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SYNOPSIS

Regulation of water permeation is an essential aspect of homeostasis in liv-

ing organisms. Proteins of the ubiquitous aquaporin family act as trans-membrane

tetrameric channels through which water may permeate under osmotic gradients

in a bidirectional manner. These channels are highly specific in the choice of the

conducting molecules, but at the same time several members of this family allow

permeation of alternative solutes. In the last two decades, the structures of several

aquaporin proteins have been unveiled through x-ray and electron crystallography

and have helped us understand the features of this protein family that make so-

lute permeation across bio-membranes possible. Molecular Dynamics (MD) sim-

ulations have contributed substantially to the understanding of the mechanisms

that govern the efficiency and the specificity of the aquaporin family of protein.

These simulations have helped shed light on the finer mechanical details of the

process of water permeation at the atomistic level. MD simulations add a new

dimension, that of the dynamics, to the ensemble of available knowledge. This

added information is crucial to understand the inherently dynamic nature of the

permeation process.

In this study we explore the molecular mechanisms that regulate the perme-

ability in three aquaporin proteins, namely, AQP4, AQP0 and TIP2;1. We find

that the permeability of AQP4 protein can be modulated with an extrinsic param-

eter such as pH. We provide an explanation for the native low permeability of the

protein AQP0 and suggest means to manipulate this protein through mutations so

it can be made more water permeable. Finally, we study the permeability of am-

monia through the plant aquaporin TIP2;1 and explore the origin of the modified

specificity of this protein. To achieve the results stated above, we use a variety of

techniques related to MD simulations and highlight several aspects of regulation

of permeation that could be general features of the protein family as a whole.
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Chapter 1

Introduction

1.1 Background

One of the characteristic features of living organisms is the isolation of their cel-

lular chemistry through compartmentalization. A living cell requires a continuous

function of its metabolic pathways, such as anaerobic glycolysis or the aerobic

Tri-Carboxylic Acid (TCA) cycle for efficient function and survival. It is observed

that the chemical cycles that drive the cell are typically shielded from the ’bulk’

environment by some form of semi-permeable insulation. In higher organisms this

shielding extends to the genetic material which is additionally isolated from the

cytoplasm into the nucleus. Further segregation can occur in internal organelles,

such as lysozomes, mitochondria, chloroplasts where the machinery required to

perform specific chemical function is sequestered from the rest of the cellular mass.

A constant of the chemical nature of all these physical barriers is that they are

composed of lipid membranes in the form of a bilayer. Across this bilayer a per-

meation of nutrients must occur so that a homeostatic chemical milieu can thrive

with minimum interruption inside the cell. This particular function is generally

handled by a variety of proteins that are embedded within the membrane. Acting

as channels and transporters, they use either passive or active means to shuttle

the required substrates in and out of the compartments [1] .

Water is the most abundant component of the chemical mix present on either

side of the bilayer where it functions chiefly as a solvent. Therefore, managing the

3



Chapter 1. Introduction 4

permeation of water is an important function associated with the proteins em-

bedded in the bilayer. The historical development concerning the understanding

of water permeability is covered in detail in the review by Parisi et al. [2]. It

was initially unknown if permeability of water was attributed particularly to pro-

teins. The bilayer itself was deemed sufficiently permeable to allow for the osmotic

movement of water [3]. However, studies conducted from the 1950s to the 1960s

indicated that water permeability of the biological cell could not be attributed to

diffusive or osmotic entry of water through the cell membrane alone.

Figure 1.1: Separation of the cytoplasm from the cell exterior via the plasma mem-
brane. Molecular channels allow transmission of nutrients across this barrier. (Source:

http://www.medicalsciencenavigator.com)

This gave rise to the ’membrane pore’ hypothesis that postulated the pres-

ence of dedicated poriform structures which could facilitate the transfer of water

across the cell boundary. Initial evidence arrived in the form of observation of the

permeation rate of tritiated water across the Red Blood Cell (RBC) membrane,

which exceeded the rate that could be expected from a purely diffusive transport
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across the cell membrane [4]. Although this hypothesis was initially challenged

by contemporary investigators [5, 6], it regained attention upon the discovery of

dedicated water channels which acted as antibiotics, such as the Gramicidin popy-

petide [7]. In the 1980’s evidence of a specific water channels began to accumulate.

The observation that the anti-diuretic hormone (ADH) could stimulate the forma-

tion of protein aggregates which increased water permeability [8] lead to a clear

evidence that biological membranes had proteinaceous members capable of act-

ing as water channels. Furthermore, the water permeation affected by ADH was

found to be modulated via pH [9] in a manner that pH could not lead to either

formation or disassembly of the aggregate itself. This indicated a regulatory mech-

anism placed on the aggregate itself thus pinning the function on the protein/s. It

was also shown that the permeability in RBCs could be inhibited by application

of mercury [10] in a reversible manner. This implied that the protein potentially

responsible had free sulfahydryl groups, that could be chemically bound with mer-

cury. This protein was finally identified by Preston et al. in 1992, [11, 12]. Initially

called CHIP28, due to its mass of 28kDa and the assay used to detect this protein,

it was later named to aquaporin-1 (AQP1).

Now, after more than two decades of the discovery of AQP1, the world of

aquaporins has expanded from putative models and innovative function to a broad

understanding of their structure and well established empirical methods to assess

their functionality. Computational models have become available to explain their

behavior at an atomistic level, shedding light on the relation between their struc-

ture and their function. Despite this familiarity, a multitude of questions regarding

the regulation of their behavior remain unanswered. In this thesis we will try to

address some of these questions and hopefully advance our understanding of the

working of aquaporins protein channels. In this chapter, a brief overview of impor-

tant historical and scientific background is provided to bring the reader in tune

with the current state of understanding regarding the topic. Several important

ideas and facts related to aquaporin function and structure are also introduced so

as to facilitate familiarity with details later discussed in the thesis.
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1.2 The aquaporin protein family

Aquaporins are tetrameric transmembrane channel proteins, in which each of the

monomers is an independently functional channel pore. After the discovery of

AQP1, a large number of proteins were identified across the entire biome, sharing

with AQP1 sequence, structural and functional similarity [13]. These proteins

constitute what is now called the aquaporin family. There have been more than

450 proteins identified to date. Most of these are isoforms present in multicellular

organisms, involved in varied physiological roles associated with the function of

the tissue where they are expressed. Plants typically possess a larger number of

isoforms per species compared to animals, with most angiosperms having more

than 30 aquaporin proteins. Arabidposis thaliana has 38 isoforms of the protein

compared to 13 for humans. The human isoforms are comparatively well studied

due to the clinical significance associated with their function. They are designated

with the names AQP attached to a number as AQP0 to AQP12.

Figure 1.2: Division of the aquaporin protein family into clusters. The GLP cluster represents
the glycerol permeable aquaporins. The AQP cluster is the water specific set of the family.

Figure taken from [14]
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Aquaporins, although predominantly water channels, are not restricted to

only one permeating solute. There are two major aquaporin sub-families (fig.1.2).

The first is the Glycerol Facilitator Proteins (GLPs) family which allows perme-

ation of GLycerol and water through the pore. The second subfamily is the water

specific Aquaporins (AQPs). In humans, AQP0,1,2,4,5,6 and 8 act as water chan-

nels and AQP3,7,9 and 10 are permeable to glycerol and water. In plants, the

AQPs are further sub-divided into three categories. The aquaporins present on

the plasma membrane are termed Plama-membrane Integral Proteins (PIPs) and

are sub-divided into two types PIP1 and PIP2. PIP1 proteins exhibit significantly

smaller water conductance compared to PIP2 proteins. The second category is

present intra-cellularly on the Tonoplast membrane and its members are called

Tonoplast Integral Proteins (TIPs). The last identified plant aquaporin subgroup

is called Nodule Integral Protien (NIPs) as they were originally found on the Nod-

ules of leguminous plants, which are involved in fixing nitrogen from the soil. The

aquaporin family phylogeny is reviewed in detail by Heymann and Engel et al.

[14].

Figure 1.3: Aquaporin family members are integral membrane proteins with 6 transmem-
brane helices and two semi-transmemebrane helices. The latter end into conserved NPA motifs,
which form part of the so called ’filter’ at the center of the monomer channel. Picture adapted

from [15]
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The aquaporin gene and consequently the protein shows two-fold pseudo-

symmetry. Similarity between these two halves of the aquaporin gene sequence

suggests a duplication event in the early genetic history of the family. The two

halves constitute hemi-pores that associate to form the water channel. Conserved

sites are not uncommon among closely related members. Globally, the sequence

of aquaporin proteins has two strongly conserved motifs present in the channel

lumen; the NPA-duplex motif and an arginine residue (R195 for AQP1) placed in

a highly hydrophobic region of the channel interior. The latter forms a narrow

funnel in the pore which gives rise to the hourglass shaped structure of aquaporin

channels. This funnel portion of the protein is termed aromatic/arginine (ar/R)

region. The combination of the NPA motifs and the ar/R region give rise to

the ’filter’ in the protein. F56, H180 and C189 form the aromatic environment

in AQP1. The arginine residue if mutated from the protein results in a highly

permeable but otherwise less selective channel. The sulfhydryl group of the cystine

residue inserts into the pore and forms a binding site for mercury. This binding

results in the channel being blocked from permeation and is now known to be the

origin of the mercury based inhibition of a large subset of aquaporins [15].

1.3 The structure of the aquaporin channel

Several members of the aquaporin family proteins have been studied with X-ray

and electron crystallographic methods, which have been used to elucidate their

structural and topological features (AQP1 [15, 16]); AQPZ ([17]); AQP0 ([18])

; AQYM ([19]); SOPIP2;1 ([20]); PfAQP ([21]); AQP5 ([22]); AQP4 ([23],GlpF

([24]) ). These structures have provided us with insights into the inner mechanical

working of the channel.

The aquaporin protein is a homo-tetramer (fig.1.4), where all four monomers

are fully functional water channels. Each of the AQP monomers is made up of 6

transmembrane helices arranaged as a helical bundle. The helices are labeled with

an index H1 to H6 (fig.1.3). Alongside these transmembrane helices, there are

two semi-trans-membrane helices that insert themselves halfway into the channel
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pore. These are labeled HB and HE. The two asparagine residues of the NPA-

duplex present at the termini of these helices and act as hydrogen donors to the

permeating substrates. The channel pore of the monomer is 25 Ås in length. It has

a sharp constriction near the conserved arginine site, surrounded by hydrophobic

residues. The channel can be as narrow as 1.4 Å (approximate radius of a water

molecule) or even lower in this region for water specific aquaporin proteins. In some

aquaporins that also conduct other substrates such as Glycerol, this constriction

can be wider, and up to 3.4 Å . Another slightly larger constriction is formed by the

NPA-duplex placed on the cytosolic side of the ar/R region. Near the extracellular

and the cytoplasmic regions the pore is relatively wide, reaching a diameter of 6

to 7 Å . The junction of the four monomers gives rise to a single central pore.

This pore does not allow permeation of water. However it has been shown that it

can potentially participate in permeation of smaller hydrophobic residues [25] and

possibly ions [26].

The monomeric pores, called the ’water pores’ are usually constitutively in an

open conformation and are typically co-crystallized with water molecules trapped

in the channel. The lumen of the water pore is lined mostly with hydrophobic

residues that present the carbonyl groups of the mainchain as hydrogen bonding

partners to permeating water molecules. Near the ar/R region and the NPA

motifs, the side-chains also contribute as hydrogen bonding partners to permeating

water molecules. These interactions have been suggested to be important for

compensating the desolvation of water as it enters the aquaporin channel [27].

The actual permeation through the channel was thought to occur via single file

motion of water molecules across the channel [9]. This proved to be partially true.

For aquaporins with narrow pores, such as AQP-Z, the number of binding sites

calculated experimentally matched the actual number of water molecules observed

in the crystal structures. On the other hand, aquaporins with wider pores, such

as the Glycerol permeable GlpF, the number of binding sites was found to be

much smaller in permeation experiments as compared to the X-ray structure, thus

demonstrating that these pores showed a ’multi-lane’ permeation. In general, it

appears that a ’single file’ motion of water across the channel lumen is a useful

approximation, that can yield qualitative results in agreement with experiments.
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Figure 1.4: A typical aquaporin protein (in this case AQP1). Viewed from the top, the
tetramer has four independent fully functional water pores. The pore formed at the center

does not allow water permeation.

Figure 1.5: Structure of the water pore. a. The top view of a monomer is shown in cartoon
representation. The four residues that make up the ar/R part of the filter for the AQP1 protein,
are shown in licorice representation. b. The tunnel across the protein monomer channel is
shown. The arginine of the ar/R region and the asparagines of the NPA motifs that form the
selectivity filter are highlighted. The tunnel itself is shown as a space-filling model, with the

narrowest constriction shown in red.
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1.4 The biophysics of water permeation in aquaporins

1.4.1 Water permeability of aquaporins

Water permeates through the channel lumen in an ordered and choreographed

fashion. This picture is substantiated by the crystal structures, which depict con-

served locations in the pore where water molecules are co-crystallized with the

protein. Physiologically, the aquaporins are bidirectional channels. The perme-

ation process across the channel is diffusive or osmotically driven [28]. Experi-

mentally, the measurement of aquaporin permeability is done via the CHIP assay.

This assay was first used by Agre et al. to identify the CHIP28 protein as a water

channel [11]. It involves measurement of the swelling in Xenopus laevis oocytes.

These oocytes are transfected with aquaporin cDNA. Upon expression the protein

is transported to the cell surface. The relative swelling rate is then contrasted with

a control oocyte that does not express the protein, thus allowing measurement of

the permeability. The inability to accurately determine the copy number of the

proteins functionally present on the membrane is chiefly responsible for the lack of

accuracy in the measurement. The typical aquaporin permeability is on the order

of 10-14 cm3/second. It measures the rate of volume transfer of water across the

pore. This rate results in approximately a billion permeation events per channel

per second on an average. It can fluctuate across the protein family ranging from

a minuscule 0.2 x 10-14 cm3/second in AQP0 to 20 x 10-14 cm3/second in TIP2;1.

Measurements carried in computational studies qualitatively agree with empirical

measurements.

It appears that the control of permeability of the aquaporin channel is

strongly related to the constriction region, as it posits the largest Arrhenius barrier

to the permeation of solutes through the pore (fig.1.6). This consideration ratio-

nalizes the impermeability of the channel to substrates of a size larger than water

molecules. The constriction region is formed from a two stage filter as mentioned

earlier, the first of which is the ar/R region. The second half is formed out of the

NPA-duplex motif.
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Figure 1.6: Potential of mean force for water across the monomer channel. The ar/R region
is close to the -10 Å value on the pore coordinate and poses the largest free energy barrier.

[29]

Figure 1.7: A snapshot of water permeating through the channel pore. The water molecules
at all points during the permeation are coordinated by other water molecules or though the
polar atoms of the sidechain or the mainchain of the protein. The permeation is only ap-
proximately single file. The hydrogen bonds are shown with dashed black lines. The possible
hydrogen bond partners and water molecules are shown with the licorice models. The conti-

nuity of the inter-water hydrogen bonds is broken near the ar/R region.
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Why is the permeability of the protein to water larger than the direct osmotic

transfer rates across the membrane? This question can be answered by studying

the channel pore interior. In the bulk, water has an intricate hydrogen bond net-

work with neighboring water molecules. The entry of water into the channel lumen

is entropically disfavored. This is because the water molecules entering the narrow

pore lose both translational and rotational degrees of freedom that can be accessed

in the bulk. In order to ’accommodate’ these water molecules into the channel, the

lumen offers complementary hydrogen bonding network formed by polar sidechain

atoms and mainchain carboxyl groups. This complementarity explains the reduced

activation barrier compared to the path through the hydrophobic core of the mem-

brane for the entry of water molecules in the constricted channel lumen. However,

the presence of a large number of strong hydrogen bonding residues in the pore

is also detrimental to the permeation. Moreover, excessive hydrogen bonding in

the pore can kinetically trap water molecules in the lumen by creating deep free

energy minima along the permeation pathway. It appears that the protein has

achieved a trade-off in these effects through evolutionary selection. Most of the

pore lining residues in the channel are in fact hydrophobic and they provide a ’well

oiled’ and ’non-sticky’ pathway for the water molecules to traverse the lumen.

1.4.2 Selectivity of aquaporins

Recent in vivo and in silico experiments highlight an important feature of the

water channels: the ability to distinguish between permeating entities. There are

already several examples where the members of the aquaporin family can permeate

alternative substrates. Aquaporins such as GlpF are specialized in the transport of

Glycerol alongside that of water. Aquaporin-6 [30] acts as an anion channel, trans-

porting nitrate molecules. But beyond these roles, it has been suggested that the

protein family can serve in permeation of many other species of molecules. There

has been evidence indicating that molecules such as urea, gaseous substrates such

as carbon dioxide, ammonia and oxygen may permeate via aquaporins protein.

Generally, gaseous neutral molecules are typical candidates for the application of

Meyer-Overton’s rule. This rule states that small and neutral molecules can readily

pass through lipid membranes, while charged or polar residues may not [31]. The
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rationalization behind this principle comes from the knowledge that hydropho-

bic solvation of small, apolar molecules in aqueous environment into non-aqueous

aliphatic liquids is thermodynamically favored due to the so called hydrophobic

effect. This rule, although quite simple, forms the backbone of modern rational

drug design, where small drug-like molecules are synthesized to be sufficiently ap-

olar so they can effectively diffuse across the cell membrane. Thus, intuitively, it

can be claimed that gas permeation in living organisms should also occur directly

through the cell membrane, bypassing the need for any dedicated channel.

However, in many cases aquaporins have been suggested to present an al-

ternative to this route. Knocking out the gene or disrupting the function of the

protein can lead to a severe loss in gas permeation. This dependence of perme-

ability of gases on the presence of aquaporins is surprising in view of the Meyer-

Overton rule. To reconcile this apparent paradox, hypothetical conditions can be

proposed where Meyer-Overton’s rule may not apply. The permeability of biolog-

ical membranes is known to depend on the cholesterol content of the membrane.

Higher eukaryotes contain a significant portion of sterols ( 20-40 %) [32] in the

lipid composition of their cell membranes. This may have the effect of reducing

the contribution of permeation of neutral gas molecules directly through the lipids.

Figure 1.8: The free energy barrier for a CO2 molecule across the AQP1 water pore and
central pore compared with the barrier across a pure lipid bilayer. The AQP1 has a larger
barrier for the permeation of CO2 in accordance with the Meyer-Overton rule. Picture taken

from [29]
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Although most aquaporins are highly permeable to water, a purely structural

consideration of the filter cannot explain why the channel would not permeate

smaller solutes. The pore constriction, as mentioned earlier in the chapter, is

approximately of the same size threshold as the diameter of a water molecule.

This would imply that molecules smaller than the size of the constriction would

have little trouble navigating the channel. As aquaporins are passive channels, an

osmotically driven proton permeation might, for example, be expected to result in

a dissipation of the proton gradient across biological membranes. This, however

would be catastrophic as free permeation of protons would distort the proton

motive force due to a loss of function of biological motors which involve proton

pumps.

Proton translocation in bulk water is thought to occur via the Grotthuss

mechanism [33], which involves shuttling of a proton between hydronium ion clus-

ters via chains of unbroken hydrogen bonds. These clusters are highly coordinated

entities solvated by hydrogen bonds. Three possible reasons for the exclusion of

protons from permeation through aquaporins were proposed to explain this phe-

nomenon. The first one was discerned from the crystallographic data. When the

water molecules are co-crystallized in the channel pore, they appear to have a strict

orientation along the channel axis, which involves the discontinuation of the un-

broken hydrogen bonded chain between water molecules in the lumen [34], which

was proposed to occur at the NPA site. As stated earlier, a continuous chain may

be necessary for the function of a Grotthuss mechanism. Thus its absence could

lead to loss of proton transfer. Also, Tajikhorshid et al. [35] suggested that a

high constriction of the rotation of the water molecules lumen would additionally

hinder permeation as it would inhibit the Grotthuss mechanism. The second pro-

posed mechanism involved a purely electrostatic barrier to the transfer of protons

due to the presence of a strong electric dipole in the protein [36]. The pseudo-

symmetry of the protein structure leads to the formation of two opposing dipoles

in the channel interior which create a large free energy barrier for the proton. This

barrier would prohibit the transfer of proton in either direction. The third mecha-

nism is concerned with desolvation effects that occur while transferring the proton

from the ’bulk’ to the channel [37]. When a proton enters the channel interior,
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its solvation is drastically reduced, as the donors in the lumen can not completely

compensate the high dielectric shielding of the solvent bulk (ε = 80) with the low

screening inside the protein (approximately ε = 8). This leads to a thermody-

namically unfavorable situation for the proton. Of these three effects, the first is

now considered the least important. This is so because when the proton is forced

through the channel in computational simulations, it can efficiently transfer via

the Grotthuss mechanism, implying that an intact continuous proton chain exists

in the protein, as the water molecules observed in the crystal structure are not

static in the channel [36].

1.5 Why molecular dynamics?

The function of aquaporins is invariably coupled to their structure. In fact, most

differences in the functional aspects of the members of the aquaporin family can

be reconciled by observing their structural dissimilarities. The crystal structures

successfully explain experimental observations that are dependent on purely static

properties of the protein. However, permeation is a dynamic phenomenon and it

can not be completely studied without observing the protein and the permeating

solutes in motion. Furthermore, permeation occurs at a timescale of nanoseconds

and the important interactions involved in the process take place at an atomistic

level of detail. These conditions, although accessible to modern experimental

tools, are still difficult to capture efficiently in an empirical setup and demand a

high resolution and sensitivity to be studied in detail. This is where molecular

dynamics simulation can assist in the search for answers. Modern computational

resources can access the requisite nanosecond timescales at fully atomistic detail.

The prime requirement for these simulations is the availability of high quality

coordinates, which are now made available for a large selection of the aquaporin

family via x-ray and electron crystallography. Using these as the starting points

and combining them with semi-empirical potentials, it is now possible to study

working models of aquaporins. This offers various conveniences, such as the ability

to modulate the molecular features of the protein structure via in silico mutations

and alchemical transformations. Biophysical processes and measurements that
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are otherwise not feasible can be suitably made in such models. Thermodynamic

quantities such as entropies, enthalpies and free energies can be readily obtained

by utilizing both equilibrium and non-equilibrium methods. It is also possible to

study microsecond timescale physics using either coarse grained methods, which

trade the atomic resolution for long-term simulations or with Markov state models

which can be used to build kinetics data that explains behavior temporally out of

reach of atomistic simulations. Molecular dynamics has thus been used extensively

to understand the mechanism of water permeation through aquaporins and to

explain molecular mechanisms of regulation and modulation of permeability([20,

22, 27, 29, 34, 36, 38–42]).

The functional parameter associated with simulations is typically the per-

meability. In molecular dynamics the problem of measuring the permeability is

complicated. The osmotic gradients required to generate a unidirectional flux are

hard to set up in the in silico environment as this process requires maintaining

a large concentration difference. It is possible to drive unidirectional flux with

a purely hydrostatic pressure. But again this requires the introduction of large

mechanical forces in the system. In the work presented within the thesis the col-

lective diffusion method is used for the calculations of the Pf [43]. This method

measures the diffusion of a collective coordinate formed out of the single file region

within the channel pore. Diffusive hops of this coordinate at equilibrium are used

to calculate the permeability of the protein, without a need for application of ei-

ther osmotic or hydrostatic pressure. This method is much more robust compared

to experimental approaches to assess permeability quantitatively of the protein.

This advantage derives from the knowledge of the permeability associated with

the concentration of the protein in the membrane, details of of which are lacking

in experiments.

1.6 Goals of this project

The goal of this thesis is to study specific instances of aquaporins water channels

in order to understand the regulation of their function and the selectivity associ-

ated with it, with the hope that a light can be shed upon the generalities in the
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structure-dynamics-function relationships in the aquaporin protein family. The

various sub-projects in this thesis have been carried out, in collaboration with

experimentalists from the fields such as crystallography, biochemistry and molec-

ular biology. Three members of the aquaporin protein family have been studied

in the thesis; AQP4, TIP2;1 and AQP0. The common principle behind the work

conducted here is the focus on molecular mechanisms that are involved the regula-

tion of the permeation and the specificity of the permeating molecule: ’Are there

gating mechanisms inherently encoded in the aquaporin structure?’ ’What condi-

tions determine the activation of such gates?’ ’Do aquaporins allow permeation of

substrates other than water? If yes, then are these broad specificities relevant in

physiological situations?’ - are some of the questions addressed. Whenever pos-

sible, we have attempted to answer these questions with quantitative parameters

derived from various statistical tools.

1.7 Organization of the thesis

The thesis is organized so as to transit from a theoretical and historical background

of the work conducted to the actual research work and its analysis. The first two

chapters deal chiefly with the former and the next three focus on the latter. In this

first chapter of the thesis, a quick qualitative perspective is provided towards the

history of research concerning the aquaporin family. The important structural and

biophysical details of the protein relevant to understanding the following chapters

are presented. In chapter 2, we describe briefly the important methods utilized

in this project. In addition. a detailed summary is provided for the various pa-

rameters utilized in the design of the in silico experiments, so as to facilitate the

reproduction of these results. Chapter 3 deals with the regulation of permeability

in the AQP4 protein. A covalent modification of aquaporins has been suggested

to be one of the important mechanisms through which permeability is regulated.

In most cases, this is achieved via control of expression of the protein on the bio-

membrane. However, recent evidence indicates that phosphorylation of conserved

residues can activate gating behavior in aquaporins. Here, we investigate such a
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possibility in the case of AQP4. Additionally, we study the effect of pH on possi-

ble gating mechanisms identified within the protein using molecular dynamics. In

chapter 4 we investigate the possibility of gas permeation in an aquaporin. Here,

a novel aquaporin crystallographic structure is modeled using molecular dynamics

simulations and then studied for its substrate specificity. This structure demon-

strates certain novel features which we reproduce in the computational models.

Using equilibrium simulations and enhanced sampling methods, we explore the

possibility if ammonia can permeate the protein water channel. Within the fifth

chapter, we study an unusual member of the aquaporin family, AQP0. We try to

decipher the molecular mechanisms behind the low permeability of this protein us-

ing machine learning methods. In a collaboration with our experimental partners,

we propose a variety of mutational forms AQP0 which can explain the functional

aspects of the protein and enhance its conduction. Finally, in the sixth and the

last chapter, the conclusions for the overall thesis are presented. As science is a

never-ending pursuit of facts and explanations, an outlook towards possible future

avenues that can develop into interesting projects is also provided.
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Chapter 2

Methodology

In this chapter we provide a brief introduction to a variety of methods used in the

thesis. The aim here is to convey the general purpose and the physical basis of the

methodology involved in the most important techniques used to facilitate a clear

reading of the research work performed.

2.1 Molecular Dynamics Simulations

Molecular Dynamics (MD) is a well established computational technique used to

simulate macromolecules at a near-atomistic level. The chief advantage of MD is

the ability to access properties at time and length scales which are either typically

difficult to discern or outright unavailable at the experimental level. The general

idea behind the methodology is to simulate the Newtonian mechanics of molecules

using model inter-atomic potentials and generating time series data which can

be analyzed for statistical behavior of the simulated entity. MD has been used

extensively to understand thermodynamics and kinetics of molecular processes

[44].

2.1.1 Physical basis of MD simulations

To our best understanding the dynamics of molecules is governed by the laws

of quantum mechanics. To enable simulating bio-molecular structures, which is

23
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the goal of the present study, certain approximations must be sequentially made

to simplify the complex and computationally costly description of the quantum

paradigm to simplify it to the Newtonian level. The goal of MD simulations is

to to study the time-dependence of the positions of the atoms. Other properties

associated with them are of less interest in this scenario. The wave-function that

describes the molecule typically contains information content that is higher than

this requirement. Thus we have to extract only the requisite piece of functional

interest from it.

The first approximation required to achieve this is that we can neglect any

relativistic effects involved in the dynamics for the time and length scales under

consideration. This allows to start with the time dependent Schrödinger’s for-

mulation [45] as the basis of our considerations. For a wave function ψ and a

Hamiltonian Ĥ, this equation is given as:

i~
∂ψ

∂t
= Ĥψ (2.1)

ψ is the wave-function that describes both the electronic and nuclear contri-

butions. The Born-Oppenheimer approximation allows us to separate these two

contributions so that the ψ can be written as a product of the nuclear wave-

function ψn and the electronic wave-function ψe,

ψ = ψn ∗ ψe (2.2)

Such a separation can be justified by observing that the nuclear mass far ex-

ceeds the electronic mass. This allows electronic modes in the total wave-function

to relax quickly and independently of the nuclear motions. While solving the

dynamics of large biomolecules we are typically not interested in the exact solu-

tion for the electronic wave-functions. Rather the nuclear wave-functions are the

subject of interest as they broadly describe the motions of the atoms in space.

Hence, we focus only on the nuclear part of the equation 2.1. This approximation

is known as the Born-Oppenheimer approximation [46]. This is written as:
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(T̂n + V̂ (r))ψn = i~
∂ψ

∂t
(2.3)

where, T̂n is the kinetic energy operator corresponding to the nuclear motion

and ˆV (r) is the potential energy operator that represents the nuclear and elec-

tronic potential. At this point, equation 2.3 describes the time dependence of the

entire wave-function. We are interested only in the time-dependence of the expec-

tation value of the position. This information can be acquired using the Ehrenfest

theorem [47], which states that:

d<~r>

dt
= <~v> (2.4)

and
<~v>

dx
= −∇V (r)/m (2.5)

Equations 2.4 and 2.5 are essentially Newton’s equations of motions, where

~v is the expectation value of the velocity of the particle involved and ’m’ is the

mass of the particle. The velocity is required to calculate the future position of the

same. V(r) is the potential experienced by the particle and it is typically broken

down into multiple components that describe the nuclear motions in molecules. A

typical breakdown is shown in table 2.1 [44]:

Forcefield terms are typically divided into bonded and non-bonded param-

eters describing various kinds of interactions between atoms. These forcefields

thus allow us to approximate molecular interaction on a classical regime and sim-

ulate dynamics using Newtonian laws of motion. Forcefields can be specialized

by parameterizing the individual terms in the potential to represent better cer-

tain situations. Thus the choice of the forcefield depends on the property of the

macromolecule that the researcher is trying to explore. In our simulations, we

have worked with either the CHARMM36 [48, 49] or the Amber99sb-ILDN* [50]

forcefields. CHARMM36 has the advantage of a large library of all-atom lipids for
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Interaction type Mathematical model

Bonded interactions

Bond stretching Σbonded kb/2 (rij − r0)2

Bond angle Bending Σbending ka/2 (θij − θ0)2

Dihedral twisting Σdih kφ/2 (1 + cos(Pnφ− γ))

Out of Plane twisting Σimproper kη (ηij − η0)2

Non-bonded interactions

Electrostatic Σi,j
q1q2

4πε0rij

van der Waals interactions Σi,j − Aij

r6ij
+

Bij

r12ij

Table 2.1: The terms involved in a typical potential used for MD simulations. The force
constant terms are shown as ki. The term for the phase angle is shown as γ. The distances
between two particle indices, i and j, are shown as rij . Pn is the periodicity in the dihedral

rotation potential.

which high quality parameters have been tested to simulate experimental observ-

ables. The latter, Amber99sb-ILDN* has the advantage of having tested parame-

ters for modified amino acids such as phospho-serine. The two major requirements

for MD simulations are the forcefield parameters and a set of coordinates to start

the simulation from. The latter is typically obtained from either x-ray diffraction

studies, cryo-electron microscopy or NMR spectroscopy. Generally, high fidelity

structures with resolution in the Å scale are needed. Usually, these are obtianed

from the Protein Data Bank (PDB) website. When such a structure is avail-

able, the initial velocities are generated using a Maxwell-Boltzmann distribution

of velocities, assigned randomly to atoms.

2.1.2 Numerical integration of equations of motion

An important facet of MD simulations is the integrator. Once the initial structure

and the velocities are generated and the forcefield parameters are known, the

equations of motions can be used to predict the subsequent set of coordinates

after a given amount of time, as well as the velocities that are to be assigned to

these atoms. The function of the integrator is to determine the velocities and
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positions at a later point in time by ’integrating’ equations of motion. The time-

step used for this process is an important determinant of the dynamics. The value

of this parameter must be smaller than the frequency of the fastest possible mode

defined by the potential used for the forcefield. Typically, this corresponds to

the bond stretching mode. To account for it, a timestep in the femtosecond (fs)

regime is used. The exact number depends on the kind of constraints applied to

the simulation system. Sometimes it is possible to eliminate certain fast modes,

such as those resulting from the light hydrogen atoms bound to carbon atoms,

using a technique called virtual-sites [51], which replaces these flexible bonds with

virtual particles that reduce their stretching degree of freedom. In our simulations,

we have used this technique alongside the AMBER99SB-ILDN* [50] forcefield. In

these simulations, we used a 4fs timestep as it was found to be appropriately

faster by an order of magnitude than the fastest mode in the structure. For the

simulations with the CHARMM36 forcefield we used a 2 fs timestep, as the here

we dealt with an all-atom description of the simulation system. We used the leap-

frog integrator for all our simulations. This integrator generates a stable, energy

conserving ensemble and was found to be well suited for our needs. The Taylor

series based expansion for this algorithm is given below in equations 2.6 and 2.7.

r(t+ ∆t) = r(t) + v∆t ∗ (t+ ∆t/2) (2.6)

v(t+ ∆t/2) = v(t−∆t/2) + ∆t ∗ ∇V (r)/m (2.7)

2.1.3 Thermostats and Barostats

The NPT thermodynamical ensemble is desired to be used for our simulations

as it corresponds best to the experimental physiological conditions. To obtain

such a condition, the simulation needs to be regularly adjusted for maintaining an

average constant temperature and pressure with statistical deviation consistent

with the Boltzmann ensemble. This is achieved with the use of barostat and

thermostat algorithms. The ideal setup for every force field can differ in terms of

which barostat or thermostat is in effect. For our Amber99sb-ILDN* simulations
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we used the Berendsen barostat [52] and the velocity-rescale thermostat [53]. For

the CHARMM36 simulations the same thermostat was used and the Parrinello-

Rahman barostat was used to maintain a constant pressure. The temperatures

maintained by the thermostat depended on the lipid composition in the simulation

boxes; they were always adjusted to be 10 degrees higher than the phase transition

temperature, which would be necessary to maintain the system in the liquid-

disordered phase. The pressure was always restricted to 1 atmosphere.

2.1.4 Water models

Water typically is the biggest fraction of the system contributing the largest num-

ber of particles in the simulation setup. Thus, it is no wonder that a large amount

of effort has been spent in developing computational models for water molecules.

These models are developed with a particular forcefield in mind and are best suited

when used alongside them. In our simulations for the Amber99sb-ILDN* we used

the SPC/E [54] water model while the CHARMM36 setup we employed the TIP3P

water model [55], based on their efficacy in reproducing experimental membrane

properties.

2.1.5 Handling the electrostatics and the van der Waals interactions

The biggest contribution to the computational cost of creating a simulation tra-

jectory is calculations involving the force terms. The bulk of these consist of the

van der Waals and the coloumbic potential terms. If all the possible pairwise

interactions of this form are considered for the simulation, the number can grow

quadratically and make any practical application of the MD technique to large

biomolecules in solution impossible. In order to facilitate a compromise, several

cut-off schemes are utilized in these simulations so that interactions, that ignore

effects considered insignificant to measure the property of interest. This works

particularly well for the van der Waals interactions as these decay very fast due to

the large negative exponents involved. However, it is observed that terminating

the Coloumbic interactions with a cut off can lead to distorted simulations and

thus alternative approaches are needed to account for them. In the simulation



Chapter 2. Methodology 29

setup used for the thesis, we used the Particle Mesh Ewald (PME) method [56]

which uses Ewald summation to calculate the Coloumb interactions beyond the

cut-off in the reciprocal space. For our Amber99sb-ILDN* simulations we used a

cutoff of 1nm for both the interaction types. For the CHARMM36 forcefield we

used a slightly modified setup with a switch function with the switch at a distance

of 0.8 nm and a cut-off at 1 nm for the van der Waals interactions. The cut-off

for the Coloumbic terms was changed to 1.2. Beyond these cutoffs, the PME grid

was used to estimate the coloumbic potential. the These conditions were found to

influence the Area per Lipid (APL) for the bilayer and provided a good correlation

with experiments.

2.1.6 Periodic boundary conditions

To ensure that finite area/size effects do not affect simulation results, a simple yet

effective method called Periodic Boundary Condition (PBC) is used to account

for long range interactions. This is achieved by implementing a algorithm which

reintroduces a molecule diffusing out of the simulation box back into the box by

the linear translation given by the box vectors. This creates an effect similar to

that of having an infinite number of identical boxes adjacent to each other through

which the simulation particles can diffuse freely. Thus, the number of particles in

a box is kept a constant and the concentrations of all the elements in the mix can

be maintained.

2.2 Functional Mode Analysis (FMA)

2.2.1 Dimensionality reduction

One of the problems with simulation of large biomolecules is that the dimension-

ality of the dynamics involved creates practical barriers to the analysis of the

relation between the collective motions of the structure and a function of inter-

est. Thus, dimensionality reduction of the coordinate space of these molecules

has been attempted to make the problem of analysis more tractable. Among the

most popular methods is the principal component analysis (PCA). PCA is a well
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established statistical technique where the ’principal components’ are the first few

eigenvectors of the covariance matrix of the trajectory, ordered according to their

eigenvalue. The covariance matrix in a 3N dimensional Cartesian space is defined

as:

C =

〈
(rn − 〈r〉)(rn − 〈r〉)N

〉
(2.8)

Here, the r1.....rN are the N points in the trajectory. The diagonalization of

this matrix provides an orthonormal transformation which creates an eigenvector

basis along which the variance in the dynamics of the molecule is maximized. The

ordering of the eigenvalues can be arbitrary, but a natural descending arrangement

allows us to identify the eigenvectors which contribute largely to the variance

of the molecule. Typically when applied to proteins, it is found that for the

eigenvalue spectrum obtained, the magnitudes decrease very rapidly along the

ordering dimension and quickly identifies a sufficiently small complement of vectors

that can be used for further analysis.

2.2.2 Relating to the function

The reduced dimensionality subspace obtained from the PCA may or may not be

functionally relevant. The particular ’mode’ that is described by the eigenvector

could be statistically significant in terms of the collective motions of the protein,

but it is not guaranteed (and observed) that the largest modes are evolutionarily

associated with the characteristic we are interested in. In order to understand if

these modes are related to the property of interest, the method Functional Mode

Analysis (FMA) is used to create a model which best correlates with the function

being explored. This is a linear model given as:

f = Xβ + ε (2.9)

Here, f is a vector array of dimensionality equal to that of X which itself

in an array of the Cartesian coordinates obtained from the an ensemble or a
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time-series. The important idea is that every member of f should be directly

computed from the corresponding member of X and directly quantifies a property

of functional interest. Equation 2.9 is a regression problem with ε as the residuals

and β is a single dimensional set of coefficients of the PCA eigenvectors used as

regressors for the problem. This method provides us with a linear combination

of the eigenvectors from the PCA subspace that have maximum correlation with

the functional property f used to train the model. Although useful, this method

has certain associated issues. The regressors used to create the model describing

the function are pre-determined from the diagonalization of the covariance matrix.

Thus, they present a potentially very large space from which the coefficients need to

be extracted. If the dimensionally reduced subspace of the ’principal’ components

is used, then the correlation obtained between the model and the function is

jeopardized as we observed that there is no guarantee that PCA subspaces are

functionally relevant.

2.2.3 Partial Least Squares based Functional Mode Analysis

The Partial Least Squares (PLS) algorithm presents an alternative method to gen-

erate a model and solve the regression problem presented in equation 2.9. The

idea behind the PLS method is to find the smallest possible basis that has the

maximum correlation with the functional property of interest. PLS defines k re-

gressors, Tk, successively via iteration. The generation of these new coordinates

takes into account two properties; first, that each is a linear combination of the

original coordinate X in Cartesian space; second, that each regressor is uncor-

related to the previous one. The transformation required to get Tk is given by

Tk = XWk involving the maximization of the covariance between the function

vector f and Tk. This has two significant advantages over the PCA based FMA.

The first is that the new basis generated from PLS algorithm is de facto associated

with maximization of the correlation between the function and the structure. The

second advantage is that substantial dimensionality reduction obtained from the

successive lack of correlation between the individual elements of the basis.

In the thesis the implementation provided by Kribokova et al. [57] has been
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used. This implementation itself is based on the earlier implementation of the

Helland’s algorithm [58] by Denham [59].

2.3 Enhanced sampling

Unconstrained simulations can explore local minima in the Potential Energy Sur-

face (PES) of a biomolecule quite well. However, as the most interesting behavior

is typically characterized by a transition between minima, it can be difficult to

explore pertinent regions of the energy landscape due to large free energy barriers

involved. Sampling and equilibration is hard to achieve in the regions lying be-

tween the minima, as the system tends to have a very short lifespan in regions of

the transition where the gradient of the PES is very high. The critical information

contained in the transitions is concerned with stable or metastable intermediate

states, the height of the barriers included in the transition and the free energy

difference between the states of interest. This information can be used to deduce

the thermodynamics and kinetics of biomolecular behavior and can be employed

to modulate or even alter function of the molecule. Many a time the approximate

reaction coordinate or an order parameter that changes along a transition can

be guessed by studying the molecular structure. This information can be used

to enhance the sampling in the region of the phase space between the states of

interest thus improving the overall knowledge of the process. There are quite a

few techniques available today which can make use of a variety of constraints to

improve the statistics in the simulation. The one we have employed here most

extensively is the Umbrella Sampling methodology. A brief discussion is provided

below to describe what this technique entails.

2.3.1 Umbrella sampling

The umbrella sampling method [60] is named so due to the shape of the normal

distribution function, which it uses to infer the free energy profile along a given

reaction coordinate, also known as the Potential of Mean Force (PMF). The PMF
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(W) introduced by J.G. Kirkwood in 1935, along a generalized coordinate ζ i in a

set of N coordinates ζ is defined with:

W (ζ) = −kbT ln
(
ρ(ζ)

ρ(ζ0)

)
(2.10)

where, the ρ is the distribution function for the system of interest for a given

value of ζ. The mean force acting along the coordinate of interest ζ is given by the

gradient of this potential leading to the term PMF. The PMF is a relative scale,

normalized with the value computed for a particular point in the coordinate (ζ0).

This quantity is directly available by simple counting of individual instances of the

reaction coordinate assuming that the simulation is ’converged’ i.e. has explored

the free energy surface ’sufficiently’ well to reproduce a Boltzmann distribution.

This is exactly the catch, since such a convergence is very time consuming and

there is no real guarantee that it will be achieved in a finite simulation time.

Umbrella sampling overcomes the barrier to exploring the regions in where the

gradient of the PES is very high or where the relative free energy itself is very

large, by introducing a restraining harmonic potential of the form:

wi(ζ) = Ki/2(ζ − ζ ic)2 (2.11)

which adds an additional potential well at the positions ζ i
c(i = 1....Nw).

These restraints are governed by the force constant Ki. The advantage of this

construction is that the underlying potential can be recovered after simulating

’sufficiently’ in every position of interest along the coordinate. Here the ’suffi-

ciency’ depends on the degrees of freedom available to the biomolecule for the

given value of the coordinate. The reconstruction itself is performed via the unbi-

asing procedure called ’Weighted Histogram Analysis Method’ (WHAM) [61]. This

method has a predetermined inefficiency that is associated with the integrated au-

tocorrelation time of the umbrella window, τi. This quantity is the characteristic

of the underlying local free energy profile; the larger the local barrier, the large

is the integrated autocorrelation time to reach near equilibrium situation locally.

The statistical inefficiency attached to the window is given by gi = 1 + 2τi. The
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reconstruction of the local unbiased distribution from the histogram of the local

biased distribution is done as follows:

P (ζ) =

∑Nw

i=1 gi
−1hi(ζ)∑Nw

j=1 njgj−1exp(−β(wj(ζ)− fi))
(2.12)

where, nj is the total number of individual points used to construct the local

histogram

hi, β is inverse of kT and the term fi is the free energy constant, a relative free

energy term computed for the local umbrella window. It is defined as:

exp(−βfi) =

∫
dζexp(−βwj(ζ))P (ζ) (2.13)

Coupling all these constants gives us the underlying PMF for the reaction

coordinate ζ.



Chapter 2. Methodology 35



Chapter 2. Methodology 36



Chapter 3

Regulation of permeability in

Aquaporin-4

3.1 Overview

3.1.1 Biological role of Aquaporin-4

Aquaporin-4 (AQP4) is the main water channel in the brain and is heavily ex-

pressed at the perivascular glial endfeet (fig. 3.1) [62, 63]. Due to the location

at the blood brain barrier and to the altered survival rate of AQP4 knock-out

mice following experimentally inflicted brain edema formation, AQP4 has been

proposed to be involved in ischemic brain edema (reviewed by Zador et al. [64]).

Short-term regulation of AQP4 under pathophysiological conditions promoting

brain edema has therefore attracted scientific interest. During cerebral ischemia,

the pH decreases in the extracellular space and in the astrocytic cytoplasm [65–68].

These changes in the brain environment are likely to be involved in the pathogen-

esis of brain ischemia and the subsequent brain edema [65]. However, the effect

of these pH changes on AQP4-mediated water permeability remains to be deter-

mined. Earlier work has suggested that AQP4 is subject to regulation through

modification via covalent as well as non-covalent modifications. Phosphorylation

has been suggested to be responsible for regulation of AQP4 trafficking to the

membrane. Two conserved serine residues S180 and S111 have been proposed

to be the targets of phosphorylation [69, 70], although evidence in favor of this

37
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regulatory modulation was absent in subsequent experimental and computational

work [42].

AQP4 water permeability has been studied in detail with computational

molecular dynamics techniques [23, 42, 71]. It has been shown that an exter-

nal electric field can also modulate the permeability by gating a histidne residue

(H201) in the protein [72, 73], although the water permeability of AQP4-expressing

oocytes was independent of membrane potentials in the physiological range [74].

There has been a computational study to show that the solute preference of AQP4

extends beyond water to other substrates such as NO, CO2 and O2 by Wang et

al. [75]. Only recently, the histidine residue, H95 has been shown to participate

in a gating mechanism which can regulate the permeability of the AQP4 protein

[76]. However, the detailed mechanism of modulation of the permeability via this

gate remains unresolved.

Figure 3.1: Distribution of AQP4 in brain. A: electron micrograph showing the distribution
of AQP4 immunogold reactivity in the cerebellar cortex. B: The highest density of AQP4 is
found along the perivascular glial endfoot membrane (double arrow).[A and B from Nielsen et
al.] C: AQP4 is anchored to the perivascular basal lamina. D: Anatomy of the perivascular

glial environment. Figure adapted from [77]
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3.1.2 Regulation of AQP4 function

AQP4, as a member of the aquaporin channel family, bears close resemblance in

structure and sequence to other aquaporin channels. This has led to the specu-

lation that the regulation mechanism for this protein might be identical to those

present in its relatives. Phosphorylation of two conserved serine residues S180 and

S111 as mentioned earlier has been suggested to be responsible for regulation of

AQP4 trafficking to the membrane [78]. The amino acid sequence of AQP4 con-

tains consensus sequences for a range of different protein kinases [69]. Activation

of PKC has been shown to lead to the down-regulation of AQP4 functionality

[79, 80]. These mechanisms affect the AQP4 function by controlling its expression

and localization. More relevant to the subject matter of this work, other pro-

tein kinases such as PKG and PKA have been proposed to phosphorylate S111

in AQP4, thereby inducing a gating mechanism that leads to an increase in the

permeability [69, 81]. This mechanism was instigated by comparison with the

crystallographic study of spinach aquaporin SOPIP2;1, where the phosphorylated

structure was present in the open state [20] (fig. 3.2).

Figure 3.2: a. The pore diameter of the non-phosphorylated (black), phosphorylated (red),
and induced open (green). b to d. Snapshots of simulations of the non-phosphorylated (b),
phosphorylated (c) and induced open (d) structures. Loop D is drawn in a thicker tube
representation to highlight its conformational coupling to the cytoplasmic gate. Residues
forming the cytoplasmic gate are drawn in van der Waals representation. Two asparagine

residues of the NPA motifs are shown in stick representation.. Adapted from [20]

In this work we explore the possibility if phosphorylation of the S111 residue
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could gate the AQP4 channel. This project was collaboratively carried out with

Dr. Mette Assentoft and Prof. Nanna McCaulay from the Department of Cellular

and Molecular Medicine, University of Copenhagen, Denmark. We observed the

predicted effects of change in the protonation state of H95 on the permeability

of the channel leading to identification of a pH regulated gating mechanism. We

demonstrate that such a mechanism can affect the permeability of the protein and

further contribute to the understanding of the complex regulation mechanism in

AQP4.

3.2 Computational details

A molecular structure obtained from x-ray crystallographic methods, with a reso-

lution of 0.18nm, was used for the simulation of AQP4. It was obtained from the

Protein Data Bank with the entry 3GD8. We used the package WHATIF [82] to cu-

rate the structure and predicted the protonation states of the residues using hydro-

gen bond networks. The tetramer generated from this structure was inserted into

a lipid bilayer consisting of 294 dimyristoylphosphotidylcholine (DMPC) lipids.

The standard Amber99sb-ILDN* forcefied parameters as described in the meth-

ods chapter were used for the simulations.

AQP4 was simulated under two conditions: the unmodified amino acid se-

quence and with phosphorylation of S111. The parameters for the phosphorylated

serine residue were obtained from Homeyer et al. [50]. The simulations were car-

ried out for 500 ns each and the osmotic permeability was calculated using the

collective diffusion method [43]. The first 100 ns of the simulations were discarded

to account for equilibration. The osmotic water permeability was then calculated

for a 50 ns window, dividing the simulations into eight slices for each monomer.

The average over eight windows and four monomers was used to compare the water

permeability of AQP4 with its S111 phosphorylated form.
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3.3 Can phosphorylation of S111 gate the AQP4 channel?

3.3.1 Background

Gunnarson et al. [69] proposed a mechanism for AQP4 gating analogous to the

one described by Tornroth-Horsefield et al. [60] for spinach aquaporin SOPIP2;1.

This analogy was based on the ideas of conservation of the S111 residue equivalent

to the S115 in SOPIP2;1. However, this comparison raised concerns as crystal-

lization of the human AQP4 yielded an open conformation, despite the lack of a

phosphate group at S111. Also, the D-loop and the B-loop in AQP4 were observed

to be too short to act as the gate [23]. This could principally prohibit the S111

from forming contacts similar to those described by Tornroth-Horsefield et al.. In

vivo phosphorylation of S115 on SoPIP2;1 was not detected despite experimental

activation of a range of protein kinases [83]. Furthermore, the open structure of

the spinach aquaporin was obtained at a pH promoting a closed structure [20].

Oocyte swelling assays studied in the lab of our collaborators indicated that

the permeability of AQP4 expressing Xenopus oocytes was unchanged due to the

activation of a variety of protein kinases. But this did not rule out the possibility

that the phosphorylation itself was present in the protein and that it could gate the

channel. To verify if a potential phosophorylation would indeed be able to alter

the permeability of the protein, we decided to model AQP4 in a fully atomistic

setup. By comparing osmotic permeability (pf ) values of the phosphorylated and

non-phosphorylated forms of AQP4 we could then shed light on existence of a

mechanism similar to the one proposed for SOPIP2;1.

3.3.2 Comparison of the phosphorylated and non-phosphorylated forms

of AQP4

MD simulations were performed to contrast AQP4 without a phosphorylation

and with phosphorylated S111 (fig. 3.3). All monomers were subjected to the

phosphorylation, which improved our statistics four-fold. These simulations were

compared with those without such a modification. The phosphorylation makes

the S111 doubly negatively charged. This modification was proposed to lead to
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the closing of a gate formed by the D-loop, by forming hydrogen bonding and

electrostatic contacts with the residues of B-loop in SOPIP2;1 and blocking the

channel pore on the cytoplasmic side of the monomer.

Figure 3.3: Top-view of the AQP4 tetramer and a Side-view of an AQP4 monomer.The B
loop is shown in magenta and with a phosphate-group attached to S111 shown in ball and

stick model. H95 is emphasized in licorice representation.

In the simulation time window of 500ns, we observed no significant effect

of the phosphorylation of S111 (pS111-AQP4) on the conformation of the S111-

containing loop B or of the loop D (fig. 3.4). To determine the effect of a phos-

phorylation of S111 on the flexibility of the B-loop, we compared the Root Mean

Square Fluctuations (RMSF) of the backbone atoms of the loop residues over

400ns of the simulation. There was no significant change in the motion of the

loop between the phosphorylated and the non-phosphorylated forms. The phos-

phorylation of S111 did not significantly affect the water permeability of AQP4

either , (in 10 -14 cm 3/sec); 1.93 +/- 0.41 for AQP4 and 1.94 +/- 0.39 for pS111-

AQP4, n = 8 (fig. 3.5b). The experimental data corroborating this result is also

shown (fig. 3.5a). There activation of several proteine kinases via cyclic GMP
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analogues expected to modify AQP4 S111 residue fail to show a significant change

in permeability [83].

Figure 3.4: Phosphorylation does not lead to a gating from the loop D. The motion of the
loop D and B in the phosphorylated (Red) S111 simulations is similar to that in the simulation

where they are not phosphorylated (Blue) within the simulation timescale.

Figure 3.5: Molecular dynamics simulation on AQP4 revealed no functional effect of phos-
phorylation of S111 on the water permeability of AQP4. (a) The experimentally measured
relative permeabilities of AQP4 on activation of several protein kinases expected to target
S111. The activators used are shown on the x-axis [83] (b) The summarized recorded water
permeability of AQP4 whether non-phosphorylated (blue) or phosphorylated (red) was not

statistically different (n = 8 blocks, Student’s t-test).
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Figure 3.6: Osmotic permeability for the non-phosphorylated channel plotted across the
simulation window. Individual permeabilities of the monomeric channels are shown to demon-
strate correlation in the permeabilities. The black line is the average permeability over the

monomer.

Interestingly, we observed that the permeability of the channel pore fluc-

tuated across monomers during the simulation window. There appeared to be

a consistent correlation between the monomer permeabilities, some retaining a

larger value compared to others across the simulation window (fig. 3.6). This

indicated that there could exist a potential mechanism that could trap the protein

partially open or closed conformations. During the simulation, the residue H95

was discovered to transiently move in and out of the channel pore of the AQP4. In

the initial simulations, we had predicted this particular histidine residue to have

a single protonation and thus be neutral. Since this residue was placed within 1

nm distance of the S111, a protonation of this H95 could possibly interact with

S111. The neutral H95 could transiently block the water pore without the inter-

ference from loop-D, while the retracted doubly protonated H95 interacting with

S111 would not. To test this hypothesis, we used both the doubly protonated

and the neutral (singly protonated at epsilon nitrogen) forms of this histidine in

simulations. In the simulations with a doubly protonated H95 we observed no

significant difference in the water permeability between the two forms of S111 in
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AQP4. However, the change in the protonation state lead to increase in the ob-

served pf in both simulations by 30%. This result implied that the change in the

protonation state of H95 and not the S111 phosphorylation was responsible for

the increase in the observed permeability.

3.4 Is aquaporin-4 gated by pH?

In the previous section, we observed that the individual monomers of AQP4 showed

distinct osmotic water permeabilities which were consistent over a long time scale.

We identified H95 moving in and out of the channel pore as a possible reason that

could lead to these variations. H95 is located in the pore of AQP4 and is conserved

within plant aquaporins as well as in AQP4 of human, rats and mice (figs. 3.7a

and b). This suggests an important role for this specific residue.

Figure 3.7: a. The sequence comparison is shown for the protein sequences of aquaporin
family proteins. The evolutionary conservation of the H95 residue as well as the E41 residue
in the human AQP-4 is highlighted in red. b. The conserved and important residues in the

AQP4 are shown in the licorice representation.
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3.4.1 Exploring the effect of H95 protonation state on AQP4 gating

To estimate the effect of the change in protonation state of H95 on AQP4 perme-

ability with molecular dynamics simulations, we carried out two 500 ns equilibrium

runs with one having H95 in all four monomers in a singly protonated, neutral

state and the other with H95 in its doubly protonated, positively charged state.

For the neutral state, the H95 residue was protonated in the delta nitrogen of the

imidazole ring as predicted by the WHAT-IF package. The simulations showed

an increased water permeability with the doubly protonated H95 residue (H95+)

(compare 1.72 +/- 0.26 x 10-14 cm3/second with 2.62 +/- 0.37 x 10-14 cm3/second,

n = 8, P <0.038) (fig. 3.8a). To asses if this change was brought about through a

purely steric alteration in the pore radius of the monomer, we calculated the ra-

dius profile for the channel (fig. 3.8b). The profile for the AQP4 channel with the

doubly protonated H95 residue was observed to offer a slightly wider pore in the

region where the H95 is located. However, this difference was within the standard

deviation in the radius as estimated from the trajectory (fig. 3.8b). This finding

indicated that the change in the protonation of the residue did not significantly

alter the channel profile in a static manner. Interestingly, the H95 region in the

channel profile demonstrated the highest variability in the pore radius. This ob-

servation furthered the possibility of a gating-like behavior in the general vicinity

of the H95 residue, which could potentially modulate permeability of the monomer

channel. As the permeability is affected by the protonation state, a pH-dependent

gating mechanism seems likely.
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Figure 3.8: a. The permeabilities calculated in the the H95 Singly protonated simulation are
compared with those calculated from the H95+ and H95A simulations. b. The profile of the
radius along the channel lumen is plotted for comparison between the three simulations. The
uncertainty is estimated with the standard deviation calculated in the trajectory. Important

regions along the channel profile are highlighted.

This local radius change would not be effectively detected by techniques

such as Principal Component Analysis (PCA) as such methods concentrate on

identifying collective motions that maximize the covariance in the entire simulation

system. This method has been proven useful in earlier studies to identify collective

modes that are relevant for the functioning of the proteins of interest [84, 85]. But,

such a treatment can potentially miss the collective mode of interest, if it does not

contribute largely to the covariance in the simulation system. Hence, we decided

to use the Partial Least Squares based Functional Mode Analysis (PLS-FMA)

methodology as described in the methods section, which allows us to capture the

collective motions in the protein that correlates most with the local change in the

pore radius. This method attempts to detect the collective mode in a simulation

trajectory that has the highest correlation with a function of interest. Ideally,

the training function for the PLS-FMA model in this case would be the osmotic
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permeability. However, as the permeability of the AQP4 channel appears to have

a long auto-correlation time on the order of nanoseconds, we could not obtain

sufficient data to generate a mode that reliably describes the change in the water

permeability. Hence, we chose to use the radius of the pore as the training function

as it was expected to contribute to the overall mobility of water molecules in the

channel, acting as a proxy for permeability.

Figure 3.9: The AQP4 monomer is divided into 8 non-overlapping regions. From each region
the lowest value of the radius is drawn to represent each frame and train the PLS-FMA model.

In this case, we used the set of local radii in eight non-overlapping regions

(fig. 3.9) in the channel as the function to train the algorithm. Using the training

set with the PLS-FMA method we detected eight modes in the simulation system

that could potentially explain the opening and closing of the channel pore in a local

region for the simulation window. PLS-FMA modes with a high cross-validation

correlation coefficient (R2 >0.75) were considered for further investigation. Out

of the eight modes obtained through this method, three modes, in the -16 to -8 Å

region, the -12 to -8 Å region and the -8 to -4 Å region, demonstrated the ability to

open and close the AQP4 channel significantly by allowing the radius to fluctuate

from a value of 2 Å to 0.5 Å (fig. 3.10).
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Figure 3.10: The AQP4 monomer is divided into 8 non-overlapping regions. From each region the lowest value of the radius is drawn to represent each frame
and train the PLS-FMA model. b. The simulation data is compared with the model generated from the PLS-FMA method. Half the data show on green
background is used for training the model. The rest half on the red background is used for cross-validation. The correlation coefficient for the two data are

shown for each of the sets.
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Figure 3.11: The mode identified from the FMA is shown with the protein in the cartoon
and the H95 residue in the licorice representation. The part of the mode for rest of the protein
are not shown for convenience. a. The PLS-FMA mode in the side view of the monomer. b.

The PLS-FMA mode in the top-down view.

The modes obtained from other regions did not show similarly large fluctu-

ations implying that a gate-like behavior was absent in these regions. The three

’interesting’ regions are located in the vicinity of the H95 residue. The PLS-FMA

mode obtained from the -12 to -8 Å region is numerically and functionally identical

to the one obtained from the -8 to -4 Å region. This was expected as the H95

residue was on the border of these regions (fig. 3.9). Consequently, it had the

potential to affect the channel pore radius in either region of the protein, which

is what we observed in the simulation. Also, these modes have a high correlation

coefficient in both the training set as well as the validation set. Therefore, the

algorithm used here identified the mode that affects the pore radius in the vicinity

of the H95 residue. This mode depicts the motion of the H95 residue and the

associated loop to move in and out of the channel pore and is described in figure
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3.11. A population histogram of the simulations with neutral H95 showed a pre-

disposition of H95 to remain in the ’closed’ state of the channel where the pore

radius in the vicinity of the H95 residue is narrow (>1.4 Å , about the radius of a

water molecule). In the simulations with the doubly protonated H95, the protein

mostly occupies the ’open’ state of the channel (fig. 3.12a).

Although the mode identified with the PLS-FMA method correlates with

the change in the radius of the pore in the vicinity of H95, it does not guarantee

that the actual function of interest i.e. permeability, is regulated by this collec-

tive motion. To test for a causal relation between radius modulation and water

permeability we carried out Essential Dynamics (ED) simulations. In these sim-

ulations we trapped the AQP4 monomers into an ’open’ or a ’closed’ state. To

accomplish that we chose values of the projection of the FMA vector represent-

ing the open-close transition in the H95 region. ED simulations were restricted

to these values (+2.1 for the open structure and -2.0 for the closed structure as

shown in fig. 3.12a) to obtain what we termed ’open’ and ’closed’ states which

corresponded to a wide pore and a narrow pore at the location of H95 respec-

tively (fig. 3.12b). In the ’open’ state we observed a significant increase in the

permeability (3.02 +/- 0.55 x 10-14 cm3/second, n=8, a 76% increase compared

to equilibrium simulations with H95 in the neutral state). On the other hand the

’closed’ state showed a reduced permeability similar to that of the channel with

the neutral H95 residue (1.78 +/- 0.25 x 10-14 cm3/second, n=8, unchanged from

equilibrium H95ND simulations) (fig. 3.12c).

This result supported the initial assumption that the PLS-FMA mode based

on change in the radius profile of the channel could be effectively used to predict

the permeability of the AQP4 monomer. In the simulations of the H95A mutant

we observed a slightly reduced water permeability compared to the wildtype singly

protonated AQP4 channel, although the difference was not statistically significant

(compare 1.72 +/- 0.26 x 10-14 cm3/second with 1.35 +/- 0.19 x 10-14 cm3/second,

n = 8, p <0.23).



C
h

ap
ter

3.
R
egu

la
tio

n
o
f
perm

ea
bility

in
A
qu
a
po
rin

-4
5
2

Figure 3.12: a. The populations of the structures encountered in the equilibrium simulations are plotted as a histogram. The structures are binned against
the PLS-FMA vector describing the degree of channel opening in the H95 region. The zero on the x-axis approximately equals 1.3 Å in radius within the H95
region. b. The channel radius profile at two points along the PLS-FMA vector is shown. At a value of -2.0 on the PLS-FMA vector, the channel is constricted at
the H95 region, while at the value +2.1 the local pore near the H95 region is expanded. These values were then used as constraints in Essential Dynamics (ED)
simulations. c. The osmotic permeability values obtained from the ED simulations are plotted as bar graphs. The ’open’ ED simulation has a comparatively
larger osmotic permeability than the doubly protonated H95 simulation, while the ’closed’ simulation is reduced to the level of the singly protonated H95

simulation..
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3.4.2 Experimental verification of pH regulation in AQP4

As a logical consequence of our results, our collaborators experimentally deter-

mined the effect of pH on the permeability of the channel using the Xenopus

laevis oocyte swelling assay.

Figure 3.13: Intracellular acidification increases the water permeability of AQP4 expressed
in oocytes. A. Volume traces from an AQP4-expressing oocyte challenged with a hyperos-
motic gradient before (black) and after exposure to intracellular acidification with 40 mM
butyrate (red) for 10 min. B. The bar graph shows a summary of the water permeability of
AQP4-expressing oocytes after 10 min exposure of 40 mM butyrate relative to two control
measurements. In % of control; 111.0 +/- 2.2, n = 17. Paired T-test was used as statistical

test with P <0.0005. Figure adapted from, [83]

In their studies, they found that the acidification of the cellular exterior had

little effect on the permeability of the test system. However, the acidification of

the intracellular compartment resulted in a significant increase in permeability.

This indicated that the pH regulation mechanism was present in the intracellular

side of the protein (fig. 3.13). Experimentally, the H95A mutant eliminated the

gain in the permeability on acidification certifying that the H95 was indeed the

crucial residue responsible for the gating mechanism (fig. 3.14).
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Figure 3.14: Intracellular acidification does not significantly change the water permeability of
AQP4.H95A expressed in oocytes. A. Volume traces from an AQP4.H95A-expressing oocyte
challenged with a hyperosmotic gradient before (black) and after exposure to intracellular
acidification with 40 mM butyrate (red) for 10 min. B. The bar graph shows a summary of
the water permeability of AQP4-expressing oocytes after 10 min exposure of 40 mM butyrate
relative to two control measurements. In % of control; 98.4 +/- 5.2, n = 11. Paired t-test was

used as statistical test. [83]

3.5 Conclusions

We show that AQP4 is not regulated via phosphorylation of the conserved S111

residue in a manner analogous to that of SOPIP2;1. The reason for the lack of

this function appears to be the limited mobility of the loop D in AQP4 compared

to the loop D of the SOPIP2;1. The short D-loop of AQP4 does not participate

in an interaction with the B-loop in the simulation window failing to close the

channel. The phosphorylated S111 does not demonstrate additional mechanisms

that can affect the permeability. In fact, the average permeability of the channel

in either condition appears to be equivalent.

We also describe in this work a novel pH sensitive mechanism to regulate the

permeability of AQP4. Several aquaporins have previously been demonstrated to

be regulated by extracellular and/or intracellular pH. Plant AQPs generally ap-

pear to decrease their water permeability with decreasing intracellular pH whereas
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extracellular pH changes influence mammalian aquaporins in different manners.

AQP0 has its highest water permeability at pH 6.5 [86], AQP3 closes at pH <6

[70, 87], and AQP6 opens at pH <5.5 [26]. AQP4 was previously reproted not to

be regulated by acidic pH down to pH 6.5 [86] but increases its water permeability

at pH >8.5 [88]. These reports focus on the role of Histidine residues that are able

to influence the water traffic through the channel, although not always directly.

Here, we show that that pH changes, mediated by H95, can effectively gate

the channel. The H95 residue has a strategic location in the channel as it placed

at the lumen-bulk interface at the cytosolic side of the AQP4 monomer. This

location can expose the H95 to the osmotic environment of the cell and allow

for pH sensitivity. The conservation of this residue across mammalian and plant

species also points to the possibility that it might serve a functional purpose. In an

earlier work [89] the role of an H95 analogue, H67 for AQP5, has been postulated

to act in a similar role to modulate the permeability in that protein. The work

of Alberga et al. presents a mechanism very similar to what we observe in our

simulation. This work also identified H95 as the key residue driving the gate

opening and closing. Our investigation reveals that in fact it forms the basis for

pH regulated gating.

We employed a combined experimental and computational investigation strat-

egy to identify the mechanism by which pH can regulate the permeability of the

AQP4 channel. We expected to see the pH sensitive elements to be present on one

of the lumen openings of the monomer channel, so that they would effectively de-

tect a pH change in the environment. To asses which side of the protein responds

to the pH change, our collaborators acidified the two compartments independently

and measured the change in permeability across the cell membrane. The acidifi-

cation of the extracellular compartment did not induce a significant shift in the

permeability. The acidification of the intracellular compartment, however, led to

an increase in the measured osmotic permeability, indicating the presence of the

mechanism of pH sensitivity located on the cytosol facing lumen.

As histidine residues have a pKa close to the physiological pH we expected

to see them have a significant role in responding to changes in the bulk hydrogen
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ion concentration. To check if this residue could actually affects the osmotic per-

meability of AQP4, we built computational models analogous to the experimental

system. Using MD simulations performed for these models, we compared the ef-

fects of the differential protonation of the H95 residue on the permeability of the

AQP4 channel. We found that the simulation findings qualitatively agreed with

the experiments with the doubly protonated H95 showing a larger permeability

when compared to the simulations with the singly protonated H95.

To understand if the molecular basis of the mechanism behind this pH sensi-

tivity was due to a physical change in the channel lumen we used the simulations

to identify the effect of the double protonation on the radius profile of the chan-

nel. We found that the profile for the H95 protonation variants was statistically

similar in our simulation window. But the specific radius of the pore region in

the vicinity of the H95 region fluctuated strongly compared to the variation in the

radius observed in rest of the monomer. This result indicated, possibly, a direct

role of the H95 residue in regulating the pore opening.

To examine this possibility further without introducing a bias, we used the

machine learning algorithm, Partial Least Squares based Functional Mode Analysis

(PLS-FMA) to generate models that could explain the change of the channel radius

in the protein. Using this methodology, we identified a collective mode that could

potentially regulate the opening and closing of the monomer channel. This mode

had a strong direct contribution from the H95 residue, which was found to be

physically responsible for controlling the local pore radius by moving in and out

of the channel lumen. Upon further analysis of the simulation trajectory with

this information, we found that the doubly protonated H95 simulation largely

preferred to occupy the ’open’ state of this mode, while the singly protonated H95

simulation mostly occupied the closed state. To investigate whether this mode was

indeed the cause of the observed osmotic permeability variation in the simulation,

we carried out further ED studies which tested the ability of the this motion to

modulate the permeability of the channel. By locking the AQP4 in successively

’open’ and ’closed’ states we could indeed influence the osmotic permeability of the

channel. To validate the results from the simulations with empirical observations,

we carried out mutational experiment where we replaced H95 to alanine. This
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mutation was expected to abolish the pH sensitivity in the wildtype AQP4. Indeed

the acidification of the cytosolic compartment was unable to affect the osmotic

permeability of the mutant within any statistical margin. We speculate that the

reason for the change in the preference of the H95 orientation is in the electrostatic

interactions within the protein. The doubly protonated H95 residue is placed

in the proximity of a highly conserved glutamic acid residue (E41) which could

potentially trap the positively charged H95 in an open position. This mechanism

differs from the one proposed by Alberga et al., as the latter requires the formation

of a hydrogen bond with a C178 residue. Although C178 can act as a potential

hydrogen donor, we do not observe it to engage in a hydrogen bonded interaction

in our simulation window of 500 ns. Instead, we find a significant change in the

sampling of the ’open’ and ’closed’ states of the H95 mode dependent on the

protonation state of the H95 residue.

Overall, we report a pH modulated gate for AQP4 that regulates the perme-

ability by modulating the local channel radius. The pore modification calculated

in the simulation is significant and can affect the traffic through the channel. The

pH sensitivity offered by the H95 residue combined with its evolutionary conser-

vation points towards a physiological role where the channel potentially responds

to shifts in the osmolarity in the cytosolic compartment. Thus it can act in a

manner that would allow the drop in the cytosolic pH to affect the channel to

open wider and through osmotic pressure increase the flow of solvent from bulk

into the cell. It must be noticed that the constriction of the channel at the ar/R

region is the narrowest region of the monomer lumen and poses the largest bar-

rier to permeants. This barrier appears to be directly maintained by the physical

presence of the R216 in the channel pore. This observation would explain why the

radius modulation from the H95 residue cannot completely switch off the channel

but regulates the permeability more moderately.
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Chapter 4

Modulating the permeability of

Aquaporin-0

4.1 Introduction

4.1.1 Role of aquaporin-0

Aquaporin-0 (AQP0) (fig. 4.1) is the water channel specifically located in the

ocular lens [90–92]. The lens plays an important role in vision, as it focuses the

incoming light for the eye into the retina. The lens must also be flexible enough

so that it can adjust to accommodate light from differing distances for focusing

by changing its focal length. AQP0 is predominantly localized in the fiber cells

of the lens. There it plays a dual role as a facilitator of water permeation and as

the protein that forms membrane junctions between neighboring fiber cells of the

lens. The lens is an avascular structure, where the need for nutrients is fulfilled

via a circular flow facilitated by an uniform and concentric formation made up of

lens fiber cells. These cells are ’empty’ in the sense that during their maturation

they extrude all the organelles. These cells needs to be in tight conjunction with

each other for the proper function of the lens, as the small distance between

them (smaller than the wavelength of visible light) reduces the scattering loss and

increases transparency. Forming these ”tight junctions” has been predicted to be

an essential role of the AQP0 protein, as it has been demonstrated that mutations

in the protein or its deletion leads to congenital cataract of the eye [93, 94].

61
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In the role of a water channel the protein AQP0 helps regulate the shape

change of the lens by altering the size of the fiber cells [93]. Surprisingly, AQP0

is a poor water conductor when compared to aquaporin-1 (AQP1) [95]. Its per-

meability has been shown to be at least an order of magnitude less than that of

AQP1, for which no physiological reason has yet been deciphered. More impor-

tantly, the mechanism of this low water permeability is also mostly unexplored,

although several mutations have been suggested that lead to a drastic change in

the water conductance.

Figure 4.1: Structure of the aquaporin-0-mediated membrane junction [96]
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4.1.2 Structure of aquaporin-0

The comparison of the sequence of AQP0 with other aquaporins has resulted in the

observation that there are two unusual tyrosine residues present in its sequence.

Y23 and Y149 occupy locations that can potentially obstruct the passage of water

through the channel pore (fig. 4.2) [79, 97, 98]. In AQP1 these residues are

replaced with phenylalanine and threonine respectively. This results in a very

narrow pore radius in AQP0 close to the ar/R region . Furthermore, it has been

shown that the pH can in principle affect the permeability of the protein with

as much as 3.4 times by Nemeth-Calahan et al. [86]. This pH sensitivity has

been attributed to the H40 residue present on the cytoplasmic side of the protein.

There also have been speculations regarding the H66 residue which is present in

the cytoplasmic lumen of the protein, acting as a pH based gate. This residue is

an analogue of the H95 of the AQP4, and is closely spaced along side the Y149

residue that can act as a potential channel gate as well. Overall, the pH sensitivity

of AQP4 could result from both the H95 and the H40 residues.

Figure 4.2: Cartoon representation of the AQP0 monomer with the important residues in
the lumen highlighted in the licorice representation.
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The structure of AQP0 was first explored with electron crystallography by

Gonen et al. in 2004 [99] (PDBID 1SOR). This structure was identified as closed

as it was crystallized without any trapped water molecules in the channel. As the

protein is expected to be in the open state at the crystallization pH of 6 units, it

was proposed that its closed state was due to the formation of membrane junc-

tions, where it was present in a low-permeation state. In the same year another

crystal structure of the protein was published [PDBID 1YMG] [100] that utilized

X-ray crystallography. The resolution of this structure was comparable to the pre-

vious study (2.2 Å). This structure however was termed open due to identifiable

water molecules in the channel pore. This new structure was crystallized at pH

10 and it was observed that it remained in the open state despite the latter pH

condition being known to prohibit permeability. This indicated that the pH gating

may not introduce a static blockade on the water conductance. In the following

year, Gonen et al. published a crystal structure of AQP0 [PDBID 2B6O] using

electron-ray crystallography at resolution of 1.9 Å [96]. Interestingly, this structure

was crystallized in an open state in contact with the neighboring lipid molecules

in close association. All the three crystal structures agreed in the observation

that the channel offered a large barrier to conduction of water molecules through

the lumen as it had regions of diameter smaller than twice the radius of a water

molecular sphere. This static view, however, can be explored in further detail

using computational efforts. There have been efforts to model the AQP0 water

conduction using molecular dynamics simulations. Hashido et al.[98] have studied

the simulations of a variety of Aquaporins to conclude that the permeability can

not be completely explained purely based on comparison with the channel pore

radii. Han et al. [79] showed that the low water permeability can be observed in

the simulations thus qualifying somewhat the static picture as presented by crys-

tallographic structures. Qiu et al. [97] mutated the Y23 to a phenylalanine residue

to observe a 4 fold increase in the permeability of the channel. Aponte-Santamaria

et al. [101] explored the interactions of the protein with the lipid environment co-

crystallized with AQP0 to reveal a strong preference for the arrangement of the

lipid tails neighboring certain sites in the protein.

In this work, we perform several computational experiments where we test
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the effect of mutations on the residues predicted to be involved in the low perme-

ability of AQP0. The experimental work associated with this project was carried

out in the lab of our collaborators Dr. Manish Kumar and Prof. Tom Walz.

4.2 Motivation

AQP0 has a low native permeability in the experimental setup. Our collaborators,

Dr. Manish Kumar and Prof. Tom Walz, observed that certain mutations in the

pore lining residues Y23 and Y149 to phenylalanine and threonine, respectively,

resulted in an increased permeability of the channel to the level of aquaporin-1 (fig.

4.3). The goal of this project was to identify if we could reproduce this effect in

molecular dynamics and if we could try to understand the molecular mechanism

that governs the change in the permeability of the protein as a result of these

mutations.

Figure 4.3: Osmotic permeability experimentally measured for various AQP0 mutants by
Dr. Manish Kumar and Prof. Tom Walz.
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4.3 Computational details

AQP0 and its mutants were modeled with a CHARMM36 setup adapted for

protein-lipid simulations in GROMACS as described in the methods chapter. We

used DMPC lipids for simulating the protein environment as the original crystal

conditions have these lipids in the environment. Five mutants were generated

for the simulations: Y23F, Y149T,H40Q and two double mutants Y23F/Y149T

Y23F/H40Q. Of these, only the H40Q mutation did not affect residues in the chan-

nel pore. Each mutant was simulated for 500ns without restraints and the Pf was

calculated by the collective diffusion method over 50 ns windows after dropping

the first 100 ns for equilibration. Essential Dynamics simulations were carried out

for 100 ns with a restraint of 1000 kJ.mol -1.nm-1 to keep the protein in an open

and closed states, respectively.

4.4 Can we mutate AQP0 to have high water permeabil-

ity?

Our first hypothesis was that the structure of the protein is linked closely to the

permeability of the channel. Within this conjecture, it can be directly regulated by

modulating the width of the channel pore or by altering the thermodynamics of the

permeation itself by affecting the protein interactions with the water molecules.

To understand what environment the water molecules experience and to identify

the chief players in the permeation pathway, we plotted the radius profile of the

native protein and the residue population that interacts most strongly with the

waters in the lumen by presenting their side-chains and polar atoms of the main

chain to the lumen surface (fig. 4.4).
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Figure 4.4: Radius profile for the AQP0 channel obtained over the simulation trajectory. The
various important region of the protein where mutated residues are present are also shown.
The shaded region is the standard deviation in the radius calculated over latter 400ns in the

500ns simulation window.

As expected, the narrowest region of the protein lies in the conserved ar/R

region (here, near the R187 residue). Incidentally, the Y23 and the Y149 residues

strongly participate in the formation of the channel interior as well and seem to

present multiple peaks in their distribution along the channel, possibly hinting

towards multiple possible stable states in the dynamics of the protein. In the

previous chapter concerning the AQP4 protein, we established that the channel

pore radius could be related to the permeability of the protein. So as a first

guess, we compared the pore radii of all the simulated mutants with each other

as well as with AQP1 (fig. 4.5). This, we expected, would give us a preliminary

understanding of the channel flexibility as well as any static effect of the mutations

on the channel width.
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Figure 4.5: Radius profiles for the AQP0 protein and its mutants. The comparison is shown
with respect to the AQP1 protein. The various important region of the protein where mutated

residues are present are also shown.

The comparison shows that the simulated channel profile of the AQP0 protein

in the native form is almost uniformly narrower compared to the AQP1 protein.

The mutants created by our collaborators were constructed to bring the native pro-

tein increasingly closer to the AQP1 sequence. The channel profile for these show

expected departures towards the target profile in the specific regions of AQP1. For

example the Y23F and the Y23F-Y149T double mutant, both have an increased

channel radius, closer to that of the AQP1 protein in the region where the mu-

tation in the Y23 is present. Similarly, the Y149T mutant and the Y23F-Y149T

double mutant (henceforth referred to as the ”double mutant”) have a larger ra-

dius in the region where the Y149 residue is present. However, in this region, the

Y23F mutant also presents a larger radius in the profile. These differences in the

simulation are highly suggestive as they allow us to anticipate that the mutants

could have a larger permeability compared to the native protein based solely on

the static changes we see here. However, the standard deviation observed here

in the radii overlap and weaken such a direct argument. Nevertheless, they are
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indicative of flexible regimes within the protein channel and point towards a com-

bined role of dynamics with the static structure of the protein in the regulation of

the permeability.

We calculated the permeability in the computational models for these mu-

tants with the collective diffusion method of Zhu et al. [43]. These we compared to

the AQP1 permeability so we could understand which mutation led to the largest

change in the permeability bringing it towards the target value. The comparison

is shown in figure 4.6 below.

Figure 4.6: Osmotic permeability computationally calculated for various AQP0 mutants.
The error bars are standard deviations calculated over 8 windows in the simulation trajectory.

We find that AQP0 presents the smallest permeability as expected. However,

the measured value is 3 times larger than the one observed in the experiment.

This could be due to the limitation of the method used for the calculations as the

baseline measurement for a closed AQP channel seems to be in the same range

as the one calculated here. This renders any real comparison with the Y149T

mutant difficult. But the Y23F mutants always demonstrate a permeability in the

same order of magnitude as the AQP1 protein, thus agreeing qualitatively with the

experiments. The double mutant Y23F-Y149T does not show an additive effect
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in the conductance as demonstrated in the experiments. Hence, for the rest of

the chapter we focus on the Y23F mutation and try to decipher the mechanism

behind its effect in detail as its effect is clearly discernible in the simulations.

4.5 What governs the low permeability of AQP0?

To understand how the Y23F mutant differs from the native protein, we utilized

a similar strategy as employed in the AQP4 chapter. This can be rationalized

by observing the dependence of the radius profile of the protein on the mutation.

Functional mode analysis could provide here an important insight into dynamical

aspects of the relation between the profile and the mutation. It would then be

possible to test this relation to validate if a more direct causal effect of the mutation

to the permeability exists, using essential dynamics simulations. To that effect, we

built a Partial Least Squares (PLS) based linear model to connect the time series of

the radius data to the structural change in the protein. The same methodology, of

selecting the smallest radius in a pore region to detect a functional mode, as from

the previous chapter was employed. The only difference within the construction

here, was that we used 4 sections instead of the 8 as used previously. This was

chosen, as we were interested in the specific regions where the mutations were

present and 4 of these covered the residues in question adequately.

Once again, a linear model was trained by using data vectors obtained from

the simulation trajectory. Each vector consisted of the smallest radius in each re-

gion of the monomer per frame as the training function. The reason for this choice

was to identify a concerted motion within the protein that could lead to the closing

or opening of the channel pore in that particular region of the channel interior. No

initial bias was included for the model, as the entire monomer structure was used

for the process of training. Only half the data was used for the training itself while

the rest was used for cross-validation of the model. The model was tested by using

the Pearson coefficient of correlation (R2) in the cross validation set. Values of this

quantity >0.75 were considered adequate for a reasonable model. We expected to

see local collective modes emerging from the individual training sets.
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Figure 4.7: Subdivisions of the AQP0 monomer as used for the PLS-FMA model. Each
region is 8 Å in length. Important residues in each region are highlighted.

To determine the optimal number of components to be used for the PLS

modeling, we plotted the correlation coefficient in the validation set against in-

creasing number of PLS components. We expected to see the correlation in the

validation set to reach either a maximum or a plateau value when the optimum

value was reached (fig. 4.7). With this treatment we identified 15 components

as an optimum for our purpose without leading to an over-fitting(fig 4.8). The

PLS-FMA methodology could not identify a model with a high correlation coeffi-

cient (>0.75) in the region of -16 to -8 Å in any of the protein trajectories. Hence

the data for that region is not shown. For the other regions however, a maximum

correlation coefficient was obtained when 15 components were used.
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Figure 4.8: The coefficients of correlation for the validation sets in different regions of the
monomer as a function of PLS components used. We found that at this quantity reaches a

maximum at 15 components.

The training data and the model is shown for three of the regions for each

mutant in figure 4.9. The data was collected from all the four monomers and

then concatenated to form a single vector. The assumption here was that the

four monomers are equivalent in terms of structure and dynamics and thus could

quadruple our statistics. From the figure, it can be seen that we do not obtain

a high cross validation correlation for all the sets. Interestingly, the region where

the mutation itself is present always leads to a correlation coefficient smaller than

the other two windows. This is notable as it indicates that the mutation results in

a reduction in the collective motion present in its periphery. Another observation

of note is the fact that correlation in the validation set for the region -8 to -0 Å

is always high, indicating that there exists a mode that is particularly efficient at

regulating the channel radius. This region contains the strongly conserved ar/R

motif. The arginine residue R187 of this motif is responsible for constraining the

channel to its narrowest point in the profile. Typically, this residue is not highly

mobile in other aquaporins.
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Figure 4.9: The training set for each region and the model for all the protein structures (wild type - wt). The sets are divided into two equal regions for the
purpose of validation. The training region is highlighted in lighter green color and the validation set is shown in light red. The training data is shown in light

blue, while the model is shown in blue. The correlation coefficient is shown for each of the individual sets.
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The molecular details of the motion associated with these modes are shown

in figure 4.10. All of these were obtained from the wild-type simulations so the

role of all the wild-type residues could be shown in detail. The modes highlight

the ability of PLS-FMA to capture the effect of relevant residues without any

initial bias. In the 0 to 8 Å region, the method identifies the residue Y23 as

having the most significant contribution to the collective motion influencing the

channel radius in its neighborhood. This mode however does not visually seem to

influence the pore radius directly. We henceforth call this mode the Y23 mode.

The H66 residue also shows significant mobility in this mode, but the effect of that

is unclear. Similarly, in the 8 to 16 Å region, we find the highest contributor as

Y149. This residue clearly moves in and out of the lumen closing and opening the

channel, demonstrating the ability to directly influence permeation. Here, the H66

residue again participates in the collective motion, possibly stabilizing the ’closed’

state of the Y149 residue via a hydrogen bond. Henceforth, this mode is referred

to as the Y149 mode. Most interestingly, the mode obtained from the -8 to 0 Å

region captures the motion of the R187 residue. This residue occupies a highly

restricted state in terms of channel permeation as the R187 moves into the lumen

and a more permeable state formed when the R187 moves away from the lumen.

The H172 residue is another chief contributor to this mode. This residue is a part

of the aromatic region of the ar/R motif. It also could stabilize the closed state

of the ar/R residue through a side-chain mediated hydrogen bond. As this mode

involves the R187 of the ar/R region, we call it the Arginine gate mode.

PLS-FMA modes allow us to understand the correlation between the change

in the protein profile and the dynamics within the protein structure. As the func-

tion of physiological interest is permeability, we would like to know how the con-

ductance of the channel changes when the radius of the pore is locally modulated.

To establish a causal relation between the PLS-FMA modes and the permeability,

we then performed several essential dynamics simulations. The goal of these sim-

ulations was to trap the structures of the protein in either ’open’ or ’closed’ forms

of the mode and then calculate the osmotic permeability to validate if indeed we

could observe a higher conductance for the former and vice versa.
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Figure 4.10: The collective modes observed in the PLS-FMA model. a. The mode in the -8 to 0 Å region (arginine gate mode). This mode captures a dynamic
motion of the R187 residue into and away from the AQP0 lumen. b. The mode in the 0 to 8 Å region (Y23 mode). The chief contributor to this mode is the

Y23 residue. c. The collective motion in the 8 to 16 Å region (Y149 mode). The Y149 residue flips in and out of the channel pore.
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Figure 4.11: Osmotic permeabilities as measured by the collective diffusion method for the
essential dynamics simulations. The measurement has been done for two forms of AQP0;
the wildtype and the Y23F mutant. For each type, the structure has been restricted in an
open and a closed state of each of the three PLS-FMS modes shown earlier for the purpose of

permeability calculation.

In that direction we chose the wildtype and the Y23F mutant for the com-

parison. This was so, because in our previous equilibrium measurements we saw

the largest change in the permeability for the protein that had this particular

mutation. Thus, we expected to see the most significant difference in the Essen-

tial dynamics simulations for this pair. We carried out these simulations for all

the three modes described earlier. The results for these simulations are plotted

in figure 4.11. They are compared with the equilibrium simulations so that the

effectiveness of a collective mode can be judged. It is evident that all the 3 modes

can ’switch off’ the protein’s permeation, bringing it down to the level of the wild-

type channel. However, only the Arginine gate mode can effectively both ’switch

on’ and ’switch off’ the permeation. Its open state has an osmotic permeability

comparable to the Y23F equilibrium simulations indicating that it must have the

largest responsibility for the change in the permeation of the protein due to the

Y23F mutation. This is surprising as the Y23 residue itself does not directly con-

tribute to the collective motion described by this mode thus begging the question

as to how it affects the arginine mode.

A clue might be found in the knowledge regarding how the simulations of



Chapter 4. Modulating the permeability of aquaporin-0 79

the wildtype and the Y23F mutant are distributed along the arginine gate mode.

This distribution will ascertain if the arginine gate mode is at all prominently

occupied in the open state of the Y23F mutant. If this would be the case it would

strengthen the supposition that there indeed is a relation between the mode and

the mutation. In order to check how the protein population is distributed along

the arginine gate modes, we made a histogram of the projections of the wild-

type protein trajectory and the Y23F mutant trajectory on the first eigenvector

associated with the arginine gate mode (fig. 4.12). We found that the Y23F

mutant spends half its simulation time in the open state of the arginine mode,

which is twice as much compared to the wildtype protein, which spends only a

quarter of the simulation time in the open state. The open-ness is calculated

based on the projection along the arginine mode. The projection values larger

than approx. -0.2, are considered to belong to the closed state as the channel

radius is smaller than 1.4 Å from that point onwards in this region, which is the

radius of a water molecule. The population distribution implies that the effect

of the mode is not linear on the permeability, as it can only explain a difference

of two times through a directly proportional dependence, whereas we observe a

difference of 4 times as high conductance in the equilibrium simulations.

Figure 4.12: The population of the wildtype protein and the Y23F mutant structures in
the equilibrium simulation is compared against the projection along the arginine mode vector.
The population is normalized by its sum. The openness of the channel decreases along the

x-axis.



Chapter 4. Modulating the permeability of aquaporin-0 80

This could be explained by postulating that the actual permeation is not a

’trickle’ phenomenon but rather happens in bursts where large number of perme-

ation events take place while the channel is in an open state, not unlike a Poisson

process.The essential dynamics simulations and PLS models allow us to confirm

that there is a causal link between the pore restricting modes and the permeability.

But they leave an important question unanswered: what exactly is the mechanism

by which the Y23F mutation closes the channel? We observed in the figure 4.11

that the only mode capable of opening the channel to the same extent as the Y23F

mutant is the arginine mode. Does the mutation influence this mode to increase

its propensity in the open state? To achieve that the Y23 needs to have a direct or

indirect interaction with the R187 residue. This interaction should ideally subside

or be eliminated in the presence of the mutation. The chief structural difference

in the Phenylalanine residue replaced from the Tyrosine is the lack of the pheno-

lic -OH moiety. This group is polar and can form hydrogen bonds. We checked

the simulations of the wildtype protein for possible hydrogen bonding interactions

between the R187 and the Y23 residues or even a bridged hydrogen bonding in-

teraction of the form Y23 - X - R187, X being an amino acid in the lumen. But

we did not find the direct interaction or an evidence of an indirect linkage within

the protein. To assess if the bridge could be formed through the transient water

molecules in the permeation pathway, we looked at the densities of water molecules

in the channel lumen. The comparisons for the wildtype and the Y23F mutant

water densities are shown in the figures 4.13 and 4.14. In these figures we looked

at the isodensity surfaces of water molecules in the ED simulations to check what

effect the mutations had on the residence position of water molecules near the

arginine gate.
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Figure 4.13: Comparison of water isodensities near the Y23 and R187 residues with the
arginine gate in the open position. The isodensity surface is shown in green in mesh repre-
sentation. a. The ED simulation with the wildytpe protein. b. The ED simulation with the
Y23F mutant. Both simulations show a contienous water desnity in the Y23/F23 region and

near the R187 residue.

Figure 4.14: Comparison of water isodensities near the Y23 and R187 residues with the
arginine gate in the closed position.. The isodensity surface is shown in violet in mesh rep-
resentation. a. The ED simulation with the wildytpe protein. b. The ED simulation with
the Y23F mutant. The water density near the Y23 residue is discontinuous and traps a single
water molecule between the phenolic group of Y23 and the R187 residue. The F23 residue

lacks this ability.

In figure 4.12 we see that the open configuration of the arginine gate presents

a continuous water permeation pathway, as the density in that region appears

unbroken. In figure 4.14 the closed arginine gate however restricts the pathway in

an expected manner by prohibiting water molecules to move unobtrusively across
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the lumen. The most interesting feature of this figure is the regime in the middle

of the Y/F23 and the R187 residue. Here, the Y23 residue of the wildtype protein

clearly traps a single water molecule between the R187 and the Y23 residues via

a hydrogen bond bridge through the phenolic group of its sidechain and the Nδ

atom of the R187 residue. This isolation of the water molecule is markedly absent

in the Y23F mutant as the corresponding hydrogen bond partner is lost. Such an

interaction, that couples the R187 residue to the Y23 residue through a hydrogen

bond bridge mediated by a water molecule would stabilize the closed state of

the arginine gate mode, by holding the R187 residue in the compatible state for

restricting the permeation. This seems to suggest that the Y23F mutant regulates

the permeation of water through the protein by modulating the arginine gate mode

itself.

Finally, we wanted to assess if we could ’rescue’ the higher permeability in the

AQP0 wildtype protein after mutations that mimic the effect of the Y23 residue.

To accomplish this, we searched for possible mutations in the neighborhood of the

R187 residue which could induce the R187 in a configuration compatible with the

open state of the arginine gate mode. The general strategy in that direction was

based on the fact that R187 is a positively charged residue. This could be used

to our advantage as we could introduce negatively charged residues in locations

surrounding the R187 site so that it could form salt bridges with one of them and

be locked in a open state.



Chapter 4. Modulating the permeability of aquaporin-0 83

Figure 4.15: Seven possible residues that could induce the R187 residue in a closed state
(shown in the solid red color), into an open state (solid blue color), of the arginine gate mode.

Figure 4.15 shows the 7 residues chosen to achieve this effect. Of these seven

mutations, we chose 5 in a semi-flexible conserved C-loop placed on top of the

Y23 residue. The other two (L28 and P191) are present outside of the C-loop

but still in strategically suited locations. These seven residues were replaced with

either an aspartate (D) residue or a glutamate (E) residue. Both of these amino

acids are negatively charged and differ from each other through a single methylene

group. This gives the us the flexibility to provide the mutants with two possible

maximum distances from the R187 residue. We conducted equilibrium simulations

in a 250 to 300 ns window for all the 14 possible mutants. We tested for their

ability to remain in the open state of the arginine gate mode in two ways; by direct

measurement of the permeability or by the direct measurement of the projection

of the trajectory on the arginine gate mode.
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Figure 4.16: The osmotic permeability measurement for the 14 mutants of expected to open
the arginine gate. The permeabilities are plotted for all four of the monomers in the bar graph
for each 50ns time window. The average permeability for the protein is shown by a black line
at the appropriate ordinate. The error bar is the standard deviation calculated over the time

windows.

The osmotic permeability measurement shown in figure 4.16 is too noisy

to allow for a meaningful assessment of the efficacy of the mutants to open the

arginine gate mode. This led us to consider the projection of the structures in the

trajectory on the arginine gate mode as a more suitable indicator of how well the

mutants could pull the R187 residue into an open state. Figure 4.17 shows that the

trajectories of most mutants, with the exceptions of P191D, Q119E and P191E,
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are trapped in the open state of the arginine mode in the simulation window. This

could imply that most of the the mutations selected would be able to increase the

permeation of the AQP0 similar to the Y23F mutant.

Figure 4.17: Histograms of the projections of the mutant trajectories (blue) on the arginine
gate mode are compared to the population of the wildtype trajectory projections (red). The
x-axis projections measure the ’open-ness’ of the channel, decreasing from left to right. All

the mutations have the projections on the open side (left) of the arginine mode.
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4.6 Conclusions

In this chapter we have tried to reproduce the experimental observation that the

mutations in the unusual tyrosine residues in the lumen of the AQP0 channel

increase the permeability of the protein to the level of AQP1. We find that the

increase in the permeability observed is not quantitatively in the same range;

instead of a 20 fold increase in the experimental results, we see a 4 fold increase.

This however is in line with previous molecular dynamics studies [97] Neither do

we see an additive effect of the Y149T and the Y23 mutations as present in the

experimental setup. However, we do have a qualitative agreement corresponding

to the Y23F mutation which indeed brings the permeability of the mutant to the

order of magnitude observed in AQP1. We tried to focus on this mutation and

used machine learning algorithms to find out what structural or dynamical effects

present in the simulations could explain such a drastic change in the conductance

of the protein. We identified three collective modes in the simulations that allowed

us to switch off the protein conductance even in the high permeability mutant.

One of these modes, associated with the conserved ar/R region could induce a

high conductance in the wild type protein, indicating that the Y23F mutant must

somehow affect this mode to achieve its high permeation.

Upon considering the wild type structure, we found that the possible means

of the Y23 residue to promote the closed state of the arginine mode could be via its

phenolic sidechain. We found that the -OH group of the Y23 residue was capable

of forming a stable and sustained hydrogen bond with a water molecule that could

be trapped between R187 of the arginine gate and Y23. This arrangement could

potentially stabilize the closed state of the arginine gate in the wild type protein,

which is also substantiated in our simulations where we see that the open state is

twice as often visited in the mutant compared to the wild type. We expect that this

mechanism provides a non-linear increase in the permeability of the Y23F mutant

as it can no longer stabilize the closed state. This is feasible, as the ar/R region

is the narrowest region in the permeation pathway and thus presents the largest

Arrhenius barrier to conductance. The pore in this region is typically smaller than

the radius of a water in the wild type simulations. Small changes in the pore radius



Chapter 4. Modulating the permeability of aquaporin-0 87

thus could allow bursts of permeations that lead to the large osmotic permeability

of the mutants. Thus overall we find that the effective mechanism to modulate

the conductance of AQP0 can only be described through the dynamic nature of

the permeation itself and cannot be explained via changes in the static profile of

the channel alone.
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Chapter 5

Ammonia permeation in plant

aquaporin TIP2;1

5.1 Overview

How do gas molecules move across biological membranes? In the first chapter of

this thesis we discussed the ’Meyer-Overton rule’ [31]. This principle describes

that permeation of gaseous substrates across lipid bilayers occurs passively and

preferably though the membrane itself. In physiological situations, gases such

as oxygen, carbon dioxide and ammonia need to be regularly conducted across

cell membranes. The exact mechanism of their permeation is still under scrutiny.

Several members of the aquaporin protein family have been suggested to mediate

the permeation of these gases in a biological context. Carbon dioxide permeation

though aquaporins has received special attention with several studies directed to-

wards its role in physiological situations [102–105]. Aquaporins have been proposed

to be permeable to other gaseous molecules such as ammonia [106–108] and nitric

oxide (NO) [109]. There have been computational studies that have assessed the

capacity of aquaporins to conduct gases. Wang et al. have studied the permeation

of NO through AQP1 [75]. Hub et al. have calculated the potential of mean force

for the permeation of several gaseous molecules to traverse the AQP1 main pore

[29]. These efforts point towards at least potential capacity of this protein family

to allow conductance of gas molecules through its channel.
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Gas permeation is much more important in plants, where it is involved ac-

tivities such as photosynthesis and ammonia fixation beyond simple respiration.

Subsequently, plants posses specialized organelles to deal with storage and con-

duction of gas molecules. The most important of these are fluid or gas storage

vesicles called vacuoles that regulate the size and the pressure within the plant

cell. They are surrounded by a specialized membrane called tonoplast. Tonoplast

Intrinsic Proteins (TIPs) are members of the Major Intrinsic Protein (MIP)) fam-

ily [110]. [111–113]. TIPs are ubiquitously present in land plants and there are

several isoforms of these required for their survival, labelled TIP1-5. Primitive

plants such as mosses typically have only one type of TIP (TIP6) [114]. These

proteins can constitute a very large fraction of the protein content of the tonoplast

membrane, going as high as 40 % [115]. Their role in ammonia permeation has

been suggested to be enhancing nitrogen uptake and detoxifying the ammonium

waste created in the vacuoles [112]. TIP has also been suggested to mediate remo-

bilization of the vacuolar ammonia during nitrogen starvation and its reallocation

during senescence (aging) [111, 116]. Recently, TIPs were included in a revised

model of the ’Futile cycle’ under high ammonia conditions [117].

5.2 Motivation

Our collaborators Dr.Urban Johansson and Andreas Kirscht have crystallized the

TIP2;1 channel for the first time and determined its structure at a resolution of

1.18 angstrom using x-ray diffraction (fig. 5.1).
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Figure 5.1: Structure of AtTIP2;1. (A), Membrane spanning helices (helix 1-helix 6) and two
half helices (helix B and helix E), connected via conserved NPA-motifs, form a pore through
the vacuolar membrane. Homologous helices in the internal repeat are indicated by colours.
(B) AtTIP2;1 tetramer viewed from the vacuolar side. (C) Side view of the monomer with the
same orientation as in (A). Eight water molecules form a single file in the main pore and five
waters are seen in a side pore underneath loop C. Figure courtesy, Andreas Kirscht and Dr.

Urban Johansson (unpublished data)

This structure presents two interesting features which we suggest are relevant

to the possible function of gas permeation through the main channel. The first

one is the extended selectivity filter (SF). This region formed out of several aro-

matic residue and a highly conserved arginine residue (ar/R region)(here, R200)

is typically the narrowest region of the channel lumen. The ar/R region provides

the aquaporin structure its selectivity towards water and its ability to distinguish

it from protons. In the TIP2;1 structure this region is comparatively broad and

thus is considered ’extended’. The aromatic residues of the ar/R are replaced with

two histidine residues (here, H63 and H131) which provide a polar environment

around the charged R200 (fig. 5.2).

The second interesting element of the structure is the presence of a water

filled side pore, which extends from the loop C near the extracellular side of the

protein directly into the main pore right into the selectivity filter(fig. 5.1). This

pore provides an unusual second means of entry into the permeation pathway.
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Figure 5.2: Comparison of the maximal pore diameter for different MIPs. a, AtTIP2;1
(green) provides a more or less constant/uniform pore diameter at 3 angstrom, illustrating the
ability to conduct compounds larger than water. AtTIP2;1 presents the narrowest NPA region
(relative position 0 on y-axis), but a much wider SF region; only glycerol containing structures
such as PfAQP and EcGlpF have a larger diameter at the SF. b, Graphical representation of
MIP pores, indicating the SF region by stick representation of residues in H2 and HE as
well as the residue in loop C corresponding to H131 of TIP2;1. Waters and non-proteogenic
molecules were removed from available structures and their pores analyzed using the program

Hole. Figures courtesy of Andreas Kirscht and Dr. Urban Johansson, unpublished data

As the goal of this project, we wanted to understand what roles were played

by the extended selectivity filter and side-pore in a possible mechanism through

which ammonia could be conducted through the TIP2;1 channel. Does the dy-

namics involved in the SF somehow facilitate the entry of ammonia? Does the side

pore provide some insight into a mechanism by which ammonia permeation could

be enhanced? What free energy barriers does the ammonia molecule experience

when it traverses the channel lumen? These are some of the questions we address

in this chapter.
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5.3 Is the TIP2;1 structure a functional water channel?

A TIP protein structure must be a functional water channel in order to qualify as

active and perform its designated function in the vacuole. To test if the structure

determined by our collaborators is indeed permeable to water, we calculated the

osmotic permeability of the protein using the collective diffusion method [43]. The

results of these calculations are shown in figure 5.3.

Figure 5.3: Permeability values calculated from MD simulations. These values were calcu-
lated separately for each monomer in seven 50-nanosecond time windows. The contribution of
the individual monomers to the permeability values of the tetramer are indicated by different
colours and average values per monomer and SD in each time window are indicated by the

black line and error bars.

We find that the TIP2;1 protein has a comparatively high permeability ( 3

times larger than AQP1) which persists over a 500ns simulation window. This is

consistent with our understanding that the permeation barrier of the channel has

been reduced significantly in the channel due to the enlargement of the SF. This

allows a mostly single-file but ’rapid’ movement of water across the lumen. This
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result substantiates the idea that the protein has been crystallized in a functional

form.

5.4 Novel features of the selection filter of TIP2;1

The pore diameter of TIP2;1 is rather small at the NPA-region and remains con-

stant at around 3 angstrom throughout the pore (fig.. 5.2). This is unusual since

in other structures of open AQPs the SF region constitutes the narrowest part of

the pore. Four amino acid residues in helix 2, helix 5, loop E and helix E form the

SF and the residues at these positions are believed to be the major determinants

for substrate specificity.

Figure 5.4: The histidine (H63) does not directly affect the diameter of the pore compared
to known structures of other MIPs. In contrast the isoleucine (I185), replacing the histidine
enlarges the pore compared to water specific MIPs. H131 creates an H-bond to water (red
sphere) in the pore and sterically forces the arginine away from the center of the lumen. Figure

made in collaboration with Andreas Kirscht.
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The unusual width of the SF in TIP2;1 appears to be due to the wider pore

which is formed by replacing a conserved histidine in water specific AQPs to an

isoleucine (I185) (fig. 5.4). In TIP2;1 the residue (R200) is additionally pushed

to the side of the pore by a histidine located in loop C (H131). It seems to

be further stabilized by a hydrogen bond to the histidine (H63), which occupies

essentially the same space as the corresponding aromatic residues of water and

glycerol channels without direct effects on the aperture of the pore. The close

interaction with R200 can shift the pKa of H63, which is likely to stay singly

protonated even in a comparatively acidic environment of the vacuole. The other

H131 points to the center of the pore and forms a hydrogen bond to a pore-water

in the crystal structure.

Figure 5.5: The positions of corresponding SF carbonyls in loop E cluster in two distinct
groups. (A) Carbonyls opposing arginine (R200 from TIP2;1) of water-specific aquaporins form
group II (violet shading), and most of them are within hydrogen-bonding distance (indicated
by dashed lines) to two water molecules (violet spheres) in their structures as illustrated
by SoPIP2;1 (PDB ID 1Z98; violet). Carbonyls of non-water-specific channels gather in a
different location (group I; green shading). Among those are TIP2;1 (green) and glycerol
transport facilitating and uncharacterized proteins. Like all other members of this group,
AQP4 is lacking the asparagine at C-loop that is conserved among the other water-specific
proteins (blue shading, only asparagines residues are shown, Group III). A certain flexibility
is suggested by the special case of AQP0, where different structures are available (1YMG and
2B6O shown) and the carbonyl highlighted by thick stick representation is seen with both

orientations. Figure made in collaboration with Andreas Kirscht.

In the simulations performed to study the dynamics of this region we found

that the overall interactions as observed in the crystal structure are preserved. The

H131 residue is always seen in strong hydrogen bonding association with the water

molecules that are present in the lumen of the main pore. The carbonyl moiteys
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of the lumen residues present the polar carboxyl oxygen facing the permeation

pathway and provide an expected hydrogen bonding environment for compensating

the loss of intra-water bulk hydrogen bonding.

5.5 Unusual side-pore in the TIP2;1

The unusual side pore seen in the crystal structure is in also reproducibly present in

the MD simulations (fig. 5.6 A). The simulations concur that loop C leaves enough

space for a continuous side pore reaching all the way to the vacuolar surface. It

is always water filled and is open to bi-directional permeation of water molecules

to and fro from the main pore to the extracellular surface. Interestingly, this side

pore may offer an explanation of how ammonium ions might deprotonate.

Ammonia molecules in the soluble form predominantly exist as positively

charged ammonium ions in an aqueous environment. Charged residues cannot

traverse the cell-membrane according to the Meyer-Overton’s rule. It is also not

possible for these ions to move across the aquaporin channel due to the strong

repulsion present in the lumen from the conserved arginine of the ar/R region.

The opposing dipoles in the channel interior from the hemi-pores also create a

large electrostatic barrier to permeation of charged molecules through aquaporins.

This would imply that a mechanism to deprotonate the ammonium ions needs

to exists to facilitate permeation of ammonia through the channel. Can TIP2;1

protein itself contribute to that process?
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Figure 5.6: Ammonium accumulation and proton pathway. (A) MD simulations showing ammonium accumulation (blue mesh) at aspartate residues (yellow
sticks). Water density is displayed as purple mesh and residues of extended selectivity filter as sticks (H63 (blue), H131 (red), G194 (green), R200 (brown)). (B)
and (C) MD simulations demonstrating flexibility of H131 being neutral and positively charged, respectively. Colour code as in (A). (D) Surface representation
of the crystal structure depicting the water-filled side pore beneath loop C. Hydrogen bonds of water 10 as well as between R200 and H63 are indicated by dashed
orange lines. (E) Working model of ammonia permeating TIP2;1. Ammonium may contribute to permeation by accumulating on vacuolar protein surface and

having its protons shuttled back by H131 (red) via a water-filled side pore. D and E were prepared by Andreas Kirscht.
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In our simulations where we added ammonium ions to the solvation box, we

see regions of the protein surface enriched by this molecule. These regions tend

to be in the neighborhood of the negatively charged aspartate residues that are

present on the solvent exposed surface on either side of the protein (fig. 5.6 A).

Interestingly, one of the regions with such an enrichment lies in the close vicinity of

the side pore. Considering the low pH in vacuoles and accumulation of ammonium

on the vacuolar surface of TIP2;1, the permeation efficiency would clearly benefit

if ammonium contributes to channeling of ammonia. The simulation results could

mean that the surface aspartates could be antennas that accumulate the ions for

local concentration before deprotonation.

Figure 5.7: Dihedral populations of H131 at three different protonated states. Chi1 angles
in MD simulations with doubly protonated (positively charged; blue), Nδ protonated (neutral;

yellow) and Nε protonated (neutral; red) H131.

The dynamics of the second vacuolar loop (loop C) relative to the SF arginine

(R200) hints at a mechanism that could explain how this deprotonation might

occur. This loop contains the H131 which can interact directly with the R200

of the SF. As histidines at physiological conditions are titrable, we wanted to

explore if H131 and the side pore could play a role in facilitating deprotonation of

ammonium. To check that, we plotted the dihedral space occupied by the H131

(fig. 5.7) in different protonation states. The simulations show that the angle of

the H131 side-chain (chi 1) remains as in the crystal structure when neutral while
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in a doubly protonated, positively charged state we observe indeed an alternative

orientation towards main pore. The doubly protonated version is highly flexible

and can move in and out of the main pore existing in three differing states in

the simulations. For this residue, the peak corresponding to the angle of −60◦

is situated within the main pore. It is equally probably occupied at the −180◦

position which corresponds to its orientation towards the the sidepore. This is

interesting as such a rotation brings the H131 residue close to the region where we

found high density for the ammonium ions accumulating near an aspartate residue.

The final state of H131 is the least occupied one and represents the position near

the main pore opening (fig. 5.6). This may suggest H131 could potentially serve

to abstract a proton from the ammonium and enrich ammonia near the lumen

entrance. It might be that the abstraction itself would stabilize the otherwise less

likely position of the singly protonated H131.

Furthermore, another possible means of abstracting the proton might be

suggested by the arrangement of the sidepore. The simulations confirm the side

pore as being continuously water-filled. Thus from H131 to the vacuolar exit,

it potentially supplies a hydrogen bonded network for transfer of protons. These

findings could imply a mechanism where H131 shuttles protons from the main pore

to the vacuolar surface via the side pore, using a Grotthuss mechanism, putatively

enhancing the permeation rate of ammonia under non-equilibrium flux conditions.

5.6 Does TIP2;1 permeate ammonia?

The conditions under which the Meyer-Overton rule might weaken, so as to en-

hance permeation via membrane embedded channels are physiologically present.

These represent the situation where the permeation of gas molecules might occur at

highly specialized regions, where the local environment might not offer a large free

membrane surface for free diffusion. Another important consideration concerning

this process is the lipid constitution of the membrane. Cell membranes of higher

organisms contain large proportions (20-40 %) cholesterol. This thickens the mem-

brane and changes its ability to allow permeation of hydrophobic molecules. Thus,

it might be necessary to take these factors into consideration when permeation of
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ammonia is examined for aquaporins. To get a more detailed view of the substrate

specificity in TIP2;1 MD simulations were conducted. We have already shown that

water permeation was seen at high frequency corresponding to a Pf with SD of

approximately 25 +/- 4 x 10-14 cm3 s-1. Spontaneous ammonia permeation events

(fig. 5.8 a) were observed in unbiased simulations with a length of 400 ns.

Figure 5.8: (a) Snapshots of ammonia permeation. (b) Close-up of ammonia interactions at
the SF. Hydrogen bonds are depicted in orange and distances are given in .

We studied the free energy profile of the permeation of ammonia using um-

brella sampling simulations. 280 umbrella windows, 0.25 angstrom apart were

used to estimate the Potential of Mean Force (PMF) along the channel axis. For

each window, we simulated 2ns length of trajectories of which we dropped the

first 500 ps to allow for equilibration. Using the WHAM algorithm as described in

the second chapter, we calculated the uncertainty in the profile obtained with 100

bootstrap trials. This yielded a free energy barrier of approximately 15 kJ/mol

(fig. 5.9), in line with a high ammonia permeability. This desolavation barrier was

found to be comparable to a similar barrier to permeation obtained in a purely

POPC lipid bilayer. Interestingly, a model asymmetric bilayer constructed with

20% cholesterol in either leaflet yielded an even higher barrier. Therefore, com-

paring TIP2;1 to a cholesterol containing model membrane with an energy barrier
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of 20 kJ/mol (fig. 5.9), the corresponding ammonia permeability of TIP2;1 is an

order of magnitude higher. This suggested that physiologically, the permeation

across aquaporins might be enhanced due to the presence of cholesterol.

Figure 5.9: The potential mean force (PMF) profiles for ammonia through TIP2;1 (red)
and through model membranes containing no (blue) or 20% cholesterol (green) (Top panel).
Number of hydrogen bonds between ammonia and TIP2;1 as function of position along the pore
axis (Middle panel). The residue population at a given point on the channel axis (Lowermost

panel)

The umbrella sampling simulations also showed that the SF residues strongly

interactied with the ammonia molecule and stabilized it (fig. 5.8 b). This was

reflected in the PMF as well, where the ar/R region has a remarkable dip in

the free energy where typically a barrier to entry is present for simulations with
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the model membranes. MD simulations containing ammonium ions showed no

spontaneous permeation events, which is expected due to the electrostatic and

desolvation effects in the channel.

5.7 Conclusions

The first atomic structure of an aquaammoniaporin provides new insight into the

substrate selectivity of AQPs. The structure reveals an extended selectivity filter,

including a fifth residue positioned in loop C that also may play a role in defining

substrate profiles of the entire superfamily of proteins.

We use MD simulations to analyze the unusual features of the structure to

shed a light on what might be their possible functional relevance. The importance

of the extended SF is demonstrated within the calculation of the free energy profiles

and the role of the SF in stabilizing the entry of the ammonia molecule in the pore.

This points towards a gain-of-function of TIP2;1 substrate selectivity compared to

the water-specific aquaporins. MD simulations support the notion that ammonia

conductance occurs via the main pore and depict a lack of ammonium permeability.

Ammonia permeation through the main pore is also comparably a more feasible

pathway when set against a lipid bilyare with moderate amount of cholesterol.

The observation, that the free energy barrier to ammonia permeation through the

model membrane is larger compared to permeation through the channel, combined

with the specialized nature of the tonoplast membrane indicates that the role of

the aquaporin family is worthy of further study in the context of gas permeation.

Based on structural and MD analyses, we describe a pore that is permeable

to ammonia and propose a mechanism in which ammonia permeation may be

further increased by ammonium accumulation at the vacuolar protein surface,

deprotonation, and proton transfer via a previously unidentified water-filled side

pore. The side-pore itself seems to be a functional feature of the structure and its

close proximity to the other unusual elements of the TIP2;1, such as the conserved

H131 residue and its entry into the main pore at the ar/R region suggest that it

is more than a structural curiosity.
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Thus, overall we present a study where it is demonstrated that computa-

tional efforts can be combined successfully with empirical studies to understand

the dynamics of gas permeation in aquaporins.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

In the previous chapters we have studied three aquaporin proteins using MD simu-

lations. We found that experimentally observed behavior of these proteins can not

be explained completely from the structural details alone. Dynamics adds essential

information which is needed to understand the full extent of their characteristics.

Many a time it is necessary to address the specifics of the mechanism within which

an evolutionarily conserved structure mediates permeation to understand the ex-

act role of such a structure. In fact, the structure and the dynamics originating

from the former must act in concert for the normal function of aquaporins. To

exemplify, we saw that in AQP4, the high conservation H95 might imply that the

residue has a physiological role. Studying the dynamics, however, allowed us to

find that the collective motion including this residue was affected by protonation

and thus modulated by pH. In the AQP0 system it was postulated that the Y23

residue was an unusual replacement for a phenylalanine present in water specific

aquaporins. The phenolic group addition to this residue was supposed to be re-

sponsible for the reduced permeability of the protein. But, it was with simulations

and the functional mode analysis that it became clear that the actual regulation

occurred through the conserved arginine residue of the ar/R region and the Y23

residue affected its collective motion to regulate the permeability of the protein.

Another interesting facet of regulation is the specificity of the protein towards the

permeating molecules. In modeling the TIP2;1 system we saw that the protein

109
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had several unusual features, such as an extended selectivity filter and a highly

flexible residue on the extracellular surface. We used MD simulations to verify that

these features were not simply artifacts but rather could contribute to a possible

gas permeation in a meaningful and plausible model. We believe that these find-

ings expose a more general relation between the protein dynamics and its function.

Water permeation is a dynamic phenomenon occurring on a nanosecond timescale.

Structures that are functionally static on such a scale, would be too rigid to pro-

vide a framework that can be modulated to respond to a variety of stimuli that

biological systems face in their lifetime. Mechanisms of regulation and specificity

in aquaporins are thus expected to be on the same timescale as well. We discussed

how all-atom MD simulations are ideally suited to probe this particular regime in

the life of a protein. Our work confirms that such a supposition is not ill founded.

Among the specific details elucidated by this work, the most important is

the observation concerning the ar/R region. The arginine residue here has been

shown to be most important regulator of the rate of permeation. This extends its

function beyond its role in the selectivity. From the results shown in the AQP0

project it is clear that in order to make a positive increment in the permeability of

an aquaporin, the collective motion within this region must be affected. It seems

that permeation can be ’switched off’ by other means, such as through the H95

gate discussed in chapter three. But, the bottleneck for the channel conductance

is strictly contained within the ar/R region. This can be anticipated from the

structure itself; but the fact that it can be modulated dynamically was unknown.

Additionally, we have shown that the aquaporin protein specificity could also be

flexible depending on the exact localization of the protein and the lipid content of

the biological membrane in which it is embedded. We confirm the earlier findings

[118] that the permeation of alternative gaseous/small hydrophobic substrates

might be preferably routed via aquaporins if the membrane is rich in cholesterol.

The important determinant of a pore forming protein acting as a channel in the

membrane is its capacity to provide an alternative pathway which has a lower

free energy barrier compared to the membrane itself. We have observed that

the entropic penalty to the entry of a gaseous molecule into a narrow pore of an

aquaporin channel might be partially offset by the its stabilization in the selectivity
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filter. We saw how the TIP2;1 protein channel had an unusual selectivity filter and

an additional side pore to route water molecules. Whether these modifications are

necessary or if they only act to further encourage a natural capacity of the protein

to assist gas permeation is however still in question. Regardless, new avenues have

been opened up as result of this work to identify potential ammonia permeation

in aquaporins. This can be accomplished by looking for similar alterations in the

lumen of the channel which might act in a manner functionally identical to what

can be seen in the TIP2;1 protein.

All in all, MD simulations, have been shown to be effective tools to study

the mechanics of regulation. The results of the simulations undertaken as a part

of this thesis have independent verification from empirical studies. The collabo-

rations have allowed us to explore a few useful ’rules of thumb’ concerning the

application of MD simulations to the aquaporin systems. One of our most impor-

tant observations here was that our results matched qualitatively very well with

the experiments. We found that exact quantitative match was harder to obtain.

We propose a few reasons to explain why such a disparity might exist.

The first is the general problem of equilibration. Mutant proteins constructed

from the available X-ray structures are frequently used in this work to verify mech-

anisms suggested by analyzing the dynamics. We always allow these structures to

’relax’ in the simulations prior to analyzing the data from the trajectories. Typi-

cally, a hundred nanoseconds worth of data is put aside from the simulation runs

to allow for equilibration. This precautionary measure, however, does not guaran-

tee that the end result is exploring a physiological ensemble. Especially mutations

that lead to changes in charge or those involved in a lot of structural interactions

are expected to be harder to equilibrate within simulation timescales. The prob-

lem is further complicated by the high dimensionality of the protein dynamics.

Some of the dynamical modes of proteins can relax faster and others might re-

quire timescales longer than our simulations windows to equilibrate. This might

yield measurement of functional properties associated with these modes either to

be very noisy or be trapped in a functional state limited to a local minimum. This

was especially true concerning our measurement of the permeability. This func-

tion was observed to be very noisy in AQP0, where the baseline was set very low.
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This issue could be addressed partially by using the essential dynamics method-

ology. We used it extensively to trap simulations in functional states of interest

and then carry out simulations with restrictions on such a state. This allowed us

the benefit of understanding the direct causal relation between the state identified

in the analysis and its effect on the characteristic of interest, such as the osmotic

permeability. We found the results of these partially constrained simulations to be

highly informative and a useful addition to the unconstrained simulation studies.

This allowed us to separate purely statistical anomalies from real physical effects

within the trajectories. But this can not be guarantee of a real effect. The results

obtained from such constrained simulations are expected to be used as guides for

suggesting experimental verifications and not an end in themselves.

A second possible reason for the observed disparity in the experimental and

the simulation osmotic permeability could be the uncertainty in the ’functional’

copy number of the aquaporin protein in the membrane within the experiments.

Although it is possible to measure the approximate embedded copy number of

the molecules in the Xenopus oocyte system with fluorescence microscopy, it is

harder to determine how many of these are in the ’functional’ state with correct

localization and permeation conditions. This might make a complete quantitative

agreement with the experiment harder. Also, in the computation studies, all the

four monomers are assumed to be equivalent in terms of the function. But this may

not be true in the experiments, which might have differentially active number of

monomers per protein. For example, in the chapter three, the phosphorylation was

assumed to be available for all four monomers, while in reality any combination of

the four monomers might be subjected to modification. This poses an additional

problem in obtaining an exact match between the two regimes of inquiry. But, this

particular issue is out of our control and can only be partially addressed in MD

simulations by trying out all possible combinations of the modifications although

the cost/benefit ratio of this approach is questionable.

The easiest means to compare the simulations and the experiments is thus

qualitative, where a comparison can be made between the effectiveness of a modi-

fication to the permeability of the protein. If the comparison is off by one or more

orders of magnitude, then this approach would be considered inviable.
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6.2 Future

In all the projects presented here, there are certain avenues which have been left

unexplored or under-explored due to the limitations presented by time. Some

possible extensions are outlined in the final section so facilitate continuation of

the work.

6.2.1 Substrate specificity of AQP4

Our collaborator, Dr. Mette Assentoft and Dr. Nanna Macaulay have observed

that the protein AQP4 protein can possibly enhance permeation of ammonia across

the membranes of cells in nervous tissue. This situation is highly similar to that

of the TIP2;1 protein. The membrane of the Glial cells which express AQP4,

are highly specialized and a very small portion of that is exposed to the site

where ammonia permeation may occur. This allows us to speculate that the lipid

composition and the overall very limited surface area for diffusive permeation could

work in favor for AQP4 to be the chief pathway for conducting ammonia. In order

to verify this, we have calculated the PMF for the ammonia molecule through

the channel pore. We are conducting equilibrium simulations with ammonia and

ammonium ions in the same lines as the TIP2;1 project to test for the spontaneous

permeation of ammonia.

6.2.2 ’Rescuing’ the ammonia permeation in Human AQP1

In the TIP2;1 chapter we saw that the modified SF region of the protein was one

of the chief elements speculated to be the gain of ammonia permeation function.

Our collaborators, Andreas Kirscht and Prof. Urban Johansson have introduced

mutations which modified the SF region of the human APQ1 to resemble that

of the TIP2;1 protein. We would like to measure the PMF for ammonia in this

modified channel. However, in our previous efforts to achieve this we could not

obtain a well equilibrated free energy profile for the mutant. We believe that

this was due to the extensive rearrangement needed in the selectivity filter before

equilibration of the free protein was achieved. By extending the equilibration
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longer we could try and obtain a more relaxed state of the protein which then

we could test for the PMF. This would further add credence to the idea that the

unusual SF region indeed alters the specificity of permeation in the TIP2;1.

6.2.3 A physiological model for the biological membranes

In order to recreate an environment where membrane embedded proteins could

’feel at home’ we want to simulate a bilayer with lipid composition similar to

that of physiological conditions. Cell membranes of higher organisms tend to be

asymmetric and contain a plethora of lipids. Cholesterol is an essential component

of the mix and changes the functional properties of the bilayer in many ways

including affecting localization of individual proteins and their clustering. We also

saw in the fifth chapter that the diffusion barrier to gas permeation also depends

on the cholesterol content of the membrane. Recently, new lipid forcefields have

become available that provide a significant increase in the number of lipids that

can be used for simulations. It would be possible to use these for testing how the

asymmetrical nature of the bilayer and the addition of charged lipids such as POPS

would affect physical properties of the membrane. Some of the lipids which are very

prominent in higher animals, such as Sphingomyelin, have not been parametrized

as of yet. Obtaining and validating he corresponding parameters would also be

a target of this work. A composition with very high-fidelity with physiological

bilayers might be complicated, but simulating the major components would be an

ideal starting point.

6.2.4 Generality of the ’Arginine mode’

In the fourth chapter we saw that the conserved arginine of the ar/R region con-

strains the maximum permeation potential in the protein. We would like to know

if this collective mode is significantly present in other aquaporins or if it has a

unique function in AQP0. The possible generality of this mode might lead to

understanding of how the protein might regulate its ability to control permeation

of water. The specific mechanism, if it exists, might lead us to understand under
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what conditions, such as pH, voltage or mechanical stress does the regulation oc-

cur. We already have an ensemble of a variety of members of aquaporins which

we could analyze to search for these regulatory switches.
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