
Conformational Transitions upon Ligand Binding: Holo-
Structure Prediction from Apo Conformations
Daniel Seeliger, Bert L. de Groot*

Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany

Abstract

Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands.
Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly.
Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by
their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if
large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-
bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an
unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely
limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the
ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo
structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å
backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in
the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand
complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not
available.
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Introduction

Interactions between proteins and small molecules are involved in

many biochemical phenomena. Insight into these processes relies on

detailed knowledge about the structure of protein/ligand complexes,

e.g. how enzymes stabilize substrates and cofactors in close

proximity. Moreover, almost all drugs are small-molecule ligands

that interact with enzymes, receptors or channels. Accordingly,

ligand-bound receptor complex structures are a critical prerequisite

for understanding biological function and for structure based drug

design. However, structure determination of protein/ligand-com-

plexes can be difficult, time-consuming and expensive. Crystal

structures of protein/ligand complexes are usually obtained either

by co-crystallization or soaking and it is a common problem that

even when conditions for crystallizing the apo-protein are well

established these might not be transferable to the protein/ligand

complex [1–4]. Particularly, conformational transitions of the

receptor associated with ligand binding pose a severe challenge to

the structure elucidation of holo complexes [5–8].

When structures of ligand-bound protein conformations are not

available, structure-based drug design becomes highly challenging.

Several studies showed that virtual screening to an apo-structure

usually results in a poor enrichment factor (the ability to

discriminate between binders and non-binders) compared to the

holo-structure even when the structural difference between both is

comparably small [9–11]. Therefore, the development of docking

programs aims at allowing a certain degree of receptor flexibility

either by using an ensemble of structures instead of a single

receptor conformation [12–15] or by explicitely modeling

flexibility such as sidechain variations (Autodock4 [16,17], Gold

[18,19], FlexX [20], RosettaLigand [21]), predefined flexibility of

certain parts of the structure (FlipDock [22]) and also small

variations of the backbone (Glide/Prime [23], RosettaLigand [24],

ICM [25,26]). Incorporating receptor flexibility in molecular

docking is a substantial progress and has been shown to enhance

both enrichment factors and the ability to predict correct binding

poses, particularly in cases when docking a compound to a

receptor structure that has been crystallized with a different ligand

(cross-docking) which is usually the case when searching for novel

drugs. However, the degree of flexibility thus far is limited to either

sidechain motions or small variations of the backbone and thus,

the availability of a holo-structure or an apo-structure that is

highly similar to the holo conformation is currently a prerequisite

for a successful docking, severely limiting structure-based drug

design.

Particularly, receptors that undergo a substantial conformation-

al transition upon ligand binding are currently precluded from

structure based drug design.

Although protein-ligand crystals suitable for diffraction might

not be accessible, several experimental techniques exist to detect

conformational changes. In many cases where proteins undergo

domain reorientations upon ligand binding they adopt a different

shape in the ligand bound state, corresponding to a change in the

radius of gyration that can be studied either by NMR, where a
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more compact shape causes a descrease in the rotational

correlation time [27–29] or by small-angle scattering of x-rays

(SAXS) or neutrons (SANS) [30–33]. These shape descriptions

provide invaluable information for modeling of structures [34–36]

and macromolecular assemblies [37,38] as well as insight into

protein dynamics.

Here, we present a method to predict the structure of protein/

ligand complexes for proteins that undergo a large conformational

change upon ligand binding. The protocol solely requires the apo-

structure, a known ligand and experimental data on the shape of

the holo-structure. Here, we apply the radius of gyration as shape

information, a quantity that can frequently be readily assessed

more easily than an x-ray structure. We developed a simulation

protocol that combines biased conformational sampling, docking

and molecular dynamics simulations and applied it to ten ligand-

binding proteins (see Table 1). We chose cases where both, the

unbound conformation and the bound conformation are known

from x-ray crystallography in order to be able to a-posteriori

validate the predicted receptor conformations and docking poses.

The conformational changes involved range from 2.1 to 7.1 Å

backbone RMSD (see table 1 and fig. 1) and the binding site

geometries differ substantially between the apo and the holo

conformations. In nine of the ten cases we predict holo receptor

conformations close to the native ligand-bound conformation

and in eight cases we predict ligand binding poses close to the

native state, rendering our method suitable for blind predictions

of protein/ligand complexes involving large conformational

transitions.

Results

The proteins used in this study undergo large conformational

changes upon ligand binding. The conformational changes involve

large domain reorientations, accompanied by loop motions and

sidechain movements. Since we use the radius of gyration as an

example of an experimentally determined constraint we chose

cases where a distinct change of this observable takes place upon

ligand binding. This is usually the case for protein motions which

are classified as hinge-bending motions according to the database

of macromolecular movements [6]. However, such a classification

is not necessary for the described protocol and is not used for the

predictions made in this work. Here, we focus at cases that

undergo domain closure upon ligand binding. With that aim,

constraints which enforce domain closure were incorporated into

the tCONCOORD program, thereby enhancing the sampling

around the closed state significantly (see Text S1).

The ten proteins used for this study belong to five different

SCOP [39–41] superfamilies.

N Periplasmic-binding protein type I: ALLO, LEU, RIBO

N Periplasmic-binding protein type II: OSMO, ALGI, GLUR2

N EPT/RTPC-like: EPSP

N P-loop containing nucleoside triphosphate hydrolase: GUA

N Actin-like ATPase domain: HEXO, GLUCO

Periplasmic-binding proteins (PBPs) mediate a wide range of

fundamental processes and are ubiquitous in bacteria. Therefore,

they are discussed as potential targets for antmicrobial agents.

Moreover, the general ‘‘Venus-flytrap’’- architecture of PBPs is

also found in the extracellular ligand-binding domain of class C G-

protein coupled receptors (GPCRs) many of which are of great

Author Summary

Structure-based drug design has become a powerful tool
in modern drug discovery pipelines. A critical prerequisite
is a structure of the target protein close to its ligand bound
conformation which is often difficult to determine
experimentally. In many cases, a structure of the unbound
receptor is available, but conformational changes with
respect to the ligand-bound form preclude it from being
used as a basis for structure-based drug design. We have
developed a computational approach to predict the
structure of protein/ligand complexes based solely on
the unbound conformation, the ligand, and easy-to-assess
experimental data. We tested our protocol on proteins that
undergo substantial structural rearrangements upon
binding a ligand and were able to predict structures of
protein/ligand complexes which are in good agreement
with experimentally determined structures. The ability to
predict ligand bound receptor conformations based on
structures in the unbound state enables structure-based
drug design for cases where crystallization of the complex
has not been successful so far.

Table 1. Comparison of apo/holo pairs of proteins.

Receptor Abbreviation PDBapo PDBholo # Res. Ligand RMSDBB RMSDBS

GluR2 ligand binding core GLUR2 1fto 1ftm 257 AMPA 2.2 2.0

DNA Beta-Glucosyl-transferase GLUCO 1jej 1jg6 351 Uridine-59-diphosphate 2.1 2.6

D-Allose binding protein ALLO 1gud 1rpj 288 D-Allose 4.4 4.0

D-Ribose binding protein RIB 1urp 2dri 271 b-D-Ribose 4.3 3.5

L-Leucine binding protein LEUB 1usg 1usi 345 Phenylalanine 7.1 6.8

5-Enolpyruvylshikimate-3-phosphate
synthase

EPSP 1rf5 1rf4 427 SPQ 3.7 4.6

Osmo-protection protein OSMO 1sw5 1sw2 270 Glycine-betaine 5.0 4.4

Guanylate kinase GUA 1ex6 1ex7 186 GMP 3.6 3.9

Hexokinase HEXO 2e2n 2e2o 298 Glucose 3.0 1.9

Alginate binding protein ALGI 1y3q 1y3n 490 Alginate Disaccharide 4.8 3.6

RMSDBB: Root mean square deviation of all backbone atoms after least square fit. RMSDBS: Root mean square deviation of the binding site. The binding site was defined
as all residues which have at least one atom within 6 Å of any ligand atom.
doi:10.1371/journal.pcbi.1000634.t001

Holo Structure Prediction from Apo Conformations
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Figure 1. Overlay of apo/holo pairs and holo/model pairs. Receptor models were predicted based on the apo-structure, the ligand and the
radius of gyration of the holo conformation. Apo x-ray structures are shown in blue, holo x-ray structures are colored wheat. The best modelled
receptor structure is shown in green.
doi:10.1371/journal.pcbi.1000634.g001

Holo Structure Prediction from Apo Conformations
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interest as drug targets [42]. The other cases belong to different

classes of kinases which represents another large group of

pharmacologically interesting receptors.

Table 1 lists the protein data bank [43] (PDB) codes of the apo/

holo pairs, their respective ligands and the global backbone root

mean square deviations (RMSD) as well as the RMSDs of the

binding site.

In all cases, the ligand binding pocket differs substantially

between the bound and the unbound state or is virtually not

present in the apo conformation. A structure prediction protocol

therefore needs to precisely predict the domain motions as well as

local structural rearrangments. We use the tCONCOORD

program [44] to generate an initial ensemble of conformations

which share a predefined radius of gyration. Since the constraints

tCONCOORD uses for the structure prediction are derived from

a given protein structure (here the apo conformation) the resulting

ensemble represents an approximation of the conformational

space that is accessible within the predefined constraints. Hence, if

interactions like hydrogen bonds are defined as constraints in the

input structure they will be conserved in the resulting ensemble. If

conformational changes are associated with partial unfolding or

refolding, resulting in major changes of, e.g. the hydrogen bond

network, the generated ensemble will be likely to miss those

conformations. Domain motions however, are ususally well

predicted [44]. The first part of the structure prediction protocol

therefore aims at predicting the correct orientation of domains.

The molecular dynamics simulations carried out subsequently

basically serve as a filter to distinguish between correct models and

those with correct geometry but unfavourable energetics which

tend to re-open quickly.

Prediction of holo receptor structures. The results are

summarized in Table 2. After the refinement cycles we find a

good correlation between the radius of gyration and the RMSD to

the holo structures (see fig 2). In all of the 10 cases the global

backbone RMSD of the best model to the known holo structure is

below 1.6 Å (fig. 1). For the prediction of ligand binding poses,

however, it is more important to focus on the geometry of the

binding site. Here, we find that the prediction of the arrangement

of the backbone atoms belonging to the binding site is equal or

below 1 Å RMSD accuracy in six of the ten cases and below 1.4 Å

in nine cases. An RMSD calculated over all atoms (including the

sidechains) corresponding to the binding site reveals RMSD values

below 2 Å for nine of the ten cases. EPSP, where the backbone

deviation is 2.8 Å represents a case were the current protocol

reaches its limitations since here, the structural rearrangment

between apo and holo structure involves refolding of a helix into a

loop, a transition which is not predicted by the current sampling

protocol. This causes some residues in the predicted structures to

be more than 10 Å away from their target destination, hence

resulting in a large RMSD.

Prediction of ligand binding poses. Obtaining close-to-

native ligand binding poses with receptor structures obtained from

structure modeling or low-resolution data is a non-trivial task even

when close-to-native receptor conformations are available. Scoring

functions in docking programs are usually very sensitive to even

small conformational variations or structural inaccuracies and a

single misplaced sidechain can preclude successful docking.

Therefore, low binding site RMSD’s do not automatically

translate into low ligand RMSD’s. Fig. 3 shows a plot of the

ligand RMSD versus the RosettaLigand energy. As can be seen,

ligand binding poses close to the native state were sampled in all

cases but, due to structural variations in the binding site, these were

not always among the top ranked configurations. In 8 of the 10

cases, however, ligand binding poses below 3 Å RMSD to the X-ray

structure are found within the top ranked solutions (see fig. 4). In

docking studies to rigid receptors ligand RMSDs of v2
0
A to the

experimentally determined binding pose are usually regarded as

successful. In our case the ligand RMSD was calculated after least

square fitting of the modeled complex to the target structure. Hence,

deviations of both, the modeled receptor structure and the ligand

pose contribute to the calculated ligand RMSDs.

Discussion

In this work, we present a proof of concept study that allows

successful prediction of holo-receptor conformations and ligand

binding poses. With an approach based solely on the receptor in its

unbound conformation, a known binder, such as the natural

substrate, and relatively easy to assess shape information on the

ligand-bound state, we predicted receptor models within 1.6 Å

RMSD to the x-ray holo structure starting from apo conforma-

tions that deviate up to 7.1 Å RMSD from their respective ligand-

bound state. For 8 of the 10 cases ligand binding poses within

v3
0
A RMSD to the x-ray structure were predicted, underpinning

the applicability of our method to predict receptor models suitable

for virtual screening.

With the described protocol we bridge a gap arising from the

difficulties associated with structure determination of protein/

ligand complexes, the limited conformational flexibility that can be

incorporated in docking programs and the limited sampling that

can be achieved with molecular dynamics simulations. If apo and

holo conformations of a protein differ substantially, current

computational structure prediction approaches are usually unable

to provide accurate receptor models. As docking protocols need to

be fast to be suitable for virtual high-troughput screening they

always represent a trade-off between speed and accuracy.

Incorporation of sidechain conformational flexibility and back-

bone plasticity is a substantial progress but each additional degree

of freedom is accompanied with growing computational demand

and, hence, allowing for large conformational changes has thus for

not been feasible. Molecular dynamics simulations are in principle

capable of sampling holo conformations when starting from an

apo protein. But, in addition to the general sampling problem MD

simulations suffer from, ligands may cause alterations in the free

Table 2. Model accuracy.

Receptor
Overall BB-
RMSD

BS BB-
RMSD

BS all-atom
RMSD

Rank vv1.5 Å

BB

GLUR2 0.91 0.46 0.84 1

GLUCO 1.38 1.35 1.78 10

ALLO 1.07 0.96 1.55 2

RIBO 0.98 0.76 1.2 3

LEU 1.15 1.2 1.9 5

EPSP 1.58 2.8 3.58 -

OSMO 1.27 1.3 1.96 2

GUA 1.45 1.0 1.76 2

HEXO 1.42 0.87 1.38 3

ALGI 1.27 0.77 1.5 3

The table shows RMSD values for the best models. In all cases the global
backbone RMSD is below 1.6 Å. The backbone RMSD of the binding site is
below 1 Å in 5 cases and the the RMSD calculated over all heavy atoms in the
binding site is below 2 Å in 9 of 10 cases. Rank v1.5 Å BB gives the rank of the
first model to get within 1.5 Å RMSD to the holo x-ray structure.
doi:10.1371/journal.pcbi.1000634.t002

Holo Structure Prediction from Apo Conformations
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energy landscape. Depending on the differences in the free energy

landscapes of the apo protein and the protein bound to a ligand,

the sampling of close-to-holo receptor conformations without a

ligand present may be particularly poor.

The protocol described in this work combines the strengths of

docking, conformational sampling and molecular dynamics while

overcoming their particular limitations. In contrast to previous

studies [45–48] it is neither restricted to a particular type of

protein motion nor does it require the definition of rigid parts or

hinges in a structure or any other approximation. Protein

flexibility is accounted for on each level from domain motions to

sidechain fluctuations and receptors and ligands are treated as all

atom or heavy atom models in each state of the protocol. As the

sampling of large conformational transitions and crossing of

potential energy barriers is handled by the efficient concoord [49]

algorithm and MD simulations are used in refinement we gain

both efficient sampling and high accuracy within the limitations of

the force field.

The protocol furthermore allows incorporation of various

experimental data. In this work we used the radius of gyration

of the holo conformation but in principle any kind of data can be

used that is transferable into geometrical constraints, e.g. data

from FRET experiments or mutagenesis studies. Each additional

piece of information confines the sampled conformational space

and, hence enhances sampling of conformations around a

conformational state of interest (see also Text S1). Additional

improvement may be achieved by applying filters to the docked

configurations. For example, in the initial docking screens all poses

were taken into account without further screening. Analysis of the

generated poses and discarding e.g. those that are attached to the

surface rather than docked into the binding site would further

contribute to the enrichment of promising models. As in all

structure prediction protocols, sampling is the limiting factor. In

most cases, docking of the ligand to the holo x-ray structure yields

a lower score than in the modelled receptor structures. Hence, the

docking score is usually sufficient to discriminate between the

native structure and a receptor model and if the true conformation

is sampled it is most likely detectable via the docking score.

However, despite the relative simplicity to distinguish between the

true structure and a model it is very difficult to distinguish between

a model with 1 Å RMSD and a model with 5 Å RMSD to the

native state. When applying the current protocol to a blind

prediction it would therefore be beneficial to incorporate as much

experimental data as possible to reduce the conformational space

that needs to be explored and to enhance sampling around the true

ligand-bound conformation. The problem of conformational

sampling furthermore increases with the conformational flexibility

of the ligand. Although the ligands discussed in this work are less

complex than typical drugs they depict the necessity of very

accurate binding sites for a successful docking. Sugar ligands and

their derivatives, which some of our ligands belong to, contain

many hydroxyl groups and are almost symmetric. Thus, rotating

Figure 2. Binding-site RMSD vs. deviation from holo Rg. The deviation from the target radius of gyration correlates well with low RMSD’s to
the experimentally determined holo structures. The best receptor models (indicated by the red line) were used for binding site refinenment with
Rosetta.
doi:10.1371/journal.pcbi.1000634.g002
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the molecule by 180 degrees ofters almost the same scope of

interaction to the receptor but the resulting RMSD would not

characterize such a pose as a successful docking. Water molecules

can also play an important role in ligand binding. In the present

study we removed all crystallographic water molecules from the

input structures since it is quite challenging to judge which water

molecules might also be present in the ligand bound state, which

are replaced by parts of the ligand or which might even be

essential for ligand binding.

Concluding remarks. Overall, we find that our protocol is

successful in predicting close-to-native receptor models and, with

limitations, close-to-native ligand poses. Starting from apo

structures displaying global backbone RMSDs up to 7.1 Å we

were able to predict holo structures within 1.6 Å for all of the ten

cases and ligand poses within 3 Å RMSD for 8 of the 10 proteins.

It offers a robust protocol for accurate structure prediction of

protein/ligand complexes and allows structure based drug design

for proteins that undergo large conformational changes upon

ligand binding, for which only an apo-structure and a shape

description of the holo-structure is available.

Methods

The workflow of the presented protocol combines biased

conformational sampling, docking and molecular dynamics

simulations (see fig. 5).

Biased conformational sampling. In a first step, a

conformational ensemble is generated based on the apo-

structure and the radius of gyration of the target. In this study

we did not use experimentally determined radii of gyration but

calculated them from the ligand-bound conformations according

to

Rg~

P
i

jjrijj2mi

P
i

mi

0
B@

1
CA

1
2

where ri denotes the position of atom i with respect to the center of

mass of the protein and mi the respective mass. When using

experimentally determined values of the radius of gyration one

should be aware of the fact that these usually closely match

calculated values but are systematically larger due to the solvation

shell of the protein [50]. Larger deviations may be a hint towards

oligomerization in solution.

The conformational ensembles were generated using tCON-

COORD [44,51]. In previous studies [44,51] we showed that

tCONCOORD is able to generate structure ensembles of proteins

from a single input structure, representing a reasonable approx-

imation to the functionally relevant conformational space. The

method rests on a thorough analysis of the input structure and the

translation of conserved interactions like topological restrictions

Figure 3. Ligand RMSD’s vs. Rosetta Score. The plot shows the RMSD’s of ligand poses generated with RosettaLigand. In all cases ligand poses
below 3 Å to the target structure have been sampled and in 8 cases a pose below 3 Å RMSD is found within the top 100 (red) of the ranked poses.
doi:10.1371/journal.pcbi.1000634.g003
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(bonds, angles), hydrogen bonds and hydrophobic clusters into

geometrical constraints with upper and lower bounds. Crystallo-

graphic water molecules were removed from the input structures

since these are often replaced by the ligand in the bound state. In a

second step, these constraints are used to rebuild the structure

starting from random atomic coordinates yielding a new structure

that fulfills all predefined constraints but differs from the input

structure, hence representing an alternative conformation. Typi-

cally, an ensemble of 100–10000 independent structures is

generated. When generating such an ensemble starting from an

apo-protein structure conformations close to the holo receptor

conformation are usually included in the ensemble.

If structural information of the ligand-bound state is available

from experimental data, it can be used as constraint to bias the

ensemble to a conformational subspace of interest [51]. A novel

implementation in tCONCOORD allows to additionally use the

radius of gyration as geometrical constraint. Thus, with a

tCONCOORD simulation using the apo-structure as input, the

radius of gyration of the ligand-bound state can be used to

enhance the probability of sampling of a conformational subspace

of interest, here the ligand-bound state. A radius of gyration bias,

however, does not represent such a strong bias as, e.g a distance

constraint which enforces a domain closure. Therefore, the

ensemble properties are relatively robust against variations of the

target radius of gyration and the tolerance used for sampling (see

Text S1 for details about biased tCONCOORD samplings).

Initial ensembles of 1000 conformations were generated with

tCONCOORD using heavy-atom representations of the receptor

structure. Constraints were defined for bonds, angles, 1–4 pairs,

hydrogen bonds that meet the desolvation stability criteria [44]

and hydrophobic clusters. The radius of gyration of the target

structure was used as additional constraint with a tolerance of

0.1 Å to enhance sampling around the ligand-bound conforma-

tion. The resulting ensemble was subjected to an RMSD-

clustering to reduce the dataset to &100 conformations and each

conformation was subsequently refined using a 250 steps steepest

descent energy minimization in vacuum and 500 steps conjugate

gradient minimization in explicit solvent. Afterwards the structures

were subjected to a Rosetta refinement and scored with the ddfire

[52] scoring function. The best scoring 50 structures were selected

for resampling. The tCONCOORD resampling protocol employs

random perturbations on sidechain rotamers which are predicted

to be flexible based on interaction and packing considerations

while keeping the rest of the structure fixed. From each model, 100

conformations where generated, yielding a total number of 5000

protein conformations.

Docking and refinement. Afterwards, the known ligand was

docked into each of the 5000 models using Autodock VINA [53].

Receptor and ligand preparations were carried out using the

AutoDockTools [16]. The binding site was defined as a cubic box

of 26.25 Å length placed at the center of the reference ligand

position. (Hence, for blind predictions a rough knowledge about

the location of the binding site would be required). In all cases the

docking box was large enough to guarantee independence of the

docking results from small variations of the binding site definitions.

From the docking solutions, the best 50 scoring protein/ligand

complexes were selected and subjected to 50 ps molecular

dynamics simulation with position restraints, followed by 2 ns

free simulation and 200 ps simulated annealing to 100 K.The MD

simulations were carried out with the Gromacs-4.0 [54] molecular

dynamics package in explicit solvent using the Amber03 force field

[55,56] and the tip3p water model [57]. The systems were solvated

and NaCl was added to achieve a 150 mM concentration. Ligand

parameters were obtained with the generalized Amber force field

(GAFF) approach [58]. Electrostatic interactions were calculated

at every step with the particle-mesh Ewald method [59], short-

range repulsive and attractive dispersion interactions were

simultaneously described by a Lennard-Jones potential, which

was cut off at 1.0 nm. The SETTLE [60] algorithm was used to

constrain bonds and angles of water molecules, and LINCS [61]

was used for all other bonds, allowing a time step of 2 fs. The

temperature was kept constant at 300 K by weakly coupling the

system to an external heat bath [62,63] (time constant t~0:1 ps)

and the pressure was kept constant at 1 atm by weak isotropic

coupling to a pressure bath (t~1 ps).

The resulting structures were ranked by their compliance with

the target radius of gyration and the best 10 models were subjected

to a second refinement cycle consisting of resampling, docking

Figure 4. Modeled protein/ligand complexes. X-ray structures of
receptor and ligand are shown in wheat and yellow, modeled
complexes are colored green/blue.
doi:10.1371/journal.pcbi.1000634.g004
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and, after filtering the best poses, to molecular dynamics

refinement.
Model assessment and binding site refinement.

From the resulting receptor structures the radius of gyration

was calculated and those models that had less than 1% deviation

from the holo radius of gyrations were chosen for a binding site

refinement (In two cases we chose a larger Rg-cutoff since no

models were obtained within 1%). For the refinment we carried

out docking to the rigid receptor structures and used

RosettaLigand to refine the docking pose while simultaneously

repacking the sidechains around the ligand. 100 conformations

were generated based on each ligand pose and the resulting

complexes were ranked according to the RosettaLigand score.

The current protocol requires about four days per case on a 50

node cluster with the most time spent in the molecular dynamics

part and the QM based ligand parametrization with gaussian

[58,64].

Supporting Information

Figure S1 Comparison of free and biased tCONCOORD

samplings of D-Ribose binding protein.

Found at: doi:10.1371/journal.pcbi.1000634.s001 (1.39 MB TIF)

Text S1 Comparison of different biased and unbiased sampling

protocols in tCONCOORD.

Found at: doi:10.1371/journal.pcbi.1000634.s002 (0.02 MB PDF)
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