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Phi29 Connector-DNA Interactions Govern DNA Crunching and Rotation,
Supporting the Check-Valve Model
Rajendra Kumar1 and Helmut Grubmüller1,*
1Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
ABSTRACT During replication of the f29 bacteriophage inside a bacterial host cell, a DNA packaging motor transports the
viral DNA into the procapsid against a pressure difference of up to 40 5 20 atm. Several models have been proposed for
the underlying molecular mechanism. Here we have used molecular dynamics simulations to examine the role of the connector
part of the motor, and specifically the one-way revolution and the push-roll model. We have focused at the structure and inter-
molecular interactions between the DNA and the connector, for which a near-complete structure is available. The connector is
found to induce considerable DNA deformations with respect to its canonical B-form. We further assessed by force-probe sim-
ulations to which extent the connector is able to prevent DNA leakage and found that the connector can act as a partial one-way
valve by a check-valve mechanism via its mobile loops. Analysis of the geometry, flexibility, and energetics of channel lysine
residues suggested that this arrangement of residues is incompatible with the observed DNA packaging step-size of ~2.5 bp,
such that the step-size is probably determined by the other components of the motor. Previously proposed DNA revolution
and rolling motions inside the connector channel are both found implausible due to structural entanglement between the
DNA and connector loops that have not been resolved in the crystal structure. Rather, in the simulations, the connector facilitates
minor DNA rotation during the packaging process compatible with recent optical-tweezers experiments. Combined with the
available experimental data, our simulation results suggest that the connector acts as a check-valve that prevents DNA leakage
and induces DNA compression and rotation during DNA packaging.
INTRODUCTION
During replication of many bacteriophages, a motor pack-
ages viral DNA into a precursor capsid (procapsid) by
consuming energy released by ATP hydrolysis (1,2). The
motor works against a maximum pressure difference of up
to 40 5 20 atm, which is generated by the compacted
DNAwithin the procapsid (3,4). One of the strongest motors
known so far is that of the f29 bacteriophage. This motor
has been widely used as a model system to study the pack-
aging process, and many potential applications have been
suggested, such as a nanopore device for DNA sequencing,
a gene delivery system for viruses, or a model system to
develop antiviral drugs (1,5).

The motor consists of three components: a head-tail
connector protein as shown in Fig. 1, a prohead RNA
(pRNA), and the enzyme ATPase (6–9). These components
are arranged, in the above order, from the inside to the outside
of the procapsid (not shown in Fig. 1). Many studies have
been performed from different approaches to understand
the mechanism of the viral DNA packaging (4,7,8,10–27).
The motor transports DNA in two phases. First, during a
long dwell phase, first ADP releases and then ATP binds to
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the ATPase; subsequently, in a very fast burst phase, 10
DNA basepairs (bp) are translocated in four noninteger
step-size of ~2.5 bp each, consuming the energy released
from sequential hydrolysis of four ATP molecules (19,22).
The motor packages the viral DNA by a maximum rate of
~165 bp/s during the initial phase of the packaging; the
rate decreases gradually as packaging progresses toward
completion and internal pressure increases (24). However,
this rate includes both the burst and the dwell phase; the
actual rate during the burst phase is much faster and could
not yet be resolved. In an earlier study, the force, which coun-
teracts the DNA packaging process, was estimated to be at
most ~110 pN (24). However, recently this high value was
revised to be ~20 pN using optical tweezers experiments (4).

On the basis of these studies, a number of different
models have been proposed for the DNA packaging mecha-
nism (15,22,25,28–30). Several previous studies rendered
some of these models highly unlikely (10,25), whereas
they provided additional evidence for two recently proposed
models, the one-way revolution (12,15–18) and the push-
roll model (22,28).

The one-way-revolution model proposes that a hexamer
ATPase pushes the DNA under hydrolysis of ATP molecules
and the DNA revolves without rotation during its packaging
into the procapsid (12,15–18). Furthermore, the model
includes a mechanism for the observed packaging step
size ~2.5 bp/step, which is explained by interactions
http://dx.doi.org/10.1016/j.bpj.2015.12.010
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FIGURE 1 f29 connector-DNA complex embedded within viral procap-

sid (A) and enlarged view (B). The connector’s upper region (magenta) is

located inside the procapsid (gray); the loop (green), middle (blue), hinge

(red), and bottom (brown) regions form a channel, which contains the viral

DNA (yellow).
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between the DNA and a particular structural architecture of
four electropositive lysine rings lining the channel interior
(15). These lysine rings are formed by the K200, K209,
K234, and K235 residues of the 12 repetitive subunits (illus-
trated in Fig. S1 in the Supporting Material), and assumed to
adopt a conformation in which the rings are separated by
~9 Å. Because the distance between two bp is 3.4 Å in
canonical B-form DNA, ~2.6 DNA bp are expected to be
present between two adjacent rings. An idea that the
connector acts as a valve by a Chinese finger-trap mecha-
nism was firstly proposed by Hugel et al. (25). In the one-
way revolution model, this idea was modified and extended
by assuming that the connector acts as a one-way valve by
strongly interacting with the DNA via residues of the loop
region, thus preventing potential DNA leakage due to the
large internal pressure (15,18).

The push-roll model proposes that a pentamer ATPase
pushes ~2.5 DNA bp via amolecular lever, driven by hydro-
lysis of one ATP molecule (22,28). During each step, the
DNA rotates inside the ATPase ring by �30� and rolls by
18� simultaneously, which results in a total DNA rotation
by �12� per step. Recent studies using optical tweezers
reported that the DNA rotates by only �1.5 to �5�/bp (4),
however, which might be explained by the geometrical
mismatch between the pentamer ATPase and the B-form
DNA helix (4).

Here, we address the functional roles of the connector in
the DNA packaging process in light of the above two models
Biophysical Journal 110(2) 455–469
by explicit solvent atomistic molecular dynamics (MD) sim-
ulations. Four crystal structures of the connector have been
published (29,31,32); however, residues A230–S244 of the
loop region are missing in all of them and, therefore, have
been modeled by simulated annealing MD simulations
as described further below. As illustrated in Fig. 1 A, the
connector is a dodecamer protein channel located at the ver-
tex of the icosahedral prohead. The connector structure can
be subdivided into five regions (Fig. 1 B). The upper region
(magenta) is located inside the prohead and provides an
anchor for the channel; the flexible loops (residues 230–
245, green) are located at the inner opening of the channel;
the middle region (blue) contains 36 a-helices; the bottom
region (brown) is located outside of the prohead; and
the hinge region (red) serves as a bridge between the middle
and the bottom region. The channel is formed by four of the
above listed regions excluding the upper region. The upper
and the bottom regions are also referred to as C- and N-ter-
minal, respectively (12,15).

The function of the connector during the packaging
process has been investigated in several studies
(10,12,15,18,20,21,25). Mutagenesis experiments, sedimen-
tation assays, and voltage-ramping experiments revealed
that the loop residues are important at the late stage of the
DNA packaging process and prevent DNA leakage caused
by large counterpressure (15,18,20) due to the highly
compacted DNA within the capsid. In particular, during
voltage-ramping experiments, where the connector channel
was embedded within a lipid membrane, the connector
allowed only unidirectional transport of DNA across the
membrane in the presence of an electrochemical gradient
(21). Furthermore, the connector’s elastic properties were
studied through AFM experiments (33,34) and MD simula-
tions (33). Previous simulation studies (10) also suggested
that to withstand the large counterpressure, the connector
exhibits heterogeneous elastic properties similar to other
mechanical stress handling proteins such as silk or seashell
(10,35–37).

Despite these findings, several questions concerning the
connector and specifically its role in the DNA packaging
process with respect to the above discussed two models
remain open. At first, the structure of the connector in the
presence of DNA is unknown and thus the potential impact
of the DNA on the connector structure and vice versa is
unclear. Therefore, we characterized the mutual interaction
between the connector and the DNA by structural fluctua-
tions extracted from both equilibrium and force-probe MD
simulations.

Next, we focused on the connector functions, as proposed
in the one-way revolution model. In particular, we asked
whether the connector can act as a one-way valve during
the simulations, and if so, how it prevents DNA leakage
during the packaging process. To that aim, several force-
probe simulations were performed to determine the force
required for inward and reverse transport of DNA through
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the connector. To assess the relevance of selected residues,
we carried out similar simulations for a number of mutated
connectors. Next, we asked whether the four electropositive
lysine rings K200, K209, K234, and K235 in the connector
channel interact with the DNA and also whether they form
the particular structural architecture required for the
~2.5 bp/step packaging rate assumed by the one-way revo-
lution model.

We finally focused on the type of DNA motions expected
for the one-way revolution and the push-roll model, respec-
tively. The former model requires revolution of the DNA
without rotation, whereas the latter model requires rotation
of the DNAwith rolling inside the motor channel during the
packaging process. To this end, we determined from the MD
simulations the gap size between the channel lumen and
DNA helix, and quantified the resulting DNA rotation dur-
ing the inward transport.
MATERIALS AND METHODS

Modeling of the connector loop and the DNA

From the published four crystal structures of the connector (29,31,32), all

without DNA, the structure with the highest resolution of 2.1 Å (PDB:

1H5W) was used as a starting point for all simulations. Because the loop

residues A230�S244, were not resolved in any of these structures, an initial

structural model of one loop was generated for 1 of the 12 symmetrical

missing loops using the ArchPred structure prediction server (38). This

seed structure was then replicated 11 times (according to the 12-fold sym-

metry of the connector) and manually integrated within all other remaining

subunits after aligning the seed structure. In addition, 4 of the 12 subunits

lacked residues (Q166–L169) in the bottom region of the connector crystal

structure. These residues were added using the Modeller program (39).

Next, the first 60 nucleotides (ATG GCA CGT AAA CGC AGT AAC

ACA TAC CGA TCT ATC AAT GAG ATA CAG CGT CAA AAA CGG)

of the f29 gp10 gene (NCBI Reference Sequence: NC_011048.1) were

modeled in the form of B-DNA by using the Nucleic Acid Builder package

(40). Subsequently, the B-DNA model was placed inside the center of the

connector channel such that the channel axis and the DNA helical axis

were aligned.
FIGURE 2 Assessment of the connector loops refinement by principal

component analysis (PCA). (A) Projection of simulated annealing runs

onto the first and second principal components (PC1 and PC2) obtained

after performing PCA on the SAMD trajectory (squares). The semicircular

arrow shows conformational changes during the SAMD simulation. Five

high temperature conformations P1, P2, P3, P4, and P5 (red circles) were

selected from the trajectory and cooled down to 300 K. Dense clusters

(blue symbols) labeled with P1c, P2c, P3c, P4c, and P5c were obtained after

cooling. (B) Comparison of the initial loop model (blue) with refined

loops after SA runs (red) interacting with the DNA backbone (cyan) in

the channel center.
Refinement of the connector loop

The structures of the loops were refined in the presence of the B-DNA

model in three steps to allow conformational sampling and adjustments

of the loops to the DNA. Note here that, due to the helical structure of

the DNA, all 12 loops are expected to form different structures. Therefore,

in a first step, simulated annealing molecular dynamics (SAMD) simula-

tions were performed on the whole connector-DNA complex. The starting

molecular system was prepared for the SAMD simulations as follows: first,

because DNA is a stronger acid than Asp and Glu residues, we considered

those residues protonated that are very close to the DNA. These particular

residues are present either at the inner channel lining or in the loops. We

note that the flexible loops also contain two Lys and one Arg residues,

which most likely interact with the DNA. These interactions might drive

the covalently linked neighboring Asp and Glu residues to close proximity

of the DNA. Therefore, despite the unavailability of loops structure, we

further assumed these residues to be protonated.

Next, the connector-DNA complex was placed at the center of a dodeca-

hedron box, 241,067watermoleculeswere added to this box, and neutralized

by addition of 202 sodium ions. The system’s potential energy was mini-
mized to remove steric clashes by using 1000 steepest-descent steps with a

force tolerance of 2000 kJmol�1 nm�1. Subsequently, the systemwas heated

to 300 K during a 500 ps constant volume simulation with a 1 fs time step.

Pressure was then equilibrated at 1 atm during a 1 ns NPT simulation with

a 2 fs time step. In these two simulations, all heavy atoms were restrained

at the starting positions by a force constant of 1000 kJ mol�1 nm�2. A sub-

sequent 10 ns SAMD simulation was performed with 40 annealing cycles,

each of 252 ps length (see Table S1 in the Supporting Material for details).

In each cycle, the temperature of the loops was increased to 1000 K in two

steps, and subsequently lowered to 300 K in seven steps (as defined in Table

S1). Only the loops were allowed to move during the SAMD simulations; all

heavy atoms of the remaining connector-DNA complex were restrained

using a force constant of 1000 kJ mol�1 nm�2.

To quantify the largest conformational changes during annealing, prin-

cipal component analyses (PCAs) (41–45) were performed using the last

6 ns of the SAMD trajectory (see details in Results and Discussion); Fig. 2

shows projections onto two largest principal components (PCA subspace).

From this projection, five representative conformations at 1000 K, marked

P1, P2, P3, P4 and P5 in Fig. 2 A, were selected for further refinement. In

a third step, these five structureswere annealed to 300Kwithin 5 ns, and sub-

sequently equilibrated for 1 ns at 300 K. The obtained five structure clusters

are also shown in Fig. 2 A (marked P1c, P2c, P3c, P4c, and P5c).

All simulations were performed using the GROMACS 4.0.7 package

(46). The AMBER ff99SB force field (47) with refined ParmBSC0
Biophysical Journal 110(2) 455–469
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parameters (48) was used for the connector and the DNA, together with the

TIP3P water model (49). The temperature was regulated by Berendsen tem-

perature coupling during annealing and cooling (50). The pressure was

maintained at 1 atm by using Berendsen pressure coupling (50). Long-range

electrostatic interactions were computed using the particle-mesh Ewald

method with a grid spacing of 1.2 Å and a fourth order of cubic interpola-

tion (51). Short-range nonbonded interactions were computed for all atom

pairs within a distance of 10 Å.
Equilibrium MD simulations

The refined connector-DNA complex was used as the start configuration for

all subsequent equilibrium MD simulations. The complex was solvated

with 253,571 water molecules in a dodecahedron box, excess charge was

neutralized by adding counter ions, and ionic strength was adjusted to

150 mM NaCl (815 sodium and 740 chloride ions). The total number of

atoms in the prepared molecular system was 822,519. Similarly, a starting

structure of the free DNA was prepared in a dodecahedron box. The final

simulation system consisted of 834,668 atoms that included 276,386 water

molecules, 874 sodium, and 756 chloride ions.

Both simulation systems were energy-minimized to remove steric clashes

using the steepest-descent method with a similar setting as discussed in the

above loop refinement procedure. Then, the systems were heated from 0 to

300K in 100 ps constant volume simulations, with all heavy atoms restrained

at their initial positions using a force constant of 1000 kJ mol�1 nm�2; the

water molecules were allowed to move freely. In the next phase of the sim-

ulations, the force constant was gradually reduced to 100 kJ mol�1 nm�2

during a 750 ps NPT simulation, in which a constant 300 K temperature

and 1 atm pressure were maintained. The position restraints were gradually

removed in a subsequent 750 psNPT simulation. In all three phases, pressure

and temperaturewere regulated by applyingBerendsen pressure and temper-

ature coupling, respectively (50).

Subsequently, three independent ~370 ns simulations (subsequently

referred to as SimA, SimB, and SimC) as well as three 130 ns equilibrium

simulations were carried out for the connector-DNA complex and for the

free DNA, respectively. A 4 fs time-step was used. Temperature and pres-

sure were maintained at 300 K and 1 atm by the velocity-rescale (52) and

the Parrinello-Rahman (53) algorithms, respectively. The coupling time

constants for temperature and pressure were set to 0.1 and 1 ps, respectively.

For all simulations, the GROMACS 4.5 package (46) was used. A

maximum simulation speed of ~2.8 ns/day was obtained on 64 processors

of the Intel Xeon Harpertown clusters. The force-field parameters were

same as used in the above loop refinement procedure. Short-range electro-

static and van der Waals interactions were computed for atom pairs within

the cutoff distance of 14 Å. The PME method with a 1.2 Å grid spacing

and fourth-order cubic interpolation was used to compute long-range elec-

trostatic interactions (51). All bonds were constrained using a parallel

LINCS algorithm with sixth-order expansion of the constraint coupling

matrix (54,55). To allow a 4 fs time-step, virtual sites as implemented in

GROMACS were used for all angular bond-containing hydrogen atoms.

VMD was used for visualization (56).
Force-probe simulations

For the force-probe simulations, three conformations of the connector-DNA

complex were extracted at 213.3, 308.9, and 212.9 ns from three trajectories

SimA, SimB, and SimC, respectively. Subsequently, as illustrated in

Fig. S2, two virtual noninteracting particles were placed above and below

the principal channel axis outside the connector. These two particles were

used as reference positions to exert pulling or pushing forces onto the

DNA inside the channel, as described below.

For all force-probe simulations, these three extracted connector-DNA

complexes were taken as starting structures, and subsequently, simulation

systems were prepared as similar to the above described for the equilibrium
Biophysical Journal 110(2) 455–469
MD simulations. Subsequent heating and equilibration simulations were

also performed as described. The obtained three equilibrated molecular

systems were used for subsequent force-probe simulations under similar

conditions as described above for the equilibrium MD simulations. To pre-

vent translational and rotational motions of the connector and the reference

particles, all C-a atoms of two opposite helices and reference particles

(shown in Fig. S2) were restrained at the starting positions using a force-

constant of 10,000 kJ mol�1 nm�2.

Two types of force-probe simulations were performed to drive the DNA

through the connector channel in either inward or reverse direction. In the

first type (FP-T1) (Fig. S2 A), the center of mass of two basepairs was

moved toward the upper reference particle by 0.015 m/s along the chan-

nel-axis with a virtual spring of force constant 500 kJ mol�1 nm�2. Such

force-probe simulations were performed for ~170 ns for the three different

structures described above. In the second type (FP-T2) (Fig S2 B), to more

uniformly distribute the forces over the whole DNA-helix, 32 virtual

springs of force-constant 50 kJ mol�1 nm�2 were attached to the centers

of mass of the 32 base-steps and moved toward (or away from) the reference

particles by velocities of 0.15 and 0.015 m/s. To study the effect of three

mutations (K234A, K235A, and R237A) on the force required to move

the DNA inside or outside the capsid, similar force-probe simulations

were performed for mutated connector-DNA complexes. All three mutant

connector-DNA complexes were first equilibrated for ~32 ns, and subse-

quent force-probe simulations were carried out using the equilibrated

molecular systems. A total of 2 � 2 � 3 � ~20 ns (0.15 m/s) and 2 �
2 � 3� ~80 ns (0.015 m/s) simulations were performed; these involved

pulling and pushing of the DNA at two different rates through three wild-

type and mutant connector-DNA complexes.
RESULTS AND DISCUSSION

Refinement of the loops structure

A structural model of the connector DNA complex,
including the missing loops (A230–S244), was obtained as
follows. First, the DNA was modeled and placed within
the connector. Subsequently, all loops not present on the
x-ray structure were added and refined in the presence of
the DNA by simulated annealing molecular dynamics
(SAMD) simulations (see Materials and Methods). During
the SAMD runs, all atomic positions except the loops
were kept fixed, and the conformational adjustments of
the loops to the DNA were monitored via PCAs.

Fig. 2 A shows projections of the simulated annealing
(SA) trajectories onto the two largest principal compo-
nents (PCs) during the SAMD simulation; the black semi-
circular arrow indicates the path of the conformational
sampling. Colors indicate the temperature (K) of the
respective conformations. Such a semicircular shape indi-
cates that the protein dynamics at the elevated temperature
resembles random-walk-like motion in conformational
space (57). We therefore consider the chosen sampling
temperature of 1000 K to be high enough to overcome
most of the relevant barriers and thus to avoid being trap-
ped in local minima. To assess to what extent potential
trapping in local free energy minima is avoided, five
different starting configurations were chosen from the
high-temperature trajectory (indicated as red dots: P1,
P2, P3, P4, and P5 in Fig. 2 A). Each of these five config-
urations were subsequently cooled down to 300 K during
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5 ns and equilibrated at 300 K for 1 ns (indicated as clus-
ters of blue dots: P1c, P2c, P3c, P4c, and P5c in Fig. 2 A).
To monitor the conformational changes during the cooling
simulations, Fig. 2 A shows projections of these five SA
trajectories onto the above two PCs; the overall drift of
which toward each other is also indicated (straight ar-
rows). During the 1 ns equilibration at 300 K, five separate
clusters of conformations P1c, P2c, P3c, P4c, and P5c
were obtained. As can be seen, although full convergence
toward a joint conformation has not been reached (most
likely due to the relatively short cooling period used in
the SA simulations), a clear trend toward such common
structure is seen.

To quantify the similarity and convergence of these five
clusters, we therefore picked a center structure from the
equilibration runs, which was closest to the center of these
five clusters according to their pairwise root mean-square
deviations (RMSDs) of the C-a atoms. For all equilibration
structures of all five clusters, a maximum RMSD < 0.1 nm
to the center structure was seen, with an average of 0.1 nm,
which indicates a level of convergence of these five SA runs
toward a common target structure that is comparable to the
thermal fluctuations at room temperature. Further, during
the SA and equilibration runs, all charged loop residues
(K234�R237) moved from their initial distance of 0.8 nm
to within 0.2 nm of the DNA backbone phosphate atoms,
thus forming stable salt bridges as expected. Further, such
strong loop/DNA interactions have also been postulated
for the one-way revolution DNA packaging model (15).
We therefore used the (equilibrated) central structure for
all subsequent simulations.
Equilibration of the refined connector-DNA
complex

During the above SAMD refinement, position restraints
were applied on both the connector (except loops) and the
DNA (see Materials and Methods). To also allow relaxation
of the whole DNA/connector interface, three independent
~370 ns equilibrium simulations (referred to as SimA,
SimB, and SimC) of the connector-DNA complex were car-
ried out, with the refined structure as start conformation (see
Materials and Methods). During these simulations, RMSDs
of relevant complex regions and the interactions between the
connector and the DNA were monitored to assess conver-
gence (see Section S1.1 and Fig. S3 in the Supporting
Material).

As can be seen in Fig. S3, A–D, after a sharp increase in
RMSD during the first 50 ns, the RMSD remains within
~0.17�0.27 nm for the whole connector and within
~0.14�0.20 nm for the channel region. Additionally, the in-
teractions between DNA and connector were strengthened
during the respective simulations after ~50 ns (Fig. S3,
J and L). A more detailed discussion of the equilibration re-
sults is provided in the Supporting Material. Based on these
results, we assumed the last 320 ns of the three equilibrium
simulations to be sufficiently equilibrated to distinguish
between the two previously described DNA packaging
models by subsequent MD simulations. The first 50 ns of
each trajectory were discarded.
Impact of the DNA on the connector structure

During the equilibrations, the connector structure was al-
lowed to adapt to the inserted DNA structure. To study the
impact of the DNA on the connector structure, untwisting-
twisting and compression-stretching motions were quanti-
fied by length and angle as sketched in Fig. S4. The obtained
changes in twist angle as a function of connector length are
shown in Fig. S5. As can be seen by comparison with our
previous simulations of the connector without the DNA
(10), the length fluctuations of both the whole connector
and middle region are essentially unaffected by the presence
of the DNA, and similarly the fluctuations of the middle
region twist angle.

In contrast, the twist fluctuations of the whole connector
in complex with the DNA shows increased diversity, mainly
due to structural fluctuations within the flexible bottom
region (10). For example, in SimA the twist fluctuations
of the whole connector are reduced by ~2.5� with respect
to the DNA-free structure, whereas no significant differ-
ences are seen in SimB and SimC (Fig. S6). Indeed, a
PCA analysis of the bottom region (Fig. S7; Table S2) shows
that the conformations explored during this SimA simula-
tion were entirely missed by the connector during the other
two SimB and SimC simulations, which are similar to the
DNA-free simulations. Although the small number of trajec-
tories, which we were able to collect, does not allow con-
clusions with high statistical significance, they do suggest
increased conformational plasticity of the bottom region
due to the DNA. Much less diversity is seen, in contrast,
for the middle region, where the conformations sampled
during the simulations show much more overlap (Fig. S7,
A and B). A more detailed discussion is provided in the
Supporting Material.

Interestingly, considerable conformational changes in
the bottom region are also observed in cryo-electron
microscopy density maps of mature bacteriophage (58),
which also contains DNA inside both the channel and the
capsid including the tail region. In contrast, in another
cryo-electron microscopy study (13), the connector struc-
ture in the presence of the empty procapsid, the pRNA,
and ATPase but without DNA is in good agreement with
the crystal structure. Together with the above observation
of increased structural heterogeneity in the simulations,
these results confirm that the observed conformational plas-
ticity is indeed due to the presence of the DNA. Overall,
during the DNA packaging, the connector’s middle region
is hardly affected by the presence of either the DNA
or the procapsid or the pRNA, whereas the bottom region
Biophysical Journal 110(2) 455–469
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conformations are heterogeneously changed by interactions
with the DNA.
FIGURE 3 Effect of the DNA on connector flexibility. Residue-wise

RMSFs calculated from equilibrium simulations of the connector with

(red) and without DNA (green) are compared to temperature factors

(blue) obtained from crystallography (31). Residues with an RMSF

<0.065 nm (horizontal dashed line) are considered to be rigid and flexible

otherwise.
Impact of the DNA on the connector’s elastic
properties

In our previous study, the elastic properties of the connector
were determined for the whole connector and the middle re-
gion in the absence of DNA using the MD simulations (10).
Therefore, we now asked to what extent the elastic proper-
ties of the connector are affected by the DNA. To address
this question, the elastic properties of both the connector
and the middle region were determined for untwisting-
twisting and compression-stretching motions as described
in our previous study (10). Similarly, these observed mo-
tions were quantified by the twist angles and the lengths
illustrated in Fig. S4.

Stretching and torsional spring constants were calculated
(Table S3) using the variances of probability distributions
of twist angle and length as described previously by us
(10). Moreover, the spring constant values were almost un-
changed during the last 100 ns of ensemble trajectory and
this result suggests that these values are sufficiently
converged (Figs. S8 A and S9, A–C). The stretching spring
constant of the whole connector in the presence of DNA is
29005 500 pN nm�1, similar to that obtained in the absence
of DNA (3100 5 500 pN nm�1). In contrast, both the
torsional and the stretching spring constants of the middle re-
gion were reduced in the presence of the DNA from 34005
600 to 2300 5 150 pN nm��2 and from 24,100 5 1500 to
20,000 5 3200 pN nm�1, respectively (10). These results
suggest that—contrary to what one may expect—the DNA
enhances both twisting-untwisting and compression-stretch-
ing motions of the connector.

To compare the connector’s stiffness in the presence and
absence of the DNA, Young’s elasticity moduli were calcu-
lated as described by Kumar and Grubmüller (10), assuming
homogeneous elastic properties of the connector. The ob-
tained moduli of 0.4 5 0.08 and 3.6 5 0.6 GPa for the
connector and middle region, respectively, are similar to
the values for the DNA-free channel (10). Moreover,
convergence analyses show that the computed Young’s
moduli values were almost unchanged during the last
100 ns of the ensemble trajectory (Figs. S8 B and S9 D).
Overall, therefore, the connector’s elasticity appears to be
unaffected by the DNA, as we had previously assumed
due to the exceptionally high rigidity of the connector. In
fact, the elastic modulus of the connector is similar to that
of other structural proteins such as the f29 capsid, collagen
fibrils, or silk (33,34,59–61).

One further remarkable feature of the connector is its
pronounced heterogeneity of its elastic properties, as char-
acterized previously by us (10). This finding suggested
that this property is essential, as it allows the connector to
withstand the large pressure difference generated by the
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viral DNA densely packed within the capsid. This idea,
however, rested on the assumption that the DNA does not
severely perturb the spatial arrangement of elastic proper-
ties. These simulations allowed us to test whether this is
actually the case.

To characterize the stiffness distribution inside the
connector in the presence of the DNA, root mean-square
fluctuations (RMSFs) were calculated as described in
Kumar and Grubmüller (10) from the three (SimA, SimB,
and SimC) equilibrium simulations. Fig. 3 compares the ob-
tained RMSFs values (red) with those of the DNA-free
connector (green) and the x-ray crystallographic tempera-
ture factors (blue). Overall, larger fluctuations are seen for
the connector/DNA complex than for the DNA-free
connector, particularly within the bottom region (residues
165�190). Remarkably, the loop regions that are in contact
with the DNA also show increased RMSF values, which is
explained by the larger structural heterogeneity of the loops
seen in the three independent equilibrium simulations.
Higher correlations between the RMSFs and temperature
factors for the upper and middle regions suggest that the
flexibility of these residues are rather unaffected by the
presence of the DNA. Specifically, the heterogeneity of fluc-
tuations and, therefore, spatial arrangement of elastic prop-
erties, is rather more pronounced than reduced by the DNA;
therefore, the previously proposed functional relevance of
this architecture (10) is underscored.
Deformation of the DNA during its confinement in
the channel

Above, the impact of the DNA on the connector is dis-
cussed; now we turn to the impact of the connector on the
DNA. Deformations of the DNA may be caused either by
direct interactions with the channel interior, or by external
forces generated by the ATPase and the pressure inside
the procapsid. Indeed, as Fig. 4, A–C, shows, the average



FIGURE 4 Deformation of the DNA helix induced by the connector

channel. Average atomic densities of the connector (magenta, green,

blue, red, and brown, and see Fig. 1) with the DNA (yellow) and from three

independent simulations, (A) SimA, (B) SimB, and (C) SimC. (D) Devia-

tions (solid line) and standard error (bars) from free, unperturbed DNA

geometry along the channel axis of the base-step parameters X-displace-

ment, inclination, helical-rise, and helical-twist. Top panel depicts the

position distributions of charged residues that are located inside the chan-

nel. LOOP shows the combined distribution of K234, K235, E236, and

R237. The position of D194 to K200 marks the bottom region; LOOP

also marks the loop region of the connector. D202, D208, and K209 are

located in the middle region.
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atomic density maps obtained from the three equilibrium
simulations (SimA, SimB, and SimC) suggest DNA defor-
mations at both the bottom and the loop regions. We charac-
terized these deformations by four structural descriptors of
the confined DNA (calculated from SimA, SimB, and
SimC) and compared them to those of the unbound DNA.
These four structural descriptors are the helical-rise, the he-
lical-twist, the inclination, and the X-displacement that
quantify helical length, helical twisting, helical bending,
and local helical displacement of local DNA segments,
respectively (62–64).

Deformation of the confined DNA during equilibrium
simulations

Fig. 4 D shows the obtained deviations from free DNA
of the four structural descriptors of the confined DNA along
the channel axis. To identify the connector regions where
the DNA specifically deformed, fluctuations in positions
of various connector residues, which quantify locations of
the loop, the middle and the bottom region are also shown
in the figure (top). As can be seen, the largest perturbations
are seen—for all four descriptors—mostly within the loop
and the bottom region. Specifically, the helical-twist angle
increased and decreased by ~10� in the loop and the bottom
region, respectively. Further, the local helical-rise length
decreased by ~1 Å and ~2 Å in the loop and the bottom re-
gion, respectively. Similarly, the inclination and X-displace-
ment of the base-steps either decreased or increased along
the channel axis as shown in this figure. These results
suggest that the confined DNA deformed particularly at
the loop, hinge, and the bottom regions of the connector.
Detailed analysis of helical-twist deviations for all possible
10 bp segments revealed that one segment maximally
untwists at the bottom region by ~9%, whereas another
segment maximally overtwists at the loop region by
~12%. Similarly, analyses of helical-rise deviations revealed
that one of the 10 bp segments is compressed by a maximum
~14% inside the channel. The deviations in both inclina-
tions and X-displacement show that the DNA helix locally
bends inside the channel with respect to its unbound form
(Fig. 4 D).

We note that, quantitatively, the degree of DNA defor-
mation, which is mainly determined by the elastic proper-
ties of the DNA, may depend on the particular force
field used in the MD simulations (65–67). In earlier MD
studies on DNAwith a similar force field (67), elastic prop-
erties such as stretch modulus and torsional rigidity were
found to be either similar or larger than experimental
values (68–70). We conclude that possible force field ef-
fects tend to increase the DNA stiffness in the simulations
and, therefore, we expect that the real deformation during
DNA packaging might be even larger than that observed
here.

Deformation of the confined DNA under mechanical stress

Next, to characterize the impact of external forces on the
DNA structure, we performed three independent force-
probe simulations (referred to as FP-T1 type in the Materials
and Methods). During these simulations, to mimic the me-
chanical force exerted by the ATPase, two DNA basepairs
located near the bottom of the channel were moved by
applying an external force in the direction of the procapsid
with a rate of 0.015 m/s (see Materials and Methods and
Fig. S2 A).

During these force-probe simulations, the average
compression in seven overlapping 14 bp DNA segments
(28–41, 29–42, ., 34–46) was calculated as a function of
the applied force (Fig. 5). This particular DNA segment
was chosen to allow direct comparison with experimental
results from fluorescence spectroscopy on the bacteriophage
T4 DNA packaging motor (71). As shown in Fig. 5, the
average compression of the 14 bp segment during the three
FP-T1 simulations increased with the applied force up to a
maximum of ~20% at ~400 pN; subsequently, the DNA he-
lix began to relax toward its original length. The DNA was
compressed at the start of the simulation because the DNA
basepairs that were located at the outer channel opening
(bottom region) were pushed into the channel by the applied
force, whereas the DNA basepairs present at the inner
channel opening (loop region) were fixed at their starting
position due to interaction with the loops. However, after
~20% compression, these DNA-loop interactions began to
Biophysical Journal 110(2) 455–469



FIGURE 5 Increasing compression of the DNA within the connector

channel under increasing external force during force-probe (FP-T1) simu-

lations. The DNA was translocated toward the procapsid as explained in

Fig. S2 A. Shown is the average compression (solid line) in seven overlap-

ping 14-bp DNA segments (28–41, 29–42, ., 34–46) as a function of the

applied external force and the standard error (bars) of each block from three

independent simulations.
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break down and the DNA started to regain its initial length
during the last phase of the FP-T1 simulations.

As shown in Fig. 5, the DNA compression induced by
external forces is more than twice as large as the equilibrium
deformation induced by the connector channel (SimA,
SimB, and SimC). Although the applied forces of several
100 pN were much larger than those expected for the pack-
aging process under physiological conditions (~20 pN), the
obtained maximum DNA compression is similar to the
value (~22%) determined by fluorescence spectroscopy
experiments on the stalled DNA packaging motor of bacte-
riophage T4 (71), which suggests that the observed defor-
mations are not unrealistically large. We note that the
DNA compression during the packaging process is yet
unknown. However, the observed DNA compression in a
stalled T4 procapsid portal is believed to be normal func-
tioning of the motor (71). The fact that similar deformations
are seen for both the f29 and the T4 (71) DNA packaging
motor channel also suggests that substantial DNA compres-
sion may be a common feature of DNA packaging of many
other head-tail bacteriophages with similar structural
architecture.

The observed marked compression is in fact required for a
recently proposed scrunchworm mechanism (72), according
to which the DNA is packaged in a cycle of compression
(A-DNA form) and expansion (B-DNA form), similar to
the movement of a scrunchworm. The required amount of
compression and expansion is compatible with that
observed in our FP-T1 simulations. Interestingly, the DNA
is overtwisted by >5� and positively X-displaced by 5 Å
in the loop and middle region of the channel (Fig. 4 D); in
contrast, the A-DNA form has a smaller helical-twist, a
smaller helical-rise, a positive inclination, and a negative
X-displacement with respect to the B-DNA form (73).
This result suggests that the DNA may not fully transform
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into the A-DNA form, as proposed in this hypothesis, and
that such full conversion may not be required. Although,
according to the four structural parameters discussed above,
the few basepairs in the lower region convert almost
completely into the A-form and the others do not, our sim-
ulations cannot rule out complete A-DNA conversion during
compression, due to potential force-field bias toward
B-DNA, limited simulation time, and possible interactions
with the other two motor components (pRNA and the
ATPase) as well as with the procapsid, which are not
included in our simulations.

How does the connector prevent DNA leakage?

According to the one-way revolution model, the connector
is expected to act as a one-way valve that prevents DNA
leakage caused by the high internal pressure generated dur-
ing DNA packaging. We tested this hypothesis by force-
probe MD simulations (referred to as FP-T2 in the Materials
and Methods), during which the DNA was forced to move
through the connector in both directions.

Does the connector act as a one-way valve?

For the connector to act as a one-way valve, the force
required for translocating the DNA toward the interior of
the procapsid should be smaller than that for forcing the
DNA in reverse direction. To test this idea, three indepen-
dent FP-T2 simulations were performed, during which a
33 DNA bp segment inside the channel was moved in
both inward and reverse directions of the procapsid. To
assess the velocity dependence of the required forces, two
different translocation velocities, 0.15 and 0.015 m/s (see
details in Materials and Methods), were used for each direc-
tion. To exert forces uniformly across the entire 33 bp
segment, such as to prevent nonphysiological deformations
of the DNA, identical harmonic potentials were applied on
all 32 centers of mass of consecutive but overlapping two
basepairs (Fig. S2 B). Movie S1 shows an animation of
the inward DNA translocation at 0.15 m/s during one of
the simulations. Fig. 6, A and B, shows average forces
(and standard errors) required to displace the DNA by one
basepair inward (red) and reverse (blue) from its initial
position.

Indeed, significantly larger forces are seen for the reverse
motions throughout. At a translocation velocity of 0.15 m/s
(Fig. 6 A), the average force to move each bp by 0.34 nm
inward was ~10 pN smaller than for the reverse direction;
for 10 times slower translocations (Fig. 6 B), a ~5 pN
smaller force was still required on average. These results
suggest that the connector favors inward transport of the
DNA over reverse transport.

We note that, to compare the forces during these simu-
lations, the displacement of only one base-step length
(0.34 nm) was considered here because, after full equilibra-
tion, a repetitive pattern is expected for each basepair. The
fact that the forces observed at 0.34 nm are generally larger



FIGURE 7 Enthalpic interaction strengths between DNA and connector.

(A) Interaction of the DNA with wild-type connector and connectors in

which one of the loop residues E233, K234, K235, E236, or R237 were

deleted, as indicated at the bottom. (B) Interaction of the DNA with intact

and truncated connector, in which six channel residues R162, D194, E197,

K200, D208, and K209 were deleted. Error bar shows the standard error,

calculated using the block-averaging method from the combined three inde-

pendent simulations.

FIGURE 6 Comparison of forces required to translocate the DNA in

opposite direction for wild-type (A and B) and modified (C and D)

connector. Shown are applied forces, the average of each block as a function

of the resulting displacement in the DNA for enforced motion with pulling

velocity 0.15 m/s (A and C) and 0.015 m/s (B andD) toward the viral capsid

(red) and in reverse direction (blue), as also described in Fig. S2 B; bars

indicate standard errors of each block from three independent simulations.

The modified connector involved K234A, K235A, and R237A mutations.
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than those at 0 nm indicates that, during enforced transloca-
tion, the system is not in equilibrium, because the channel
residues were not able to adapt to the new DNA position
due to the relatively fast motion of the DNA. Also, because
the translocation velocities during these simulations are
markedly larger than those under physiological conditions,
it is unclear whether the observed valve-like force asymme-
try, during the enforced inward and the reverse transloca-
tion, persists at physiological velocities. However, as the
DNA packaging has also been shown to be an inherently
nonequilibrium process with ultra-slow relaxation by opti-
cal tweezers experiments (14), we assume that the observed
force asymmetry is indeed functionally relevant—specif-
ically, at the later stages of the packaging process, when
the counteracting pressure inside the procapsid is large.

This notion is supported by the results of recent voltage-
ramping experiments (15,18), for which the connector was
embedded into a lipid membrane during voltage-ramping
experiments rather than being located within the capsid.
In these experiments, an even larger force asymmetry was
observed. In fact, only inward transport was observed,
whereas reverse translocation was fully blocked. The fact
that no such full blockage was observed in our simulations
(Fig. 6, A and B) may be caused by either large pulling
rate or different initial conditions: whereas the DNA was
located outside the channel at the beginning of the experi-
ments, in our simulations the DNA was already placed
inside the channel. We assumed the latter case because
in the optical tweezers experiments, when the DNA was
already present inside the connector channel after beginning
of the packaging process (26,27), the packed DNA was
observed to slip out of the procapsid, and subsequently,
this slipped segment was observed to be repackaged by
the motor. Taken together, the above simulations and
voltage-ramping results suggest that the connector acts as
a partial one-way valve, thereby reducing DNA leakage
out of the procapsid even under large pressure conditions.

Role of the connector’s loops

Next, we investigated the structural determinants for above
partial one-way valve functionality. As proposed in the one-
way revolution model, the connector loops may play an
important role (15). Specifically, the loops (A230–S244)
from each of the 12 connector subunits that have been
seen to interact with the DNA through charged residues
above and in mutagenesis experiments (20) are promising
targets. To quantify these loop-DNA interactions and to
assess the role of particular loop residues, Fig. 7 A shows
the average interaction enthalpy between the DNA and an
intact wild-type connector as well as five average interaction
enthalpies between the DNA and connector, for which the
interaction to the potentially interacting loop residues
E233, K234, K235, E236, or R237, respectively, has been
omitted. Strikingly, exclusion of the interaction enthalpies
to the conserved residues K234, K235, and R237 markedly
Biophysical Journal 110(2) 455–469
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reduces the total interaction enthalpy, whereas exclusion of
the two nonconserved polar residues, E233 and E236 (pro-
tonated), has no significant effect. This result suggests that
the observed strong interactions of these three positively
charged loop residues with the DNA are indeed functionally
relevant, in line with previous proposals (20).

For these strong interactions to be the structural determi-
nants for the connector’s valve functionality, one would
expect that removal of these interactions should reduce the
above force asymmetry. To test this idea, three further inde-
pendent force-probe simulations were performed for the
alanine mutant K234A$K235A$R237A, set up similar to
the FP-T2 simulations described above (see details in the
Materials and Methods). Fig. 6, C and D, shows the average
force required to move the DNA as a function of the
observed displacement for pulling/pushing rates of 0.15
and 0.015 m/s, respectively. Indeed, at both translocation
velocities, the force opposing reverse translocation was
significantly reduced for the mutant compared to the wild-
type, whereas the inward resistance force was nearly un-
changed by the mutation. Obviously, the charge interactions
of the three conserved loop residues K234, K235, and R237
with the DNA backbone do play a crucial role in the valve
mechanism of the connector. This finding is supported
by and explains mutagenesis experiments (20), in which
R237A, K234A, and K235A point mutations were found
to drastically reduce virus production rates by ~2500,
~1500, and ~100 times, respectively. The triple mutant
showed an even ~4000-fold reduction (20). Further, sedi-
mentation assays (18,20) showed pronounced DNA leakage
from the fully packed procapsid of these mutants.

These experimental and our computational results sug-
gest that the connector loops avoid DNA leakage out of
the viral procapsid during DNA packaging. The RMSF anal-
displacements show the inward and reverse motion of the loops from starting po

and DNA backbone (thick gray helix) used for the force-probe simulations. The lo

(thin lines) with loop structures (bold) and part of the DNA backbone (thick he

toward the interior of the capsid (red, ~FATPase) and in reverse direction (blue,
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ysis further above (Fig. 3), suggested that these loops are
highly mobile, however, and one may wonder how such
flexible scaffold is able to withstand the large DNA reverse
translocation forces, generated by the pressure inside the
capsid. We therefore asked to what extent differential struc-
tural changes within the loops during inward and reverse
DNA translocation might play a role.

The connector acts as a check-valve

We had hypothesized such a role previously (10), based on
the connector’s elastic properties. Specifically, we had sug-
gested that the connector might act as a check-valve, with
the loops acting as the required movable parts, as sketched
in Fig. 8, A and B (reverse and inward, respectively). The
above force-probe simulations now allow us to address the
question whether such check-valve-type motion of the loops
parallel to the DNAmotion is actually observed. To this end,
the average motion of loop segment (K234–R237) was
computed for all 12 subunits individually with respect to
their starting positions from the above three independent
FP-T2 simulations.

Fig. 8, C and D, shows the displacement of the centers of
mass of the four loop residues K234�R237 with respect to
their starting positions in all 12 subunits for both inward
(positive displacements) and reverse (negative displace-
ments) DNA translocation. Also shown are the applied
forces (color-coded) during the three individual FP-T2
simulations (one bar each) at pulling rates of 0.15 m/s
(Fig. 8 C) and 0.015 m/s (Fig. 8 D), respectively. Indeed,
considerable displacements of the loops in opposite direc-
tions by up to ~1.0 and ~0.75 nm at 0.15 and 0.015 m/s
pulling rates, respectively, are seen. Furthermore, as shown
above, the forces required to move the DNA in reverse were
larger than those for inward translocation. The considerable
FIGURE 8 Sketch and test of proposed check-

valve mechanism and conformational changes of

loops residues K234�R237 induced by opposite

DNA translocation, driven by either internal pres-

sure (Fpressure) or the ATPase (FATPase) during the

DNA packaging. In case (A), the loops are dragged

toward the channel interior, which thereby constrict

the inner opening of the channel by strongly inter-

acting with the DNA, and thus hinder reverse DNA

motion. In case (B), the loops are dragged outside

the channel, thereby facilitating DNA translocation

toward the capsid interior. (C and D) Average cen-

ter-of-mass displacements of the 12 loop segments

K234�R237 when the DNA was enforced for

translocation by 0.15 m/s (C) and 0.015 m/s (D),

for three independent force-probe simulations

(three vertical bars each). Colors indicate the

applied external force for the respective displace-

ment during the simulations. Positive and negative

sitions, respectively. (E) Starting structure of the connector (thin gray lines)

ops residues K234-R237 are highlighted in bold. (F) Sample final structures

lix) after force-probe simulations, when the DNAwas forced to translocate

~Fpressure) (see Fig. S2 B).
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amount of loop deformation is also visible in sample snap-
shots (Fig. 8 F) compared to the equilibrated structure
(Fig. 8 E); see also Movie S2. Closer structural analysis of
the force-probe simulation results support the model in
Fig. 8 A, according to which the loops, when dragged toward
the interior of the connector channel, narrow or even
obstruct the channel. As a result, charge and steric interac-
tions with the DNAwill be enhanced, thus opposing further
reverse motion of the DNA. Conversely, during inward
motion the loop flexibility tends to widen the channel,
thus weakening the loop-DNA interactions and facilitating
inward DNA translocation. We note that the connector
acts as a check-valve specifically when internal pressure is
largest inside the capsid, i.e., during the later stages of the
packaging process. We propose this check-valve motion as
the underlying mechanism for the observed transport asym-
metry during these stages, which therefore suggests this
mechanism to be essential for the connector function.
FIGURE 9 Arrangement of positively charged lysine residues and gap

between channel interior and DNA. (A) Combined position distribution

of four lysine residues from 12 subunits along the channel during the equi-

librium simulations. (B) Gap g ¼ Rp/Rn (solid lines) between the connector

channel wall and the DNA helix, calculated from three independent equilib-

rium simulations. The two colors (blue and magenta) depict the ratio calcu-

lated separately for the two DNA helical strands; error bar indicates the

standard error from three independent simulations.
Role of the four electropositive rings in the
connector channel

A further ingredient of the one-way revolution model is
that the DNA is packaged by ~2.5 bp/step through interac-
tions of the viral DNA with four electropositive rings of
the connector that are formed by residues K200, K209,
K234, and K235. A mutual separation of these rings by
~9 Å along the channel axis has been proposed as optimal
(15). Two of these rings, K200 and K209, are seen already
in the crystal structure (Fig. S1), whereas the structures of
the third and fourth rings, formed by K234 and K235,
respectively, were not resolved. The above interaction anal-
ysis (Fig. 7 A) already showed that K234 and K235 strongly
interact with the DNA; similarly we also investigated the
role and interactions of the other rings, specifically K200
and K209 and the other acidic or basic channel residues
R162, D194, E197, and D208. Fig. 7 B shows the average
interaction enthalpy of the DNA both with an intact wild-
type connector as well as with a connector in which each
of these acidic and basic residues have been omitted.

From this analysis, channel residue K200 clearly stands
out; upon exclusion, the interaction between the connector
and the DNA decreases by >1000 kJ mol�1. In contrast,
omission of the other channel residues had no significant ef-
fect. As a result, of the four proposed rings only three, K200,
K234, and K235, strongly interact with the DNA, whereas
the third ring, K209, seems to play only a minor role.

Because the one-way revolution model requires the pres-
ence of all four electropositive rings in a particular arrange-
ment, we asked how well the connector scaffold maintains
precise ring geometry in our equilibrium simulations. To
this end, Fig. 9 A shows the positional fluctuations along
the channel axis, calculated from equilibrium simulations
SimA, SimB, and SimC. Remarkably, whereas the positions
of residues K200 and K209 are kept accurately in place with
fluctuations <~4 Å, the residues K234 and K235 exhibit
very high structural heterogeneity, with positional fluctua-
tions along the channel axis of up to ~30 Å. Obviously,
residues K200 and K209 form a structurally quite stable
and well-defined ring structure, whereas the third ring
comprised of K234 and K235 is highly flexible (also from
Fig. 3) and markedly distorted (see also Fig. S1).

Notably, the distance between K200 and K209 rings, as
well as those between K209 rings and K234/K235 residues,
are ~20 Å (Fig. 9 A), which is twice the proposed distance
of ~9 Å each. With a DNA helical rise of 3.4 Å per base-
step, the channel region between the K200 and K209 rings
thus spans ~6 DNA bp, as compared to the ~2.6 bp required
by the one-way revolution model. One might argue that
deformations of the DNA inside the channel during translo-
cation may reduce this discrepancy; however, Fig. 4D above
shows that the DNA inside the channel tends to be com-
pressed during the simulations, such that the respective chan-
nel region of ~20 Å comprises even more (~75 1 DNA bp)
than the ~2.6 bp required by the one-way revolution model.

In summary, the above results are at variance with the two
ingredients of the one-way revolution model, namely 1) the
geometry of the electropositive lysine rings and 2) the
Biophysical Journal 110(2) 455–469
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number of DNA basepairs embraced by these rings. Also,
not all of the required ring/DNA interactions were seen in
our simulations; specifically no significant interaction to
residue K209 was observed. Also in previous mutagenesis
experiments, K200A and K209A mutations did not signifi-
cantly affect phage production, in contrast to K234A and
K235A mutations (18). These results, when combined, sug-
gest that the observed DNA packaging step size of ~2.5 bp is
independent of the structural arrangement of four lysine res-
idues proposed by the one-way revolution model.
Motion of the DNA during packaging

The one-way revolution model (15) and the push-roll model
(28) also differ in how the DNA is assumed to translocate
during packaging. According to the former, the DNA re-
volves without any rotation inside the motor channel,
whereas the latter model assumes that the DNA simulta-
neously rolls and rotates while being transported toward
the capsid interior. To resolve this controversy, we probed
the structural requirement of the connector channel for the
DNA revolution and rolling and further studied the DNA
rotation inside the channel.

Gap between the DNA and the connector channel

Both the DNA revolution and the DNA rolling motions
require a gap between the DNA helix and the channel wall
of the connector. In the push-roll model, this gap is defined
by the ratio of the channel radius (Rp) and the DNA helix
radius (Rn) (28). To quantify this gap, we calculated the
radius of the channel as well as that of the DNA helix from
the three equilibrium simulations SimA, SimB, and SimC.
Subsequently, radius ratios g ¼ Rp/Rn were calculated with
respect to the channel axis as shown in Fig. 9 B.

The largest radius ratio of 1.2 is seen at the center and at
both ends of the channel, whereas the ratio drops below 1.0
at the loop, hinge, and the bottom regions of the connector
(Fig. 9 B). Such narrow constrictions render DNA rolling in-
side the channel rather unlikely. Recently, De Donatis et al.
(12) proposed that the presence of a gap between the canon-
ical B-DNA and connector channels of several other bacte-
riophage supports DNA revolution models. However, the
constriction is particularly narrow specifically at the loop re-
gion, leaving no space for any gap in this part of the channel.
Such close enveloping of the DNA helix by the channel
wall, as observed in our simulations, renders both DNA rev-
olution and DNA rolling inside the connector channel rather
unlikely. Of course, these results do not rule out DNA rev-
olution or rolling motions within in the other two motor
components, namely the pRNA and the ATPase, for which
it is unclear how tightly they are linked to the connector.

Rotation of the DNA in the channel

Apart from the DNA rolling, the push-roll model assumes
the DNA rotation during the packaging process; therefore,
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we asked whether the channel might induce DNA rotation
upon its translocation.

For this to be the case, one would expect to see coupled
DNA translocation/rotation during our force-probe simula-
tions (FP-T1). To test if this is the case, Fig. S10 shows rota-
tional angles of three DNA segments with respect to their
displacements along the channel axis, as observed for the
three FP-T1 simulations described above. From a linear
correlation of �0.67 5 0.08, an average coupling of �4.2
5 0.9�/bp is obtained, which is well within the range of
�1.5 to �5�/bp estimated from optical tweezers studies
(4). We emphasize that no rotational forces were applied
on the DNA during any of the FP-T1 simulations, such
that the observed rotations can safely be assumed to be
induced via interactions with the connector channel.

We finally asked whether the DNA rotation might also be
coupled to the DNA compression characterized above.
Indeed, a coupling of �0.66 5 0.23�/Å was obtained with
a correlation of �0.67 5 0.08 from the FP-T1 simulations
(Fig. S11), which suggests that DNA compression induced
clockwise DNA rotation (4). The functional relevance of
these motion types during DNA packaging is unclear, and
clearly a more detailed study would be required to disen-
tangle causes and effects.

Recent optical tweezers experiments (4) suggested that
DNA rotation is required to overcome the 1.4�/bp geometrical
mismatch between the pentamer ATPase and the canonical
B-DNA at the end of each cycle, and thus to initiate the
next packaging cycle. The DNA rotation observed during
our force-probe simulations suggests that—and how—the
connector indeed facilitates this required rotation during the
DNA packaging process.
CONCLUSIONS

The f29 bacteriophage packaging motor transports viral
DNA into the preformed capsid against up to 40 5
20 atm pressure difference, generated by the already packed
DNA during phage assembly. Because this motor is one of
the strongest known motors with potential nanotechnologi-
cal applications, its molecular mechanism has been subject
of many studies, and several models for the DNA packaging
mechanism have been proposed. Recent experimental and
computational studies (1,74,75), with a particular focus at
role of the connector channel, have provided additional
evidence specifically for two of these models, the one-
way revolution (15) and the push-roll model (28). Here
we have investigated the interaction between DNA and
connector channel by atomistic simulations to distinguish
between these two models.

Unfortunately, the structure of the connector-DNA com-
plex has not yet been solved, such that the mutual interaction
between connector channel and DNA are yet unknown.
Therefore,wefirstmodeled and refined this complex and sub-
sequently performed equilibrium MD simulations to study
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the conformational changes in the connector and the DNA.
PCA of these simulation trajectories suggested that the
impact of the DNA on the connector’s middle region is small;
in contrast, some conformational changes of the bottom re-
gion due to the presence of the DNA were seen. Extending
a previous study of the connector’s elastic properties (10),
we here observed in our simulations that the elastic moduli
of the whole connector and the middle region are also hardly
affected by the presence of the DNA. As proposed earlier in
Kumar and Grubmüller (10), this property is essential for
the connector to withstand large mechanical stress. Further,
this finding supports our previous speculation that the middle
region’s a-helical scaffold is an essential structural feature of
other head-tail connectors of bacteriophage in general, such
as T7, SPP1, and P22 (76–82).

Vice versa, we next studied the impact of the channel
confinement on the DNA structure, both with and without
mechanical stress induced by external forces. Already in
the absence of external forces, the confinement of the
DNA inside the channel is seen to change its helical geom-
etry. During our force-probe simulations, imitating force
generated by the ATPase during packaging, the deformation
of the DNA further increased. In particular, a marked
compression of the DNA structure was seen, to a similar
extent than previously observed for the T4 bacteriophage
DNA packaging motor (71). It is, therefore, to be expected
that similarly pronounced DNA deformations will also
occur in other head-tail bacteriophage such as T4 (83),
T7 (76), P22 (81), or SPP1 (79). Importantly, the DNA
compression observed here supports a recently proposed
model, according to which the DNA is packaged in a cycle
of compression and expansion, very much like scrunch-
worm (72).

According to Hugel et al. (25) and the one-way revolution
model (15,18), function of the connector is to act as a
one-way valve to prevent DNA leakage due to counter-
pressure that builds up during packaging. Using force-
probe simulations, we have therefore studied whether the
connector is able to perform this function, by dragging the
DNA through the connector channel. Indeed, the connector
was found to favor the inward DNA translocation over the
reverse direction, thus supporting the proposed one-way
valve mechanism. Further, our force-probe simulations on
selected connector mutants suggest strong interactions
between the DNA and the charged loop residues K234,
K235, and R237, which suggests these interactions to be
the underlying functional determinants. Interestingly, these
interactions were seen to be much stronger for DNA reverse
motion than for motion in functional packaging direction. In
this case, the inner channel opening was seen to constrict
under exposure to the large internal pressure, eventually
reducing DNA leakage during the later stages of the pack-
aging process.

These observations are in line with the connector’s func-
tion as a check-valve, as previously proposed based on its
elastic properties alone (10). According to this mechanism,
the flexible loops behave similar to movable valve parts,
thereby widening or constricting the inner channel opening
during inward and reverse DNA translocation, respectively.

Further functional clues come from investigating the step
size of DNA transport. During DNA packaging, the f29
bacteriophage DNA is packaged by ~2.5 basepairs per
step (19,22). In the context of the one-way revolution
model, a ring-like arrangement of several conserved lysine
residues has previously been proposed to support this step
size (15). However, this particular packaging step-size
seems to be incompatible with the geometry and interaction
strengths of the respective lysine residues seen in our struc-
ture models and in our simulations. Rather, the packaging
step-size might be determined by the ATPase, as assumed
in the push-roll model (28). Because no structure of the
ATPase is available so far, this hypothesis could not be
further investigated.

The one-way revolution and the push-roll model also
differ in the type of DNA motion during the packaging
cycle (15,28). The tight packing of the DNA helix within
the channel interior determined from our equilibrium
simulations—essentially leaving no gap between the two
components—renders DNA revolution and rolling motions
unlikely inside the connector. However, our simulation
results neither support nor rule out DNA revolution and
rolling within the pRNA and ATPase rings, as these compo-
nents were not included within our simulations. Moreover,
the coupling between DNA rotation and DNA transloca-
tion, as observed in our force-probe simulations, suggests
that the connector may induce small DNA rotation during
packaging; such rotation is indeed required to overcome
the symmetry mismatch between ATPase and DNA during
the DNA packaging process, as recently proposed on the ba-
sis of optical tweezers studies (4).

In summary, our simulation studies, combined with the
available experimental data, suggest that during the later
stages of f29 DNA packaging, the main role of the
connector is to act as a check-valve, which reduces DNA
leakage despite the large pressure inside the viral capsid.
Strong interactions between the DNA and flexible loops
containing conserved positively charged residues at the
rim of the connector channel seem to be a major structural
determinant. The connector also compresses the DNA in
the process, in line with the recently proposed scrunchworm
hypothesis (72). During packaging, the connector induces
small DNA rotations, sufficient to overcome the 14� sym-
metry mismatch between a 10 bp DNA helical turn and a
pentamer ATPase, and thus to fine-tune the interactions be-
tween the ATPase and the DNA, as required for initiating the
next packaging cycle.

The functional roles of other two motor components,
namely the pRNA and the ATPase, remain to be studied at
atomic detail. It would be particularly interesting to investi-
gate the coordination of the connector with the pRNA and
Biophysical Journal 110(2) 455–469
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the ATPase during DNA transport, and would be a major
step toward uncovering in full detail the molecular mecha-
nisms of this strongest known molecular motor.
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homologies of a basic component of a DNA translocating machinery.
J. Mol. Biol. 347:895–902.

77. Cuervo, A., and J. L. Carrascosa. 2012. Viral connectors for DNA
encapsulation. Curr. Opin. Biotechnol. 23:529–536.

78. Cuervo, A., M. C. Vaney, ., L. Oliveira. 2007. Structural rearrange-
ments between portal protein subunits are essential for viral DNA
translocation. J. Biol. Chem. 282:18907–18913.

79. Lebedev, A. A., M. H. Krause, ., A. A. Antson. 2007. Structural
framework for DNA translocation via the viral portal protein.
EMBO J. 26:1984–1994.

80. Lhuillier, S., M. Gallopin,., S. Zinn-Justin. 2009. Structure of bacte-
riophage SPP1 head-to-tail connection reveals mechanism for viral
DNA gating. Proc. Natl. Acad. Sci. USA. 106:8507–8512.

81. Olia, A. S., P. E. Prevelige, Jr., ., G. Cingolani. 2011. Three-dimen-
sional structure of a viral genome-delivery portal vertex. Nat. Struct.
Mol. Biol. 18:597–603.

82. Veesler, D., and C. Cambillau. 2011. A common evolutionary origin for
tailed-bacteriophage functional modules and bacterial machineries.
Microbiol. Mol. Biol. Rev. 75:423–433.

83. Sun, S., K. Kondabagil,., V. B. Rao. 2008. The structure of the phage
T4 DNA packaging motor suggests a mechanism dependent on electro-
static forces. Cell. 135:1251–1262.
Biophysical Journal 110(2) 455–469

http://refhub.elsevier.com/S0006-3495(15)04750-5/sref37
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref37
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref37
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref38
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref38
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref38
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref39
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref39
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref39
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref40
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref40
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref40
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref41
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref41
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref42
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref42
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref43
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref43
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref44
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref44
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref45
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref45
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref45
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref45
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref45
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref46
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref46
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref46
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref47
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref47
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref47
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref48
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref48
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref48
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref49
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref49
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref49
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref50
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref50
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref50
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref51
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref51
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref51
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref52
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref52
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref53
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref53
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref54
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref54
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref55
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref55
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref55
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref56
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref56
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref57
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref57
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref57
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref58
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref58
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref58
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref59
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref59
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref59
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref60
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref60
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref61
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref61
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref62
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref62
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref62
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref63
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref63
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref63
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref64
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref64
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref64
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref65
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref65
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref66
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref66
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref66
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref67
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref67
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref68
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref68
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref68
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref69
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref69
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref69
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref70
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref70
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref71
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref71
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref71
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref72
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref72
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref72
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref73
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref73
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref74
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref74
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref75
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref75
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref76
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref76
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref76
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref76
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref77
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref77
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref78
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref78
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref78
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref79
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref79
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref79
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref80
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref80
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref80
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref81
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref81
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref81
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref82
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref82
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref82
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref83
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref83
http://refhub.elsevier.com/S0006-3495(15)04750-5/sref83


Biophysical Journal 

 

Supporting Material 

 

Phi29 Connector-DNA Interactions Govern DNA Crunching and 
Rotation, Supporting the Check-Valve Model 

Rajendra Kumar1 and Helmut Grubmüller1,* 
1Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical 
Chemistry, Göttingen, Germany 

 



S2 
 

Contents 
 

1. SECTIONS ......................................................................................................................... 3 

1.1. Equilibration of the Phi 29 Connector-DNA complex ................................................ 3 

1.2. Impact of the DNA on the connector .......................................................................... 4 

2. TABLES ............................................................................................................................. 7 

Table S1.................................................................................................................................. 7 

Table S2.................................................................................................................................. 7 

Table S3.................................................................................................................................. 8 

3. FIGURES............................................................................................................................ 9 

Figure S1 ................................................................................................................................ 9 

Figure S2 ................................................................................................................................ 9 

Figure S3 .............................................................................................................................. 10 

Figure S4 .............................................................................................................................. 11 

Figure S5 .............................................................................................................................. 12 

Figure S6 .............................................................................................................................. 12 

Figure S7 .............................................................................................................................. 13 

Figure S8 .............................................................................................................................. 14 

Figure S9 .............................................................................................................................. 15 

Figure S10 ............................................................................................................................ 16 

Figure S11 ............................................................................................................................ 17 

4. REFERENCES ................................................................................................................. 18 
 

 

 

 

 

 

 

 

 

 



S3 
 

1. SECTIONS 

1.1. Equilibration of the Phi 29 Connector-DNA complex 

Structural and energetic equilibration of the Phi 29 connector-DNA complex was monitored 

by quantifying RMSDs and interaction energies as a function of time (linear and logarithmic 

scale) derived from three ~370 ns MD simulations (SimA, SimB, and Sim C) as shown in 

Fig. S3. 

At first, RMSDs for different regions of the connector and the DNA were calculated using 

backbone atoms with reference to the starting structure. As seen in Fig. S3A−B, the RMSD of 

the whole connector rapidly increased to a maximum value of 0.24 nm during the initial 50 ns 

simulation time and subsequently remained at less than 0.27 nm during the three MD 

simulations. Similarly, the RMSD of the channel comprising middle, hinge and bottom 

region rapidly increased to a maximum value of 0.18 nm during the first 50 ns simulation 

time and subsequently remained at less than 0.2 nm (Fig. S3C−D). The RMSD of the loop-

DNA region fluctuated around values of 0.3, 0.38, and 0.42 nm after a gradual increase 

during the initial ~120 ns simulation time (Fig. S3E−F). The RMSD of the DNA fluctuated 

within a range of 1.0 to 2.0 nm after a sharp increase during the initial 10 ns simulation time 

(Fig. S3G−H).  

These results show that the whole connector and its channel region sharply deviate from the 

starting structure during the first 50 ns simulation time. Subsequently, the deviation rates 

markedly slowed down. During the following 320 ns of the simulations, the obtained 

maximum RMSD values of 0.27 and 0.2 nm for the whole connector and the channel 

structures, respectively, suggest a small structural deviation for this large structure. The loop-

DNA region changed (0.3 to 0.42 nm) from its earlier refined conformation during the three 

simulations. However, its conformation is not crucial to test the DNA packaging models 

because of the expected extreme flexibility of the loops.  

To monitor the energetic equilibration of the Phi29 connector-DNA complex, electrostatic 

(Fig. S3I−J) and van der Waals (Fig. S3K−L) interaction energies were calculated separately 

for the connector and the DNA as a function of time from the three above mentioned 

simulations. After rapid decrease in energies during the initial ~50 ns simulation time, the 

electrostatic and van der Waals energies either slowly decreased or fluctuated within ranges 

of -6000 to -4500 and -1100 to -700 kJ mol-1, respectively. The obtained energy values 
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suggest that the DNA interacts with the connector primarily through attractive electrostatic 

forces. 

Overall, the obtained RMSDs for both the whole connector and the middle region were small 

with respect to the molecule size (~3200 residues). Additionally, the interactions between 

DNA and connector were strengthened during the respective simulations. The simulations to 

study the DNA packaging models were considered to be equilibrated sufficiently because of 

the observed very small structural changes and increased interactions between the connector 

and the DNA during the last 320 ns. Therefore, all subsequent analyses were done using the 

last 320 ns MD trajectories; the initial 50 ns were discarded. 

1.2. Impact of the DNA on the connector 

The impact of the DNA on the connector structure during the packaging process is so far 

unclear. To study potential structural changes of the connector in presence of DNA, we 

calculated two structural descriptors, the twist angle and the length of the whole connector 

(shown in Fig. S4), quantifying the untwisting-twisting and stretching-compression motions, 

respectively. Additionally, previous studies suggested the middle region to be one of the 

stiffest protein regions (1). To study the impact of the DNA on this region, these descriptors 

were calculated for this particular region as well.  

For the whole connector, fluctuations in its twist angle were calculated as a function of its 

length (Fig. S5A). As seen in Fig. S5A, a two-peak distribution was obtained instead of a  

single-peak distribution, which was previously seen for the connector in absence of the 

DNA (1). This diversity in fluctuation was only observed for the twist angle. For a detailed 

analysis, the change in twist angle as a function of time was plotted and is shown in Fig. S6. 

The twist angle deviates by 2.3° from the starting crystal structure value of 74.2° during the 

first 25 ns (Fig. S6) simulation time as previously observed in simulations of the connector in 

absence of the DNA (1). However, after 180 ns of the SimA simulation time, the connector 

twist angle recovered to ~74.5°, and remained within the range of 74° to 75° during the 

course of the subsequent simulation (Fig. S6). The observed diverse fluctuation was caused 

by the recovery of the twist angle during the SimA simulation. This result suggests that the 

connector untwists and recovers its starting twist angle value in the presence of the DNA; 

however, it is unclear whether conformations also recover with the twist angle, which will be 

further discussed in the following paragraphs. 
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As seen in Fig. S5A, the obtained fluctuations of the whole connector length are in line with 

the previously observed behavior of the connector without DNA (1). This result suggests that 

the DNA does not affect the length of the whole connector (Fig. S5A). Next, fluctuations in 

twist angle and length of the middle region were calculated; the obtained distribution is 

presented in Fig. S5B. The middle region’s angle and length are comparable in presence and 

absence of the DNA (1). Therefore, we conclude this region was unaffected by the DNA 

during the simulations. 

The above presented results show that the whole connector twist angle regains its starting 

value during the course of the SimA simulation. However, monitoring twist angle and length 

are not sufficient to capture all conformational fluctuations of the connector. Consequently, 

the observed change in twist angle may not correspond to a full recovery of the crystal 

structure conformation during the simulations. To probe and characterize the conformational 

fluctuations during the simulations, principal component analyses (PCA) were performed on 

the middle and the bottom connector region with reference to the two most rigid helices of 

the middle region (Fig. 1). For the middle region, projections of the first two principal 

components (PC), which capture the largest conformational fluctuations, were calculated for 

the free and the bound connector. These fluctuations are compared in Fig. S7A.  

As shown in Fig. S7A, the middle region conformations were similar in presence and absence 

of the DNA during simulation SimB and differ along PC-1 and PC-2 during simulations 

SimA and SimC, respectively. Despite the difference in the conformational distribution 

during simulations SimB and SimC, this distribution partially overlapped with the 

conformations of the connector in absence of the DNA. To compare these deviations, three 

average structures were obtained from the filtered trajectories containing conformational 

fluctuations along only the first and the second PCs (Fig. S7B). These average structures 

appeard well aligned to each other upon visual inspection. RMSDs between the three 

structures were calculated pair-wise to quantify this alignment (Table S2). The obtained 

values aredeviated less than 0.8 Å implying that the observed conformational differences are 

rather minuscule (Table S2).  

Similarly, for the bottom region, projections of the first two PCs were calculated both for the 

free and the bound connector and were compared to each other (Fig. S7C). As seen in 

Fig. S7C, the bottom region conformations are similar to each other in presence and absence 

of the DNA with the exception of PC-1 during simulation SimA. To compare structural 
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deviations, three average structures were obtained from the three trajectories that were 

filtered for PC-1 and PC-2 (Fig. S7D). These structures appeared to be aligned to each other 

except for the six subunits during simulation SimA. Further, RMSDs were calculated pair-

wise for these structures (Table S2). A very small RMSD of 0.3 Å was obtained between the 

average structure of simulations SimB and SimC. In contrast, the RMSD of SimA with 

respect to SimB and SimC was comparatively large (2.2 and 2.1 Å, respectively).  

These results show that the conformation of the bottom region deviated from its crystal 

structure despite the above observed recovery of the twist angle during simulation SimA 

(Fig. S7). The angle was recovered by the slight shift in the subunit centers of mass used to 

calculate the angle.  

In summary, the observed structural deviation of the middle connector region is small in 

presence of the DNA (Table S2) compared with the DNA free connector conformation. In 

contrast, the conformation of the bottom region changes in DNA presence significantly. 
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2. TABLES 

 

Table S1: Heating-cooling cycles performed in SAMD simulations. The connector loops 

were heated up and cooled down consecutively 40 times during 10 ns of MD simulations. 

Each cycle consisted of 252 ps with two and eight steps of heating and cooling, 

respectively. 

Temperature 

(K) 

Time period 

(ps) 

Cumulative 

time (ps) 

Temperature 

(K) 

Time period 

(ps) 

Cumulative 

time (ps) 

300 20 20 600 20 162 

300-600 2 22 600-500 2 164 

600 22 44 500 20 184 

600-1000 2 46 500-450 2 186 

1000 50 96 450 20 206 

1000-800 2 98 450-400 2 208 

800 20 118 400 20 228 

800-700 2 120 400-350 2 230 

700 20 140 350 20 250 

700-600 2 142 350-300 2 252 

      

 

 

 

Table S2: RMSDs in Å between the average structures of the middle and 

the bottom region, which are shown in Figs. S7 B and D. 
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Table S3: Elastic constants of the whole connector and the middle region. These constants 

were calculated using three equilibrium MD trajectories, namely SimA, SimB and SimC. 

Standard errors were calculated using the block-averaging method with non-overlapping 

blocks.  

 Elastic properties Whole connector Middle region 

Stretching spring constant 2900 ± 500 pN nm-1 20000 ± 3200 pN nm-1 

Torsional spring constant − 2300 ± 150 pN nm deg-2 

Coupling constant − 7800 ± 4000 pN deg-1 

Young’s modulus elasticity 0.4 ± 0.08 GPa 3.6 ± 0.6 GPa 
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3. FIGURES 

 
Figure S1: Positions of five electropositive residues of the connector channel (grey) in 

presence of DNA (yellow). Three residues, K234 (blue), K235 (red), and R237 (green), are 

part of the loop region. Two residues, K200 (cyan) and K209 (magenta), form rings inside 

the channel. Only four opposite subunits of the connector dodecamer are shown for 

visibility. 

 

 
Figure S2: Two types of force-probe simulations were performed to move the DNA 

(green) through the connector channel (blue). Brown spheres depict the location of virtual 

reference particles. Red spheres represent C-alpha atoms, which were restrained during 

simulations to restrict translational and rotational motions of the connector. (A) The center 

of mass (single magenta sphere) of one base-step was pulled towards the upper virtual 

particle with a “virtual” spring (brown). (B) The centers of mass (line of magenta spheres) 

of 32 base-steps were pulled simultaneously towards both the upper and the bottom virtual 

particle with “virtual” springs (not depicted). 
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Figure S3: RMSDs and interaction energies during three equilibrium simulations, SimA 

(red), SimB (green), and SimC (blue). RMSD variations with respect to logarithmic and 

linear time are shown for (A-B) the whole connector, (C-D) the channel, (E-F) the loop-

DNA region, and (G-H) the DNA. Variations in (I-J) electrostatic and (K-L) van der Waals 

interaction energies between the connector and the DNA with respect to the logarithmic and 

the linear time are shown. The vertical black line indicates 50 ns simulation time in all 

plots. 
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Figure S4: Definition of the twist angle and length of the whole connector and the 

middle region. (A) Side view, (B) top view, and (C) front view of two opposite subunits 

(red and green). (A) The length L between the centers of mass (grey spheres) of the 

upper and the bottom region of the connector was used to quantify compression-

stretching motions of the connector. (B) Each subunit is tilted with respect to the 

principal axis by angle θi. The average of θi for twelve subunits was defined as twist 

angle to quantify untwisting-twisting motions. (C) Gray spheres depicted at the 

circumference of discs are C-alpha atoms from one of the helices of each subunit and the 

sphere at the center of the disc is the center of mass of these atoms. The length Lm of the 

middle region is quantified by the distances between the centers of mass of the upper and 

lower disc. The twist angle θm of the middle region is quantified by the rotation between 

the upper and lower disc. 
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Figure S5: Twist angle and length fluctuation analysis. (A) Twist angle and length of the 

whole connector (grey dots). The solid square depicts the value obtained from the X-ray 

crystal structure. Contour lines with spacing labeled in deg-1nm-1 illustrate joint 

probability densities for angle and length. (B) Twist angle and length of the connector 

middle region (grey dots). Contour lines with a spacing of 5 deg-1nm-1 show joint 

probability densities for angle and length. The dashed straight line shows the coupling 

between twist angle and length. 

 

 

 
Figure S6: Deviations in twist angle of the whole connector (red, green and blue dots) 

with respect to the crystal structure value (magenta line) during the three individual 

simulations (SimA, SimB, and SimC). Note that the simulation time is shown in 

logarithmic scale. 
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Figure S7: Comparison of conformational sampling during three and one equilibrium 

simulations of the connector with (red, green and blue) and without (black) DNA, 

respectively, using PCA. For reference, the projection of the X-ray crystal structure 

(magenta triangle) is shown. (A) Two-dimensional projection of first and second PCs that 

were obtained for the connector’s middle region. (B) Illustration of the average middle 

region conformations obtained from three trajectories (SimA, SimB, and SimC) after 

filtering for the first and second PC. (C) Projection plane for the connector bottom region. 

(D) Illustration of the average bottom region conformations that were obtained from 

respective three trajectories after filtering for the first and second PC. 
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Figure S8: Convergence in elastic properties of the whole connector during the simulations. 

Both the time-blocks (black dots) as well as average (blue line) values of the (A) Stretching 

spring constant and (B) Young’s moduli with respect to the time are shown for the whole 

connector. The property values were obtained from non-overlapping time-blocks of the MD 

trajectory. The obtained value from each block is shown as a black dot. The average value 

over the respective block size is shown as a blue solid line. 
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Figure S9: Convergence in elastic properties of the middle region during the simulations. 

Both the time-blocks (black dots) as well as average (blue line) values of the (A) Stretching 

spring constant, (B) Torsional spring constant, (C) Coupling constant and (D) Young’s 

moduli with respect to the time are shown for the middle region. The property values were 

obtained from non-overlapping time-blocks of the MD trajectory. The obtained value from 

each block is shown as a black dot. The average value over the respective block size is shown 

as a blue solid line. 
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Figure S10: Rotation of the DNA during the inward transport. All figures show the DNA 

rotation with respect to the inward DNA displacement of three 15 bp DNA segments during 

three FP-T1 simulations (SimA, SimB, and SimC). The correlation coefficient r between 

rotation and displacement is shown for each DNA segment. The slope m of the fitted line, 

which represents the coupling between rotational and translational motion of the DNA, is 

also shown for each segment during the three simulations. Average values including 

standard error of the correlation and the coupling are r = −0.67±0.08 and m = 

−4.2±0.9 °/bp, respectively, as referred to in the main text. 
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Figure S11: Rotation of the DNA with respect to its compression during inward transport. 

All figures show the DNA rotation with respect to the compression of three 15 bp DNA 

segments during three FP-T1 simulations (SimA, SimB, and SimC). The correlation 

coefficient r between rotation and compression is shown for each DNA segment. The slope 

m of the fitted line, which represents the coupling between rotation and compression of the 

DNA is also shown for each segment during the three simulations. Average values 

including standard error of the correlation and the coupling are r = −0.67±0.08 and m = 

−0.66±0.23 °/Å, respectively, as referred to in the main text.  
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