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Abstract

Protein-protein interactions play an important role in all biological processes. However, the principles underlying these
interactions are only beginning to be understood. Ubiquitin is a small signalling protein that is covalently attached to
different proteins to mark them for degradation, regulate transport and other functions. As such, it interacts with and is
recognised by a multitude of other proteins. We have conducted molecular dynamics simulations of ubiquitin in complex
with 11 different binding partners on a microsecond timescale and compared them with ensembles of unbound ubiquitin
to investigate the principles of their interaction and determine the influence of complex formation on the dynamic
properties of this protein. Along the main mode of fluctuation of ubiquitin, binding in most cases reduces the
conformational space available to ubiquitin to a subspace of that covered by unbound ubiquitin. This behaviour can be well
explained using the model of conformational selection. For lower amplitude collective modes, a spectrum of zero to almost
complete coverage of bound by unbound ensembles was observed. The significant differences between bound and
unbound structures are exclusively situated at the binding interface. Overall, the findings correspond neither to a complete
conformational selection nor induced fit scenario. Instead, we introduce a model of conformational restriction, extension
and shift, which describes the full range of observed effects.
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Introduction

Protein-protein interactions are crucial in most biological

processes, yet the principles governing the conformational effects

of these interactions are still poorly understood. X-ray structures of

protein complexes provide a wealth of high resolution structural

information but reflect a static snapshot of the structure, leaving

the mechanism of complex formation and dynamics in the

complex unaddressed. In addition, compared with the growing

number of experimentally determined structures of unbound

proteins, there is only a small number of known structures of

protein complexes. Computational methods are being developed

to derive complex conformations from unbound structures, but

this remains a challenging and highly non-trivial task [1]. With the

increase in computational power, flexibility has been introduced in

the computational methods, and shows promising results [2].

Two different models have been suggested to explain the

conformational differences observed experimentally between

bound and unbound proteins. The induced fit model [3] postulates

that after the formation of a preliminary ‘‘encounter complex’’, the

interaction between the binding partners induces conformational

changes into the complex structures. The conformational selection

model [4–6] takes into consideration the inherent flexibility of

proteins. According to this model, unbound proteins can with a

certain probability sample the same conformations as observed

when bound. In this model, changes in the free energy landscape

of the protein due to interactions in the complex shift the

conformational density towards the complex structure upon

binding. More recent studies [7,8] have indicated that elements

of both models play a role in protein binding with an initial

conformational selection step followed by induced fit rearrange-

ments [9].

A good model system to investigate the conformational effects of

complex formation is ubiquitin with its binding partners. Ubiquitin

is a 76 residue protein that plays an important role in metabolic

pathways, as the ubiquitination (covalent attachment of ubiquitin

to a lysine side chain of a protein) can, among other functions,

control the degradation or regulate transport of this protein. In this

function, ubiquitin is recognised by and interacts with a multitude

of other proteins. Lange et al. [10] found evidence for

conformational selection, showing low root mean square (rms)

differences between NMR solution structures of isolated ubiquitin

and x-ray structures of ubiquitin in complexes. Wlodarski and

Zagrovic [8] found indications for ‘‘residual induced fit’’ by

performing statistical analysis on the atomic detail of the same

structures. It has recently been shown [11] however, that the

observed differences between the experimental bound structures

and a molecular dynamics (MD) ensemble of unbound ubiquitin

decrease with an increasing number of snapshots considered from

the simulation ensemble, indicating that indeed conformational
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selection largely suffices to explaining the conformational hetero-

geneity of ubiquitin in different complexes.

Thus far most studies have focused on static snapshots of

ubiquitin complexes in comparison to solution ensemble of

unbound ubiquitin. Here, based on several experimental struc-

tures of ubiquitin in different complexes [12–22], we have

performed and analysed MD simulations of ubiquitin interacting

with different binding partners, thereby finally taking into account

the flexibility the proteins display in the bound state. It has been

shown [23] that MD simulations of unbound ubiquitin agree

quantitatively with solution NMR data.

Statistical evaluation of simulations of ubiquitin both in the

presence and the absence of a binding partner indicates

conformational selection to be the appropriate model for complex

formation when considering the dominant backbone dynamics,

while some localised differences between bound and unbound

ensembles can be found near the binding interface.

Results

Seventeen structures of ubiquitin in complex with eleven

different binding partners were selected from the protein database

(PDB) [24] (see table 1 for PDB codes and references). The

complexes were selected from the structures available in the PDB

according to quality and structural variety of ubiquitin. Each of

these structures was simulated both in the presence of the binding

partner (bound) and in its absence (control). Additional simulations

starting from two x-ray structures without binding partner (1UBI

[25] and 1UBQ [26]) were conducted for comparison.

Conformational overlap and restriction observed in the
main modes of ubiquitin backbone dynamics

To investigate the effect of binding on the backbone dynamics

of ubiquitin, a principal component analysis (PCA) of the

backbone atoms of residues 1–70 of the ubiquitin chain was

performed. It reveals a functionally relevant ‘‘pincer mode’’ in the

first eigenvector (Figure 1, previously described in [10]), that has

direct influence on the geometry of the ‘‘hydrophobic patch’’, a

group of three hydrophobic residues (Leu 8, Ile 44 and Val 70)

that are involved in most binding interfaces of ubiquitin with other

proteins (Figure S1). A 1ms simulation of unbound ubiquitin

(Figure 2 ‘‘1ubi’’) spans a conformational space similar to that

covered by a large number of known experimental structures from

both X-ray and NMR experiments (see also Figure S2).

Like the unbound simulation ensemble, also simulations of

bound ubiquitin show considerable conformational variety and in

fact show a conformational entropy similar to unbound simula-

tions (Figure S3, estimated according to [27]).

However, while the dynamics of bound ubiquitin ensembles are

considerable, specific restrictions can be observed in most of the 11

complexes when considering the main backbone dynamic modes

(Figure 2). All bound trajectories sample a subspace of that

spanned by the unbound trajectory. The first two eigenvectors

displayed here cover about 30% of the total variance (Figure S4),

and are the only ones for which significant differences between

Author Summary

Due to their importance in biological processes, the
investigation of protein-protein interactions is of great
interest. Experimental structures of protein complexes
provide a wealth of information but are limited to a static
picture of bound proteins. Ubiquitin is a signalling protein
that interacts with a wide variety of different binding
partners. We have used molecular dynamics simulations to
compare the dynamic behaviour of bound and unbound
ubiquitin in complex with different binding partners. Our
observations suggest that the conformations accessible to
bound ubiquitin, while often restricted in comparison to
unbound ubiquitin, still occupy a subspace of the
conformational space as those of unbound ubiquitin. This
corresponds to the ‘‘conformational selection’’ binding
model. Only on a local level near the binding interface,
differences between bound and unbound structures were
found in specific regions of the bound ensemble. To
account for the different types of behaviour observed, we
extend the currently available binding models by distin-
guishing conformational restriction, extension and shift in
the description of binding effects on conformational
ensembles.

Table 1. Structures used for simulation setup.

PDB code binding partner reference

1NBF Ubiquitin carboxyl-terminal hydrolase 7 (HAUSP) [12]

1P3Q CUE domain of Vacuolar protein sorting
associated protein (Vps9p)

[13]

1S1Q Tumor susceptibility gene 101 protein (TSG101) [14]

1UBI none (unbound reference) [25]

1UBQ none (unbound reference) [26]

1UZX UEV domain of Vps23 [15]

1XD3 Ubiquitin Carboxyl-terminal esterase L3 (UCH-L3) [16]

2D3G UIM from hepatocyte growth factor-regulated
tyrosine kinase substrate (Hrs-UIM)

[17]

2FIF Rab5 GDP/GTP exchange factor [18]

2G45 Ubiquitin carboxyl-terminal hydrolase 5 [19]

2HTH Vacuolar protein sorting protein 36 [20]

2IBI Ubiquitin carboxyl-terminal hydrolase 2 [21]

2OOB E3 ubiquitin-protein ligase CBL-B [22]

Structures used for simulation setup.
doi:10.1371/journal.pcbi.1002704.t001

Figure 1. Visualisation of the first PCA eigenvector. It
corresponds to pincer mode already described in [10]. The residues of
the hydrophobic patch (Leu8, Ile44 and Val70) are marked in red.
doi:10.1371/journal.pcbi.1002704.g001
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Figure 2. PCA results. Projection to the first two PCA-eigenvectors based on the backbone of residues 1–70 of all simulated ensembles. For
comparison, the unbound reference ensemble is also plotted in blue. The original xray structures are marked in yellow. Histograms for the projection
on the first eigenvectors are plotted above the corresponding plots. PDB codes for the starting structures of the simulations are in the upper left
corner of each plot. Capital letters denote the chain identifier.
doi:10.1371/journal.pcbi.1002704.g002
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bound and unbound ensembles could be observed (Figures 2, S5,

S6, S7).

In all but one of the bound ensembles, the free energy profile

along the ‘‘pincer mode’’ appears to have changed to shift the

equilibrium towards either side of the conformational range

(Figure 2). While in most cases the shift is partial and most of the

conformational space still is sampled (albeit with a lower

probability on one side), some trajectories can be described as

purely ‘‘open’’ (the ensembles based on the PDB structures 1xd3

and 2fif) or ‘‘closed’’ (ensembles based on PDB structures 1nbf and

2ibi). Besides the obvious exception of the ensemble 1ubi based on

an unbound ubiquitin structure, only one ensemble of bound

ubiquitin (2hth) shows a distribution very similar to the unbound

reference ensemble and therefore does not indicate restriction of

the ubiquitin dynamics in the complex.

Figure 3 shows a possible explanation for the restriction in both

the open and closed states in two of the complexes. Ubiquitin

bound to HAUSP (the binding partner in complex 1nbf) resides in

a cavity that restricts its conformation in the closed state. In the

open conformation, clashes would occur between residues Leu-8

and Thr-9 of ubiquitin and Ser-353 and Met-407 of HAUSP. In

the complex of ubiquitin and UCH-L3 (complex 1xd3), residues

Leu-8 and Thr-9 reside in a cavity of UCH-L3 when ubiquitin is

in the open conformation. In the closed conformation, a clash

between these residues and Leu-220 of the binding partner would

occur which precludes these conformations.

The C-terminal tail of ubiquitin, comprising residues 71–76,

shows high flexibility in the unbound and most of the bound

ensembles to a degree that some parts of it are fully resolved

only in four of the eleven experimental structures used for

simulation setup (PDB codes 1nbf, 1s1q, 1ubi and 2g45) with

three experimental structures (PDB codes 1uzx, 1xd3 and 2ibi)

missing only the last residue. Four of these structures (1nbf,

1xd3, 2g45 and 2ibi) are the only ones in this study that show a

significantly stronger restriction of dynamics if the C-terminal

residues are included in the analysis (Figure S8). Besides this, the

dynamic behaviour of the ubiquitin tail seems to be rather

unstructured. Hence, like in other studies [10,11] we focus on

the analysis of ubiquitin dynamics to residues 1–70 as we have

done in the PCA and will do in the following analysis, where

inclusion of the C-terminal residues also does not qualitatively

change the results while significantly increasing estimated

uncertainties (Figure S9).

Differences between bound and unbound
conformational ensembles as observed using Partial
Least Squares Discrimination Analysis (PLS-DA)

The principal component analysis indicates conformational

overlap between bound and unbound ensembles on the level of

the dominant collective backbone degrees of freedom. However,

PCA as a method is not aimed at discrimination, especially if the

amplitude of the differences is small compared to the variation

within the ensembles. It is well possible that differences between

the ensembles on a more local level are not detected by PCA. To

determine differences between multidimensional ensembles,

partial least squares discrimination analysis (PLS-DA, cf. Mate-

rials and Methods) has been found to be more effective than PCA

[28].

Indeed, using this method, models can be found to almost

completely distinguish some of the bound ensembles from the

unbound reference ensemble The magnitude of these differences is

however significantly smaller than that of the main fluctuation

modes of ubiquitin (compare length-scales in Figures 2 and 4).

PLS-DA distinguishes between ensembles both on a global as

well as on a local level. Even the systematic difference between two

ensembles in e.g. a single side chain rotamer will result in a zero

overlap.

While both bound and unbound control ensembles are fully

covered by the unbound reference ensemble along the main mode

of ubiquitin dynamics (Figure 5 A), the coverage of the bound

ensembles after PLS-DA on the backbone atoms of residues 1–70

(Figure 5 B) is found to be significantly lower. When also

considering all non-hydrogen side chain atoms (Figure 5 C),

several bound ensembles are no longer covered by the unbound

reference ensemble. To validate the significance of the observed

differences, the same method has been applied to calculate the

coverage of unbound control ensembles by the unbound reference

ensemble. It was found to be significantly higher (i.e. almost full),

as expected.

The observed differences correlate well (r~{0:92) with

number of ubiquitin atoms involved in binding (i.e. with a

distance of less than 0:6nm from the binding partner, Figure 5 D).

Figure 3. Steric clashes restricting pincer mode dynamics in the
complex. Detail from the xray structure (A) 1nbf (ubiquitin bound to
HAUSP) and (B) 1xd3 (ubiquitin bound to UCH-L3). For each structure,
the compatible ubiquitin structure is shown in blue, while an
incompatible structure that has been fitted to the same position is
shown in yellow. Clashes with the binding partner are marked in
orange.
doi:10.1371/journal.pcbi.1002704.g003
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Hence a more extensive binding interface correlates with more

significant differences to the unbound state.

Local conformational differences on the residue level can
be observed using PLS-DA

To localise differences between bound and unbound ensembles,

individual PLS-DA calculations were performed on the confor-

mations of each residue (including side chains) of ubiquitin

separately after fitting the backbone of the whole chain.

Only a small number of residues for each complex ensemble

show an overlap with the unbound reference ensemble which is

significantly below 1:0 and none of them shows an overlap below

0:2, Most of the unbound control ensembles show almost complete

(1:0) overlap with the reference ensemble. The observed differ-

ences due to binding interactions are local, as all of the residues

found to change their conformation are located near the binding

partner (Figure 6).

Again, in none of the cases, a complete distinction between

bound and unbound ensembles could be found. Even for the

residue displaying the smallest overlap between bound and

unbound ensembles (residue His68 in ensemble 1nbf chain C) a

small fraction of bound structures can be found in the same

conformational region as the unbound ones (Figure 7).

Discussion

We compared ensembles of ubiquitin structures from molecular

dynamics simulations with and without binding partners aimed at

a detailed investigation of the conformational effects of protein

binding.

The main collective mode of fluctuation found in unbound

ubiquitin is the ‘‘pincer mode’’ which strongly influences the

shape of the binding surface (Figure 1). It has been indicated [10]

that the flexibility of this mode is essential for ubiquitin to

interact with a large number of different binding partners.

Indeed, this mode is characteristically affected by binding, as all

but one of the bound ensembles show a significant shift or

restriction of conformational density, while still the whole range

of flexibility of unbound ubiquitin is required to accommodate

all observed bound states. Since all bound ensembles are

completely covered by the unbound ensemble along the pincer

mode, the conformational selection model is applicable for this

aspect of binding.

Employing the partial least squares discrimination analysis

method, that specifically aims at identifying differences between

ensembles, low amplitude difference modes between bound and

unbound ubiquitin ensembles were identified.

Figure 4. PLS-DA results on backbone atoms of residues 1–70. Different bound ensembles (red) and the unbound reference ensemble (blue)
have been projected onto the difference vector between these ensembles as determined by PLS-DA.
doi:10.1371/journal.pcbi.1002704.g004
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The observation of the unbound protein displaying the bound

state conformation is often considered indicative of conformational

selection ([6,10,11,29]). We observed a significant fraction of the

unbound ubiquitin ensemble showing a strong similarity (espe-

cially in the main pincer mode) to the conformations of bound

ubiquitin. This is consistent with a conformational selection

binding scenario, while the differences between bound and

unbound ensembles on the local level indicate residual induced

fit effects as have been introduced in recent binding models [7–9].

It is still possible that a portion of the binding events occurs

according to an induced fit scenario. An alternative classification

of the binding process is based on the inclusion of binding kinetics

[30–32]. As we have concentrated our analysis on the comparison

of bound and unbound states rather than on association and

dissociation events, a kinetic approach is beyond the scope of this

paper.

An aspect not considered in recently discussed binding models

[7–9] is the dynamic nature of bound proteins. Earlier work [33]

already indicated that binding does not necessarily decrease the

conformational entropy of proteins. We have also found that the

dynamics of the bound ubiquitin ensembles are on a similar scale

as those of unbound ubiquitin (Figures 2, S3).

In general, two effects of binding on the conformational space of

the protein can be expected (Figure 8). Conformations accessible

to the unbound protein can be prohibited by interactions (Figure 3)

with the binding partner (conformational restriction) while

conformations that were energetically unfavourable to the

unbound protein can become accessible due to favourable

interactions with the binding partner (conformational extension).

These two effects are not mutually exclusive and indeed in most

cases we observe a combination of both effects in the binding

behaviour of ubiquitin. In the most extreme cases, all conforma-

tions accessible to the unbound protein are restricted, with all the

conformations in the complex being the effect of conformational

extension. This ‘‘conformational shift’’ corresponds best to the

induced fit binding model.

In the case of conformational extension, changes of the energy

landscape due to binding allow the protein to access conformations

that are energetically unfavourable in the absence of the binding

partner. While not generally considered, conformational extension

is well compatible with the conformational selection model of

binding, as the binding process itself can well take place in the

overlap between the bound and unbound states.

Most complexes considered in this study can be described by the

scenario of conformational extension combined with conforma-

tional restriction, showing a significant overlap between bound

and unbound ensembles. Interestingly, also for those complex with

near-zero overall overlap, substantial overlap is found between the

bound and unbound states on the level of individual residues.

Hence, for these complexes, each residue samples states in the

unbound state that are found in the bound state, but the

probability to find all contact residues in a complex compatible

state simultaneously approaches zero for these complexes, resulting

in zero overall overlap.

The consideration of conformational ensembles is a common

feature of modern computational protein docking approaches to

account for conformational changes due to binding [2,34]. Our

results suggest that while native conformational ensembles are

likely to yield good binding conformations on a global scale, small-

scale structural adaptions at the binding interface seem to occur

that are specifically caused by interactions with the binding

partner.

Materials and Methods

Molecular dynamics simulation
From the Protein Data Bank (PDB, [24]), eleven structures of

ubiquitin in complex with a binding partner and two structures of

unbound ubiquitin were selected (see table 1 for PDB codes and

references). To avoid unspecific interactions, structures containing

more than one complex were separated before simulation.

Simulations were performed using GROMACS 4 [35]. In

accordance with recent evaluations of simulation setups ([23]

and [36]) the ffamber port [37] of the amber99sb force field [38],

particle-mesh Ewald electrostatics [39,40] were employed with

fourth order interpolation, a maximum grid spacing of 0:12nm
and a cutoff of 0.9 nm. Water was modelled using the SPC/E

water model [41]. A twin-range van der Waals cut-off (0.9/

1.4 nm) was used. Both protein and solvent where separately held

at a temperature of 300 K using the v-rescale algorithm [42]

(tT~0:1ps) and pressure coupled at 1 bar using the Berendsen

algorithm [43] (tp~1ps). A 4fs time step was achieved by using

Lincs bond constraints [44], SETTLE [45] constraints on water

and virtual sites [46]. After a steepest descent energy minimisation

and a 1 ns equilibration using position restraints on the protein, 10

production runs of 100 ns each were performed for each

ensemble, using random starting velocities. Simulation snapshots

were taken every 10ps for analysis (this seems to be more than

sufficient as a 100ps sampling returns about the same general

results as can be seen in Figure S10). For each simulation of bound

ubiquitin, an unbound control simulation from the same starting

structure of ubiquitin was performed without the binding partner.

To allow for relaxation of structural differences, the first 10 ns of

the production run was not included in the analysis. An unbound

reference ensemble was created from simulation trajectories based

on the unbound x-ray structures 1UBI and 1UBQ and these

Figure 5. Coverage of different ensembles by the unbound
reference ensemble. The histogram-coverage of bound ensembles
(red) compared to coverage of unbound control ensembles (blue) after
projection of the structures onto the first PCA-eigenvector (fig. 2) of
backbone atoms of residues 1–70 (A), the PLS-DA difference vector of
backbone atoms of residues 1–70 (B and D), and the PLS-DA difference
vector of all non-hydrogen atoms of residues 1–70 (C). Ensembles in A–
C have been sorted according to the coverages displayed in C.
Uncertainties have been determined using the stationary bootstrap
method.
doi:10.1371/journal.pcbi.1002704.g005
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unbound control trajectories. Ensembles based on similar struc-

tures (i.e. from starting structures from the same PDB entry) were

not used in comparisons with either bound or control ensembles.

Principal component analysis
Principal component analysis [47–49] has been performed on a

structural ensemble consisting of structures (snapshots every 20ps)

from the 17 bound and 20 unbound simulation ensembles

simulated for this study. PCAs based on only unbound or only

unbound simulation ensembles resulted in very similar eigenvec-

tors (Figures S11 and S12). The backbone atoms of residues 1–70

of ubiquitin have been used for both fitting and analysis resulting

in 630 degrees of freedom. All ensembles have been projected on

the first eight eigenvectors found in this analysis (fig. 2, S5, S6,

S7).

Partial Least Squares Discrimination Analysis
Partial least squares regression (PLS) can be used to find a linear

model to calculate an external parameter from protein structures.

By defining a label of which structures belongs to which class (in

this case {1 denoting structures from unbound ensembles and

z1 denoting structures from bound ones) as this external

parameter, PLS can be used to calculate a model which describes

differences between these two classes of structures provided such a

difference exists. The resulting linear model yields a difference

vector similar to a PCA eigenvector.

If a structural difference between the classes exist, the projection

of structures onto this difference vector will make it possible to

assign a structure to one or the other class. If it is not possible to

completely distinguish structures belonging to the two different

classes, the model will still produce the best possible distinction,

allowing quantification of the remaining overlap between bound

and unbound ensembles. For this, both ensembles are projected

onto the difference vector and histograms of the projections are

calculated (fig. 4).

The PLS-DA algorithm used in this study produces a model

that maximised the difference of the projection of two structures

from different classes (bound vs. unbound) while minimising the

difference between structures from the same class. Consequently, if

more than one structural mode can be used to distinguish the two

classes, the resulting model will not necessarily represent both of

them, especially if one would result in stronger variation within the

classes. While the method can be used to determine whether or not

a full distinction between bound and unbound ensembles can be

found, additional steps are necessary to fully characterise the

structural differences. For this, PLS-DA was performed on sub-

Figure 6. Overlap between bound (red) and unbound control (blue) ensembles. Overlap has been calculated with the unbound reference
ensemble after projection to the difference vector found by PLS-DA on single residues after fitting to the backbone and plotted versus distance from
the binding partner. Residues displaying a significant difference in the bound ensemble are labelled.
doi:10.1371/journal.pcbi.1002704.g006
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groups of atoms (i.e. the backbone as well as each residue including

side chain individually) after fitting of the ensemble on the

backbone atoms.

Helland’s Algorithm [50] as implemented by Denham [51] was

used to perform the partial least squares discrimination analysis

(PLS-DA) on the simulation ensembles. PLS performs a regression

on a basis that is optimised to correlate with the external

parameter. Choosing a high dimensional basis generally improves

the quality of the model on the training data but can decrease its

predictive power due to overfitting. For this, the combined

structures of the bound and unbound ensemble were divided into a

model building set (containing half of both ensembles) and a test

set (containing the other half of each ensemble). Comparing model

quality for both training and test set (Figure S13) shows both

correlations to reach a plateau for w5 dimensions and no

overfitting effects, so a ten dimensional basis was used in all PLS-

DA calculations.

For comparison, both ensembles were sorted into the same set

of 100 bins spanning their combined range. The overlap of one

ensemble by the other is defined as the normalised sum of the

products of the number of structures for each bin. Coverage of one

ensemble by another is defined as the fraction of structures from

the first ensemble in bins containing a minimum number (50) of

structures from the other ensemble.

The stationary bootstrap algorithm [52] was used to estimate

the uncertainty of overlaps and coverage.

Supporting Information

Figure S1 The importance of the hydrophobic patch in
ubiquitin binding. Distance of the ubiquitin residues in all

complexes from the binding partner. Residues Leu-8, Ile-44 and

Val-70 (the ‘‘hydrophobic patch) have been marked in red. With

two exceptions (Ile-44 and Val70 in complex 2g45) all hydropho-

bic patch residues are within 0:6nm of the binding partner.

(TIFF)

Figure S2 Simulation ensembles cover the same con-
formational space as known experimental structures.
PCA projection of unbound MD simulation (starting structure

1ubi, red and a collection of experimental xray (black, 139

structures from 63 different PDB entries) and NMR (blue, 783

structures from 35 different PDB entries) structures.

(TIFF)

Figure S3 Bound ensembles show significant structural
dynamics. Conformational entropy observed in unbound (blue)

and bound (red) simulation ensembles estimated according to the

Schlitter formula excluding (A) and including (B) the flexible C-

terminus.

(TIFF)

Figure S4 Eigenvalue spectrum for the first 50 eigen-
vectors of the PCA used in the main paper (backbone
atoms 1–70).
(TIFF)

Figure S5 Projection to higher order eigenvectors shows
no significant differences between bound and unbound
ensembles. Projection to PCA-eigenvectors 3 and 4 of all

simulated bound ensembles based on the backbone of ubiquitin

residues 1–70. For comparison, the unbound reference ensemble is

also plotted in blue, the original xray structures are marked in

yellow. PDB codes for the starting structures of the simulations are

in the upper right corner of each plot. Capital letters denote the

chain identifier.

(TIFF)

Figure S6 Projection to higher order eigenvectors shows
no significant differences between bound and unbound
ensembles. Projection to PCA-eigenvectors 5 and 6 of all

simulated bound ensembles based on the backbone of ubiquitin

residues 1–70. For comparison, the unbound reference ensemble is

also plotted in blue, the original xray structures are marked in

yellow. PDB codes for the starting structures of the simulations are

in the lower left corner of each plot. Capital letters denote the

chain identifier.

(TIFF)

Figure S7 Projection to higher order eigenvectors shows
no significant differences between bound and unbound
ensembles. Projection to PCA-eigenvectors 7 and 8 of all simulated

Figure 7. Example of a difference found in PLS-DA and it’s
structural origin. Histogram of the projection of bound (red) and
unbound (blue) ensemble onto the difference vector found by PLS-DA
for residue His68 of ensemble 1nbf chain C. Out of all 11 complexes
studied, this residue shows the smallest overlap between bound and
unbound ensembles. The inset shows the corresponding structures
from the simulation ensembles.
doi:10.1371/journal.pcbi.1002704.g007

Figure 8. Schematic description of the proposed binding
models. The blue ensemble would be that of the unbound protein,
the red that of the bound. A sketch of possible free energy profiles
fitting the corresponding models is given on the right.
doi:10.1371/journal.pcbi.1002704.g008
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bound ensembles based on the backbone of ubiquitin residues 1–70.

For comparison, the unbound reference ensemble is also plotted in

blue, the original xray structures are marked in yellow. PDB codes for

the starting structures of the simulations are in the lower left corner of

each plot. Capital letters denote the chain identifier.

(TIFF)

Figure S8 Alternative PCA including all backbone atoms
of ubiquitin. Projection to the first two PCA-eigenvectors of all

simulated bound ensembles based on the backbone of all ubiquitin

residues (1–76). For comparison, the unbound reference ensemble

is also plotted in blue, the original xray structures are marked in

yellow. Histograms for the projection on the first eigenvectors are

plotted above the corresponding plots. PDB codes for the starting

structures of the simulations are in the upper left corner. Capital

letters denote the chain identifier.

(TIFF)

Figure S9 Coverage of different ensembles by the
unbound reference ensemble. The histogram-coverage of

bound ensembles (red) compared to coverage of unbound control

ensembles (blue) after projection of the structures onto the first

PCA-eigenvector (fig. 2) of backbone atoms of residues 1–76 (A),

the PLS-DA difference vector of backbone atoms of residues 1–76

(B and D), and the PLS-DA difference vector of all non-hydrogen

atoms of residues 1–76. Ensembles in A–C have been sorted

according to the coverages displayed in C. Uncertainties have

been determined using the stationary bootstrap method.

(TIFF)

Figure S10 Influence of sampling on ensemble cover-
age. Comparison of the results illustrated in 5 B (here: A) and C

(here: B) for two different sampling frequencies, 10ps (green) and

100ps (orange).

(TIFF)

Figure S11 Comparison of PCA eigenvectors based on
all trajectories and unbound trajectories only. Inner

product calculated between the first 10 eigenvectors of both PCAs.

(TIFF)

Figure S12 Comparison of PCA eigenvectors based on
all trajectories and bound trajectories only. Inner product

calculated between the first 10 eigenvectors of both PCAs.

(TIFF)

Figure S13 Cross correlation test of PLS-DA models.
Correlation between target and model for training (green) and test

(orange) set for PLS-DA between unbound and bound ensembles

based on backbone atoms of residues 1–70 evaluated for different

basis dimensionality.

(TIFF)
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