The rate coefficient $r(t)$ for barrier crossing is approximated by the transition state result

$$
\begin{equation*}
r(t)=\frac{D}{\int_{\text {well }} \exp \left(-\beta \tilde{G}_{\mathrm{NE}}(x, t)\right) \mathrm{d} x \int_{\ddagger} \exp \left(\beta \tilde{G}_{\mathrm{NE}}(x, t)\right) \mathrm{d} x} \tag{S1}
\end{equation*}
$$

where the one-dimensional free energy landscape $\tilde{G}_{\mathrm{NE}}(x, t)$ as a function of the reaction coordinate x is obtained from projecting the two-dimensional (non-equilibrium) free energy landscape $G_{\mathrm{NE}}(x, y, t)$ onto the reaction coordinate x (note that $\mathbf{x}=(x, y)$),

$$
\begin{equation*}
\tilde{G}_{\mathrm{NE}}(x, t)=-k_{B} T \ln \left(\int_{-\infty}^{\infty} G_{\mathrm{NE}}(x, y, t) \mathrm{d} y\right) \tag{S2}
\end{equation*}
$$

and the latter is defined via the solution $p(x, y, t)$ of the Smoluchowski equation given by Eq. (7) on page 2 in the main text,

$$
\begin{equation*}
G_{\mathrm{NE}}(x, y, t)=-k_{B} T \ln p(x, y, t) \tag{S3}
\end{equation*}
$$

In Eq. (S1), the first integral is taken over the half-plane $x<x_{b}$ (well), and the second over an appropriate transition state region (\ddagger), e.g., $x_{b}-\Delta x<x<x_{b}$ with Δx chosen such that $p\left(x_{b}-\Delta x, y, t\right) \ll p(x, y, t)$.

To evaluate the integrals in Eq. (S1) and in Eq. (S2), the factorization $p(x, y, t)=p_{x}(x, t) p_{y}(x, y, t)$ is used, with

$$
\begin{equation*}
p_{x}(x, t)=\frac{1}{\sqrt{2 \pi} \sigma_{x}(t)} \exp \left[-\frac{(x-\langle x(t)\rangle)^{2}}{2 \sigma_{x}^{2}(t)}\right] \tag{S4}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{y}(x, y, t)=\frac{1}{\sqrt{2 \pi} \sigma_{y}(t)} \exp \left\{-\frac{1}{2 \sigma_{y}^{2}(t)}[y-\langle y(t)\rangle+C(x-\langle x(t)\rangle)]^{2}\right\} \tag{S5}
\end{equation*}
$$

where

$$
\begin{gather*}
\sigma_{x}(t)=\sqrt{e_{1 x}^{2} \sigma_{1}(t)^{2}+e_{2 x}^{2} \sigma_{2}(t)^{2}} \tag{S6}\\
\sigma_{y}(t)=\left[\left(\frac{e_{1 y}}{\sigma_{1}(t)}\right)^{2}+\left(\frac{e_{2 y}}{\sigma_{2}(t)}\right)^{2}\right]^{-\frac{1}{2}} \tag{S7}\\
C=\left[\frac{e_{1 x} e_{1 y}}{\sigma_{1}(t)^{2}}+\frac{e_{2 x} e_{2 y}}{\sigma_{2}(t)^{2}}\right] /\left[\left(\frac{e_{1 y}}{\sigma_{1}(t)}\right)^{2}+\left(\frac{e_{2 y}}{\sigma_{2}(t)}\right)^{2}\right] \tag{S8}
\end{gather*}
$$

and

$$
\begin{equation*}
\sigma_{i}=\sqrt{\frac{1-e^{-2 \beta \lambda_{i} D t}}{\beta \lambda_{i}}} \tag{S9}
\end{equation*}
$$

is the width of $p(x, y, t)$ along the eigenvectors \mathbf{e}_{i} of \mathbf{C}, with $\mathbf{C}, \mathbf{e}_{i}$, and λ_{i} are as defined in the main text.
The integral in y-direction in Eq. (S2) is constant and thus cancels in Eq. (S1) such that, except for normalization of $p_{x}(x, t), \tilde{G}_{\mathrm{NE}}(x, t)=-k_{B} T \ln p_{x}(x, t)$. Because, further, also the normalization of $p_{x}(x, t)$ cancels in Eq. (S1), one obtains for the rate coefficient

$$
\begin{equation*}
\frac{D}{r(t)}=\int_{-\infty}^{x_{b}} \frac{1}{\sqrt{2 \pi} \sigma_{x}(t)} \exp \left[-\frac{(x-\langle x(t)\rangle)^{2}}{2 \sigma_{x}^{2}(t)}\right] \mathrm{d} x \cdot \int_{\langle x(t)\rangle}^{x_{b}} \sqrt{2 \pi} \sigma_{x}(t) \exp \left[+\frac{(x-\langle x(t)\rangle)^{2}}{2 \sigma_{x}^{2}(t)}\right] \mathrm{d} x . \tag{S10}
\end{equation*}
$$

Here, $\Delta x=x_{b}-\langle x(t)\rangle$ was chosen.
As the integrand of the second integral is peaked at $x=x_{b}$, a Taylor expansion of the exponent $(x-\langle x(t)\rangle)^{2} /\left(2 \sigma_{x}^{2}(t)\right)$ about $x=x_{b}$ provides a good approximation, yielding

$$
\begin{equation*}
\frac{D}{r(t)}=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x_{b}-\langle x(t)\rangle}{\sqrt{2} \sigma_{x}(t)}\right)\right] \cdot \frac{\sqrt{2 \pi} \sigma_{x}^{3}(t)}{x_{b}-\langle x(t)\rangle} \exp \left[\frac{\left(x_{b}-\langle x(t)\rangle\right)^{2}}{2 \sigma_{x}^{2}(t)}\right] \cdot\left\{1-\exp \left[-\frac{\left(x_{b}-\langle x(t)\rangle\right)^{2}}{\sigma_{x}^{2}(t)}\right]\right\} \tag{S11}
\end{equation*}
$$

By defining $\tau=\left(x_{b}-\langle x(t)\rangle\right) /\left(2 \sigma_{x}^{2}(t)\right)$, the rate coefficient is given by

$$
\begin{equation*}
r(t)=\frac{2 D \tau e^{-\tau^{2}}}{\sqrt{\pi} \sigma_{x}^{2}(t)(1+\operatorname{erf}(\tau))\left(1+e^{-2 \tau^{2}}\right)} \tag{S12}
\end{equation*}
$$

