
Supporting information for:

Quantifying Asymmetry of Multimeric

Proteins

Julian T. Brennecke and Bert L. de Groot∗

Department of Theoretical and Computational Biophysics, Computational Biomolecular

Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

E-mail: bgroot@gwdg.de

S1

User Manual Asympy

This manual provides detailed information on the usage of the provided tool. The package

can be downloaded from https://gitlab.gwdg.de/deGroot/asympy.git. To run the programs,

Python 2.7 with these packages is required:

• pylab

• mdtraj

• scipy

• optparse

• sklearn

• ipy_progressbar (optional)

First, the usage of the CSM calculation tool (CSM.py) with the individual subunit contri-

butions is introduced. In the next part, the usage of the tool to calculate the symmetry

measure according to the FAME algorithm (FAME.py) is demonstrated. To be able to cal-

culate the FAME algorithm correctly, the trajectory and the functional input data have to

be prepared to get a symmetric reference motion (see figure S5). The preparation is done

using the prepare_files.py tool.

For all examples provided, various files are used. All tools require a PDB structure file

(struct.pdb), which has to be matched with a trajectory file containing an ensemble of struc-

tures, e.g. a MD trajectory (traj.xtc). The CSM and the preparative tools expect the sorting

of the subunits to be either clockwise or counter-clockwise. However, if the sorting differs

from this convention, it can be changed by giving the atom ranges of each subunit in (counter-

)clockwise order. A tetramer with a clockwise labeling of the subunits 1, 3, 2, 4 with 10

atoms each could be analyzed using the parameter setting -c ’[[0,10],[20,30],[10,20],[30,40]]’.

S2

CSM.py

By the CSM tool the asymmetry for each frame of a trajectory is calculated:

CSM.py -f traj.xtc -s struct.pdb -n 4 -o asym.txt -e asym.xtc. -p

This command takes a trajectory with a matching PDB file with four subunits (-n 4) and

calculates the CSM measure. This measure in combination with the measure for the indi-

vidual subunits is written to the file asym.txt. A typical output is shown in table S1. Here

Table S1: asym.txt Example output of CSM tool.

Frame CSM overall, CSM for subunits
0 0.95 0.24 0.45 0.12 0.14
1 1.2 0.32 0.47 0.2 0.21

...
...

...
...

...
...

the first column is the frame number. The second column gives the overall CSM score. The

columns starting from the third column are the partial CSM scores for the different sub-

units.

An additional result from the CSM calculation is the fully symmetric structure for each

frame. These structures are saved into the asym.xtc file. The flag -p does a permutation

optimization. For the permutation optimization residues with chemically identical atoms are

identified and the naming of these atoms are chosen to minimize the asymmetry measure. To

be able to use this method the input pdb file has to contain chain/subunit labels (A,B,C,...)

and the residues of the subunits have to be labeled identically NOT continuously. A script is

provided which changes the residue labels prep_pdb.py. In order for it to relabel the residues

correctly the chain/subunit labels have to be provided as (A,B,C,...).

prepare_files.py

The prepare_files program prepares the input for the FAME algorithm. As described in the

main manuscript, a symmetrized input is needed to create a symmetric PLS-FMA vector:

S3

prepare_files.py -f traj.xtc -s struct.pdb -n 4 -d data.dat -x out.xtc -p out.dat.

This command takes the data file data.dat, the format should be similar to the example

input in table S2, and the trajectory file. As a result, the extended and rotated trajectory

according to figure S5 is written to -x out.xtc. The input data is copied into the output file

-p out.dat to match the trajectory for the FAME tool.

Table S2: data.dat format for the input data file. Alternatively, the frame
number can be given before the functional value.

functional value
0.1
0.12
0.15
...

FAME.py

After preparing the input files using the prepare_files program, the output can be used to

run the FAME algorithm. For the FAME algorithm, the optimal number of PLS compo-

nents have to be determined first to avoid overfitting. The determination is done by running

the FAME program with a negative value for the number of PLS components, that tests

components starting at one to the absolute of the given number:

FAME.py -f out.xtc -s struct.pdb -n 4 -d out.dat -c -10 -o comp.dat.

The command tries components one to ten and evaluates the correlation. The program au-

tomatically uses the first half of the input as training data and the second half of the data

as cross-validation data. An example output (-o comp.dat) is illustrated in figure S3. In this

example, three components would be a good choice.

Consequently, the FAME program can be run with three PLS components:

FAME.py -f out.xtc -s struct.pdb -n 4 -d out.dat -c 3 -w model.dat -o contributions.dat

-e extremes_ew.pdb -p extremes.pdb.

S4

As an input for FAME, the output files of the prepare_files program are used. The output

is the prediction for the functional value f̃ (-w model.dat). To get an idea on which parts

are predicted well and which parts are not, the prediction f̃ can be visualized with the input

data f (see figure S5). Note that for the final FAME algorithm the data set is not split into

training and cross-validation data blocks but all data is used to build an optimal model.

Furthermore, the contributions Cj for each of the subunits are written to -o contributions.dat.

The PDB file -p extremes.pdb gives a graphical representation of the reference motion and

-e extremes_ew.pdb gives the ensemble weighted representation of the motion (refer to Hub

and de Groot for further explanation).

The PLS-FMA algorithm is insensitive to the absolute values of the functional input

data. However, for the decomposition of the PLS-FMA prediction into the subunit compo-

nents and especially for the contribution calculation, the selecteion of the absolute values

of the functional input is crucial. As Cj = f̃
j
/f̃ it is clear that changing the sign in f̃

j
or

f̃ would require the other value to change its sign accordingly to keep Cj in the range of

0 ≤ Cj ≤ 1, which is required for this measure. Thus applying a linear transformation on

the functional input data (f) might be required to get a reasonable prediction for the con-

tributions. The algorithm would apply no value to Cj if it is outside the range. Therefore,

the number of missing values combined with the expected continuity of the contributions Cj

(sudden changes in asymmetry are not expected for a continuous simulation) can be used to

estimate the need for a linear transformation. If a linear transformation is applied, the miss-

ing values can be used to evaluate the improvement of the results through the transformation.

Note that the current implementation reassigns subunit labels and minimizes the RMSD

to a given reference to achieve symmetry correction. However, an alternative (and math-

ematically more correct but computationally significantly more demanding) method is the

calculation of the correct rotation axis followed by a rotation around this, similar to the

S5

CSM approach. (See SI figure 4 as an example for TTR.)

S6

Supplementary Figures

Figure S1: RMSD KcsA The RMSD of the trajectory of KcsA in reference to the symmetric
crystal structure demonstrates how small the introduced asymmetric motions actually are.

S7

Figure S2: RMSD TREK-2 The RMSD of the trajectory of TREK-2 comparing the struc-
ture of the original trajectory (blue line) and the trajectory after introducing the helix motion
(green line).

S8

Figure S3: PLS component estimation To perform the PLS-FMA analysis, the correct
number of PLS components has to be determined previously. Different PLS components have
to be tested and the correlation between the functional input data and the model created
with this number of components is calculated. The correlation for the training data is shown
in blue and the correlation for the crossvalidation is shown in green.

S9

Figure S4: TTR contacts The black signal line in the background represents the overall
contact score of the TTR simulations by calculating the native contact score based on the
subunits independently (colored lines).

S10

Figure S5: TTR rotation scheme To symmetrize the reference motion, the input ensemble
is symmetrized by using all possible assignments of the labels.Thus the functional values are
appended such that the overall dataset includes as many times the same functional value as
subunits in the protein. Furthermore, the trajectory itself is duplicated by the same number.
In the first repeat of the trajectory all subunits are rotated by 360 degrees divided by the
number of subunits. The next repeat will be rotated by twice that and so on.
The input data (black line) is split in two halves where the first halve (white background) is
used to train the model (blue line). For crossvalidation all input data are compared to the
created model (gray background).

S11

