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SUMMARY

Aquaporin 4 (AQP4) is a transmembrane protein from
the aquaporin family and is the predominant water
channel in the mammalian brain. The regulation of
permeability of this protein could be of potential ther-
apeutic use to treat various forms of damage to the
nervous tissue. In this work, based on data obtained
from in silico and in vitro studies, a pH sensitivity that
regulates the osmotic water permeability of AQP4 is
demonstrated. The results indicate that AQP4 has
increased water permeability at conditions of low
pH in atomistic computer simulations and experi-
ments carried out on Xenopus oocytes expressing
AQP4. With molecular dynamics simulations, this ef-
fect was traced to a histidine residue (H95) located in
the cytoplasmic lumen of AQP4. A mutant form of
AQP4, in which H95 was replaced with an alanine
(H95A), loses sensitivity to cytoplasmic pH changes
in in vitro osmotic water permeability, thereby sub-
stantiating the in silico work.
INTRODUCTION

Aquaporins are involved in handling the permeation of water

across cell membranes (Agre, 2006; Agre et al., 2002). Each

of the monomers in this tetrameric transmembrane protein

acts as a channel through which bidirectional osmotic water

transport takes place between the extracellular space and

cytoplasmic compartment (Meinild et al., 1998). The three-

dimensional structure of these proteins is highly conserved,

with each monomer accommodating an hourglass-shaped

pore. The narrowest restriction is characterized by a highly

conserved arginine residue in a hydrophobic environment, be-

ing labeled as aromatic/arginine (ar/R) region. Another

conserved feature in the sequence of aquaporins is the NPA-

duplex motif, placed in the interior of the pore (Murata et al.,

2000). Aquaporin proteins show high specificity toward perme-

ants, with the ability to distinguish between water molecules

from protons, prohibiting the permeation of the latter (de Groot

et al., 2003). Thirteen members of the aquaporin water channel

family have been identified in humans (Heymann and Engel,
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1999). Although most of these serve explicitly as water chan-

nels, a few permeate alternative substrates such as glycerol

and urea (Beitz et al., 2004). It has been suggested that aqua-

porins may also serve as facilitators of gas transport, perme-

ating small hydrophobic molecules such as ammonia, oxygen,

nitrous oxide, and carbon dioxide (Agre, 2006; Cooper et al.,

2002; Endeward et al., 2006; Verkman, 2002; Wang and Taj-

khorshid, 2010; Zador et al., 2009).

Recently, analyses by X-ray crystallographic methods have

elucidated the structural and topological features of several

members of the aquaporin family of proteins: AQP1 (Murata

et al., 2000; Sui et al., 2001), GlpF (Fu et al., 2000), AQPZ (Savage

et al., 2003), AQP0 (Harries et al., 2004), AQYM (Lee et al., 2005),

SoPIP2;1 (Törnroth-Horsefield et al., 2006), PfAQP (Newby et al.,

2008), AQP5 (Horsefield et al., 2008), AQP4 (Ho et al., 2009), and

AQP2 (Frick et al., 2014). These structures have provided us with

insights into the inner working of the channel. Computer simula-

tions performed with these structures as starting points further

expanded our knowledge concerning the dynamic nature of

the underlying molecular mechanisms. The regulation of the

permeability of aquaporins has been studied extensively with

molecular dynamics (MD) simulations (Burykin and Warshel,

2004; de Groot et al., 2003; de Groot and Grubmüller, 2001,

2005; Hub and de Groot, 2008; Hub et al., 2009; Lin et al.,

2006; Törnroth-Horsefield et al., 2006; Yu et al., 2006), which

have helped decipher mechanisms underlying physiological

events that alter the choice of permeants and the rate at which

these permeants diffuse through the channel.

AQP4 is the main water channel in the brain and is abundant at

the perivascular glial endfeet (Amiry-Moghaddam and Ottersen,

2003; Nielsen et al., 1997). Due to its location at the blood-brain

barrier and the altered survival rate of AQP4 knockout mice

following experimentally inflicted brain edema formation, AQP4

has been proposed to be involved in ischemic brain edema (re-

viewed by Zador et al., 2009). Short-term regulation of AQP4 un-

der pathophysiological conditions promoting brain edema has

therefore attracted scientific interest. During cerebral ischemia,

the pH decreases in the extracellular space and in the astrocytic

cytoplasm (Beppu et al., 2014; Kraig and Chesler, 1990; Lascola

and Kraig, 1997; Ringel et al., 2000). These changes in the brain

environment are likely to be involved in the pathogenesis of brain

ischemia and the subsequent brain edema (Beppu et al., 2014).

However, the effect of these pH changes on AQP4-mediatedwa-

ter permeability remains to be determined. Earlier work has sug-

gested that AQP4 is subject to regulation through covalent and
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Figure 1. Conserved Residues in AQP4

(A) Sequence comparison for the protein sequences of the aquaporin family. The evolutionary conservation of the H95 residue as well as the E41 residue in the

human AQP4 is highlighted in red.

(B) The conserved residues in AQP4 are shown in licorice representation.
non-covalent modification. The role of phosphorylation in regu-

lating the localization or trafficking of AQP4 to the plasma mem-

brane is controversial. Initial studies suggested that the two

conserved serine residues S180 and S111 are targets for phos-

phorylation and were required for kinase-dependent gating of

AQP4 (Gunnarson et al., 2008; Zelenina et al., 2002), whereas

recent experimental and computational work indicated that

phosphorylation of these (and a range of other) residues was

not a required event for channel opening or correct targeting to

the plasma membrane (Assentoft et al., 2013; Sachdeva and

Singh, 2014b, Assentoft et al., 2014). AQP4 water permeability

has been studied in detail with computational MD techniques

(Cui and Bastien, 2011; Ho et al., 2009; Sachdeva and Singh,

2014a). An external electric field can also modulate the perme-

ability of AQP4 by gating the H201 residue in the protein (Garate

et al., 2011; Reale et al., 2013), although thewater permeability of

AQP4-expressing oocytes was independent of membrane po-

tentials in the physiological range (Fenton et al., 2010). There

have been computational studies to show that the solute prefer-

ence of AQP4 extends beyond water to other substrates such as

NO, CO2, and O2 (Wang and Tajkhorshid, 2010). Only recently a

histidine residue, H95, has been shown to participate in a gating

mechanism that could possibly be regulated by pH (Alberga

et al., 2014). However, the mechanism of modulation of the

permeability via pH remains unresolved. In the present work

we demonstrate that AQP4 can be regulated by intracellular

pH through a change in protonation of H95, and elucidate the

molecular mechanisms of this effect with MD simulation and

mutational analysis of heterologous expressed AQP4.
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RESULTS

In our previous work (Assentoft et al., 2013), we observed that

the individual monomers of AQP4 showed distinct osmotic water

permeabilities that were consistent over a long time scale. We

visually identified H95 moving in and out of the channel pore

as a possible cause of these variations. These variations were

present in both the phosphorylated and the non-phosphorylated

AQP4 simulations. H95 is located in the pore of AQP4 and is

conserved within plant, humans, rats, and mice (Figures 1A

and B), suggesting an important role for this specific residue.

To estimate the effect of the change in protonation state of

H95 on AQP4 permeability with MD simulations, we performed

two 500-ns equilibrium runs, with one having H95 in all four

monomers in a singly protonated, neutral state and the other

with H95 in its doubly protonated, positively charged state. For

the neutral state, H95 was protonated in the delta nitrogen of

the imidazole ring as predicted by the WHAT IF package.

The simulations showed increased water permeability with

the doubly protonated H95 residue (H95+) (compare 1.72 ±

0.26 3 10�14 cm3/s with 2.62 ± 0.37 3 10�14 cm3/s, n = 8,

p < 0.038) (Figure 2A). To assess if this change was brought

about through a purely steric alteration in the pore radius of the

monomer, we calculated the radius profile for the channel (Fig-

ure 2B). The profile for the AQP4 channel with H95+ was

observed to offer a slightly wider pore in the region where the

H95 is located. However, this difference was within the SD in

the radius as estimated from the trajectory (Figure 2B). This

indicated that the change in protonation of the residue did not
All rights reserved



Figure 2. Equilibrium Permeability and

Channel Radius Profile of AQP4

(A) The permeability values (Pf) calculated in the

H95 singly protonated simulation are compared

with those calculated from the H95+ and H95A

simulations.

(B) The profile of the radius along the channel

lumen is plotted for comparison between the three

simulations. The uncertainty is estimated with the

SD calculated in the trajectory.
significantly alter the channel profile in a static manner. Interest-

ingly, the H95 region in the channel profile demonstrated the

highest variability in the pore radius. This furthered the possibility

of a gating-like behavior in the general vicinity of H95, which

could potentially modulate permeability of the monomer chan-

nel. As permeability is affected by the protonation state, a pH-

dependent gating mechanism was hypothesized.

We used the partial least-squares-based functional mode

analysis (PLS-FMA) (Krivobokova et al., 2012) methodology

that allows us to capture collective motions in the protein that

correlate most with the function of interest. In this case, the local

change in the pore radius was used to train the PLS-FMAmodel.

We used the set of local radii in eight non-overlapping regions

(Figure 3A) in the channel as a function to train the algorithm. Us-

ing this training set with PLS-FMA, we detected eight modes in

the simulation system that could potentially explain opening

and closing of the channel pore in a local region for the simulation

window. PLS-FMA modes with a high cross-validation

correlation coefficient (R2 > 0.75) were considered for further

investigation.

Of the eight modes obtained through this method, three

modes, obtained from the �16 to �8 Å region, the �12

to�8 Å region, and the�8 to�4 Å region, demonstrated the abil-

ity to open and close an AQP4 channel significantly by allowing

the radius to vary from a value of 2 to 0.5 Å (Figure 3B). The

modes obtained from other regions did not show similarly large

fluctuations, implying that a gate-like behavior was absent in

these regions. The above three regions were in the vicinity of

H95. PLS-FMA mode obtained from the �12 to �8 Å region is

numerically and functionally identical to the one obtained from

the �8 to �4 Å region. This was expected, as H95 is on the

border of these two regions (Figure 3A). Thus, H95 has the po-

tential to affect channel pore radius in either region of the protein,

as observed in the simulation. The high correlation coefficient

(>0.75) in the training as well as the validation set for both regions

indicates a robust identification of the mode that affects the pore

radius in the vicinity of H95. The exact type of motion of H95 and

the associated loop to move in and out of the channel pore are

described in Figure 4. A population histogram of the simulations

with neutral H95 showed a predisposition of H95 to remain in the

closed state of the channel where the pore radius in the vicinity of

H95 is narrow (<1.4 Å, approximately the radius of a water mole-

cule). However, in the simulations with H95+, the channel mostly

occupied the open state with a wider pore (Figure 5).

Although themode identified with the PLS-FMAmethod corre-

lates with a change in the radius of the pore in the vicinity of H95,
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it does not guarantee that the actual function of interest,

i.e. permeability, is regulated by the collective motion. To test

for a causal relation between radius modulation and water

permeability, we carried out essential dynamics (ED) simula-

tions. Here, we trapped the AQP4 monomers in an ‘‘open’’ or a

‘‘closed’’ state. To accomplish this, we chose values +2.1

and �2.0 (Figure 5A) of the projection of the eigenvector, repre-

senting the open-close transition in H95 region, which corre-

spond to a wide pore and a narrow pore at the location of H95,

respectively (Figure 5B). The ED simulations were then restricted

to these values to obtain what we termed open and closed

states. In the simulations representing the open state, we

observed a significant increase in the permeability (3.02 ±

0.553 10�14 cm3/s, n = 8; �76% increase compared with equi-

librium simulations with H95 in the neutral state). On the other

hand, the closed simulations showed a reduced permeability

similar to that of the channel with a neutral H95 residue (1.78 ±

0.25 10�14 cm3/s, n = 8; unchanged from equilibrium H95ND

simulations) (Figure 5C). This supported the initial assumption

that a PLS-FMA mode based on change in the radius profile of

the channel could be effectively used to predict the permeability

of an AQP4 monomer. In MD simulations of the H95A mutant we

observed a slightly reduced water permeability compared with

the wild-type singly protonated AQP4 channel, although the dif-

ference was not statistically significant (compare 1.72 ± 0.26

10�14 cm3/s with 1.35 ± 0.19 10�14 cm3/s, n = 8, p = 0.23). The

channel profile for H95A shows a smaller pore radius close to

the H95Amutation site, similar to that of the wild-type singly pro-

tonated AQP4, although the variance in the local radius is

smaller. In these simulations, the A95 residue is no longer able

to move out of the channel pore, providing a constant steric hin-

drance in the pathway of the water molecules. The calculated

permeabilities are tabulated Table S1.

AQP4 heterologously expressed in Xenopus laevis oocytes

was subsequently used to determine the effect of pH on the

permeability of the channel. Osmotic challenge caused a

�15-fold faster shrinkage of AQP4-expressing oocytes

compared with that of native uninjected oocytes (compare

1.85 ± 0.12 3 10�3 cm/s [n = 39] with 0.11 ± 0.01 3 10�3 cm/s

[n = 10], p < 0.05; representative traces shown in Figure 6A,

left and middle). To determine the effect of acidification of the

extracellular fluid on the water permeability of AQP4, two water

permeability measurements were obtained in control solution

(pH 7.4) to ensure a stable baseline prior to a switch to a test

solution with pH 6.0. The water permeability was measured after

10 min in the test solution. The rate of shrinkage of the same
18, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2311



Figure 3. Training and Cross-Validation of the PLS-FMA Model

(A) The AQP4 monomer is divided into eight non-overlapping regions. From each region the lowest value of the radius is drawn to represent each frame and train

the PLS-FMA model.

(B) The simulation data are comparedwith themodel generated from the PLS-FMAmethod. Half of the data (shown on green background) are used for training the

model; the remainder (on the red background) are used for cross-validation. The coefficients of regression for the two datasets are shown.
AQP4-expressing oocyte following 10-min exposure to pH 6.0 is

illustrated in the right-hand trace of Figure 6A. Figure 6B shows

the summarized water permeability of AQP4 at pH 6.0 as a per-

centage of that obtained at pH 7.4 (102.1% ± 2.1%, n = 22). No

significant change in AQP4-induced water permeability was

observed upon acidification of the extracellular fluid.

To determine whether AQP4 was sensitive to changes in

intracellular pH, the oocyte cytoplasm was acidified by addition

of a weak acid (Burckhardt and Frömter, 1992; Stewart et al.,

2001) and pHi was monitored with a H+-sensitive microelec-

trode during addition of butyrate to the extracellular solution.

A stable pHi baseline was obtained in control solution prior to

exposure of the oocytes to an isosmotic solution containing

40 mM butyrate for 15 min. The course of pHi is illustrated in

Figure 6C, with the addition of butyrate marked with a bar.

Butyrate caused an intracellular acidification of both AQP4-

expressing (Figure 6C, left trace) and uninjected oocytes (Fig-

ure 6C, right trace). Although the AQP4-expressing oocytes

had higher basal pHi than native oocytes (compare 7.34 ±

0.02 [n = 13] with 7.10 ± 0.03 [n = 8], p < 0. 001), addition of

butyrate promoted similar acidification in both (compare

6.81 ± 0.03 [n = 13] with 6.73 ± 0.04 [n = 8], p = 0.13, summa-

rized in Figure 6D). Butyrate addition thus caused an acidifica-

tion of around 0.5 pH units in the AQP4-expressing oocytes.

The osmotic water permeability of AQP4-expressing oocytes

was determined in control solution (pH 7.4) after which intracel-

lular acidification was obtained by the equimolar replacement

of 40 mM NaCl with Na+-butyrate. The water permeability

was measured 10 min after the addition of butyrate. Represen-

tative traces of mannitol-induced shrinkage of an AQP4-

expressing oocyte before and after 10-min exposure to

butyrate are shown in the left panel of Figure 6E. The water

permeability of AQP4 increased during intracellular acidification

to 111.0% ± 2.2% of control, n = 17, p < 0.001, summarized in

Figure 6E, right panel.
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To test the role of H95 in the intracellular pH-dependent regu-

lation of AQP4, this residue was mutated to alanine to prevent

the pH-induced protonation of the histidine (AQP4.H95A).

AQP4.H95Awas expressed in oocytes, and the effect of intracel-

lular acidification on the AQP4-mediated osmotic water

permeability was evaluated. The rate of shrinkage of an

AQP4.H95A-expressing oocyte before and after 10-min expo-

sure to butyrate is shown in Figure 6F, left panel. The water

permeability of AQP4.H95A was not significantly changed by

intracellular acidification; 98.4% ± 5.2% of control, n = 11,

p = 0.76, summarized in the right-hand panel of Figure 6F, under-

scoring that protonation of H95 does indeed act as themolecular

gate, as suggested by the MD simulations.

DISCUSSION

We describe in this work a novel pH-sensitive mechanism to

regulate the osmotic water permeability of AQP4. We show

that pH changes, mediated by H95, can effectively gate the

channel. The H95 residue has a strategic location in the channel,

placed at the lumen-bulk interface at the cytosolic side of the

AQP4 monomer. This location can expose the H95 to the cyto-

solic environment of the cell and allow for pH sensitivity. The

conservation of this residue across mammalian and plant spe-

cies also points to the possibility that it might serve a functional

purpose. In an earlier work (Janosi and Ceccarelli, 2013), the role

of an H95 analog, H67 for AQP5, was proposed to act in a similar

manner tomodulate the permeability in that protein. Recent work

by Alberga et al. (2014) on AQP4 presents a mechanism identi-

fying H95 as the key residue driving the opening and closing of

the gating mechanism. However, our investigation reveals that

in fact H95 forms the basis for pH-regulated gating. We identify

the molecular details involved in this gating and show that the

propensity for the ‘‘open’’ state of the channel is strongly influ-

enced by the protonation state of the H95. Several aquaporins
All rights reserved



Figure 4. The PLS-FMA Mode Is Shown with the Protein in the

Cartoon and the H95 Residue in Licorice Representation

For convenience, the regions of the mode for other parts of the protein are not

shown. The extreme closed position of the H95 is shown in orange while the

extreme open position is shown in red. The E41 residue, speculated to elec-

trostatically regulate the gate, is shown in green.

(A) The PLS-FMA mode viewed from the side of the monomer.

(B) The PLS-FMA mode, top-down view.
have previously been demonstrated to be regulated by extracel-

lular and/or intracellular pH. Plant AQPs generally appear to

decrease their water permeability with decreasing intracellular

pH while extracellular pH changes influence mammalian aqua-

porins in different manners. However, the mechanism proposed

in case of plants for the pH regulation of permeability is structur-

ally distinct from the one proposed in this paper (Frick et al.,

2013). This mechanism, described for SoPIP2;1, concerns inter-

actions within the loops B and D of the protein to bring about the

gating of the channel pore. AQP0 has highest water permeability

at pHe 6.5 (Németh-Cahalan and Hall, 2000), AQP3 closes at

pHe <6 (Zelenina et al., 2003; Zeuthen and Klaerke, 1999),

AQP6 opens at pHe <5.5 (Yasui et al., 1999), whereas AQP4

has been proposed to open at basic pH (Nemeth-Cahalan

et al., 2004), a phenomenon we were not able to reproduce in

the present study (data not shown).

Herein, a combined experimental and computational investi-

gation strategy was utilized to identify the mechanism by which

pH can regulate the water permeability of the AQP4 channel. We

use the PLS-FMA methodology to generate collective modes

from the simulations that regulate the permeability of the aqua-

porin. The method can identify concerted motions in proteins

that correlate strongly with a function of interest. Functional cor-

relations would not be effectively detected by techniques such

as principal component analysis (PCA), as such methods

concentrate on identifying collective motions that maximize the

covariance. PCA has been proved useful in earlier studies to

identify collective modes that are relevant for functioning of the

proteins of interest (Autore et al., 2010; Linder et al., 2013).

Such a treatment can potentially miss the collective mode of in-

terest if it does not contribute largely to the covariance. Ideally,

the training function for the PLS-FMA model in this case would

be the osmotic permeability. However, as the permeability of

the AQP4 channel appears to have a long autocorrelation time

on the order of nanoseconds, we could not obtain sufficient
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data to generate a mode that reliably describes the change in

water permeability. Hence, we chose to use radius of the pore

as the training function, as it was expected to contribute to the

overall mobility of water molecules in the channel, acting as a

proxy for permeability. From the results of the simulations we ex-

pected to see the pH-sensitive elements to be present on one of

the lumen openings of the monomer channel, so that they would

effectively detect a pH change in the environment. To assess

which side of the protein responded to a pH change, we acidified

the two compartments independently and measured the change

in AQP4-mediated osmotic water permeability across the cell

membrane. The acidification of the extracellular compartment

did not induce a significant shift in the permeability. The acidifi-

cation of the intracellular compartment, however, led to an in-

crease in the measured osmotic water permeability, indicating

the presence of the mechanism of pH sensitivity located on the

cytosol-facing lumen. As histidine residues have a pKa close to

the physiological pH, we expected them to have a significant

role in responding to changes in the bulk hydrogen ion concen-

tration. To check whether this residue could actually affect the

osmotic water permeability of AQP4, we built computational

models analogous to the experimental system. Using MD simu-

lations performed for these models, we compared the effects of

the differential protonation of the H95 residue on the permeability

of the AQP4 channel. We found that the simulation findings qual-

itatively agreed with the experiments with the doubly protonated

H95 showing a larger permeability when compared with the sim-

ulations with the singly protonated H95. A more direct, quantita-

tive comparison is rendered complicated due to environmental

factors that are difficult to control. The most important of these

could be that all four H95 residues of all the AQP4 proteins might

not be protonated under the empirical conditions, thus yielding a

comparatively smaller effect of acidification on the water perme-

ability in the in vitro experiments. Also, in the in vitro studies the

pH could be lowered only by amargin of 0.5 pH units. Under con-

ditions of systemic ischemia this drop could potentially be larger,

leading to a stronger change in permeability of the protein.

Furthermore, we speculate that the reason for the change in

the preference of the H95 orientation is in the electrostatic inter-

actions within the protein. The doubly protonated H95 residue is

placed in the proximity of a highly conserved glutamic acid res-

idue (E41), which could potentially trap the positively charged

H95 in an open position (Figure 4). Such a speculation also ex-

plains the gradual and monotonous decrease in the distance be-

tween E41 and H95 along the H95 mode in the direction of the

gate opening, as shown in Figure S2. This mechanism differs

from the one proposed by Alberga et al. (2014), as the latter re-

quires the formation of a hydrogen bond with a C178 residue.

Although C178 can act as a potential hydrogen donor, we do

not observe it engaging in a hydrogen-bonded interaction in

our simulation window of 500 ns. Instead, we find a significant

change in the sampling of the ‘‘open’’ and ‘‘closed’’ states of

the H95 mode dependent on the protonation state of the H95

residue.

Overall, we report a pH-modulated gate for AQP4 that regu-

lates the osmotic water permeability by modulating the local

channel radius. The pore modification calculated in the simula-

tion is significant and can affect the traffic of water molecules

through the channel. The pH sensitivity offered by the H95
18, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2313



Figure 5. Essential Dynamics Study of the

PLS-FMA Mode

(A) The populations of the structures encountered

in the equilibrium simulations are plotted as a his-

togram. The structures are binned against the PLS-

FMA vector describing the degree of channel

opening in the H95 region. The zero on the x axis

approximately equals 1.3 Å radius in the H95

region.

(B) The channel radius profile at two points along

the PLS-FMA vector. At a value of�2.0 on the PLS-

FMA vector, the channel is constricted at the H95

region, while at the value of +2.1 the local pore near

the H95 region appears expanded. These values

were then used for the constraints in ED simula-

tions.

(C) The Pf values obtained from the ED simulations

are plotted as bar graphs. The ‘‘open’’ ED si-

mulation has a comparatively larger Pf value than

the doubly protonated H95 simulation, while the

‘‘closed’’ simulation is reduced to the level of the

singly protonated H95 simulation. The uncertainty

is estimated from the standard deviation for the Pf

values calculated over the four monomer trajec-

tories.
residue combined with its evolutionary conservation points to-

ward a physiological role whereby the channel potentially re-

sponds to shifts in the pH in the cytosolic compartment. Thus

it can act in a manner that would allow a drop in the cytosolic

pH to affect the channel to open wider and, when faced with os-

motic pressure, increase the flow of water across the cell mem-

brane. It must be noted that the constriction of the channel at the

ar/R region is the narrowest region of the monomer lumen and

poses the largest barrier to permeants. This barrier appears to

be directly maintained by the physical presence of R216 in the

channel pore, which would explain why the radius modulation

from the H95 residue cannot completely switch off the channel

but regulates the permeability more moderately.

EXPERIMENTAL PROCEDURES

Molecular Dynamics Simulations

The structure used for the simulation of AQP4 was obtained from the PDB

(PDB: 3GD8) with a resolution of 1.8 Å (Ho et al., 2009). We used the package

WHAT IF (Vriend, 1990) to curate the structure and predict the protonation

states of the residues using hydrogen-bond networks. The tetramer generated

from this structure was inserted into a lipid bilayer consisting of 294 dimyris-

toylphosphatidylcholine (DMPC) lipids. This insertion was accomplished with

the g_membed tool implementation in GROMACS (Wolf et al., 2010). We

used a physiological ion concentration of 150 mM, which was simulated

with sodium and chloride ions. The system was maintained at overall neutral

charge. The simulation box was solvated with approximately 22,000 explicit

water molecules of the SPC/E water model (Berendsen et al., 1987). The elec-

trostatic interactions were simulated explicitly with a cutoff of 1.0 nm using

Particle Mesh Ewald (Darden et al., 1993) for long-range interactions. The

Lennard-Jones interactions were accounted for with a cutoff of 1.0 nm. All

the simulations were carried out using the MD simulations package

GROMACS version 4.5.5 (Hess et al., 2008). The LINCS algorithm (Hess,

2008) as implemented in the package was used to constrain the covalent

bonds in the system, while the non-polar hydrogens were replacedwith v-sites

(Feenstra et al., 1999). v-Sites allowed us to reach a time step of 4 fs. The

simulations were performed at a temperature of 300 K using a velocity-rescale

thermostat (Bussi et al., 2007) and at 1 atm pressure maintained by the

Parrinello-Rahman barostat. The DMPC lipids were simulated with Berger

parameters (Berger et al., 1997). The parameters for the protein and the ions
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were obtained from the AMBER99SB-ILDN force field (Hornak et al., 2006;

Lindorff-Larsen et al., 2010). DMPC lipids were chosen for several reasons.

These lipids do not pose a significant hydrophobic mismatch with the protein.

Earlier, they have been used to reproduce physiological arrangements and

permeabilities for AQP0 (Gonen et al., 2005). Also, MD simulation results agree

with experiments within this and previous work.

Two equilibrium simulations of 500 ns each were performed to study the ef-

fect of varying protonation states of H95 on the permeability of the channel. To

calculate the permeability, we used the collective diffusion method as

described by Zhu et al. (2004). We assumed that the four monomers of the

AQP4 channel were not correlated in terms of their permeability. This allowed

us to use every monomer as an independent channel to yield four-fold statis-

tics. We discarded the first 100 ns of simulation trajectory to account for equil-

ibration. To calculate the average permeability, we divided the remaining

simulation trajectory into eight equal sections of 50 ns each. For each mono-

mer, the average was computed over the four monomers. The SE over the

eight sections was then used to estimate the uncertainty in the permeability.

The packageHOLEwas used to calculate the radius profile of the AQP4mono-

mer channel (Smart et al., 1993). The conservation within sequences of aqua-

porins was studied with the web-plugin JalView (Waterhouse et al., 2009).

A snapshot of the simulation system is shown in Figure S1.

Functional Mode Analysis

To identify the collective mode that correlates best with the opening and clos-

ing transitions of the channel protein, we used FMA (Hub and de Groot, 2009)

based on the machine-learning algorithm PLS fitting, as implemented for

computational molecular simulations (Krivobokova et al., 2012). We divided

the monomer channel axis into eight equally spaced regions along its length.

From each of these regions, we calculated the smallest radius for every frame

in the equilibrium trajectory, creating eight data vectors. Each data vector was

used as a function to generate one PLS-FMAmodel corresponding to the local

change in channel radius. Only half of the data from the data vectors were used

for training themodels; the rest were used for cross-validation. This allowed us

to correct for any possible overfitting in the process of model generation. The

number of components used to create a model was varied from 1 to 25 to

compare the cross-validation correlation coefficients. For the final analysis,

the model with 15 components was chosen.

Essential Dynamics Simulations

To validate the causal effect of the collective mode predicted by the PLS-FMA

methodology on channel opening, ED simulations were performed as

implemented in the GROMACS package (Amadei et al., 1993, 1996). These
All rights reserved



Figure 6. pH Dependence of AQP4

Expressed in Xenopus Oocytes

(A) Volume traces from an uninjected oocyte (left

trace) and an AQP4-expressing oocyte (middle

trace) challenged with a hyperosmotic gradient of

20 mOsm as indicated by the bar, at pH 7.4. The

same AQP4-expressing oocyte was subsequently

challenged with a hyperosmotic gradient during

exposure to extracellular acidification (pH 6.0) for

10 min (right trace).

(B) Summarized water permeabilities of AQP4-ex-

pressing oocytes after 10-min exposure to extra-

cellular acidification (pH 6.0) relative to control

measurements; n = 22. Paired t test was not sig-

nificant (ns).

(C) pHi traces from an AQP4-expressing (left trace)

and uninjected (right trace) oocyte during exposure

to 40 mM butyrate (indicated by bar) for 15 min.

(D) Summarized pHi after 10-min exposure to

40 mM butyrate of AQP4-expressing (n = 13) and

uninjected (n = 8) oocytes.

(E) Left: Volume traces from an AQP4-expressing

oocyte challenged with a hyperosmotic gradient

before (black) and after exposure to intracellular

acidification with 40 mM butyrate (red) for 10 min.

Right: Summarized water permeabilities of AQP4-

expressing oocytes after 10-min exposure of

40 mM butyrate relative to control measurements;

n = 17. Paired t test: ***p < 0.001.

(F) Left: Volume traces from an AQP4.H95A-

expressing oocyte challenged with a hyperosmotic

gradient before (black) and after exposure to intracellular acidification with 40 mM butyrate (red) for 10 min. Right: Summarized water permeabilities of AQP4-

expressing oocytes after 10-min exposure of 40 mM butyrate relative to control measurements; n = 11. Paired t test: not significant (ns).
simulations tested the ability of the PLS-FMA mode to regulate the perme-

ability of the AQP4 water channel. In the first simulation, all four monomer

channels were trapped in the ‘‘open’’ configuration of the mode, and in the

second simulation they were all confined to the ‘‘closed’’ configuration of the

same mode. Here open and closed refer respectively to configurations with

a large and a small pore radius in the vicinity of the H95 residue. The ability

of a configuration to restrict the channel in an open or closed form was tested

by calculating the pore profile with the HOLE package. This restriction was

achieved with a force constant of 1,000 kJ mol�1 nm�1. These configurations

were obtained by imposing restraints on protein dynamics along projections of

the eigenvector maximizing the covariance in the PLS-FMA mode. Both of

these simulations were carried out for 100 ns, and the first 10 ns were

dropped to account for equilibration in subsequent analysis. The permeability

was calculated with the same method previously used for equilibrium

simulations. SD in the permeability was used to calculate uncertainty in the

measurement.

Oocyte Preparation

X. laevis frogs were obtained from Nasco or Xenopus Express. Oocytes were

surgically removed from anesthetized frogs, and the follicular membrane was

removed by collagenase treatment (Type 1, Worthington Biochemical or

collagenase A, Roche) as previously described (Becker and Deitmer, 2004;

Fenton et al., 2010). The singularized oocytes were left overnight in Kulori

medium (90 mM NaCl, 1 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM HEPES

[pH 7.4–7.8]) at 18�C to recover. The protocol complies with the European

Community guidelines for the use of experimental animals and the experi-

ments were approved by The Danish National Committee for Animal Studies

or by The Landesuntersuchungsamt Rheinland-Pfalz, Koblenz.

Molecular Biology

Mutations in AQP4 were introduced into wild-type rat AQP4.M23 (Lu et al.,

1996) subcloned into the oocyte expression vector pXOOM, using a Quick

Change site-directed mutagenesis kit (Stratagene), and verified with DNA

sequencing. Numbering of the AQP4 amino acids is in accord with that of
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AQP4.M1. The cDNAs encoding the AQP4 constructs were linearized down-

stream of the poly(A) segment and in vitro transcribed using T7 mMessage

Machine (Ambion). cRNAwas extracted withMEGAclear (Ambion), andmicro-

injected into defolliculated X. laevis oocytes of stages V and VI (25 ng/oocyte).

Oocytes were incubated in Kulori medium for 3–4 days at 18�C–19�C prior to

experiments.

Oocyte Volume Measurements

The experimental setup for measuring water permeability of oocytes has been

described in detail previously (Zeuthen et al., 2006). The oocyte was perfused

with a control solution (100 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2,

10 mM HEPES [pH 7.4]) and subsequently one of two test solutions

(100 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM HEPES [pH

6.0]; or 60 mM NaCl, 40 mM Na-butyrate, 2 mM KCl, 1 mM CaCl2, 1 mM

MgCl2, 10 mM HEPES [pH 7.4]) at room temperature (21�C–24�C) in a small

chamber with a glass bottom. The oocyte was viewed from below via a

long-distance objective, and oocyte images were captured continuously at a

rate of 25 images/s. To determine the water permeability, the oocytes were

abruptly challenged with a hypertonic solution (control or test solution with

additional 20 mOsm mannitol), and the water permeability was calculated as

Lp =
�Jv

A $Dp $Vw

;

where Jv is the water flux during the osmotic challenge, A is the truemembrane

surface area (about nine times the apparent area due to membrane folding

[Zampighi et al., 1995]),Dp is the osmotic challenge, Vw is the partial molal vol-

ume of water, i.e. 18 cm3/mol, and Lp is the water permeability given in units of

cm/s. The osmotic water permeability of AQP4-expressing oocytes was deter-

mined in control solution by double determination, and the water permeability

of uninjected oocytes was subtracted.

Intracellular pH Measurements

Changes in intracellular pH (pHi) in oocytes were determined with ion-sele-

ctive microelectrodes under voltage-clamp conditions. For measurement of
18, December 1, 2015 ª2015 Elsevier Ltd All rights reserved 2315



intracellular pH and membrane potential, double-barreled microelectrodes

were used; themanufacture and application have been described in detail pre-

viously (Deitmer, 1991). For calibration, electrodeswere perfusedwith HEPES-

buffered control solution (100 mMNaCl, 2 mM KCl, 1 mMCaCl2, 1 mMMgCl2,

10 mM HEPES [pH 7.4]) and, after a stable electrode potential was reached,

control solution pH 7.0 was applied until the electrode again reached a stable

potential. The subsequent measurements of oocyte pHi were stored digitally

using home-made PC software based on the program LabView (National In-

struments Germany). For two-electrode voltage clamp, a borosilicate glass

capillary, 1.5 mm in diameter, was pulled to a micropipette and backfilled

with 3 M KCl. This electrode was used for current injection and was connected

to the head-stage of an Axoclamp 2A amplifier (Axon Instruments). The actual

membrane voltage was recorded by the reference barrel of the double-

barreled pH-sensitive microelectrode. Oocytes were clamped to a holding

potential of�40mV. As described previously (Bröer et al., 1998), optimal intra-

cellular pH changes were detected when the ion-selective electrode was

located near the inner surface of the plasma membrane. All experiments

were carried out at room temperature 3–6 days after injection of cRNA into

the oocytes.
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