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Linear-Scaling Soft-Core Scheme for Alchemical Free Energy
Calculations
Floris P. Buelens[a] and Helmut Grubmüller[a]

Alchemical free energy calculations involving the removal or inser-
tion of atoms into condensed phase systems generally make use
of soft-core scaling of nonbonded interactions, designed to cir-
cumvent numerical instabilities that arise from weakly interacting
“hard” atoms in close proximity. Current methods model soft-core
atoms by introducing a nonlinear dependence between the shape
of the interaction potential and the strength of the interaction. In
this article,we propose a soft-core method that avoids introducing

such a nonlinear dependence,through the application of a smooth
flattening of the potential energy only in a region that is energet-
ically accessible under normal conditions. We discuss the benefits
that this entails and explore a selection of applications, including
enhanced methods for the estimation of free energy differences
and for the automated optimization of the placement of inter-
mediate states in multistage alchemical calculations. © 2011 Wiley

Periodicals, Inc. J Comput Chem 33: 25–33, 2012
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Introduction

The calculation of free energy differences from molecular simu-
lation is of interest to a variety of fields, including computational
biophysics and drug design. In these fields, ongoing advances in
computational power and methodology have at least partially
addressed the shortcomings that became apparent after a first
wave of interest starting in the late 1980s,[1] to the extent that
free energy calculation methods, despite difficulties in imple-
mentation that continue to hinder their routine application, are
developing into tools regularly used to study aspects of molecular
recognition and energetics in complex biomolecular systems.[2]

One major branch of free energy calculation methodology is
that of so-called alchemical methods, where free energy changes
are calculated along physically impossible but computationally
realizable transformations between related molecules, by the
gradual transmutation of atomic properties and interactions. The
interactions of a set of atoms are described by two closely
related potential functions V1 and V2, each representing a state of
interest. In the most straightforward implementation, the system
is transformed between states by linear interpolation of the two
potentials,[3, 4] invoking a coupling parameter λ:

V(λ) = λV1 + (1 − λ)V2. (1)

Free energy differences can then be calculated using any of
a number of available methods.[5]

Transformations of interest often involve the addition or
removal of groups of atoms, such as amino acid side chains or
functional groups of a small molecule. In these transformations,
straightforward linear interpolation schemes fail when weakly
interacting atoms come into close proximity, as a result of the
unbounded nature of the nonbonded (van der Waals and electro-
static) potentials at short range. In current applications, this issue
is almost universally remedied with the use of “soft-core” scaling

schemes,[4, 6–8] where the van der Waals and electrostatic poten-
tials are modified such that the full-strength, unscaled potential
matches the unmodified interaction, whereas in intermediate
states the potential is modified such that overlapping atoms no
longer give rise to singularities.

While soft-core potentials solve the overlap problem, one
desirable property of linear scaling schemes is lost: when the
intermediate potential at any given state between end points is
represented by a linear combination of the two end point poten-
tial functions, it is trivial to extrapolate the internal energy at any
other point in the transformation. Current soft-core potentials
introduce a nonlinear dependence on the mixing parameter,[6, 8]

and calculation of the internal energy in alternate states requires
a re-evaluation of all soft-core interactions, either on the fly during
the simulation or by later reprocessing of saved configurations
of the system.

We here describe a formulation of a soft-core scaling scheme
for nonbonded interactions, referred to as linear soft-core (LSC),
which has been implemented in the molecular dynamics (MD)
package Gromacs.[9] LSC is designed to combine the advantages
of both approaches, namely the numerical integrity of nonlinear-
scaling soft-core potentials and the straightforward extrapolation
of internal energy in other states that follows from linear scal-
ing. This will be followed by examples of potential applications,
including enhancements to methods for the estimation of free
energy differences and a scheme to obtain uniform ensemble
overlap between neighboring intermediate states.
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Concept

The basis of this work is a modification to nonbonded potential
functions designed to fulfil the following two conditions.

First, in the initial and final thermodynamic states [“end states,”
e.g., λ = 1 for V1 and λ = 0 for V2; eq. (1)], the configurational
ensembles generated must be indistinguishable from those gen-
erated by the respective unmodified (“native”) potentials. If this
condition is fulfilled, the free energy difference associated with a
hypothetical switch from the modified to the native potential in
the end state is by definition zero, and no correction is needed.

Second, those portions of the nonbonded potentials (Vnb)

that are not energetically accessible under standard conditions,
and thus have no influence on the native ensemble, should be
optimized for good numerical behavior when scaled linearly. To
this end, the linear soft-core potential VLSC is divided into two
regions, native Vnb and “capped” Vcap, separated at a threshold
distance rcap, where

VLSC(r) = Vnb(r) for r ≥ rcap

VLSC(r) = Vcap(r) for r < rcap.

Vnb can refer to either the van der Waals or the electrostatic
portion of the nonbonded potential, or to both. When both are
considered simultaneously, a single value of rcap is applied to all
nonbonded interactions. The following discussion assumes that
both components are scaled simultaneously, under the control
of a single parameter λ.

The cap potential Vcap is designed to match the native potential
at rcap, with the region below rcap altered to eliminate short-
range singularities. Crucially, rcap is chosen so that the capped

region of the potential is inaccessible at standard temperatures
and pressures, leaving the accessible regions of the nonbonded
potential unmodified.

Defining rcap

The first step is to define, for each pairwise soft-core interaction,
the value of rcap, which sets a threshold inside which a full,
unscaled nonbonded interaction is judged to be energetically
inaccessible at standard temperature and pressure. Considering
that these rules will be evaluated a large number of times in
the inner nonbonded loop during MD integration, excessive
complexity should be avoided.

A first inaccessible region of configurational space is delineated
by large positive van der Waals energies. We postulate that
interactions with a van der Waals energy higher than a chosen
threshold Vmax will be inaccessible at standard temperature and
pressure (Fig. 1). Given a sufficiently conservative choice of Vmax,
the region of the nonbonded potential where Vvdw > Vmax may
be altered without affecting the accessible energy landscape of
the end state.

This first definition will not cover interactions involving hydro-
gen or other atoms with weak or no van der Waals terms. For
these atoms, which are normally shielded by the parent atoms
to which they are bonded, the removal of shielding interactions
will expose either an electrostatic singularity (Fig. 2d) or a van
der Waals radius narrower than the radius actually accessible
under standard conditions (Fig. 2g). Such exceptions are caught
by defining a minimum allowed separation rmin; we determine
that no full-strength pairwise nonbonded interaction at standard
temperature and pressure would involve distances shorter than
rmin, and cap the potential below rmin accordingly.

Figure 1. LSC applied to Lennard-Jones (a–c) and Coulomb (d–f ) functions, with Vmax = 40 kcal/mol, for a sample atom pair where charge product qiqj = −0.1,
and Lennard-Jones parameters σij = 3.75 Å and εij = 0.086 kcal/mol. a and d) Unmodified potential energy as a function of separation r× rcap (dotted line) is set as
the distance where V intersects a chosen threshold Lennard-Jones energy Vmax. The derived value of rcap is used to modify both the Lennard-Jones and Coulomb
potentials. b and e) Modified (LSC) potential energy, with a dot–dash line showing the original potential. The shaded area, of width rswitch and bounded to the right
by rcap, represents the range over which the potential is flattened. c and f ) Force for LSC (solid line) and unmodified (dot–dash line) potentials.
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Figure 2. Unmodified,nonlinear soft-core and LSC nonbonded potential energy (Lennard-Jones + Coulomb) for three sample atom pairs.Scaled by values of λ = 1,
0.8, 0.6, 0.4, 0.2, and 10−5, where λ = 1 represents the full-strength, unscaled potential. Heavier lines indicate higher values of λ. a, d, and g) Simple linear scaling of
Lennard-Jones and Coulomb potentials. b, e, and h) Nonlinear soft-core potential of Beutler et al.[6] (α = 0.5). c, f, and i) LSC potential, with rcap and rswitch indicated
with dotted line; Vmax = 40 kcal/mol, rmin = 1.25 Å. a–c) Sample carbon–carbon interaction with qiqj = −0.1; interaction capped below 2.704 Å. d–f ) Atom pair
interaction with no van der Waals term,qiqj = 0.4; interaction capped below rmin. g–i) General amber force field (GAFF) hn–hn interaction with qiqj = −0.3. Weak
Lennard-Jones term; interaction capped below rmin.

The above criteria allow rcap to be defined for any arbitrary
nonbonded potential function. While rcap, through the threshold
energy Vmax, is defined with reference to the van der Waals
energy for an atom pair, the derived value can be applied to
any nonbonded interaction, as shown with the example of the
Coulomb potential (Fig. 1).

Cap potential

The cap potential may, in principle, take any form which eliminates
the singularity at zero separation, although the potential energy
and its derivative (the force) must be continuous with respect
to separation distance to be usable in MD simulation.

A straightforward approach could be to bring the force linearly
to zero below rcap, resulting in a quadratically smooth leveling
of the potential energy curve. Such an approach would result in
a manageable cap on the nonbonded potential in many cases.

However, this approach does not take into account that the
nonbonded force at rcap need not be repulsive. In the example of
an alchemically scaled interaction between a negatively charged
atom and a hydrogen atom with no Lennard-Jones term, the

force at rcap will be strongly attractive. In this case, a simple
force interpolation to zero will result in a “negative cap,” where
the energy for superimposed atoms is more favorable than that
at the capping distance, which risks violating the principle that
the capped portion of the potential must be inaccessible under
standard conditions.

To ensure a well-defined capped potential surrounding each
atom, such that the potential energy of the capped portion of
the LSC potential is guaranteed to be less favorable than that at
rcap, cubic polynomial functions are defined for both the van der
Waals and electrostatic potentials with the following properties:

VLSC(r) =



V(rcap) + Vswitch for r ≤ (rcap − rswitch)

ar3 + br2 + cr + d for rcap − rswitch < r < rcap

V(r) for r ≥ rcap

fLSC(r) =




0 for r ≤ (rcap − rswitch)

−(3ar2 + 2br + c) for rswitch < r < rcap

f (r) for r ≥ rcap

,

where V(r) and f (r) represent the unmodified potential energy
and force functions, VLSC(r) and fLSC(r) are the respective linear-
scaling soft-core equivalents, Vswitch is the final energy penalty
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over and above the potential energy at rcap for a separation
of zero, and rswitch is the distance over which Vswitch is reached
(Fig. 1). Parameters a–d are calculated to match the boundary
conditions at rswitch and rcap.

Computational Details

The decision whether to cap each nonbonded interaction must
be taken on a pair-by-pair basis. While evaluation of conditional
statements in the inner loop of the code will generally impair
performance, the fact that in Gromacs, alchemically scaled inter-
actions are channeled into a separate pair list and evaluated
using a distinct set of routines means that only a small minority
of force evaluations is affected.

For each atom pair interaction:

• The native function (electrostatic and van der Waals) for the
atom pair is evaluated.

• If the van der Waals potential energy for the pair exceeds
Vmax, or the separation between the atom pair is less than rmin,
rcap is set so that V(rcap) = Vmax or rcap = rmin. Both the native
electrostatic and van der Waals potentials are discarded and
replaced by respective capped versions.

• Energy and force, native or capped, are then scaled linearly
according to the appropriate value of λ.

At this stage, a check is performed as to whether the capped
potential has been applied to a full strength, end state interaction
(e.g.,a capped interaction was multiplied by a value of λ = 1). This
circumstance represents a violation of the principle that the
capped portion of the LSC potential must be inaccessible for
the full strength potential, and a warning is issued. If no such
warnings are received over the course of a simulation at λ = 0
or λ = 1, this condition is met and the integrity of the end state
is guaranteed.

Choice of parameters

The LSC scheme includes the adjustable parameters Vmax, rmin,
Vswitch, and rswitch, which, respectively, determine the distance at
which regular interactions are capped, the minimum allowed dis-
tance before a cap is applied, the total energy of the smooth cap
potential, and the distance over which the cap is applied. These
parameters are tuneable to meet the needs of the application. We
here discuss parameter choice for a typical system (condensed
phase, all-atom force field at 298 K and atmospheric pressure).

As discussed above, the choices of Vmax and rmin are dic-
tated by the need to define rcap such that the altered region of
the unscaled potential is energetically inaccessible. A intuitive
starting point for Vmax would be to consider the collision of
simple Lennard-Jones particles and to choose an energy level
unlikely ever to be observed on MD time scales. A value of
15 kcal/mol would fulfil this criterion, as less than one event per
1011 would be expected to exceed this energy. However, when
considering charged particles, dipoles and solvent shielding in the
condensed phase, atom pair interaction energies will routinely
exceed this value. Considering these issues, we found a value
of Vmax = 40 kcal/mol, taking into consideration only the van
der Waals component of the interaction energy, was sufficiently

conservative for a contrived test simulation setup consisting of
a mixture of water and high concentrations of monovalent and
divalent ions and polar and nonpolar organic molecules, with
no violations of the rule observed in 20 ns of simulation. The
value rmin = 1.25 Å was empirically derived from the same test
system. Less conservative values can also be successfully used.

While the quantity Vswitch on the one hand serves to ensure
that overlapping states are always unfavorable relative to the
native potential, the choice of Vswitch and rswitch is also dictated
by the need to bring the force to zero in a controlled manner.
Excessively small values will lead to violent changes in the force,
culminating in the limit of Vswitch → 0 or rswitch → 0 in a dis-
continuity, resulting in integration errors and possible simulation
instability. The suggested values of Vswitch = 40 kcal/mol for the
van der Waals and 20 kcal/mol for the electrostatic potential,
and rswitch = 0.4 Å were chosen conservatively to avoid changes
in the force any steeper than those imposed by the original
potential.

Applications

Assuming linear scaling of other components of the potential
function, like bonded interactions, the LSC potential permits the
hybrid potential to be composed entirely of linear combinations
of two end point potential functions,without the loss of numerical
integrity this normally implies. As a consequence, it is trivial to
extrapolate the internal energy of any arbitrary hybrid state of
the system using only the derivative dV/dλ.

Such extrapolation of the internal energy for arbitrary states
along a linear transformation pathway is useful for a number
of techniques which make use of ensemble reweighting or oth-
erwise require knowledge of the energy difference associated
with a hypothetical switch to another state. The remainder of
this section will explore examples that seek to illustrate potential
applications and advantages over non-LSC scaling schemes.

Free energy calculation techniques

Broadly, three categories of methods are commonly used for the
calculation of free energies from alchemical simulations at equi-
librium:thermodynamic integration (TI),[10] exponential averaging
(EXP) with the Zwanzig formula[11] and Bennett’s acceptance ratio
method (BAR),[12] along with a recently developed elaboration,
multistate BAR or MBAR.[13] All three methods can benefit from
the use of the LSC potential.

EXP and BAR. Both EXP and BAR depend on the calculation
of instantaneous work values between neighboring states of a
multistage alchemical free energy calculation. For each pair of
states A and B, instantaneous work values WA→B = EB − EA are
calculated for configurations generated in ensemble A, and val-
ues WB→A = EA − EB for configurations generated in ensemble
B. On the basis of these values, free energy differences may be
estimated, either in a directional manner from A to B and vice

versa with EXP, or by means of statistically optimized overlap
sampling with BAR. Non-linear soft-core methods require such
work values to be calculated at the level of the inner loop of
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the nonbonded interaction calculation, either by postprocess-
ing of stored trajectories with a different potential function or
at run-time. This need not represent a significant burden in
terms of computational cost or code complexity, although linear
extrapolation would reduce both to some extent.

In contrast, the practicality of MBAR is greatly enhanced by LSC
scaling. MBAR analysis requires the availability of instantaneous
work values associated with every possible pairing of states in
the transformation; for n intermediate states, this implies the
calculation of n − 1 work values at regular intervals in each
simulation. Although the associated computational cost for run-
time calculation need not be large (only those interactions that are
alchemically scaled need to be re-evaluated,and work values need
not be calculated at every step), there is a significant overhead
in code and workflow complexity, and to some extent for long
simulations with large values of n, in terms of data storage and
memory requirements.Linear scaling avoids these overheads;only
dV/dλ must be calculated and stored, and instantaneous work
values between pairs of states can be calculated straightforwardly
during MBAR analysis.

Thermodynamic integration TI is another widely applied free
energy calculation technique; the free energy for an alchemical
transformation may be estimated as the integral of dV/dλ along
the transformation pathway. All implementations of TI are to
some extent subject to bias arising from the numerical estimation
of the integral based on data from a finite number of intermediate
states. Basic schemes like trapezoidal integration are particularly
weak in this respect; higher-order interpolation schemes have
been shown to perform better.[14] Here, we explore a higher-
order spline-based interpolation scheme, which makes use of
ensemble reweighting techniques made possible by the linear-
scaling nature of the LSC potential.

Fundamentally, the implementation of a TI scheme requires
only the calculation of the derivative of the potential function with
respect to λ. With linear mixing as per Vλ = (1 −λ)Vstart +λVend,
the derivative is simply Vend − Vstart; these values of dV/dλ are
collected during the simulation and stored for later analysis.

The average over a thermodynamic ensemble B of any ther-
modynamic observable x can be estimated on the basis of a
sample from a closely related ensemble A according to:[15]

〈x〉B = 〈x exp[WA→B/kBT ]〉A

〈exp[WA→B/kBT ]〉A
. (2)

This reweighting approach can be applied to estimate the
value of dV/dλ at any arbitrary point of the transformation. In
principle, this approach could be used to construct a fine-grained
estimate of the shape of the full integral, although the statistical
quality of the estimated values will reduce as work values WA→B

increase with decreasing overlap between ensembles A and
B. We here apply an alternative approach: estimates of dV/dλ

are made for values of λ only slightly outside the simulated
ensembles, and used to estimate higher derivatives of the free
energy with respect to λ with a finite difference approach. These
higher derivatives can then be used as a physically derived input
for higher-order interpolation schemes.

To estimate second and higher derivatives of the free energy
with respect to λ by finite difference, we state the fundamental
relationship[10]:

G′(λ) =
〈
dV

dλ

〉
λ

, (3)

where the angle brackets with subscript λ indicate an ensemble
average collected for a given value of λ. Applying eq. (2), we can
reweight the ensemble generated at λ to estimate ensemble
averages of dV/dλ for λ − �λ and λ + �λ, where �λ is chosen
as small as practically possible. G′′(λ) is then approximated as:

G′′(λ) ≈ G′(λ + �λ) − G′(λ − �λ)

2�λ
. (4)

Iterative application following the pattern:

G′′′(λ) ≈ G′′(λ + �λ) − G′′(λ − �λ)

2�λ
(5)

allows the estimation of derivatives to arbitrary order.
Any numerical integration scheme implicitly involves predict-

ing the shape of the curve between sampled data points; we
here seek to extrapolate G′ = 〈dG/dλ〉 by spline interpolation.
Splines S of order m can be used to interpolate G′ for each
section λi → λi+1:

G′(λ) ≈ S(λ) =
m∑
j=0

cj(λ − λi)
j , (6)

where c0..m are parameters fitted such that for each piecewise
polynomial from λ = λi to λ = λi+1, derivatives of S (e.g., of
G′) up to order m − 2 are continuous between neighboring
polynomials. When fitting derivatives of S of order x, a spline of
order m = 2x+1 results in a unique solution for each polynomial
segment. Note that interpolation incorporating no derivatives of
S (e.g., G′ and no higher) corresponds to m = 1, which reduces
to trapezoidal integration.

For a free energy calculation with data sampled in n

intermediate states, the TI estimate is then given by

�G =
n−1∑
i=0

∫ λi+1

λi

G′(λ)dλ

≈
n−1∑
i=0

∫ λi+1

λi

S(λ)dλ, (7)

where the integrals of each segment S(λ) can be evaluated
analytically.

Automated balancing of ensemble overlap

The degree of overlap along the chain of ensembles that describes
a multistage transformation is a key determinant of the effi-
ciency of estimation of free energy differences.[12] By extension,
a transformation pathway designed for optimal efficiency should
attempt to balance the extent to which neighboring distribu-
tions along the chain overlap.[16, 17] We here propose a method
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which automates the generation of a chain with balanced ensem-
ble overlap, building on the observation that the probability of
replica exchange acceptance between neighboring ensembles
is a quantitative measure of the extent of their overlap.[18]

Replica exchange between intermediate stages in an alchemi-
cal transformation is a form of Hamiltonian replica exchange,[19, 20]

where the difference in internal energy between related potential
functions is used as the exchange quantity, as opposed to the
more widely used temperature temperature replica exchange
technique.[21] Hamiltonian replica exchange can allow barriers
to sampling along the λ coordinate to be crossed more readily
and thereby enhance sampling.

The probability p of exchange move acceptance between two
configurations i and j, belonging to two intermediate states A

and B with potential functions VA and VB, is given by

p = exp

(
VA(i) − VB(i) + VB(j) − VA(j)

KBT

)
. (8)

The use of linear scaling means that VB(i) and VA(j) are
readily available from only the values of dV/dλ with no need for
inner loop calculations, avoiding associated computational and
code maintenance overheads. Extension to all-pairs exchange[22]

likewise requires no additional computation of energy differences.
To estimate the average exchange probability 〈p〉, and thereby

the degree of ensemble overlap between two sampled ensem-
bles A and B,[18] we repeatedly apply eq. (8) with a random
sample of configurations i and j, respectively drawn from A and
B. The accumulated average probability will approach the under-
lying statistical mechanical probability of exchange between
configurations of ensembles A and B.

With a linear-scaled potential, this approach can easily be
extended to incorporate hypothetical intermediate states, for
which no data have been collected directly. Data for such a
hypothetical ensemble C, closely related to ensemble B, may
be generated by taking a sample from ensemble B, with the
probability of picking each configuration weighted according to
exp(WB→C/kBT ).[15, 23] The sample from hypothetical ensemble C
can then be used to estimate the average exchange frequency
between configurations of C and any other ensemble, whether
explicitly simulated or hypothetical.

Given an alchemical transformation consisting of n states i, an
initial simulation with arbitrarily distributed intermediates will
yield data for which the acceptance probability 〈p〉 between
states i and i + 1 can be observed, giving a vector of n− 1 suc-
cessive acceptance probabilities 〈pi→i+1〉. Considering successive
exchanges in λ as a cumulative chain of probabilities, a target
acceptance probability pt can then be defined as the (n − 1)th
root of the product:

Pt = n−1

√√√√i<n−1∏
i=0

〈pi→i+1〉. (9)

Leaving the (physically relevant) first and last states intact,
the intervening space on the λ axis can then be filled with the
remaining n − 2 intermediate states, by instating a new value

of λ for each intermediate i and iteratively adjusting it until
the probability of exchange with ensemble i − 1 matches the
target probability. Iterative application of this procedure with
successively refined values of pt and/or fresh data sampled from
the new set of intermediate states should generate a set of λ

values such that the probability of exchange between ensembles
representing neighboring intermediate states uniformly matches
the target value pt.

Results and Discussion

The LSC potential was implemented in Gromacs 4.0.5. To demon-
strate functioning of the methods proposed, we considered the
decoupling of a small molecule, indole, from a TIP3P water
environment. The measurement system consisted of indole,
parameterized according to the general amber force field,[24]

in a periodic rhombic dodecahedron with 1011 water molecules.
MD simulations were performed using particle mesh Ewald for
full electrostatic integration, with a real-space cutoff of 10 Å,
interpolation order 4 and a grid spacing of 1.2 Å. Van der Waals
interactions were truncated using a switching function acting
from 8 to 9 Å; an analytical correction for neglected long-range
van der Waals interactions was applied to energy and pres-
sure. Bond lengths involving hydrogen were constrained and a
time step of 2 fs was used. The alchemical transformation was
performed using 16 intermediate states describing the trans-
formation from λ = 0 (indole decoupled from surroundings,
with intramolecular interactions unmodified) to λ = 1 (all van
der Waals and electrostatic interactions at full strength). Replica
exchanges were attempted every 100 steps. No stability prob-
lems were encountered in MD based on the LSC potential. LSC
parameters of Vmax = 40 kcal/mol, rmin = 1.1 Å and rswitch = 0.4 Å
were used. Vswitch was set to 40 kcal/mol for the van der Waals
and 20 kcal/mol for the electrostatic potential.

Ensemble overlap

The spacing of intermediate simulations across the λ axis was
optimized with the scheme described earlier. Consistency of the
resulting distribution was assessed by repeating the protocol
five times with different initial distributions; intermediates for
the first replicate were uniformly distributed from 0 to 1, and
for the remaining four were placed at random. Each of the five
replicates of 16 intermediates was initially simulated for 40 ps, and
the resulting samples were used to calculate the probability of
exchange between the neighboring ensembles and to estimate
the λ spacing required for uniform replica exchange probability.

After the first round of sampling, all five replicas showed a
negligible (<10−3) probability of exchange between interme-
diate i = 0 and i = 1, and probabilities ranging from 0.24 to
0.995 for exchanges in the range i = 1 to i = 15 (Fig. 3a). The
apparent lack of ensemble overlap between the first and second
intermediates can be interpreted in the context of the cavity
formation process that occurs on coupling of a molecule to
surrounding solvent. With the LSC parameters used, this process
occurs approximately in the region 0 < λ < 0.02; neither uniform
nor random spacing placed any intermediate state in this region.
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Figure 3. Iterative adjustment of intermediate states showing convergence toward uniform replica exchange acceptance probability. Each mark represents the
average acceptance probability for exchange attempts between the ensembles to the left and right,with five replicates in each instance.a) Acceptance probabilities
prior to optimization; note negligible probability of exchange between i = 0 and i = 1. b and c) Probabilities after one (b) and two (c) refinement cycles, each
based on 16 × 40 ps of sampling. d) Probabilities after exhaustive sampling.

A refined λ spacing based on the initial suboptimal sample
was derived according to the described method. After a second
40 ps round of sampling with refined λ values, a distribution of
average replica exchange probabilities emerged with a range of
0.1–0.74. After a second refinement of λ spacing, a third 40 ps
sample showed convergence of replica exchange probabilities,
with 0.484 ± 0.048 over the 75 exchange pairs (five replicates of
15; Fig. 3c).

Having shown apparent convergence on the basis of 80 ps
of sampling and two rounds of refinement for this system,
convergence with longer samples was assessed; a correct imple-
mentation should show perfect uniformity in the large sample
limit. 5 ns of data was collected for each of the five replicates of
16 intermediate states each, using the spacing from the second
round of refinement. The spacing was again refined on the basis
of this sample, and a further 16 × 5 ns of data were collected.
Observed exchange probabilities approached uniformity across
all five replicates, at 0.480 ± 0.003 over 75 exchange pairs (Fig.
3d). λ values for the five replicates were tightly converged, with
the range of values representing 0.07 ± 0.05% of the average in
each of the 16 intermediate states, indicating the emergence of
a single consensus solution.

The validity of the average replica exchange probability as
a measure of the overlap between neighboring distributions
was tested by examining the distributions of work values for
transformations between neighboring ensembles (WA→B and
WB→A; Fig. 4). Across the 75 pairs of neighbors, work value
distribution overlap determined from kernel density estimates
was well converged at 0.62 ± 0.02.

Thermodynamic integration

To assess the performance of integration schemes based on
higher-order derivatives, an exhaustive calculation of the hydra-
tion free energy of indole was performed. Ninety-six intermediate
states (λi) from λ0 = 0 to λ95 = 1, distributed for uniform
replica exchange acceptance probability according to the method
described above, were simulated for 5 ns each. Subsets of the
96-point sample were analyzed by spline interpolation using
derivatives of G up to order 5, corresponding to splines up to
order 9, and additionally using BAR. Spline-interpolated curves
based on subsets of the 96 points qualitatively reproduced
the shape of the G′ curve better with increasing interpola-
tion order (Fig. 5). The resulting free energy estimates (Table 1)
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Figure 4. Distributions of instantaneous work values for transformations A → B (solid) and B → A (broken line) between neighbors after optimization of the
16-state transformation described in the text, with overlap highlighted. Scale omitted for clarity.

Figure 5. Interpolation of G′ showing trapezoidal and progressively higher-
order spline schemes. Inset: full TI curve for the hydration of indole. Main plot:
detail showing region of greatest curvature. Large circular markers show data
points from which splines were derived; intervening small circular markers
represent sampled data not included in the analysis. Four curves show the
interpolation of G′ using progressively higher derivatives of G up to order 4
(G′′′′), with splines of order m = 1 (trapezoidal), 3, 5, and 7. The curve for order
5 (m = 9) closely matches that for order 4 and is not shown.

quantitatively show faster convergence as a function of the num-
ber of data points provided. Whereas the trapezoidal estimate
continues to decrease monotonically even approaching the full
set of 96 points, higher-order schemes approached a consensus
value using data from as few as nine (order 5) to 13 (order
2) intermediate simulations, representing 7–10 times fewer data
points.

Based on these measurements, higher-order spline schemes,
incorporating higher derivatives of G derived from ensemble
reweighting techniques rendered practical with use of the LSC
potential, appear capable of significantly improving the quality

Table 1. Indole hydration free energy (kcal/mol) based on progressively
larger subsets of a 96-point sample (5 ns/point), calculated using BAR and
spline-interpolated integration incorporating derivatives of G of
progressively higher order.

TI

Nr. intermediates BAR G′ G′′ G′′′ G′′′′ G′′′′′

3 −3.32 40.72 −111.63 826.7 −6968 61696
5 −4.14 4.49 −15.56 13.19 −33.30 56.45
7 −4.06 −0.20 −6.32 −2.46 −5.17 −3.24
9 −4.06 −1.97 −4.73 −3.73 −4.20 −3.98

13 −4.05 −3.13 −4.17 −4.02 −4.05 −4.04
17 −4.05 −3.53 −4.08 −4.04 −4.04 −4.04
25 −4.03 −3.80 −4.04 −4.03 −4.03 −4.03
33 −4.03 −3.90 −4.03 −4.03 −4.03 −4.03
49 −4.03 −3.97 −4.03 −4.03 −4.03 −4.06
96 −4.03 −4.01 −4.03 −4.03 −4.03 −4.06

of TI estimates of free energy differences. However, in this test
BAR stands out as the most efficient estimator, approaching the
consensus value with as few as five intermediate states.

Comparison with nonlinear soft-core scheme

The LSC scheme described is proposed as an alternative to a num-
ber of nonlinear-scaling soft-core interaction schemes, which are
in common use. We compared the performance of LSC against
the soft-core potential of Beutler et al.,[6] as implemented in Gro-
macs. Using the methodology described earlier, but with iterative
and time-consuming MD sampling of candidate ensembles in
the nonlinear case as opposed to ensemble reweighting in the
LSC case, we derived chains of ensembles with uniform overlap,
describing the decoupling of indole from an aqueous environ-
ment. For this comparison, only the van der Waals component of
the insertion process was considered. In both cases, 14 intermedi-
ate states were required to produce a chain with replica exchange
probability around 0.5; LSC appeared to perform marginally bet-
ter, with an average exchange frequency of 0.509 with 14 states,
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compared to 0.495 for the Beutler et al. potential. We conclude
that, at least in this simple example, the phase space overlap
properties of the LSC potential are no worse than those for the
potential of Beutler et al.

However, it should be noted that while the distribution of
intermediate states from λ = 0 to 1 is fairly uniform for the
Beutler et al. potential, λ values with the LSC potential were
heavily skewed toward the insertion point (0, 0.004, 0.008, 0.011,
0.014, 0.019, 0.026, 0.037, 0.060, 0.104, 0.194, 0.357, 0.622, and
1, where 0 is the decoupled state). This property may prove
disadvantageous in certain nonequilibrium applications where
λ is changed between 0 and 1 at a constant velocity.

Conclusions

The LSC potential is designed to combine the numerical integrity
of non-LSC potentials at low separations with the practical advan-
tages of linear scaling.By neutralizing the problematic short-range
properties of the van der Waals and electrostatic potentials with-
out invoking a nonlinear dependence on the coupling parameter,
LSC permits the straightforward application of analysis schemes
which require the calculation of instantaneous work values
between states, which makes use of ensemble reweighting, or
which otherwise require the evaluation of hypothetical alterna-
tive potential functions. The examples of LSC-based schemes in
this article are intended to explore the flexibility that accompa-
nies linear scaling; it is anticipated that LSC, as part of the wider
alchemical free energy calculation tool set, can prove useful for
applications beyond those suggested here.

The LSC potential is not dependent on any particular force
field or nonbonded potential function. The precise form of the
potential is dependent on the tuneable parameters Vmax and rmin;
an insufficiently conservative choice of either will compromise
the native form of the full-strength potential at the end states,
but this outcome will easily be detected and remedied. The
real-space component of the particle mesh Ewald electrostatic
potential is compatible with LSC.

The scheme described to delineate those areas of phase space
that are accessible and inaccessible under standard conditions, as
a function of parameters Vmax and rmin, is a simplistic one. There
is likely to be scope for improvement and tuning of algorithms,
either on a pair-by-pair basis or incorporating higher-order infor-
mation, to sharpen the delineation and thereby improve overlap
properties.

A method was described to determine the spacing of alchem-
ical intermediate states that gives rise to uniform ensemble
overlap between neighboring ensembles, thereby helping to dis-
tribute simulation time optimally across the transformation. To
our knowledge, no systematic method has previously been
described to automate this process; whereas clearly defined
schemes exist to establish which distribution of temperatures is
required for a given acceptance probability in the case where
temperature is the exchange quantity,[18] the spacing of inter-
mediate states for Hamiltonian replica exchange with alchemical
transformations in particular, and for alchemical free energy
calculation in general, remains a process of trial and error. In

published reports of alchemical free energy calculations, the spac-
ing of intermediate states is often presented without detailed
supporting rationale; in these cases it can be assumed that the
spacing was chosen either more or less by hand (e.g., from
the shape of a TI curve) or iteratively with input from sampled
data or other statistical measures. The scheme described here,
which would be impractical and computationally expensive to
implement in combination with non-LSC potentials but which
integrates seamlessly with linear-scaling approaches, provides a
solution grounded in statistical mechanics, and is suitable for
implementation in MD simulation at run-time. Minimizing the
need for manual input at this stage represents a step toward
overcoming the barriers that continue to preclude alchemical
free energy calculations from routine or “black box” use.
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