nd—-dimensional position
vector Z. Let us decompose their covariance matrix C = <:ZfT > into N2 d x d
sub-matrices Cj; = (i7" ). Since the particles are indistinguishable only two
different matrices will occur

c.— C_fori=
Y Crfori#j
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The covariance matrix is thus of the form

C_. C, C, ... C.
C, C_. C, .. C
C— .7'5 .75 .75
C, C. ... C-

The eigenvalues and —vectors of such a matrix can also be computed analytically.
Let €, A% be a set of d eigenvectors and —values of the matrix C_ + (N — 1)C...
Then clearly the vectors EX = [ef e", ... e*] will be eigenvectors of the full

covariance matrix, since

C ek
CE! = : =\ EE.
(Co+ (N —1)Cy) - et

Let e, \* be eigenvectors and —values of the matrix C— — C,. Then for any
pair ¢ # j, the vector

( J
is an eigenvector of C, since
0
(C: — C¢) e'i
CEf = : = \'EF
—(C7£ — C,) e
0

The latter dN(N — 1) vectors belong to an eigenspace which is in fact only
(N — 1)d—dimensional. The eigenvalue spectrum of the covariance matrix will
thus consist of the d center—of-mass—motion eigenvalues A% and the d eigenvalues
A of relative motion, each of which is N — 1 times degenerate.
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3 Computation of Solvent Entropy

3.1 Idea

As explained above, the density of a system can be estimated reliably from an
ensemble if it stays close to one minimum of the energy surface. Then the quasi-
harmonic approximation can be applied and the density can be obtained by fit-
ting a multivariate Gaussian function to the ensemble generated by a molecular
dynamics (MD) or Monte-Carlo (MC) simulation. As is shown by the ideal gas
study, the quasi-harmonic approximation can also be applied to some anharmonic
systems; it is definitely not applicable if the system samples several distinct min-
ima of the energy surface.

This however is exactly the case for the solvent
‘ environment in a simulation. Solvents like wa-
ter move in a shallow energy landscape which
generates an extended phase space density with
many similar minima. Such a density renders
the quasi-harmonic approximation inapplicable.

One might think about extending the approach
by fitting more complicated model densities
than the multivariate Gaussian to the ensem-
ble. However we are not aware of a model den-
sity describing the whole phase space density of
water. Furthermore, an unfeasibly lengthy sim-
ulation would be necessary to sample the whole
phase space and adjust the necessarily many fit-

Fig. 3.1: schematic view of
the solvent phase space density
(shaded red) and trajectory (yel- P
low). The energy landscape is tIng parameters.
shallow giving rise to diffusive
motion and densities with com-
plex topologies.

The aim of this thesis is to contribute to the
solution of this problem in a complementary way.
Instead of developing a complicated fit function
for the water’s phase space density, we propose to transform the water trajectory
in a way that renders simpler fit functions applicable.

To this aim we exploit the symmetry of the water under permutations of the
water molecules.

Let7:{1,2,...,N} — {1,2,..., N} be a permutation of the numbers {1,2,..., N}.
These permutations form a group [23], which we will denote by Sym,. Consider

a system containing N water molecules. The 9 coordinates of the oxygen and the
two hydrogen atoms

L0y TH1,iy TH2i
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of one water molecule will for simplicity be denoted by a 9-d vector Z;. Let again
Z denote the 9N—dimensional vector of all water molecules and 7, the same vector
with the water indices permuted according to 7, i.e.,

Tr = [Trq), Tr@)s - - - Tr(w))

The system’s Hamiltonian is invariant under permutations of the molecules
H(Z,p) = H(Zx, pr) (3.1)

if the molecules are indistinguishable. This is not the case if they are bound to
each other or subject to an otherwise index—dependent force, which however is
not the case for solvents like water.

Equation 3.1 has an important consequence. The solvent configurations ¥ and
T, are equally likely to occur in a simulation, since

efﬁH(fvﬁ) efﬁH(fTr 717#)

p(Z,p) = 7 = 7 = p(Zr, Pr) (3:2)

Conversely this implies that the water molecules may be relabeled (i.e., their
coordinates may be swapped according to a permutation 7) in every frame of the
simulation without changing thermodynamical quantities like the mean energy.

We want to use this freedom and relabel the
molecules according to some permutation 7 in
every ensemble element such that the resulting
ensemble can be fit by the methods of section

reference 2.4.1. The crucial step for this approach to work
SULCOUE is of course to find the appropriate permutations
.

Ideally, the permutations should transform all
ensemble elements into the vicinity of a mini-
mum of the potential energy surface, since then
the quasi-harmonic approximation would be-
come applicable. We propose to accomplish this
Fig. 3.2: Schematic view of by defining a reference position Ty lying in the
the relabeling procedure in phase vicinity of a minimum of the energy surface and
space. Solvent molecules will be finding permutations 7w such that the distance
relabeled, if the configuration can between the relabeled ensemble elements and the
come closer to its reference struc- reference position becomes minimal. The rela-
ture in doing so. beled ensemble will thus sample a smaller region
of the phase space, the sampling density however will increase. In this way, the
sampling problem should also be alleviated significantly.

Since MD simulations usually start from a configuration whose energy has been
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1st frame nth frame relabeled frame

N

R
2 ¢ y ¢
N

'0

Fig. 3.3: illustration of the relabeling procedure in real space. If two molecules “change
places”, they can be brought closer to the reference structure by swapping their coordi-
nates.

minimized, the first simulation frame provides a convenient choice for the refer-
ence position.

More formally, the following problem has to be solved for each ensemble element:
Given two configurations 7, 7y € R*" find a permutation 7 € Sym, such that
Vo € Symy,o0 #

(Zr — ) < (Zy — Tp)° (3.3)
That is: find a permutation of the solvent molecules which brings the solvent

as close to its reference position as possible. An illustration for the case of two
molecules is given in Fig. 3.3.

3.2 The linear assignment problem

This task is a special case of a problem known in computer science as linear
sum assignment problem (LSAP) or linear assignment problem (LAP). It is
formulated as follows [8]: Given a NV x N cost function ¢;;, find the permutation
m € Sym, maximizing the total cost

N
Z Cin(i)
i=1

Since the distance between permuted configuration and reference can be written

as
N

(Fr = F0)" =) _(Fr) — i)
i=1
it becomes immediately clear that the condition of Eq. 3.3 is equivalent to the
LSAP if we set
Cij = —(fj - foz‘)z. (34)

Since the LAP occurs in many fields, there exist a number of efficient solutions.
The earliest one is due to Kuhn [26] who realized that a polynomial solution of
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Fig. 3.4: Trajectories of the water oxygens without (left) and with (right) relabeling.
Without relabeling (left), the molecules diffuse freely through the whole box volume.
When the relabeling is switched on (right), they stay close to their reference position
since they will be relabeled if they move too far.

the problem is possible and proposed an O(n?) algorithm known today as the
“Hungarian Method”. Since then, different algorithms have been proposed, the
best ones of which achieve O(n?) efficiency. Most of them use linear optimization
or primal-dual algorithms, techniques whose details we will omit here. They can
be found in [8] [7] or [9].

3.3 The relabeled ensemble in real space

To gain more insight into the proposed method, let us consider a simulation of
216 water molecules moving in a box as an example. The data used for generating
the Figures 3.3 and 3.5 was produced by an MD simulation, whose details will
be described in section 4.

To visualize a trajectory of the system, we color the molecules differently and plot
all configurations of the trajectory on top of each other. To get more transparent
plots, we plotted only the oxygen coordinates. The resulting picture is shown in
Fig 3.3.

The left part of the figure shows the trajectory before the relabeling is applied.
The molecules diffuse through the box freely. The right part shows the same
trajectory after we applied the relabeling. Here, the water molecules stay close
to their reference positions. This is a nontrivial result: Criterion 3.3 considers
only the distance in configurational space which involves all molecules. It is not
obvious that this constrains also the movement of every single molecule. Since
however moving a single molecule closer to its reference position will always reduce
the distance of the whole ensemble, too, the method will apply such a permutation
whenever it is possible. This is the case in almost every frame, since the high
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Fig. 3.5: Trajectories of a single water oxygen before and after the relabeling (blue and
green curve respectively). The discontinuities are due to periodic boundary conditions.

density of the water makes it very probable that there will be at least one water
molecule in the vicinity of each molecule’s reference position. The size of the
volume accessible to a single water molecule is of the order of the nearest neighbor
distance.

Fig. 3.5 shows the same plot for only one molecule. Here the contrast between
diffusive motion before and localized motion after the relabeling is even more
striking.

3.4 The relabeled ensemble in configurational space

Only part of the configurational space will re-
53 X main accessible to the system when the relabel-
ing is applied. Since we aim at an estimation of
the entropy in this part, we have to address the
question how probability densities look like in
this part of the space. A prerequisite for this is
to know as many details as possible about the shape of the part itself. The aim of
this section is to provide these details by a characterization of the configurational
space accessible to a system after the relabeling is applied.

Fig. 3.6: 3x1-dimensional model
system

Since the configuration space of real systems is too high—dimensional to be vi-
sualized, we start by studying a very low—dimensional example, namely 3 one-
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Fig. 3.7: Division of the 3x1D configurational space according to applied permutations.
The right picture is taken from the (111)perspective. Switching on the relabeling would
constrain the system in one of the colored slices.

dimensional particles (Fig. 3.4). Here a visualization is possible, since the config-
urational space is only 3—dimensional. The action of the relabeling algorithm can
now be visualized by plotting all frames of an unrelabeled trajectory on top of
each other and coloring them according to the permutation which the relabeling
algorithm would apply. The resulting picture is shown in Fig. 3.7. As expected,
the phase space is cut into 6 (= 3!) slices. Switching on the relabeling algo-
rithm would condense the whole trajectory into the slice containing the reference
position.

Some general features of the slice are already apparent in this plot: It is delimited
by hyperplanes in the configurational space. Furthermore, its longest dimension
is along the (111)-axis which is completely contained within the slice.

These features are general and can be proven. To do this, we introduce permu-
tation matrices P defined by
P-r=2x,.

That is, P swaps the coordinates according to m when applied to a vector #. A
permutation 7 will only be applied by the LAP solver, if it reduces the distance

(PT — %)% < (7 — 7).

When both sides of the equation are expanded, only the mixed terms do not
cancel and the condition reduces to

7y (1—=P)Z <0

The phase space accessible to the relabeled trajectory is the set of all Z for which
no permutation reduces the distance, i.e., the set of all & for which VP

i (1—P)z >0 (3.5)
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Fig. 3.8: Visualization of Eq 3.5. The starting point (vector Zp, shown in blue) generates
N! vectors #°7(1 — P) (which are shaded red). They form the normal vectors of the
planes delimiting the slice.

This can be viewed as N! half-space equations in normal form, since :1?0T(1 —P) =
((1— P)T#,)T are simply N! vectors. Condition 3.5 states that the projection of
Z onto all of these vectors has to be positive, i.e., Z has to lie in the intersection of
these N! positive half-spaces. The half-spaces are delimited by the planes defined
by

See Fig. 3.4 for an illustration. Eq. 3.5 also allows to understand another char-
acteristic property of the slice: Consider a vector ¥ = [@, d,...,d], i.e., a config-
uration where all atoms are located at the same position. In this case P - ¥ = 7,
so condition 3.5 is automatically fulfilled.

Since this vector points along the largest dimension of phase space itself, it also
represents the direction of largest dimension of the slice. It is however unlikely
that the largest dimension of a relabeled trajectory will lie in this direction, since
it corresponds to the center—of-mass—motion which is usually removed from a
simulation.
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3.5 Entropy of a relabeled density

Since the density of the relabeled system covers only a fraction of the configu-
rational space, its entropy will be smaller than that of the unrelabeled one. To
compare the entropy estimated from a relabeled trajectory to the entropy esti-
mated from an unrelabeled trajectory, one has to take this difference into account.
This can be done as follows:

As in section 2.5.1, we assume the particles to be distinguishable. Let z; € S lie
inside the subset S of the configurational space which is accessible to the rela-
beled trajectory (the “slice”). N! energetically equivalent configurations can be
obtained by means of the relation ¥ = P - Z,. All these configurations will be
mapped into the slice by the relabeling procedure, so the relabeling will increase
the density in the slice by a factor of V!.

ps() = Np().
The whole configurational space I can be thought of as consisting of N!identical

copies of S so that an integral of an arbitrary function of the unrelabeled density
f(p) over S can be expressed as

[ @) = 5 [ aero(@)

Using these relations the configurational entropy Ss of the relabeled density is
Ss = —kgp / d*Ne pg(2) In[ps(Z)] =
s
= —kg / d*Nz N! p(Z) In [N!p(Z)]
5

= —k’B/F d*Nzp(Z) [In [p(F)] + In N]
— S~ kpln(NY). (3.6)

Since the entropy in momentum space is not affected by the relabeling, this
relation also holds true for the total entropy.
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4 Methods

4.1 Our implementation

To evaluate the approach presented in the previous sections, we first had to im-
plement it in a way that can be used together with the tools used to run and
analyze MD simulations. We therefore developed a computer program called
“g permute”. It reads a trajectory in the standard formats used by the MD
software GROMACS, solves the linear assignment problem, relabels the water
molecules according to the solution of the LAP and outputs the relabeled trajec-

tory in a standard format again. Details of its usage can be found in Appendix
A.

The key step in the proposed method is to solve the linear assignment problem,
so an LAP solver is the crucial component of our software. From the many
existing LAP solving algorithms reviewed in section 3.2, we picked one proposed
by Jonker and Volgenant [21]. The main reasons for our choice were the fact that
it achieves O(n?) efficiency and that a C-++-implementation is readily available
from [31]. Since this implementation is written in C++, we had to compile it
into a dynamic linked library to use it in our source code which was written in
pure C.

Another important part of the program is the computation of the cost matrix
c;j- For convenience, we decided to compute it from the coordinates of the water
molecules’ oxygen atoms only. This restriction however is somewhat arbitrary.
One might as well consider building the cost matrix from the distance of the
whole water molecule to its reference structure by setting

Cij = (fo,j — fo,o,z')Q + (le,j — fo,Hu)Z + (fm,j — fO,HQ,z’)Z-

Also the consideration of other criteria for the relabeling might be worthwhile.
The corresponding changes should be easy to implement into the source code of
g permute.

4.1.1 Consistency checks

To test our algorithm, we applied it to a trajectory of 216 water molecules.
Pictures of these results have already been presented in section 3.3. A more rig-
orous check for the validity was obtained by directly comparing the cost function
(Eq. 3.3) for the relabeled and unrelabeled trajectory. A plot of this is shown in
Fig. 4.1. Note that in this plot, the mean square displacement is shown, which
is our cost function divided by the number of atoms.

While in the unrelabeled case the distance to the reference position increases
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Fig. 4.1: Distance from the starting position during the simulation run. In the unre-
labeled trajectory, the system moves away from its starting configuration, while in the
relabeled trajectory it is constrained in its vicinity.

continously, it saturates for the relabeled case at a value of ~ 0.07nm? per atom.
This value seems reasonable since it is in the range of the nearest-neighbor dis-
tance between water molecules, which agrees nicely with the similar observation
of section 3.3.

The fact that in the first frames of the simulation the relabeled rmsd rises above
the unrelabeled one may seem puzzling. It is however easily explained, since the
relabeling minimizes only the msd between the oxygen molecules, whereas in Fig
4.1 the distance is computed using the coordinates of all water atoms. Also the
fact that the tool used to compute the distance removes the effect of periodic
boundary conditions adds to this effect.

4.2 Benchmark systems

The relabeling method was introduced to transform the trajectory such that
its entropy can be estimated by fitting a Gaussian function to it and using the
harmonic approximation. Accordingly, an important part of our work consisted in
testing whether this goal is reached by applying the proposed method to various
systems.
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4.2.1 Molecular dynamics

To generate some of the ensembles used to test our method, we used molecular
dynamics simulations. In this approach one iteratively solves Newton’s equation
of motion for a classical system moving in a potential V(Z), as was explained
in section 2.1. For sufficiently long simulation times the configurations Z(t;)
obtained during this simulation approximate a thermodynamic ensemble of the
system. This method is capable of simulating big systems reasonably fast, so it
is a natural choice for the larger ones of our test systems.

We applied a Berendsen thermostat [2]| in all our MD simulations so we will as-
sume that the generated trajectories Z(;) approximate canonical ensembles for all
simulated systems. All of our MD simulations were performed using version 3.2.1
of the program package GROMACS [30] [43] [13]. Some results were visualized
using [12] and [20].

4.2.2 Monte—Carlo

For sufficiently simple systems, an ensemble can also be generated by a Monte—
Carlo method. Monte-Carlo methods [38| generate ensembles by placing random
“trial” configurations # in the whole configurational space and accepting only
a fraction of them, depending on the potential V' (Z), such that the accepted
configurations approximate an ensemble. These methods have the advantage
that a nearly ex These methods have the advantage that a nearly exact value of
the entropy can be computed during the generation of the ensemble as will be
explained below. We used a simple Monte-Carlo scheme to generate all those
of our test systems which were simple enough to allow for this approach, whose
details we present here.

Since we need only this special case, let us restrict ourselves to the case of a system
moving in a “hard” potential, i.e., a potential V' (Z) which is either 0 or co. Let 5
denote the fraction of configurational space where V(%) = co. The Monte—Carlo
method generates an ensemble by randomly choosing trial configurations 7' from
the whole configurational space and discarding them if V' (¥) = oo.

To compute the entropy during the generation of the ensemble, we note that the
density generated by a hard potential is zero wherever V(Z) = oco. Wherever
V(Z) = 0, the density will take on a constant value. Imposing the normalization
condition, it becomes

The entropy thus becomes
Sy = —k:/ F2 ng + nV)
nVv TIV
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The quantity 7 can be computed during the generation of the ensemble. Since
the trial configurations are chosen with uniform probability from the whole con-
figurational space, n is given by the fraction of configurations rejected by the
Monte-Carlo method.

4.2.3 Van—der—Waals gas

As a first test case we applied our method to a gas of Lennard—Jones particles.
This system is simpler than real solvents but should nevertheless exhibit typical
solvent effects.

We simulated an ensemble of 100 atoms of mass 39.948 amu each interacting only
via a van—der-Waals interaction stemming from the Lennard-Jones—potential

VLJ(Tij> = % — % with Tij = ‘fl — fj| (41)
i ij

characterized by the coupling constants C5 and Cj.
The simulation was performed using molecular dynamics. The system was simu-
lated for 50 ns at a temperature of 300K. The starting configuration was obtained
from an energy minimization. We did not apply a barostat since constant volume
is a natural choice for a gas. Instead, the volume of the simulation box was held
constant at (2.2 nm)3. This is equivalent to a pressure of 385 bar. This high
pressure allows us to sample a wide range of the interaction strength without the
disturbing effects of phase transitions. We used periodic boundary conditions for
the simulation box.

The system was simulated for 19 values of the coupling constants ranging from
(Cs, C12) = (0,0) (ideal gas) up to 10 x (1.2340 - 1073, 2.3574 - 10~°nm®)kJnm®mol .
The parameters (1.2340 - 1073, 2.3574 - 10~ °nm®)kJnm®mol " will serve as a ref-
erence in further plots and calculations. Instead of exact numerical values we will
parameterize the coupling constants by an interaction parameter A such that

(Cs,C12)(N) = A x (1.2340 - 107°,2.3574 - 10 %nm°)kJnm°mol .

The parameters of some real gases can be found in [16]. For the rare gas Argon
they are (6.21-1072,9.68-10~%nm®)kJnm®mol !, so our model gas, taken at A = 5,
is roughly equivalent to Argon.

To simulate the solvation of a particle in a solvent, we performed a second series
of simulations where the interaction strength of the particles was held constant
at A = 1 and an additional particle was inserted at the center of the simulation
box. The position of this particle was restrained and its interaction was varied
between A = 0 and A = 5000.
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All resulting trajectories were relabeled using g permute. We used different
reference structures: The first frame of the trajectory and an artificial reference
structure in which the atoms were lined up along a simple cubic (sc) lattice.
For the simulation series with the additional inserted particle, we also used the
last frame as a reference structure. Covariance analyses were carried out for all
resulting trajectories, using the GROMACS toolbox.

4.2.4 3x2—-dimensional model

To understand the behavior of the algorithms in the
test systems discussed above, we analyzed an even

Q simpler system, namely three disks of diameter d mov-
ing an a 2D box. This system is sufficiently simple to
Q [~ generate the ensemble by the Monte-Carlo method

explained above.

O The interaction potential of two 2—dimensional disks
placed at positions 77 and 7 is

: V(f):{oo if |fl—fg|2<d2

Fig. 4.2: 3x2-dimensional 0 otherwise
model system

The trial configurations were randomly placed on a
square of sidelength 5. We generated several ensembles with the diameter of the
disks ranging from d = 0 to d = 3.0 in steps of Ad = 0.2. All ensembles obtained
in this way were relabeled using our standard LAP solver [21] using the three
points [3.8,0.6],[1.2,2.9] and [4.4,2.7] as reference structure.

4.2.5 Water

Since we aim at a treatment of more complex solvents such as water, we also tested
our algorithm with a simple water system. We simulated 216 water molecules
for 50ns in a box of approximately 1.87nm sidelength with periodic boundaries.
Again we employed molecular dynamics and solved Newton’s equation of motion
to generate a trajectory of this system. We used the simple point charge (SPC)
model [3] which describes the water molecule by three atoms (O, H1 and H2)
held together by rigid sticks. The bond lengths were fixed using the SETTLE
algorithm [34]. The partial charges of the atoms were taken from the GROMACS
force field [30] [4].

The system was coupled to a 300K temperature bath and a 1 bar pressure bath
using a Berendsen thermo- and barostat [2], since an isobaric and isothermal
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system is the typical choice for water. The resulting trajectory was relabeled
using g_permute and using the first frame as reference. Covariance analyses of
the relabeled trajectory were carried out including atoms of the system as well
as, alternatively, its oxygens atoms only.
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Fig. 5.1: Convergence of the simulation. As expected, the entropy estimate of the rela-
beled trajectories converges faster than for the unrelabeled trajectory. All simulations
converge within the 50 ns simulation time.

5 Results and Discussion

5.1 Entropy of a van—der—Waals gas

Let us now analyze the entropy estimation provided by our method for the first
test system, the van—der—Waals gas.

5.1.1 Convergence analysis

Since convergence of the simulation is a critical issue [18] [19] [17], we first per-
formed a convergence test of the simulation. To this aim, we considered the ideal
gas case and computed the entropy of the unrelabeled and relabeled trajectory
using the Schlitter formula. In the relabeled case the entropy was corrected using
Eq. 3.6. Fig. 5.1 show the results for several simulation lengths.

As can be seen, the entropy converges to a final value within less than 10* ps.
Hence, a simulation length of 50 ns should be sufficient to suppress sampling
errors. The generated trajectories can thus be used to compare different entropy
estimation methods. It is also apparent from the figure that the relabeled trajec-
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tory converges significantly faster than the unrelabeled one. This result is exactly
what we expected, since the relabeling maps the trajectory into a small volume
of the phase space, which is in turn sampled faster.

Let us now turn to the analysis of the entropies for different values of \.

5.1.2 Ideal gas

Let us consider the case A = 0 first. Here, the entropy of the system as well as the
estimate given by Schlitter’s formula can be calculated analytically as described
in section 2.5.1.

There we found that the entropy of an ideal gas under the given conditions is
S = 13.54KknJ001 and that estimating its entropy using the Schlitter approach
should lead to a value of S = 13.98 %2

K mol

The entropy of the unrelabeled trajectory was computed using the Schlitter
method, which yields an entropy of Sunrelabeled = 13.95 Kkrfl 5] Which agrees nicely
with the calculations presented above.

Computing the entropy from the relabeled trajectory using the Schlitter formula
and correcting the result by formula 3.6 yields the entropies

kJ
K mol

Sperm, se = 13.94 . and Sperm, frame = 13.95

K mol
depending on which reference structure (sc lattice or first frame) was used for the
relabeling. The good agreement with section 2.5.1 is encouraging. It shows that
the slice of the phase space which remains accessible to the relabeled trajectory
can be well fit by a Gaussian function. This is a nontrivial result, since the
properties derived in section 3.4 provided no hints to whether a Gaussian function
is well adapted to the shape of the slice.

5.1.3 Excess Entropies — the case \ # 0

Let us now turn to the case A\ # 0. Since we have already discussed the magnitude
of the absolute entropy in the previous section, we now switch to the consideration
of relative entropies. Fig. 5.2 shows the excess entropy, i.e., the entropy
difference to the ideal gas. We compute reference values of the entropy at different
A by performing a thermodynamic integration (TI) between the ideal gas and the
gas at a finite .

The growing interaction leads to a decrease of the entropy, as is shown by the
decreasing TT curve. The estimate based on the PCA of the unrelabeled trajec-
tory fails to recognize this effect. it even increases slightly for increasing .
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Fig. 5.2: Excess entropies of a van—der—-Waals gas as a function of the interaction
strength. Thermodynamic integration (cyan curve) is used as a benchmark for the
entropy estimate provided by a PCA of the unrelabeled and the relabeled trajectories.

The accuracy of the entropy estimate is dramatically enhanced by the relabeling
procedure. Both estimates based on relabeled trajectories clearly recognize the
decrease of the entropy. However they do not fully reproduce the TI result which
becomes particularly clear for the case of large A\. The dependence on the refer-
ence structure used is small. Since the reason for the observed properties is not
obvious, let us analyze the 3x2D model to explain the results of Fig. 5.2.

5.2 3x2—-dimensional models

In this case, the Monte-Carlo algorithm provides a nearly exact value for the
entropy, which we will use as a benchmark for the PCA-based results. The
configurational entropy was computed for every d using a PCA of the unrelabeled
as well as the relabeled trajectory. Since we are only interested in configurational
entropies in this case, the Karplus formula (Eq. 2.14) is used for the computation.
The resulting entropies are shown in Fig 5.3 The agreement of the ideal-gas
entropies between the PCA estimates and the “exact” result (Monte-Carlo ) is
not as good as in the case of the van—der-Waals gas. This is most likely due to
the different box size.

For varying d the situation is similar to the van—der—Waals example: The Monte—
Carlo entropy decreases for increasing d. A PCA of the unrelabeled ensemble fails
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Fig. 5.3: Entropies in the 3x2D case. Here too, the estimate based on the relabeled
ensemble yields qualitatively right results, in contrast to the estimate based on the
unrelabeled ensemble.

to recognize this trend. If, however, the relabeled ensemble is used to compute
the PCA, the entropy estimate is clearly enhanced. It reproduces the right trend,
namely a decreasing entropy for increasing d. Its entropy estimate is, however not
fully exact which can be seen best by direct comparison of the excess entropies
given by Monte-Carlo and PCA (Fig 5.4). To find the reason for the different
behavior of relabeled and unrelabeled trajectory, we analyzed the eigenvalues of
the covariance matrix of the unrelabeled trajectory, since these values determine
the entropy estimate of a PCA by means of Eq. 2.14. The spectrum for several
values of d is shown in Fig 5.5

The spectrum behaves as predicted in section 2.5.2. It is split into two groups of
d =2 and (N —1)d = 4 eigenvalues each. They correspond to the center—of-mass
eigenvectors and the relative eigenvectors respectively.

For increasing r, the eigenvalues of the center—of—mass eigenvectors decrease while
the eigenvalues of the relative eigenvectors increase. This suggests that the in-
crease in entropy in Fig 5.3 is due to changes of the density in the relative sub-
space. A scatter plot of the unrelabeled and relabeled density is shown in Fig
5.6.

At r = 0 the ensemble would fill the whole subspace ranging from —5 to 5 in the
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Fig. 5.4: Excess Entropies in the 3x2D case as estimated by MC and a PCA of the
relabeled trajectory . The PCA recognizes the right trend, its results however do not
exactly reproduce the Monte—Carlo entropy.

x and y—direction. Introducing a finite diameter of the disks cuts a spherical hole
into the density around the origin, since two disks overlap for small 7y — 7.

The relabeling procedure constrains the density in an intersection of half-spaces.
The clear cut visible in Fig 5.6 stems from the permutation 123 — 213, since this
forces the ensemble to lie in the half-space

fg(l — Pglg)f >0

Its normal vector Z? (1 — Py3) lies in the #; — 75 subspace which explains the
clearly visible cut. The effect of the other permutations can be seen from the fact
that the relabeled density vanishes also in the upper right and lower left corner.

Since the growing disk diameter excludes a volume in the center of this sub-
space, the variances of a PCA will increase for increasing r, which explains the
growing eigenvalues in the relative subspaces in Fig 5.5. This also explains why
the increase in entropy for increasing interaction parameters in the PCA of the
unrelabeled ensemble is more pronounced in the 3x2D example than for the van—
der—Waals gas. In the latter case, the attractive % contribution to the potential
energy decreases the variance for increasing A.

The situation is different for a PCA of the relabeled system. The relabeling
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Fig. 5.5: PCA eigenvalues of the unrelabeled trajectory for varying d. As predicted in
section 2.5.2 the 2 eigenvalues corresponding to the center—of-mass eigenvectors can be
clearly distinguished from the 4 eigenvalues of the relative eigenvectors.

algorithm reduces the phase space to a slice delimited by planes running through
the center of the relative subspaces. The “holes” produced by the repulsion of the
disks will therefore be located at the boundary of the slice. A Gauss fit of the
relabeled density is shown in Fig. 5.7.

It is apparent from this figure that, in the case of a relabeled ensemble, a growing
hole will reduce the variances of the PCA in the relative subspace. This of
course does not mean that the PCA eigenvalues will also decrease for a PCA of
the complete configurational space, since in this case the relative subspaces are
not necessarily eigenspaces of the PCA any more. However since a decrease of
the entropy is in fact observed for the relabeled trajectory and increasing r, we
suggest that it can be attributed to this effect.

It is also apparent from Fig 5.7 why the result will deviate from the exact re-
sult. The relabeled ensemble is not at all distributed according to a Gaussian
distribution.
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Fig. 5.7: Gauss fit of the relabeled ensemble. The rings are the contours of the Gaussian
density distribution estimated by the quasi-harmonic approximation.
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Fig. 5.8: Entropy estimate for the solvation series. The relabeling with respect to the
starting structure or the lattice structure leads to a significant improvement of the
entropy estimate.

5.3 Solvation entropies

The entropy of a pure solvent, which we discussed in the previous sections, is
an important benchmark for our method. It is however a rather unrealistic test
system. In practice one is more often interested in the solvation entropies of
particles within the solvent and not in the entropy change for different values of
the solvent interaction. Let us therefore analyze the entropy estimates for the
simulation series in which we inserted the additional particle at the center of the
simulation box. This series will be referred to as “solvation series” below.

As in the case of the pure van-der-Waals gas, the entropy was computed by a
PCA of the unrelabeled as well as the relabeled trajectories. Thermodynamic
Integration was used as a reference. The results of these simulations are shown
in Fig. 5.8.

For high values, the attractive 7% contribution to the interaction becomes so

strong that the particles begin to condense around the central particle. This effect
is even recognized by a PCA of the unrelabeled trajectory, since it decreases the
variance of the particles.

In the case of a weakly interacting central particle (A small), the situation is sim-
ilar to the pure van—der—Waals gas: When the interaction of the central particle
is switched on (the step from A = 0 to A = 0.1), its repulsive core pushes the
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Fig. 5.9: Eigenvalue spectrum of a PCA of water. The black curve is obtained from
the covariance matrix of all atoms. The red curve is obtained from the oxygens alone.
The small difference vanishes nearly completely when the oxygens’ masses are rescaled
to the mass of a whole water molecule.

particles away from the center, which is wrongly recognized as an increase in
entropy by the PCA of the unrelabeled trajectory.

As in the previous study, the entropy estimate is significantly enhanced when the
relabeled trajectory is used as basis for the PCA. In this case, the decrease of
the entropy for increasing A is predicted right. The transition to the condensed
regime, which sets in at A ~ 10? is recognized more precisely than by the PCA
of the unrelabeled trajectory.

The entropy estimate of the relabeled trajectories depends on the reference struc-
ture used. When the lattice or the first frame is used, the entropy change is
predicted qualitatively right, using the last frame as reference for the relabel-
ing introduces a significant amount of error. This, however, does not come as a
surprise since this structure varies significantly between the simulations.

5.4 Entropy of water

Finally let us examine the water system. Here we computed the covariance matrix
twice, once including all atoms of the box and once including only the oxygen
atoms. The resulting eigenvalue spectra are shown in Fig 5.9:
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Fig. 5.10: Close—up on the last 1296 eigenvalues of the covariance matrix of the full
water molecules.

Let us discuss the first 648 eigenvalues first. They show hardly any difference be-
tween the two analyses. The small difference visible vanishes nearly completely
when the oxygens’ masses are rescaled to the mass of a full water molecule. The
analysis restricted to the oxygens can only reveal the translational contribution
to the movement of the water molecules. The fact that this analysis yields nearly
the same values for the first first 648 eigenvalues suggests that the PCA of the
relabeled trajectory also distinguishes between translational and rotational move-
ment and that its first 648 eigenvalues belong to the translational movement of
the whole water molecules.

The information about the rotational motion of the molecules must therefore
be encoded in the 1296 additional eigenvalues provided by the covariance anal-
ysis of the full water molecules. These eigenvalues show up as the tail of small
eigenvectors with index > 648 in the “full water” curve of Fig. 5.9.

A close—up plot of these eigenvalues is shown in Fig. 5.10. Note that in this plot,
the covariance matrix is built using non mass-weighed coordinates.

These eigenvalues can again be split into two groups. The eigenvalues of the first
group have values of approximately 0.004 nm?. The second group takes values in
the 0.001lnm? range. The movements giving rise to these values must thus lie in

42



the range of .06nm and .03nm respectively. Intramolecular distances lie in this
range which suggests that the last 1296 eigenvectors are intramolecular vectors.

This conclusion is confirmed by an analysis of the eigenvectors, which we per-
formed as follows. We divided each eigenvector & into the 3N 3D—vectors %, T4y, Tho,
1€ 1,...N of the oxygen and hydrogen coordinates. The 9D—vector of one water
molecule will be denoted by Z;. We computed the projection of the full water vec-
tors 7; onto the subspaces of center-of-mass motion and intramolecular motions.
Their norms averaged over all molecules are given by
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We will use these quantities as a measure of how much an eigenvector is composed
of translational motion and intramolecular motions. The values of these numbers
for all eigenvectors is shown in Fig 5.11

Clearly, the first 648 eigenvectors are composed nearly exclusively of translational
contributions, whereas the last 1296 vectors consist of intramolecular vectors.
Vectors 649 to 1296 consist mainly of H-H vectors while the last 648 vectors
correspond to the O-H vector. This is also reflected in the last 648 eigenvalues
being smaller than the eigenvalues in the first two thirds of the spectrum.

The fact that eigenvectors have significant contributions from intramolecular vec-
tors may seem puzzling since in the SPC water model, the OH-bonds are fixed
and the atoms inside one molecule cannot move with respect to each other. This
effect is explained by the following consideration: During the simulation, the hy-
drogen atoms of the water molecules rotate around their respective oxygen atom.
When computing the average configuration, this rotation is averaged over, so the
hydrogen atoms will occupy the same position as their respective oxygen atoms.
The O-H-vector will thus have a nonzero variance, even though its mean value
vanishes, since the hydrogen is in every ensemble element separated from the oxy-
gen. Accordingly, eigenvectors of the PCA can be composed of intramolecular
vectors, even if the bond lengths are held fixed. Computing the entropy from this
eigenvalue spectrum by means of the quasi-harmonic approximation one would
assume motions along these vectors, which is clearly unphysical. One might ar-
gue that due to their small values the intramolecular eigenvalues are discarded
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Fig. 5.11: Norms of the projections of the eigenvectors into the center—of-mass (com),
the O-H difference (oh) and the H-H difference subspace (hh). The first 648 eigenvec-
tors are composed mainly of translational contributions, whereas intramolecular vectors
dominate in the last 1296 vectors.

anyway by the Schlitter formula. Since however these eigenvalues contain all the
information about angular correlations of the water, one also discards important
contributions to the entropy in that way. (see [28] [32] for a discussion of these
contributions)

These results show that the applying a PCA to a relabeled trajectory of wa-
ter one automatically obtains a decomposition into translational and rotational
contributions to the motion. The Karplus or Schlitter approach should be ap-
plicable to the translational contribution similarly well as to the van—-der-Waals
gas, since the translational movement of the water molecules is similar to a gas
of interacting particles without rotational degrees of freedom.

The situation is more difficult for the rotational contributions: Here, a PCA of the
relabeled trajectory in Cartesian coordinates is not suited to extract information
about the rotation of the water molecules. One obvious approach would be to
introduce angular coordinates for the water orientation. In this way one could
prevent the intramolecular vectors from consuming two important thirds of the
eigenvalue spectrum. However we did not pursue this approach further and rather
focused on more general improvements of our method, which will be explained in
chapter 6.
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5.5 Discussion

The tests for the van-der-Waals gas and the 3x2D model yield a consistent pic-
ture: The relabeling procedure leads to an improvement of the entropy estimate
and can be used to observe effects which would not be seen in a PCA of the
unrelabeled trajectory. An example of this is the entropy decrease for increasing
interactions, which is observed both in the van-der-Waals and the 3x2D model.
Here, a PCA of the unrelabeled trajectory computes an increasing variance and
entropy, whereas a PCA of the relabeled trajectory clearly recognizes the right
trend. The solvation simulations yield a similar picture: The relabeling algorithm
improves the density estimate and reveals a far more detailed picture of the en-
tropy change with growing interaction than a PCA of the unrelabeled ensemble.
Also the PCA of the relabeled trajectory, however, does not exactly reproduce
the nearly exact result of the TI or Monte—Carlo estimates.

Returning to the two big obstacles mentioned in the introduction — bad sampling
and the difficulty to find a fit function for the solvent density — we have shown
that at least the first problem is significantly alleviated by our approach: The
entropy estimate converges far faster for the relabeled trajectory than for the
unrelabeled one.

We also contributed to the solution of the second problem by showing that the
relabeling procedure restricts the ensemble to a part of the phase space in which
the topology of the density is sufficiently simple for analytical density estimates
to become applicable. The harmonic approximation, however, is not the best
choice to produce accurate entropy estimates of the relabeled trajectory as can
be seen from the deviation of this estimate from the TI or Monte—Carlo results.
We have identified the reason for this by showing in our 3x2D simulations that
the relabeled density — though it is more localized than the original one — is still
too anharmonic to be fit by a Gaussian function. (Fig. 5.7)

The analysis of the water trajectory reveals that a PCA of the relabeled trajec-
tory automatically distinguishes between translational and rotational parts of the
motion. The latter part presents a challenge which has to be tackled in order
to apply our approach to biologically relevant systems: Computing a covariance
matrix in Cartesian coordinates is not sufficient to treat angular degrees of free-
dom.
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6 Improvements

The insights of the previous section suggest several ways to improve the density
estimate. None of them has evolved into a full-scale implementation yet, how-
ever we can present proof-of-principle calculations for some of them, which are
presented in this chapter.

First we investigated whether one might be able to get better estimates by purely
analytical means such as switching to another coordinate system.

An intriguing possibility to refine the density estimation is the connection of our
method with thermodynamic integration. Since the difference between our en-
tropy estimation and the “true” entropy is small, we examined whether TT can
be used to bridge this gap.

One may also think about transforming the density itself instead of finding a
better fit function. Experiments in this direction are presented in section 6.4.

6.1 Analytical improvements
6.1.1 Use of Monte—Carlo integration in the Karplus approach

Both the Karplus and the Schlitter approach consist of fitting an analytical ansatz
for p to the trajectory and evaluating

S =—kp / d*Nz d*Np pIn(p)
r

analytically. At least in the latter part one may spot space for improvement. It
is not necessary to integrate analytically over the (possibly inaccurate) density
estimation p. By remembering the fact that the trajectory approximates an
ensemble one may replace the integral over the density by the time average as
follows

N A (7, ) In(p(7, ) = = [ dtn[p(F(8),50)]  (6.1)
. T

where T is the simulation length and ¢ the time parameter of the simulation.
A density estimation is however still required since the term In(p) cannot be
expressed by a time average.

It can be shown that in the case of a Gaussian ansatz for the density this method
leads to no improvement. To see this, one has to insert the Gaussian ansatz



into Eq. 6.1.
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which is exactly the Karplus result (Eq. 2.14). Note however that this is true
only for a Gaussian ansatz. For different fit functions this method may very well
lead to an improvement.

6.1.2 Transformation to other coordinate systems

In chapter 5.2, the accuracy of the entropy estimation from a relabeled trajectory
has been shown to suffer from anharmonicity of the free energy landscape. The
regions of highest anharmonicity have been found to lie in the relative subspaces
and to be spherically symmetric around the origin. This result suggests to in-
troduce spherical coordinates in the relative subspaces to improve the entropy
estimation.

To test this approach we again chose the 3x2D system. We transformed the
coordinates of the relabeled ensemble into the basis of center—of-mass and two
relative coordinates (¥ + s + Z3, Ty — 71 and T3 — ¥ respectively). Let B de-
note the transformation matrix of this base change. The relative coordinates
were transformed into polar coordinates (11, ¢1) and (r, ¢2) as suggested above.

The density was estimated from the transformed ensemble by means of a PCA
in the new coordinates. From this density estimate p,, one has to recover the
density in the old coordinates, since this density determines the entropy by means
of Eq. 2.4. We used two different approaches to solve this problem:

In the first approach, we made use of the results of the last section and replaced
the phase space integration by the ensemble average (Eq. 6.1). The density
in the logarithm was computed from pp, by correcting it for the volume change
induced by the various transformations, i.e, by rescaling it by a factor (det(B)-r -
r9)~1. Since this scale factor depends on the position in phase space, the density
estimation will deviate from a Gaussian distribution when it is transformed back
into the old coordinates. The entropy estimation obtained in this way is referred
to in Fig. 6.1 as “PCA in polar coordinates (MC integration)”

In the second approach, we modified the transformation such that it does not
induce a volume change. To this aim, we transformed the radial coordinates r;
and ry into rq, v, with r} = r?/2 and r}, = r3/2. In this way, the volume element
in the new coordinates becomes

d'f’id(ﬁl = TldT1d¢1
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Fig. 6.1: Excess entropies in the 3x2D case. The entropy estimation can be improved
by the use of polar coordinates (green and cyan curve), although it still differs from the
true entropy (dark blue curve).

which is exactly the volume element in the unstretched polar coordinates r, ¢;.
Furthermore, we rescaled B such that det(B) = 1. Then the whole transforma-
tion is volume—conserving and the entropy can be computed directly by using the
Karplus formula for a PCA of the transformed ensemble. The entropy estimation
obtained in this way is referred to in Fig. 6.1 as “PCA in stretched polar relative
coordinates”

In the case of stretched polar coordinates the estimation becomes slightly better,
it remains however far from accurate. This is not surprising, since a transforma-
tion into radial coordinates will not suffice to transform the density into Gaussian
shape. Even stronger problems arise when this scheme is applied to higher parti-
cle numbers. Here the two-particle-interactions will give rise to N? “holes”, but
only N of them can be treated by the introduction of radial coordinates.

One might think about different coordinate systems. However we are not aware
of a coordinate system adapted to the symmetry of N particles interacting by
pair interactions.

49



6.2 PCA-TI hybrid approach

The entropy estimate obtained by applying Schlitter’s formula to a PCA of the
relabeled trajectory does not yield quantitatively correct results. The difference
to the real entropy however is small as was discussed in section 5.1. Since thermo-
dynamic integration is capable of computing small entropy differences, we suggest
to use the Karplus or Schlitter estimation of the entropy of the relabeled ensemble
as a basis and compute its deviation from the real entropy by means of TI (see
Fig. 6.2 for an illustration). This method was originally proposed for the case of
free energy by Stoessel and Nowak [41].

TT computes entropy differences by gradually changing the Hamiltonian during
the simulation. Since the Karplus and Schlitter methods assume the Hamiltonian
of the system to be harmonic, one has to perform a TI between the Hamiltonians

N 132 N 132
Hya =Y o —kpT(i—Z,)" C™' (7% d = Hys=)» -—-V(&
ha 2 om; B (SU SUO) (SU 0) an sys ’ om, (SU)

The fact that the density estimation in the Karplus and Schlitter approach stems
from a Hamiltonian is crucial here.

6.2.1 Subspace entropies and the PCA—-TI hybrid approach

The above approach assumes that the PCA is run over the coordinates of all
molecules in the system, i.e, over protein as well as solvent coordinates. Often
however one is also interested in the entropy of the protein subspace and PCA
combined with the Karplus/Schlitter technique is the usual choice to compute
it. We therefore investigated whether the procedure of section 6.2 can also be
applied to refine an estimate of a subspace entropy .

A quasi-harmonic Hamiltonian restricted to the subspace can easily be derived.
The crucial step for this approach to work is thus to find a variant of thermo-
dynamic integration, which computes the change of entropy in a subspace when
the Hamiltonian is changed.

Such a formula however cannot be derived as straightforward as the original TI
formula (Eq. 2.19). To see this, let the derivative d/d\ be denoted by a prime
(' = dx/d)\). Also, we will for the sake of simplicity omit the position argu-
ments of all Hamiltonians in this section. Let furthermore H = Hg + H; + Hp
be the Hamiltonian of the system composed of solvent, interaction and protein
contributions respectively.

Recalling the definition 2.5

e_ﬁHP fe_ﬁHIe_ﬁHsdxs
pp = Z
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Fig. 6.2: The entropy estimation can be refined by a thermodynamic integration. The
system is first simulated in a multivariate harmonic oscillator. Then the force—field
parameters is gradually switched on. The entropy change during the switch is computed
by TI.
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one may summarize the solvent and interaction contributions to the Hamiltonian
in a potential of mean force which depends only on the protein coordinates

HPMF = —k?BT ln/e,@(HIJrHs)d?;de?;ps (62)

such that
e—ﬁ(Hp-i-HPMF)

pp = Z
Note that Hpyr is the free energy of the solvent subspace for a fixed position of
the protein. By reducing the Hamiltonian to the protein subspace, the T1 entropy
formula (2.19) becomes applicable. Denoting the thermal average in the protein
subspace by (-) we obtain
dSp 1 / / / /
= e |((Hs + Hoe) (Hy + Hysge), — (Hs + Hoe),, (b + i), | (63)
Hpwr is difficult to access in a simulation since to evaluate it at one point
in the protein subspace, one has to sample over the whole solvent subspace in
order to perform the integration in Eq. 6.2. The solvent subspace however is too
high—dimensional to allow for such an approach.

Some appearances of Hpyr can be removed from Eq. 6.3 by observing that for
an arbitrary quantity x

((Hg + Hpyp)w), =
1 | Hig + Hye Pl P d°p,

_ 3. 13 —BH —BHis 73,. 13 _
=7 /d Tpd’pp x e 7P /e Sd?xsd ps [ e PHrs oz, dop, T =
= (zH')(6.4)

where the last average is taken with respect to the whole space. With this relation
Eq. 6.3 becomes

O s (B — (') (Hs)) + (B Hoe) — (B (Hiae) )

where all thermal averages are taken with respect to the whole space. Unfortu-
nately we cannot think of a similar approach to remove the remaining appearances
of Hpymr. So the computation of the entropy change in a subspace seems to be
infeasible even though in principle it should be possible.

6.3 Computation of absolute energies in a thermodynamic
integration

The most common application of TT is the computation of free energy differences.
In contrast, entropy differences are calculated rarely, since these calculations do
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not converge as well as in the free energy case. It should also be possible to
compute energy differences by TI, however we are not aware of this being widely
used. Energies are more often computed directly by taking the time average over
a sufficiently long trajectory. This approach, however, also suffers from sampling
problems.

Consider now the case that one seeks to compute the free energy difference be-
tween an initial (A = 0) and a final (A = 1) state of a system by a thermodynamic
integration. If one is additionally interested in the energy of the system at a fixed
A, an additional simulation at this fixed A is necessary to obtain it

In this section we propose a way to circumvent this problem by extracting in-
formation about the energy at a fixed \ from the unphysical ensemble elements
sampled by a TI that switched from A =0 to A = 1.

The ensemble generated at the coupling parameter A of a TI run approximates

the density
p =
Z

This density can however be used to calculate ensemble averages at an arbitrary
fixed \ between 0 and 1. To see this, let us without loss of generality focus on
the case that one is interested in the energy of the final state, so A = 1. Then

e BHO) g7, o~ BHO)
S — [ ar _ O e -ma €T
O = [T == 2 [0 -

2\
7%

(PHM=HM) ()Y (6.5)
Note that for the special case of linear interpolation (H(\) = AH), the system
sampled at the point A\ in a TT is equivalent to the system at A = 1 simulated
at a temperature 7'/\. In this sense thermodynamic integration is similar to

simulated annealing [11].

To benchmark the proposed approach, we tested it with a simple test system.
We restricted ourselves to a one-dimensional system moving along a coordinate
x € [—10: 10] in the double—well potential

A2

Va(z) = 2* — Ax® + T
coupled to a heat bath with temperature 7. Furthermore we assumed periodic
boundary conditions. The system was simulated using Metropolis Monte-Carlo
[33] for various values of the barrier height A ranging from A = 0 to A = 100. For
each value we performed 20 simulations of 50000 steps each in the full Hamiltonian

(A = 1) and 20 simulations during which the Hamiltonian was linearly ramped
up to simulate a TT (H(\) = AH).
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Fig. 6.3: Energy estimations for a one-dimensional double well potential. The green
values was obtained by averaging over a simulation at the full Hamiltonian. The red
values were obtained from a thermodynamic integration along the path H(\) = AH by
applying the proposed correction (Eq. 6.5).

The first series of simulation was used to calculate the average energy (H),_, in
the conventional way, i.e., by taking the time average of H in a simulation at
A = 1. The same average was computed from the TT series by correcting for the
difference between the Hamiltonians H(\) and H(1) by means of Eq. 6.5. From
the resulting 20 values, the mean values and the errors of both approaches can be
computed. The results are shown in Fig 6.3. Since the exact value of the mean
energy can be computed in the case of the double well potential, we use this value
as a reference and plot the deviation of the estimations from the analytical result.

The fact that all estimations systematically underestimate the energy is most
likely due to an artefact of the Metropolis Monte-Carlo algorithm. Since the
probability for the system to hop from x to z+ Ax is determined from the energy
difference H(x + Az) — H(x), the system can tunnel through a potential barrier
between H(x) and H(z + Ax). This happens at the periodic boundaries of our
system, since here the periodic images of the double well potential are attached
to each other and form a narrow energy peak.

The error of the proposed method is roughly as large as the error of the classical
method. Thus the proposed method does not lead to an improvement as far as
the accuracy is concerned. Computing the energy along with a TI is however a
significant advantage from the point of view of computational efficiency, since no

o4



4 T T T T T T 3 T T T T T T
relabeled ensemble before correction relabeled ensemble after correction
3r 2t N
2r 1r
1+ 0r
oot RN
N Nt
> >
2L 3t
3L a4l
4t 5
5 6 .
-3 -3 2 1 0 1 2 3 4 5 6

Fig. 6.4: Sketch of the slice transformation. The relabeled ensemble is projected into
a relative subspace. The phase space is cut into slices which are moved such that the
density becomes more similar to a Gaussian distribution.

further simulation is needed to obtain (H).

6.4 Transformations of the density

Finding a fit function which approximates the complex water density proves dif-
ficult as was shown in the previous sections. A complementary approach con-
sists in transforming the relabeled ensemble such that it can be fit more easily.
The aim of this section is to look for a transformation in configurational space
f: RN — R3N such that the entropy of the transformed ensemble f(Z(¢;)) can
be estimated more accurately than in the case of the untransformed ensemble
Z(t;). In fact, the introduction of polar coordinates in section 6.1.2 is a special
case of this approach.

As was shown in section 6.1.2, transformations which compress or expand the
density are difficult to handle, since they change the entropy. To correct the
result for the entropy change induced by the transformation requires additional
work which is computationally expensive.

We therefore focused on transformations which leave the entropy invariant. Such
transformations can be applied arbitrary often and can thus be used to construct
an iterative procedure to improve the quality of the fit. The Gaussian distribution
is easy to handle numerically and seems to be applicable to a wide range cases.
So we decided to choose it as fit function and look for an entropy-conserving
transformation which transforms a given density into a Gaussian distribution.

6.4.1 A simple entropy—conserving transformation

As a first example, we again studied the 3x2D—-example of section 4.2.4. We chose
the transformation depicted in Fig 6.4. This transformation cuts the configura-
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Fig. 6.5: Excess entropies in the 3x2D example. The blue and red curve are the same
as in Fig. 5.4, whereas the green curve is the entropy estimation after applying the
transformation of Fig 6.4 to the ensemble.

tional space into slices with some normal vector 77 and displaces these slices along
vectors d perpendicular to 7. This transformation clearly conserves the entropy
since according to Cavalieri’s principle it does neither compress nor expand the
phase space density.

Our aim is to transform the density of the relabeled ensemble into Gaussian shape
by means of arbitrarily many successive transformations of this kind. We showed
in section 4.2.4 that the density looks maximally non—Gaussian when it is pro-
jected into the relative subspaces. It is therefore natural to choose 77 such that
the transformation acts in these subspaces (see Fig. 6.4 for an illustration). To
transform it into a more Gaussian shape, it is clearly desirable to “close the hole”
at the border. We therefore computed the mean of the ensemble elements inside
each slice and then moved the slices parallel to each other such that these mean-
points line up along the vector 77 (Fig 6.4). We performed this transformation
successively in randomly picked relative subspaces. After 10 of these transforma-
tions, the entropy of the transformed density was estimated by running a PCA
on the transformed ensemble and using Eq. 2.14.

The resulting entropy estimation is shown in Fig. 6.5. The approximation be-
comes slightly better, it remains however far from exact.
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6.4.2 Continuous entropy—conserving transformations

We tried to improve this method by switching to continuous transformations.
A continuous transformation can be composed of infinitesimal transformations
along a vector field U(Z). Again we require the transformation to conserve the
entropy of the density. Trivially, this requirement is fulfilled if one imposes the
even stronger condition that the density is locally conserved, i.e., that during a
continuous transformation parameterized by ¢

_dp_9p .
0= a7 Ve

together with the continuity equation % + V- (pt) = 0 this yields
V-7=0

This is the familiar condition for v to be the velocity field of an incompressible flow
(i.e., an Eulerian fluid) [14]. A continuous entropy—conserving transformations
can thus be constructed from every divergence—free vector field.

The problem is now to find a sequence of divergence free vector fields which gen-
erates a sequence of transformations that transform the density into Gaussian
shape. Since there is no obvious choice for these vector fields, we suggest to em-
ploy a Monte—Carlo method to find an appropriate one. Such a method should
generate random fields, rate them according to a criterion defining the improve-
ment of the fit and finally apply only those vector fields, which actually lead to an
improvement. We developed a method implementing this scheme, whose details
are as follows:

In the first step of the algorithm one has to construct a random divergence—free
vector field. To accomplish this task we used the fact that the divergencefree
vector fields form a vector space: linear superpositions of divergence—free vector
fields are divergence—free vector fields again. A convenient way to create random
fields is thus to choose a basic set of fields and generate random divergence—
free vector fields by constructing linear superpositions of these basic fields with
random coefficients.

We chose our basic set to consist of vortices like sketched in Fig 6.6. The velocity
field of such a vortex with center 7, and rotation axis 7 is given by

(&) = f(I|Z = Zoll) - 71 x (& — To)

The decay function f was chosen to be f(r) = 1/r, so the center ¥y and the
normal 7 uniquely define an element of the basic set. The velocity field of this
basic set can be constructed at any point without dividing the space into a grid.
This is an important advantage if the method is used in a high dimensional space.
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Fig. 6.6: Sketch of a vortex. We construct a divergence—free vector field by linearly
superimposing several of these vortices.

In our method we construct a divergence—free vector field from this basic set in
the following way: We randomly pick two elements of the ensemble under study.
Then we group four vortices around them such that the velocity vectors at the
points’ positions point towards the center of the ensemble (Fig 6.7). By this
particular choice, the two points are in average in shifted together if they are
repeatedly moved along such a velocity field. In doing so we aim at condensing
the trajectory in a small region of the phase space. We introduce this bias, since
we know from our previous results that localized ensembles can be well fit by
Gauss functions whereas the fit gets worse for inhomogeneous ensembles which
are spread over a large region of the phase space.

The next step is to rate the such generated divergence—free vector field v and to
have an MC algorithm decide how long it is applied to the ensemble. To rate the
field we compute the entropy of the ensemble by a PCA before and after a small
shift along the field. We derive the rating criterion from the fact that, according
to [40] the entropy estimations based on Gaussian functions are upper bounds
for the entropy of the ensemble. Since the transformation along v’ conserves the
entropy, we can assume the fit quality to have improved if the entropy estimation
yields a lower value after the transformation than before. The entropy difference
AS of the ensemble before and after the transformation is thus a measure for the
improvement of the fit.

To decide about how long the transformation is applied to the ensemble, we use
the Metropolis Monte—Carlo criterion [33]. ¢ is applied for one small time step
dt if e~ T is greater than a random number between 0 and 1. This procedure of
rating, deciding and moving is repeated until the Metropolis criterion fails or a
certain limiting number of steps has been carried out. Then a new divergence—
free vector field is constructed. However different criteria are possible as well. For
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Fig. 6.7: The vector field generated by our method: We randomly pick two ensemble
elements and group four vortices around them such that they are moved towards the
center of the ensemble.

example, it may be useful to construct a new divergence—free vector field after
every step.

To test this approach, we used a 2—dimensional test system like depicted in Fig
6.8. The ensemble was distributed in two distinct squares of different densities.
We then used the proposed method to transform this ensemble into Gaussian
shape. This particular example presents a worst case scenario for the method,
since the ensemble is not well localized. The method has to move the squares
together in an entropy—conserving way in order to render the Gaussian fit function
applicable.

We used two slightly different versions of the method, one of which generates a
new vector field in every step, the other of which uses one vector field as long as it
improves the estimation, at most however 15 steps long. Both methods succeed
in compactifying the density and improving the entropy estimation, as can be
seen in Fig 6.9 and in the resulting entropy estimations which are shown in Fig.
6.10.

Both variants of the methods suffer from the same problem: The flow always
contains vortices, which produce “foam” at the border of the density. This effect
worsens the entropy estimation. In principle, one should expect the effect to be
more pronounced when the density is not regenerated in every step, however both
methods in 6.10 show the same performance.

Both approaches clearly lead to an improvement of the fit. A lot of more work
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Fig. 6.8: The test case for our method: We generate a 2-dimensional ensemble of 10000
points distributed over two squares of uniform density. The lower square contains 4000
points the upper one 6000. By running the proposed method on this data we try to
transform this ensemble into Gaussian shape.
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Fig. 6.9: Snapshots of the density of Fig. 6.8 after 500 iterations of the proposed
method. In the right plot, the velocity field was regenerated in every step whereas in
the left plot it was kept constant for several steps.
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Fig. 6.10: Improvement of the entropy estimation during a run of the proposed method.
The entropy estimation is enhanced, however the rate of improvement slows down for
long simulation times.

however would have to be done to extend them to higher dimensions in an efficient
way and to increase their overall efficiency. Also one might seek to relax the
present bias and have more steps in the method done by generic methods like
Monte—Carlo.
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7 Summary and Conclusion

We have presented a novel method to compute solvent entropies from MD sim-
ulation trajectories. The basic idea is to “proteinize” the solvent in a trajectory
by relabeling its molecules such that the resulting configurations are localized in
a small region of the phase space, ideally in the vicinity of a minimum of the
energy surface. Since such a localized density resembles the equally well localized
density of a protein, this method renders the various entropy estimation methods
developed for proteins applicable to the solvent.

We implemented this idea and applied it to several test systems in order to
identify its strengths and weaknesses. The test systems included a wide range
of typical cases, namely a van-der-Waals gas, a highly simplified 2-dimensional
model gas and a box of water molecules.

For the van-der-Waals gas, we studied the entropy of a pure gas as well as the
solvation entropy of an additional Lennard-Jones particle in the gas for vary-
ing strengths of the interparticle potential. We compared the entropy estimate
obtained by an established estimation method before and after the proposed
relabeling method was applied to the simulation trajectory. In both cases, the
relabeling method significantly improves the entropy estimate. We also compared
both of these estimates to a nearly exact reference calculation of the entropy. We
find that for varying interaction strengths the entropy estimate of the relabeled
trajectory reproduces all essential features of the resulting entropy change cor-
rectly. In contrast, many of them are not recognized when the entropy estimate
is computed from the unrelabeled trajectory. However, both entropy estimates
are found to deviate from the exact result.

We also used the van—der—Waals gas system to analyze the convergence behavior
of our method. The entropy estimate of the relabeled trajectory was found to
converge significantly faster than for the unrelabeled trajectory. This confirms
our expectation that the relabeled trajectory samples the accessible space faster
than the unrelabeled one.

By studying the 2D model gas, we could fully explain the results obtained in the
study of the van-der-Waals gas. We found that the relabeling in fact simplifies
the topology of the system’s phase space density. This effect was identified as
the reason for the improvement of the density estimation. The deviation from
the exact result was attributed to the fact that the relabeled density — though its
topology is simpler than for the unrelabeled case — is still too anharmonic to be
perfectly approximated by a Gaussian fit function.

The study of the water system shows that our method is capable of separating
the translational motion of the molecules from their rotational motion. While
our method should be able to treat the entropy contribution of the first, it would

63



have to be extended to include rotational degrees of freedom in order to handle
the contribution of the latter.

In the second part of this work, we looked for ways to further improve the accuracy
of the entropy estimation provided by our method. We investigated whether an
improvement can be achieved by purely analytical means, such as a transforma-
tion into another coordinate system. Using the 2D model gas, we demonstrated
that an improvement is possible but that this approach is limited to very small
systems.

An intriguing way to further improve the accuracy of the entropy estimate is
to combine the proposed technique with other entropy estimation methods. To
this aim we considered several approaches, namely thermodynamic integration
and entropy—conserving transformations. We find that both methods should be
capable of improving the entropy estimation. Further work however would have
to be done to develop a full-scale implementation of these ideas.

In all of this thesis, the relabeling procedure was applied after the MD simu-
lation had been finished. This restriction is however by no means imperative.
The solvent molecules can also be relabeled during the simulation, which opens
up new possibilities. Since applying the relabeling technique prevents the sol-
vent molecules from diffusing, the method could be used to treat different water
molecules at different levels of detail. For example, the molecules nearest to the
active site of an enzyme could be treated quantum-mechanically. Conversely, one
might consider implementing a semi-explicit water model, which treats only the
most important water molecules in an all-atom way and switches to an implicit
description in other regions of the simulation box.
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A Documentation of g permute

g permute is called from the command line. It reads a trajectory produced by
an MD simulation and relabels the molecules as was described in section 3 of this
thesis. Most of its input is specified by a number of command line arguments
which are specified as follows:

~f filename of the trajectory to relabel. All file formats used used
in Gromacs are supported.

—S filename of the topology file which was used to generate the
trajectory

—o  filename of the relabeled trajectory. If a file with the same
name already exists, it will be overwritten by the relabeled
trajetory.

-n  an index file containing index groups which specify the atoms
used for the calculation of the cost matrix and the relabeling
(see below)

-T filename of a reference structure. This argument is optional.
If it is missing, the first frame of the trajectory will be taken
as reference structure.

-ms number of atoms in a solvent molecule. (3 for SPC water, 4
for TIP4P).

When run, g_permute will ask for two groups from the index file, one for the
distance calculation and one for the relabeling.

The first group contains the indices of the atoms used to build the cost matrix
(Eq. 3.4). Exactly one atom of each molecule must be contained in this group.
The atom indices of this group must be ordered in ascending order. In case that
water is used as solvent, we recommend to create a group of all water oxygen
atoms and use this for the distance calculation.

The second group (called the “solvent group” in the program) contains all atoms
of the solvent. In the case of SPC water, it should consist of all H and O atoms
in the system being part of a water molecule. This group will be consecutively
split into subgroups of —-ms atoms each. These subgroups will be considered as
the water molecules, so the indices of the solvent group also have to be ordered
in ascending order.
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