The rate coefficient r(t) for barrier crossing is approximated by the transition state result

r(t) = D
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where the one-dimensional free energy landscape G’NE(CE, t) as a function of the reaction coordinate x is obtained from

projecting the two-dimensional (non-equilibrium) free energy landscape Gng(z,y,t) onto the reaction coordinate x
(note that x = (z,y)),
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and the latter is defined via the solution p(x,y,t) of the Smoluchowski equation given by Eq. (7) on page 2 in the
main text,

GNE(%ZJJ) = _kBTlnp(zvyvt) . (83)

In Eq. (S1), the first integral is taken over the half-plane x < x;, (well), and the second over an appropriate transition
state region (1), e.g., T, — Az < x < xp with Az chosen such that p(z, — Az, y,t) < p(z,y,1).
To evaluate the integrals in Eq. (S1) and in Eq. (S2), the factorization p(z, y,t) = p.(z,t)py(z, y,t) is used, with
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is the width of p(z,y,t) along the eigenvectors e; of C, with C, e;, and \; are as defined in the main text.
The integral in y-direction in Eq. (S2) is constant and thus cancels in Eq. (S1) such that, except for normalization
of p.(z,t), GNe(z,t) = —kpT Inp,(x,t). Because, further, also the normalization of p,(x,t) cancels in Eq. (S1), one
obtains for the rate coefficient
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Here, Az = xp — (2(t)) was chosen.
As the integrand of the second integral is peaked at x = m;, a Taylor expansion of the exponent (z—(z(t)))?/(202(t))
about x = x;, provides a good approximation, yielding
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By defining 7 = (23, — (x(t)))/(202(t)), the rate coefficient is given by
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