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Abstract: Molecular simulation is an extremely useful, but computationally very expensive tool

for studies of chemical and biomolecular systems. Here, we present a new implementation of

our molecular simulation toolkit GROMACS which now both achieves extremely high performance

on single processors from algorithmic optimizations and hand-coded routines and simultaneously

scales very well on parallel machines. The code encompasses a minimal-communication domain

decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver,

and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to

enable integration time steps up to 5 fs for atomistic simulations also in parallel. To improve the

scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in

addition used a Multiple-Program, Multiple-Data approach, with separate node domains

responsible for direct and reciprocal space interactions. Not only does this combination of

algorithms enable extremely long simulations of large systems but also it provides that simulation

performance on quite modest numbers of standard cluster nodes.

I. Introduction
Over the last few decades, molecular dynamics simulation
has become a common tool in theoretical studies both of
simple liquids and large biomolecular systems such as
proteins or DNA in realistic solvent environments. The
computational complexity of this type of calculations has
historically been extremely high, and much research has

therefore focused on algorithms to achieve single simulations
that are as long or large as possible. Some of the key early
work was the introduction of holonomic bond length
constraints1 and rigid-body water models2,3 to enable longer
integration time steps. However, one of the most important
general developments in the field was the introduction of
parallel molecular simulation implementations during the late
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1980s and early 1990s.4-7 The NAMD program by the
Schulten group8 was the first to enable scaling of large
molecular simulations to hundreds of processors, Duan and
Kollman were able to complete the first microsecond
simulation of a protein by creating a special parallel version
of Amber, and more recently Fitch et al. have taken scaling
to the extreme with their BlueMatter code which can use all
tens of thousands of nodes on the special BlueGene
hardware.9

On the other hand, an equally strong trend in the field has
been the change of focus to statistical properties like free
energy of solvation or binding of small molecules and, e.g.,
protein folding rates. For this class of problems (limited by
sampling) the main bottleneck is single-CPU performance,
since it is typically always possible to achieve perfect scaling
on any cluster by starting hundreds of independent simula-
tions with slightly different initial conditions. This has always
been a central theme in GROMACS development and
perhaps best showcased by its adoption in the Folding@Home
project, where it is running on hundreds of thousands of
independent clients.10 GROMACS achieves exceptional
single-CPU performance because of the manually tuned SSE,
SSE2, and ALTIVEC force kernels, but there are also many
algorithmic optimizations, for instance single-sum virials and
strength-reduced algorithms to allow single-precision float-
ing-point arithmetic in all places where it still conserves
energy (which doubles memory and cache bandwidth).11,12

In the benchmark section we show that GROMACS in single
precision matches the energy conservation of a double
precision package.

Unfortunately it is far from trivial to combine raw single-
CPU performance and scaling, and in many cases there are
inherent tradeoffs. It is for instance straightforward to
constrain all bond lengths on a single CPU, but in parallel it
is usually only applied to bonds involving hydrogens to avoid
(iterative) communication, which in turn puts a lower limit
on the possible time step.

In this paper, we present a completely reworked parallel-
ization algorithm that has been implemented in GROMACS.
However, rather than optimizing relative scaling overN
CPUs we have focused on (i) achieving the highest possible
absolute performance and (ii ) doing so on as few processors
as possible since supercomputer resources are typically
scarce. A key challenge has therefore been to make sure all
algorithms used to improve single-CPU performance through
longer time steps such as holonomic bond constraints,
replacing hydrogens with virtual interaction sites,13 and
arbitrary triclinic unit cells also work efficiently in parallel.

GROMACS was in fact set up to run in parallel on 10Mbit
ethernet from the start in 19927 but used a particle/force
decomposition that did not scale well. The single-instruction-
multiple-data kernels we introduced in 2000 made the relative
scaling even worse (although absolute performance improved
significantly), since the fraction of remaining time spent on
communication increased. A related problem was load
imbalance; with particle decomposition one can frequently
avoid imbalance by distributing different types of molecules
uniformly over the processors. Domain decomposition, on
the other hand, requires automatic load balancing to avoid

deterioration of performance. This load imbalance typically
occurs in three cases: The most obvious reason is an uneven
distribution of particles in space, such as a system with a
liquid-vapor coexistence. A second reason is imbalance due
to different interaction densities. In biomolecular systems
the atom density is usually nearly uniform, but when a united-
atom forcefield is used hydrocarbon segments (e.g., in lipid
chains) have a three times lower particle density and these
particles have only Lennard-Jones interactions. This makes
the computation of interactions of a slab of lipids an order
of magnitude faster than a slab of water molecules. Interac-
tion density imbalance is also an issue with all-atom force
fields in GROMACS, since the program provides optimized
water-water loops for standard SPC/TIP3P/TIP4P waters
with Lennard-Jones interactions only on the oxygens.2,3 (In
principle it is straightforward to introduce similar optimiza-
tion for the CHARMM-style modified TIP water models with
Lennard-Jones interactions on the hydrogens too, but since
there is no clear advantage from the extra interactions we
have not yet done so.) A third reason for load imbalance is
statistical fluctuation of the number of particles in a domain
decomposition cell. This primarily plays a role when cells
only contain a few hundred atoms.

Another major issue for simulation of large molecules such
as proteins was the fact that atoms connected by constraints
could not be split over processors (holonomic constraints) a
problem shared with all other biomolecular simulation
packages (the alternative being shorter time-steps, possible
coupled with multiple-time-step integration). This issue is
more acute with domain decomposition, since even small
molecules in general do not reside in a single domain.

Finally, the last challenge was the nonimpressive scaling
of the Particle Mesh Ewald (PME) electrostatics14 as
implemented in the previous GROMACS version. Since
PME involves two 3D fast Fourier transforms (FFTs), it
requires global all-to-all communication where the number
of messages scale as the square of the number of nodes
involved. There have been several attempts at parallelizing
PME using iterative solvers instead of using FFTs. A
different algorithm that reduces communication is fast
multipole expansion.15 However, presently none of these
methods combine the efficiency of PME using FFTs with
good scaling up to many processors.

We have addressed these four issues by devising an eighth-
shell domain decomposition method coupled to a full
dynamic load-balancing algorithm with a minimum amount
of communication, a parallel version of the constraint
algorithm LINCS that enables holonomic constraints without
iterative communication, and splitting off the PME calcula-
tion to dedicated PME processors. These four key advances
will be described in the next three sections, followed by a
description of other new features and a set of benchmarks
to illustrate both absolute performance and relative scaling.

II. Domain Decomposition
Recently, the D. E. Shaw group has performed several studies
into general zonal methods16 for parallelization of particle-
based interactions. In zonal (or neutral territory) methods,
forces between particlesi andj are not necessarily calculated
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on a processor where either of particlesi or j resides.
Somewhat paradoxically, such methods can be significantly
more efficient than traditional domain decomposition meth-
ods since they reduce the total amount of data communicated.
Two methods achieve the least communication when the
domain size is not extremely small compared to the cutoff
radius; these two methods were termedeighth shell17 and
midpointmethods18 by Shaw and co-workers. In the half shell
method, interactions between particlei and j are calculated
in the cell wherei or j resides. The minimum communication
required for such a method is half of the volume of a
boundary of a thickness equal to the cutoff radius. The eighth
shell method improves on this by also calculating interactions
between particles that reside in different communicated
zones. The communicated volume of the eighth shell method
is thus a subset of that of the half shell method, and it also
requires less communication steps which helps reduce
latency.

The basic eighth shell method was already described in
1991 by Liem et al.,19 who implemented communication with
only nearest neighbors. In GROMACS 4 we have extended
this method for communication with multiple cells and
staggered grids for dynamic load balancing. The Shaw group
has since chosen to use the midpoint method in their
Desmond code since it can take advantage of hardware where
each processor has two network connections that simulta-
neously send and receive. After quite stimulating discussions
with the Shaw group we chose not to switch to the midpoint
method, primarily not only because we avoid the calculation
of the midpoint, which has to be determined binary identi-
cally on multiple processors, but also because not all
hardware that GROMACS will run on has two network
connections. With only one network connection, a single pair
of send and receive calls clearly causes less latency than
two such pairs of calls.

Before going into the description of the algorithm, the
concept of charge groups needs to be explained; these were
originally introduced to avoid electrostatic artifacts. By
grouping several partially charged atoms of a chemical group
into a neutral charge group, charge-charge interactions
entering and leaving the cutoff are effectively replaced by
short-range dipole-dipole interactions. The location of a
charge group in GROMACS is given by the (non-mass-
weighted) average of the coordinates of the atoms. With the
advent of the PME electrostatics method this is no longer
an issue. But charge groups can also speed up the neighbor
search by an order of magnitude; given a pair of water
molecules for instance, we only need to determine one
distance instead of nine (or sixteen for a four-site water
model). This is particularly important in GROMACS since
the neighbor searching is much slower than the force loops,
for which we typically use tuned assembly code. Since charge
groups are used as the basic unit for neighbor searching, they
also need to be the basic unit for the domain decomposition.
In GROMACS 4, the domains are rebuilt every time neighbor
searching is performed, typically every 10 steps.

The division of the interactions among processors is
illustrated in Figure 1. Consider the processor or cell that
has the charge groups in zone 0 as home charge groups, i.e.,

it performs the integration of the equations of motion for
the particles in these charge groups. In the eighth shell
method each cell should determine the interactions between
pairs of charge groups of which, for each dimension, the
minimum cell index of the two charge groups corresponds
to the index of that cell. This can be accomplished by the
following procedure. Cell 0 receives the coordinates of the
particles in the dashed zones 1 to 7, by communication only
in one direction for each dimension. When all cells dimen-
sions are larger than the cutoff, each zone corresponds to
part of a single, neighboring cell. But in general many cells
can contribute to one zone. Each processor calculates the
interactions between charge groups of zone 0 with zones 0
to 7, of zone 1 with zones 3 to 6, of zone 2 with zone 5, and
of zone 3 with zones 5 and 6. If this procedure is applied
for all processors, all pair interactions within the cutoff radius
are calculated.

Interactions involving three or more atoms cannot be
distributed according to the scheme described above. Bonded
interactions are distributed over the processors by finding
the smallestx, y, and z coordinate of the charge groups
involved and assigning the interaction to the processor with
the home cell where these smallest coordinates residesnote
that this does not require any extra communication between
the processors. This procedure works as long as the largest
distance between charge groups involved in bonded interac-
tions is not larger than the smallest cell dimension. To check
if this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare it
to the total number of bonded interactions in the system.
When there are only two cells in a certain dimension and
the corresponding box length is smaller than four times the
cutoff distance, a cutoff criterion is required for any pair of
particles involved to avoid that bonded interactions are
assigned to multiple cells. Unlike the midpoint method, this
procedure limits the distances involved in bonded interactions
to the smallest cell dimension. For atomistic simulations this
is not an issue, since distances in bonded interactions are
usually smaller than 0.5 nm, leading to a limit of 10 to 20
atoms per cell, which is beyond the scaling of GROMACS
4. For coarse-grained simulations bonded distances can be
larger, but because of the lower interaction density this also
does not limit the scaling.

For full dynamic load balancing the boundaries between
cells need to be adjusted during the simulation. For 1D

Figure 1. A nonstaggered domain decomposition grid of 3
× 2 × 2 cells. Coordinates in zones 1 to 7 are communicated
to the corner cell that has its home particles in zone 0. rc is
the cutoff radius.
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domain decomposition this is trivial, but for a 3D decom-
position the cell boundaries in the last two dimensions need
to be staggered along the first dimensions to allow for
complete load balancing (see the next section for details).
Figure 2 shows the communicated zones for 2D domain
decomposition in the most general case, namely a triclinic
unit cell with dynamic load balancing. Zones 1, 2, and 3
indicate the parts of neighboring cells that are within the
nonbonded cutoff radiusrc of the home cell of zone 0.
Without dynamic load balancing this is all that would need
to be communicated to the processor of zone 0. With
dynamic load balancing the staggering can lead to an extra
volume 3′ that needs to be communicated, due to the
nonbonded interactions between cells 1 and 3 which should
be calculated on the processor of cell 0. For bonded
interactions, zones 1 and 2 might also require expansion.
To ensure that all bonded interaction between charge groups
can be assigned to a processor, it is sufficient to ensure that
the charge groups within a sphere with a radiusrb, the cutoff
for bonded interactions, are present on at least one processor
for every possible center of the sphere. In Figure 2 this means
we also need to communicate volume 2′. When no bonded
interactions are present between charge groups, such volumes
are not communicated. For 3D domain decomposition the
picture becomes quite a bit more complicated, but the
procedure is analogous apart from more extensive book-
keeping. All three cases have been fully implemented for
general triclinic cells. GROMACS 4 does not (yet) take full
advantage of the reduction in the communication due to
rounding of the zones. Currently zones are only rounded in
the ‘forward’ directions, for example part 3′ in Figure 2 is
replaced by the smallest parallelogram enclosing it.

The communication of the coordinates and charge group
indices can be performed efficiently by ‘pulsing’ the
information in one direction simultaneously for all cells one
or more times. This needs to be repeated for each dimension.
The number of pulsesnp in a dimension is given by the cutoff
length in that direction divided by the minimum cell size.
In most casesnp will be one or two. Consider a 3D domain
decomposition where we decompose in the orderx, y, z;
meaning that thex boundaries are aligned, they boundaries
are staggered along thex direction, and thez boundaries are

staggered along thex andy directions. Each processor first
sends the zone that its neighboring cell in-z needs to this
cell. This process is donenp(z) times. Now each processor
can send the zone its neighboring cell in-y needs, plus the
part of the zone it received from+z, that is also required by
the neighbor in-y. The last step consists ofnp(x) pulses in
-x where (parts of) 4 zones are sent over. In this waynp(x)
+ np(y) + np(z) communication steps are required to
communicate withnp(x) × np(y) × np(z) - 1 processors,
while no information is sent over that is not directly required
by the neighboring processors. The communication of the
forces happens according to the same procedure but in
reversed order and direction.

Another example of a minor complication in the com-
munication is virtual interaction sites constructed from atoms
in other charge groups. This is used in some polymer
(anisotropic united atom) force fields, but GROMACS can
also employ virtual sites to entirely remove hydrogen
vibrations and construct the hydrogens in their equilibrium
positions from neighboring heavy atoms each time step.13

Since the constructing atoms are not necessarily interacting
on the same node, we have to track the virtual site coordinate
dependencies separately to make sure they are both available
for construction and that forces are properly communicated
back. The communication for virtual sites is also performed
with pulses but now in both directions. Here only one pulse
per dimension is required, since the distances involved in
the construction of virtual sites are at most two bond lengths.

III. Dynamic Load Balancing
Calculating the forces is by far the most time-consuming
part in MD simulations. In GROMACS, the force calculation
is preceded by the coordinate communication and followed
by the force communication. We can therefore balance the
load by determining the time spent in the force routines on
each processor and then adjusting the volume of every cell
in the appropriate direction. The timings are determined using
inline assembly hardware cycle counters and supported for
virtually all modern processor architectures. For a 3D
decomposition with orderx, y, z the load balancing algorithm
works as follows: First the timings are accumulated in the
z direction to the processor of cellz ) 0, independently for
eachx andy row. The processor ofz) 0 sums these timings
and sends the sum to the processor ofy ) 0. This processor
sums the timings again and sends the sum to the processor
of x ) 0. This processor can now shift thex boundaries and
send these to they ) 0 processors. They can then determine
the y boundaries, send thex andy boundaries to thez ) 0
processors, which can then determinezboundaries, and send
all boundaries to the processors along theirz row. With this
procedure only the necessary information is sent to the
processors that need it and global communication is avoided.

As mentioned in the Introduction, load imbalance can
come from several sources. One needs to move boundaries
in a conservative fashion in order to avoid oscillations and
instabilities, which could for instance occur due to statistical
fluctuations in the number of particles in small cells.
Empirically, we have found that scaling the relative lengths
of the cells in each dimension with 0.5 times the load

Figure 2. The zones to communicate to the processor of
zone 0, see the text for details. rc and rb are the nonbonded
and bonded cutoff radii, respectively, and d is an example of
a distance between following, staggered boundaries of cells.
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imbalance, and a maximum scaling of 5%, produced efficient
and stable load balancing. For large numbers of cells or
inhomogeneous systems two more checks are required: A
first restriction is that boundaries should not move more than
halfway an adjacent cell (where instead of halfway one could
also choose a different value). This prevents cells from
moving so far that a charge group would move two cells in
a single step. It also prevents load balancing issues when
there are narrow zones of high density in the system. A
second problem is that due to the staggering, cell boundaries
along neighboring rows could shift to such an extent that
additional cells would enter the cutoff radius. For load
balanced simulations the user can set the minimum allowed
cell size, and by default the nonbonded cutoff radius is used.
The distance between following, staggered cell boundaries
(as indicated byd in Figure 2) should not be smaller than
this minimum allowed cell size. To ensure this, we limit the
new position of each boundary to the old limit plus half the
old margin. In this way we make sure that one boundary
can move up and independently an adjacent staggered
boundary can move down, without extra communication. The
neighboring boundaries are communicated after load balanc-
ing, since they are needed to determine the zones for
communication. When pressure scaling is applied, the limits
are increased by 2% to allow the system to adjust at the
next domain decomposition before hitting the cutoff restric-
tions imposed by the staggering.

In practical tests, load imbalances of a factor of 2 on
several hundreds of processors were reduced to 2% after a
few load balancing steps or a couple of seconds of simulation
time.

IV. Parallel Holonomic Constraints
There are two strong reasons for using constraints in
simulations: First, a physical reason that constraints can be
considered a more faithful representation of chemical bonds
in their quantum mechanical ground state than a classical
harmonic potential. Second, a practical reason because rapid
bond vibrations limit the time step. Removing these vibra-
tions by constraining the bonds thus allows us to increase
the time step and significantly improve absolute simulation
performance. A frequently used rule-of-thumb is 1 fs without
constraints, 1.4 fs with bonds to hydrogens constrained, and
2 fs when all bonds are constrained. Unfortunately, the
common SHAKE1 constraint algorithm is iterative and
therefore not very suitable for parallelizationsin fact, there
has previously not been any efficient algorithm that could
handle constraints connected over different processors due
to domain decomposition. Most biomolecular packages
therefore use constraints only for bonds involving hydrogens.

By default, GROMACS uses a noniterative constraints
algorithm calledLINear Constraint SolVer (LINCS), which
proved much easier to fully parallelize as hinted already in
the original paper.20 The details of the parallel LINCS
algorithm P-LINCS are described elsewhere,21 so we will
only give a brief overview here. In the algorithm, the range
of influence of coupled constraints is set by the order of the
expansion for the matrix inversion. It is only necessary to
communicate a subset of the old and new unconstrained

coordinates between neighboring cells before applying the
constraints. The atoms connected by up to “one plus the
expansion order” bonds away need to be communicated. We
can then constrain the local bonds plus the extra bonds. The
communicated atoms will not have the final correctly
constraint positions (since they interact with additional
neighbors), but the local atoms will. The beauty of the
algorithm is that normal molecular simulation only requires
a first, linear correction and a single iterative step. In both
these steps updated positions are communicated and adjust-
ment forces calculated locally. The constraint communication
can be accomplished with a single forward and backward
pulse of the decomposition grid in each dimension, similar
to the domain decomposition communication. The results
of P-LINCS in GROMACS are binary identical to those of
the single processor version.

In principle a similar method could be used to parallelize
other constraint algorithms. However, apart from multiple
communication steps for iterative methods such as SHAKE,1

another problem is that one does not know a priori which
atoms need to be communicated, because the number of
iterations is not fixed. To our best knowledge, this is the
first efficient implementation of an holonomic constraint
algorithm for domain decomposition.21

The accuracy of the velocities of constrained particles has
further been improved both for LINCS and SHAKE using a
recently described procedure based on Lagrange multipliers.22

For SETTLE23 we have applied the slightly less accurate
method of correcting the velocities with the position cor-
rections divided by the time step. These changes significantly
improve long-term energy conservation in GROMACS, in
particular for single precision simulations.21 With domain
decomposition, SHAKE and SETTLE can only be used for
constraints between atoms that reside in the same charge
group. SETTLE is only used for water molecules though,
which are usually a single charge group anyway.

The virtual interaction sites described earlier require rigid
constraint constructs, and the implementation of parallel
holonomic constraints was therefore critical to enable virtual
sites with parallel domain decomposition. This enables the
complete removal of hydrogen angle vibrations, which is
normally the next fastest motion after bond length oscilla-
tions. Full rotational freedom of CH3/NH2/NH3 groups is still
maintained by using dummy mass sites,13 which enables time
steps as long as 5 fs. It has been shown that removing the
angle vibrations involving hydrogens has a minor effect on
the geometry of intraprotein hydrogen bonds and that
properties such as the number of hydrogen bonds, dihedral
distributions, secondary structure, and rmsd are not affected.13

Note that simply constraining all angles involving hydrogens
effectively also constrains most of the other angles in a
molecule, which would affect the dynamics of molecules
significantly.24 In contrast, replacing hydrogens by virtual
interaction sites does not affect the angular degrees of
freedom involving heavy atoms. This hydrogen-removal
procedure generates uncoupled angle constraints for hydro-
gens in alcohol groups. These angle constraints converge
twice as slow in LINCS as normal constraints. To bring the
accuracy of uncoupled angle constraints up to that of bond
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constraints, the LINCS expansion order for angle constraints
has been doubled (see the P-LINCS paper21 for details). In
the benchmark section we show that a time step of 4 fs does
not deteriorate the energy conservation.

V. Optimizing Memory Access
The raw speed of processors in terms of executing instruc-
tions has increased exponentially with Moore’s law. How-
ever, the memory access latency and bandwidth has not kept
up with the instruction speed. This has been partially
compensated by added fast cache memory and smart caching
algorithms. But this only helps for repeated access of small
blocks of memory. Random access of large amounts of
memory has become relatively very expensive. In molecular
dynamics simulations of fluid systems, particles diffuse over
time. So even when starting out with an ordered system, after
some time particles that are close in space will no longer be
close in memory. This results in random memory access
through the whole coordinate array during the neighbor
search, force calculation, and the PME charge and force
assignment. Meloni et al. have shown that spatially ordering
atoms can significantly improve performance for a Lennard-
Jones system.25

We have implemented a sorting scheme that improves
upon that of Meloni et al. by ordering the charge groups
according to their neighbor search cell assignment. Ordering
using the neighbor search cell assignment provides the
optimal memory access order of atoms during the force
calculations. In this way, nearly all coordinates in memory
are used along a cell row with a fixed minor index. For major
indices there are some jumps, but the number of jumps is
now the number of different major row indices instead of
the number of charge group pairs. Effectively each part of
the coordinate array needs to be read from memory to cache
only once, insteadM2 times whereM is the total number of
charge groups divided by the number of charge groups that
fit in cache. This approach requires that the charge groups
are resorted at every step where neighbor searching is
performed. For optimal performance with PME, the major
and minor dimensions for the indexing of the neighbor search
cells and the PME grid should match.

A second reason for ordering is to allow for exact
rerunning of part of a simulation. Due to the domain
decomposition the order of the local charge groups on each
processor changes. This order affects the rounding of the
least significant bit in the summation of forces. To exactly
reproduce part of a simulation the local atom order should
be reproducible when restarting at any point in time. To
define a unique order, we sort the charge groups within each
neighbor search cell according to the order in the topology.
Since charge groups only move a short distance between
neighbor list updates, few particles cross cell boundaries,
and the sorting can be done efficiently with a linear
algorithm.

Optimization of memory access becomes particularly
important in combination with the assembly kernels, since
the SIMD instructions are extremely fast and therefore
memory access can be a significant bottleneck. To quantify
this we have simulated a 2 M NaCl(aq) solution26 using

SPC/E water27 with reaction-field and PME electrostatics.
The effect of the sorting is shown in Table 1. The sorting
ensures a nearly constant performance, independent of the
system size. Without sorting there is a 10% performance
degradation at 104 atoms per core and a factor of 2 at 2-3
× 105 atoms. For a Lennard-Jones system of 105 atoms the
difference is a factor of 4. Note that sorting actually decreases
the scaling efficiency with the number of processors, since
for low parallelization (more atoms per processor) the
absolute performance increases more than for high parallel-
ization, but it obviously always helps absolute performance.

VI. Multiple-Program, Multiple-Data PME
Parallelization
The typical parallelization scheme for molecular simulation
and most other codes today is Single-Program, Multiple-
Data (SPMD) where all processors execute the same code
but with different data. This is an obvious solution to
decompose a system containing hundreds of thousands of
similar particles. However, particularly for the now ubiqui-
tous PME algorithm this approach has some drawbacks:
First, the direct space interactions handled through classical
cutoffs and the reciprocal space lattice summation are really
independent and could be carried out in parallel rather than
partitioning smaller work-units over more processors. Sec-
ond, the scaling of PME is usually limited by the all-to-all
communication of data during the parallel 3D FFT.28 While
the total bandwidth is constant, the number of messages and
latencies grow asN2, whereN is the number of nodes over
which the FFT grid is partitioned.

Apart from rewriting and tuning the parallel PME algo-
rithm to support domain decomposition, we have addressed
this problem by optionally supporting Multiple-Program,
Multiple-Data (MPMD) parallelization where a subset of
processors are assigned as dedicated PME processors, while
the direct space interactions and integration are domain
decomposed over the remaining processors. On most net-
works the newly added communication step between real
and reciprocal space processors is more than compensated
by better 3D FFT scaling when the number of nodes involved
in the latter is reduced a factor of 3-4. The optimal ratio
for real space to reciprocal processors is usually between
2:1 and 3:1. Good load balancing for a given ratio can be
reached by moving interactions between direct and reciprocal
space to ensure load balance, as long as the real space cutoff
and grid cell size are adjusted by the same factor the overall
accuracy remains constant.14 In future versions of GRO-
MACS this procedure may be automated.

Table 1. Number of MD Steps per Second with and
without Spatial Sorting of Charge Groupsa

number of atoms per core

sorting electrostatics 1705 8525 34100 272800

yes reaction field 241 48.5 11.9 1.39
no reaction field 238 44.0 9.6 0.60
yes PME 102 22.5 5.4 0.61
no PME 101 20.6 4.8 0.33
a As a function of the number of atoms per core for a 2 M NaCl(aq)

solution on a 2.2 GHz AMD64 CPU.
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We assume that the PME processor count is never higher
than the number of real space processors. In general, each
PME processor will receive coordinates from a list of real
space peers, after which the two sets of nodes start working
on their respective (separate) domains. The PME processors
communicate particle coordinates internally if necessary,
perform charge spreading on the local grid, and then
communicate overlapping grid parts with the PME neighbors.
The actual FFT/convolution/iFFT is performed the standard
way but now involving much fewer nodes. After force
interpolation the forces corresponding to grid overlap are
communicated to PME neighbors again, after which we
synchronize and send communicate all forces back to the
corresponding real space processors (energy and virial terms
only need to be communicated to one of the processors).

With current multicore processors and multisocket moth-
erboards the MPMD approach is particularly advantageous.
The costly part is the redistribution of the 3D FFT grid, which
is done twice for the forward and twice for the backward
transform. This redistribution requires simultaneous com-
munication between all PME nodes, which occurs when the
real space nodes are not communicating, and to make use
of this GROMACS interleaves the PME processors with the
real space processors on nodes. Thus, on a machine where
two cores share a network connection, with MPMD only
one PME process uses a single network connection instead
of two PME processes, and therefore the communication
speed for the 3D FFT is doubled. For a real space to PME
processor ratio of 3:1, with four cores sharing a network
connection, MPMD quadruples the communication speed for
the 3D FFT, while simultaneously decreasing the number
of process pairs that need to exchange FFT grid information
by a factor 16.

VII. The MD Communication
Previous GROMACS versions used a ring communication
topology, where half of the coordinates/forces were sent over
half the ring. To be frank, the only thing to be said in favor
of that is that it was simple. Figure 3 shows a flowchart of
the updated communication that now relies heavily on
collective and synchronized communication calls available,
e.g., in MPI. Starting with the direct space domain (left),
each node begins by communicating coordinates necessary
to construct virtual sites and then constructs these. At the
main coordinate communication stage, data are first sent to
peer PME nodes that then begin their independent work. In
direct space, neighboring nodes exchange coordinates ac-
cording to the domain decomposition, calculate interactions,
and then communicate forces. Since the PME virial is
calculated in reciprocal space, we need to calculate the direct
space virial before retrieving the forces from the PME nodes.
Finally, the direct space nodes do integration, parallel
constraints (P-LINCS), and energy summation. The recipro-
cal domain nodes start their work when they get updated
coordinates from their peer direct space nodes and exchange
data with their neighbors to achieve a clean 1D decomposi-
tion of the charge grid. After spreading the charges the
overlapping parts are communicated and summed, and 3D
FFT, convolution, and 3D inverse FFT are performed in

parallel. Finally local forces are interpolated, communicated
back to the correct PME processor, and sent back to the direct
space processor it came from. Whenever possible we use
collective MPI operations, e.g., to enable binary-tree sum-
mation, and pulsing operations use combined send-receive
operations to fully utilize torus networks present on hardware
such as IBM BlueGene or Cray XT4.

VIII. Other New Features
Previously, GROMACS only supported neighbor list updates
at fixed intervals, but the use of potentials that are switched
exactly to zero at some finite distance is increasing, mainly
to avoid cutoff effects. To be sure that no interaction is
missed, the neighbor list can be updated heuristically in
GROMACS 4. The neighbor list is then updated when one
or more atoms have moved a distance of more than half the
buffer size from the center of geometry of the charge group
they belong to, as determined at the last neighbor search (note
that without charge groups this is just the position of the
atom at the last neighbor search). Coordinate scaling due to
pressure coupling is taken into account.

GROMACS can now also be used very efficiently for
coarse-grained simulations (see benchmarks section) or many
nonstandard simulations that require special interactions. User
defined nonbonded interactions that can be assigned inde-
pendently for each pair of charge groups were already
supported, and we have now additionally implemented user
defined bonds, angles, and dihedrals functions. Thus, a user
now has full control over functional form as well as the
parameters of all interactions. Just as for the tabulated
nonbonded interactions, cubic spline interpolation is used,
which provides continuous and consistent potentials and
forces.

In addition to systems without periodic boundaries and
with full 3D periodicity, systems with only 2D periodicity
in x andy are now also supported. The 2D periodicity can
be combined with one or two uniform walls at constant-z
planes. The neighbor searching still uses a grid for dimen-
sions x and y and with two walls, also inz, for optimal
efficiency. The walls are represented by a potential that works
only in thez-direction, which can be, e.g., 9-3, 10-4, or a
user defined tabulated potential, with coefficients set indi-
vidually for each atom type.

Restraining (using an umbrella potential) or constraining
the center(s) of mass of a group or groups of atoms can now
be done in parallel. One can restrain or constrain absolute
positions or relative distances between groups. The center
of mass of a group of atoms can be ill-defined in a periodic
system. To determine the center of mass a reference atom is
chosen for each group. The center of mass of each group
relative to its reference atom is then determined, and the
position of the reference atom is added to obtain the center
of mass position. This provides a unique center of mass, as
long as all atoms in the group are within half the smallest
box dimension of the reference atom. Since there are no a
priori limits on the distances between atoms in a group,
global communication is required. There are two global
communication steps: one to communicate the reference
atom positions and one to sum the center of mass contribu-
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tions over the cells. The restraint or constraint force
calculation can then be performed locally.

IX. Benchmarks
The presented benchmarks were performed in the NVT
ensemble, using a reversible Nose´-Hoover leapfrog integra-
tor,29 single precision and dynamic load balancing, unless
stated otherwise. Single precision position, velocity and force
vectors, combined with some essential variables in double
precision is accurate enough for most purposes. In the
P-LINCS paper21 it is shown that with single precision and

the constraint velocity correction using the Lagrange mul-
tipliers, the energy drift can be reduced to a level unmea-
surable over 1 nanosecond. If required, GROMACS can also
be compiled in full double precision.

First we will examine the scaling of the basic domain
decomposition code, without communication for constraints
and virtual sites. To illustrate the basic scaling for all-atom
type force fields, we used an OPLS all-atom methanol
model,30 which leads to an interaction density close to that
inside a protein. The results for weak scaling, i.e., when the
system size grows proportionally with the number of CPUs,

Figure 3. Flowchart for a typical simulation step for both particle and PME nodes. Shaded boxes involve communication, with
gray arrows indicating whether the communication only involves similar types of nodes or synchronization between the two
domains.
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are shown in Table 2. With reaction-field electrostatics the
computational part of the code scales completely linear.
When going from 1 to 2 or 8 cores frequently superlinear
scaling can be observed, this is primarily because the charge
group sorting is not implemented for single processor
simulations. Without PME, the scaling is close to linear,
unlike GROMACS 3.3 which already slows down by a factor
of 3 on 32 cores. The small drop in performance at 128
processors is caused by the local coordinate and force
communication, especially in double precision, and by the
global communication for the summation of energies, which
is required for temperature coupling. The time spent in the
summation increases with the number of processors, since
there are more processors to sum over. Unfortunately MPI
implementations are often not optimized for the currently
typical computing clusters: multiple cores sharing a network
connection. With MVAPICH2 on 16 nodes with 4 cores
each, the MPI_Allreduce () call takes 120µs; when we
replaced this single call by a two-step procedure, first within
each node and then between the nodes, the time is reduced
to 90µs. This global communication is unavoidable for any
algorithm that uses global temperature and/or pressure
coupling, but the severity depends on the MPI implementa-
tion quality. With PME electrostatics linear scaling is
impossible, since PME inherently scales asN log(N).
However, in practice the scaling of PME is limited more by
the communication involved in the 3D-FFT. However, as
evident from Table 2, scaling with PME is still very good,
particularly when the high absolute performance is taken into
account. Furthermore the difference between 2 and 4 cores
per node is quite small. This is because for the communica-
tion between the PME processes there is no difference in
network speed, as in both cases there is only one PME
process per node. With 4 cores per node the real space
process to PME process communication all happens within
nodes. When one puts the real space and PME processes on
separate nodes, the performance with 32 processes decreases

by 16%, mainly because each PME process needs to
communicate over the network with 3 real space processes
while sharing its network connection with 3 other PME
processes. Without the MPMD PME implementation the
scaling would be much worse, since the FFT grid would need
to be redistributed over 4 times as many processors. Still,
the 3D-FFT algorithm is one of the points we will focus
future performance work on. When switching from single
to double precision the performance is reduced by a factor
of 1.6. This is not due to the higher cost of the floating point
operations but more due to doubling of the required memory
bandwidth, both for the force computation and the com-
munication. The PME mesh part becomes relatively cheaper
in double precision; therefore, one could optimize the
simulation setup to obtain a slightly higher performance. This
has not been done for this benchmark.

To illustrate strong scaling we used the same methanol
system mentioned before with 1200 molecules as well as a
3000 SPC/E water27 system. For water with reaction field
the scaling is nearly linear up to 2000 MD steps per second,
where there are 200 atoms per core (Figure 4). Without PME,
the main bottleneck is the summation of energies over all
the processors. For the 3000 water system, the summation
of energies over 64 cores takes 17% of the total run time.
Water runs about twice as fast as methanol, due to the
optimized SSE water loops. With PME, methanol scales in
the same way but at about 2/3 of the absolute speed of the
reaction-field simulations. In contrast to weak scaling, the
relative cost of the latency in the coordinate and force
communication increases linearly with the number of proces-
sors. However, the summation of the energies is still the final
bottleneck, since therelatiVecost of this operation increases
faster than linear. Thus, the current limit of about 200 atoms
per core is due to the communication latency of the
Infiniband network.

It is impossible to quantify the general GROMACS
performance for coarse-grained systems, since the different
levels and ways of coarse-graining lead to very different
types of models with different computational demands. Here,
we chose a coarse-grained model for polystyrene that uses

Table 2. Performance in MD Steps per Second for 200
Methanol Molecules (1200 Atoms) per Corea

number of cores

elec. prec. CPU GHz cpn 1 2 8 32 128

S AMD 2.2 8 167 168 166
RF S Intel 2.33 8 211 216 214

S Intel 3.0 4 274 281 277 265 237
S Intel 3.0 2 274 281 284 284 274

RF3 S Intel 3.0 4 272 274 208 87 44
RF D Intel 3.0 4 167 169 159 144 123

D Intel 3.0 2 167 169 165 161 153
S AMD 2.2 8 103 101 98

PME S Intel 2.33 8 128 127 122
S Intel 3.0 4 172 172 156 150 134
S Intel 3.0 2 172 172 162 152 145

PME D Intel 3.0 4 112 110 95 90 85
D Intel 3.0 2 112 110 100 91 90

a With a cutoff of 1 nm, with reaction field (RF), reaction field with
GROMACS 3.3 (RF3) and PME with a grid-spacing of 0.121 nm, in
single (S) and double (D) precision on AMD64 and Intel Core2
machines with 8 cores per node (cpn) or 4 and 2 cores per node
with Infiniband.

Figure 4. Scaling for a methanol system of 7200 atoms
(circles) and an SPC/E water system of 9000 atoms (tri-
angles), with a cutoff 1 nm, with reaction field (solid lines) and
PME (dashed line) with a grid-spacing of 0.121 nm (36 × 36
× 36 grid) on a 3 GHz Intel Core2 cluster with Infiniband. The
dot-dashed line indicates linear scaling.
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nonstandard interactions for the bonded as well as the
nonbonded interactions.31 This model uses 2 beads per repeat
unit, which leads to a reduction in particles with a factor of
8 compared to an all-atom model and a factor of 4 compared
to a united-atom model. The beads are connected linearly in
chains of 96 repeat units with bond, angle, and dihedral
potentials. The benchmark system consists of a melt of 50
such chains, i.e., 9600 beads, in a cubic box of 9.4 nm. Since
the particle density is 8 times lower and the 0.85 nm neighbor
list cutoff shorter than that of an atomistic simulation, the
computational load per particle for the nonbonded interac-
tions is roughly 10 times less. For this model, the nonbonded
and bonded interactions use roughly equal amounts of
computational time. This is the only system for which we
did not use dynamic load balancing. Because there are so
few interactions to calculate, dynamic load balancing slows
down the simulations, especially at high parallelization. The
benchmark results with a Nose-Hoover and a Langevin
thermostat32 are shown in Table 3. Also shown is a
comparison with the ESPResSo package33 (Extensible Simu-
lation Package for Research on Soft matter). GROMACS is
twice as fast as ESPResSo and shows better scaling. This
system scales to more than 6000 MD steps per second. The
Langevin integrator used requires four random Gaussian
numbers per degree of freedom per integration step. With a
simpler integrator, as used by Espresso, the performance
increases by 18% one 1 core and by 10% on 96 cores. One
can see that at low parallelization Langevin dynamics is less
efficient, since generating random numbers is relatively
expensive for a coarse-grained system. But above 32 cores,
or 300 beads per core, it becomes faster than the Nose-
Hoover thermostat. This is because the summation of
energies is not required at every step for the local Langevin
thermostat. Here one can clearly see that simulations with
global thermo- and/or barostats in GROMACS 4 are limited
by the efficiency of the MPI_Allreduce() call. With the
Langevin thermostat the scaling on an Infiniband cluster is
only limited by the latency of the coordinate and force
communication.

As a representative protein system, we chose T4-lysozyme
(164 residues) and the OPLS all-atom force field. We
solvated it in a rhombic dodecahedron (triclinic) unit cell
with a minimum image distance of 7 nm, with 7156 SPC/E
water molecules and 8 Cl- ions, giving a total of 24119
atoms. The cutoff was 1 nm, and the neighbor list was
updated every 20 fs. For electrostatics we used PME with a
grid of 56 × 56 × 56 (0.125 nm spacing). Without virtual
sites we used a time step of 2 fs and for LINCS 1 iteration

and an expansion order of 4. With virtual sites we used a
time step of 4 fs, a single LINCS iteration (expansion order
6). We ran the benchmarks on a 3 GHz Intel Core2
(“Woodcrest”) system with Infiniband interconnects. The real
space to PME process ratio for this system is 2:1, except for
38 processes (14 PME) and 64 processes (28 PME). This is
the only benchmark that actually communicates with more
than one cell in each dimension (np ) 2). Results with 2
and 4 cores per Infiniband connection are shown in Figure
5. When all the presented algorithms are used, the scaling is
close to linear up to 38 processors. Without dynamic load
balancing the performance is reduced by a factor of 1.5 on
38 processors. When all nodes participate in the PME mesh
part, the scaling is limited to 14 processors. With a time step
of 2 fs a maximum performance of 68 ns/day is reached,
and with a time step of 4 fs this increases to 112 ns/day. Up
to 12 processors there is no difference between 2 or 4 cores
sharing an Infiniband connection, while at 38 processors the
difference is 14%. It is worth mentioning that the reparti-
tioning of the domain decomposition, reassigning charge
groups to cells, spatial sorting, setting up the zones, assigning
the bonded interactionsm and setting up P-LINCS, always
takes a negligible amount of time. The percentage of the
total run time spent in repartitioning is 2% with a time step
of 2 fs and 4-5% with a time step of 4 fs; the difference is
mainly due to the difference in neighbor list update fre-
quency.

For a similar sized protein system we performed a
comparison to other simulation packages. We chose one of
the most commonly used systems: the joint Amber-
CHARMM benchmark DHFR (dihydrofolate reductase) of
23558 atoms in a cubic box of 6.2 nm. Choosing the setup
for a benchmark that compares different simulation packages
is a difficult issue. Different packages support different
features, and the parameter settings for optimal performance
can differ between packages. One clear example of this is
the box shape. GROMACS can use any triclinic box shape
without loss of performance, and one would therefore always
choose to solvate a spherical protein in a rhombic dodeca-
hedron unit-cell, which reduces the volume by a factor of

Table 3. Number of Steps per Second for a
Coarse-Grained Polystyrene Modela

package thermostat machine 1 2 8 32 64 96

GROMACS Nosé-
Hoover

3 GHz 126 241 964 2950 4120

GROMACS Langevin 3 GHz 106 204 829 2860 4760 6170

GROMACS Langevin 2.33 GHz 80 155 593

ESPResSo Langevin 2.33 GHz 41 85 254
a With 9600 beads as a function of the number of cores on a 3

GHz Intel Core2 cluster with 2 cores per Infiniband connection and
an 8 core 2.33 GHz Intel Core2 machine.

Figure 5. Performance for lysozyme in water (24119 atoms)
with OPLS-aa and PME on a 3 GHz dual core Intel Core2
cluster with 2 (solid lines) and 4 (dashed lines) cores per
InFIniband interconnect. The dot-dashed line indicates linear
scaling.
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x2 compared to a cubic unit-cell with the same periodic
image distance. An important aspect of the setup is the
nonbonded interaction treatment. The joint Amber-Charmm
benchmark uses interactions that smoothly switch to zero at
the cutoff combined with a buffer region. Such a setup is
required for accurate energy conservation. But it is question-
able if such accurate energy conservation is required for
thermostatted simulations. GROMACS loses relatively more
performance in such a setup than other packages, since it
also calculates all interactions with the buffer region, even
though they are all zero. Furthermore, we think that the PME
settings for this benchmark (see Table 4) are somewhat
conservative; this means the PME-mesh code has a relatively
high weight in the results. But since determining the sampling
accuracy of molecular simulations goes beyond the scope
of this paper, we decided to use the same accuracy and aim
for energy conservation. Timings for the Desmond and
NAMD34 packages were taken from the Desmond paper.35

As Desmond, we used the OPLS all-atom force-field with
the TIP3P water model.3 Note that NAMD and Desmond
calculate the PME mesh contribution only every second step,
while GROMACS does it every step. We chose to increase
the cutoff from 0.9 to 0.96 nm and scale the PME grid
spacing accordingly, which provides slightly more accurate
forces and a real to reciprocal space process ratio of 3:1.
The neighbor list was updated heuristically with a buffer of
0.26 nm. The simulation settings and energy drift are shown
in Table 4; note that we took the energy drift values for
Desmond and NAMD from the ApoA1 system,35 which uses
a 1.2 nm cutoff and should therefore provide comparable or
lower drift. The energy drift for GROMACS is 0.01kBT/ns
per degree of freedom. This is slightly better than NAMD
and Desmond without constraints. With constraints the
energy drift with Desmond is an order of magnitude smaller.
These results show that codes like GROMACS and Desmond
that mainly use single precision do not have larger integration
errors than NAMD which uses double precision vectors. It
also shows that the use of a time step of 4 fs in GROMACS
does not deteriorate the energy conservation. Unfortunately
we did not have an identical cluster at our disposal. We also
ran the GROMACS benchmarks on a dual core cluster with
Infiniband but with 3 GHz Intel Core2 nodes instead of 2.4
GHz AMD64 nodes. Timings for DHFR are shown in Figure
6. If we look at the 1 fs time step results, we can see that,
per clock cycle, GROMACS is 2 times faster than Desmond
and 3-4 times faster than NAMD, even though the bench-
mark settings are unfavorable for GROMACS. Additionally
GROMACS can be another factor 1.5 faster by increasing
the time step from 2.5 to 4 fs, which is made possible by

constraining all bonds and converting hydrogens to virtual
sites. With MPI, Desmond shows similar scaling to GRO-
MACS, whereas NAMD scales worse. With a special
Infiniband communication library, Desmond scales much
further than GROMACS in terms of number of cores but
only slightly further in terms of actual performance. GRO-
MACS would certainly also benefit from such a library.

Finally we show the scaling for a large system, which was
somewhat of a weak point in earlier GROMACS versions.
The system in question is a structure of the Kv1.2 voltage-
gated ion channel36 placed in a 3:1 POPC:POPG bilayer
mixture and solvated with water and ions. The OPLS all-
atom force field with virtual site hydrogens is used for the
ion channel (18,112 atoms), lipids are modeled with the
Berger united-atom force field (424 lipids, 22159 atoms),

Table 4. Parameters for the DHFR Benchmark and the Energy Drift per Degree of Freedom

package
cutoff
(nm) PME grid

PME
freq

time step
(fs) constraints

virtual
sites

energy drift
(kBT/ns)

GROMACS 0.96 60 × 60 × 60 1 step 1 none no 0.011
2.5 H-bonds no 0.005
4 all bonds yes 0.013

Desmond 0.90 64 × 64 × 64 2 steps 1 none no 0.017
2.5 H-bonds no 0.001

NAMD 0.90 64 × 64 × 64 2 steps 1 none no 0.023

Figure 6. Performance for DHFR in water (23558 atoms) with
a 1 fs time step (top panel) and longer time steps (bottom
panel) using GROMACS, Desmond, and NAMD. The dashed
lines for Desmond show the performance with a tuned
Infiniband library.
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and the total system size is 13× 13 × 8.8 nm, with 119,-
913 atoms. We used a cutoff of 1.1 nm and a PME grid of
96 × 96 × 64 (spacing 0.136 nm), giving a real space to
PME process ratio of 3:1. Removing the hydrogen vibrations
by using virtual sites allows for a time step of 5 fs. The
neighbor list was updated every 6 steps (30 fs), since the
dynamics in the important membrane region is slower than
in water. In Table 5 one can see near linear scaling up to
128 processors, where a performance of slightly more than
60 ns/day is reached. With GROMACS 3.3 the system scales
up to 32 processors, where it runs at less than half the speed
of the domain decomposition; GROMACS 4 reaches an order
of magnitude higher performance. The scaling limitation for
this type of system is currently the PME FFT implementation.

X. Conclusions
We have shown that the eighth shell domain decomposition
and the dynamic load balancing provide very good scaling
to large numbers of processors. Dynamic load balancing can
provide a 50% performance increase for typical protein
simulations. Another important new feature is the Multiple-
Program, Multiple-Data PME parallelization, which lowers
the number of processes between which the 3D FFT grid
needs to be redistributed, while simultaneously increasing
the effective communication speed on systems where mul-
tiple cores share a network connection. Since the optimal
real space to PME process ratio is often 3:1, the benefit of
MPMD is higher with 4 or 8 nodes per core than with 1 or
2. This is advantageous, since having more cores per node
decreases the cost and space requirements of computing
clusters. MPMD allows simulations with PME to scale to
double the number of processors and thereby doubles the
simulation speed. The P-LINCS and virtual site algorithms
allow a doubling of the time step.

But what makes a biomolecular MD package tick is not
just a single algorithm but a combination of many efficient
algorithms. If one aspect has not been parallelized efficiently,
this rapidly becomes a bottlenecksnot necessarily for relative
scaling but absolute performance. From the benchmarks
above, we believe we have largely managed to avoid such
bottlenecks in the implementation described here. Not only
do the presented algorithms provide very good scaling to
large numbers of processors but also we do so without
compromising the high single-node performance or any of
the algorithms to extend time steps. Together, these features
of GROMACS 4 allow for absolute simulation speed that is
an order of magnitude larger than previously.

How good the scaling is depends on three factors: the
speed of the computational part in isolation, the efficiency
of the parallel and communication algorithms, and the
efficiency of the communication itself. The first two factors
we have been optimized extensively. The single processor
performance of GROMACS is unrivaled. This makes good
relative scaling extremely difficult, since communication
takes relatively more time. Nevertheless, the benchmarks
show that the scaling is now nearly linear over a large range
of processor counts. The scaling is usually limited by the
third factor, the efficiency of the communication. This is
given by the network setup and its drivers. With PME the
scaling of GROMACS 4 is limited by communication for
the 3D FFT. Without PME the scaling is limited by one
single communication call per MD step for summing the
energies. For any MD code the latter issue cannot be avoided
when a global thermostat or barostat is used every step. As
a rough guideline one can say that with modern commodity
processors connected by an Infiniband network, GROMACS
4 scales close to linear up to 2000 steps per second for simple
liquids without PME, while for complex membrane protein
simulations (no optimized water kernels) with PME and
constraints it scales up to 500 steps per second. There are
still alternatives with even more impressiverelatiVescaling,9

and dedicated-hardware implementation might provide ex-
tremely high performance if cost is no issue. However, for
all normal cases where resources are scarce and absolute
performance is the only thing that matters, we believe the
implementation presented here will be extremely attractive
for molecular simulations.
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