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Abstract

In this paper, we present a method to quantify the extent of disorder in a system by using conditional entropies. Our
approach is especially useful when other global, or mean field, measures of disorder fail. The method is equally suited for
both continuum and lattice models, and it can be made rigorous for the latter. We apply it to mixing and demixing in
multicomponent fluid membranes, and show that it has advantages over previous measures based on Shannon entropies,
such as a much diminished dependence on binning and the ability to capture local correlations. Further potential
applications are very diverse, and could include the study of local and global order in fluid mixtures, liquid crystals, magnetic
materials, and particularly biomolecular systems.
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Introduction

Disorder-order Transitions and the Shannon Entropy
Disorder-order transitions are important physical phenomena

that are commonly addressed both by simulations and experi-

ments. They play a major role in the description of the behaviour

of liquids and solids [1], the level of spin alignment in

ferromagnetic systems [2], and domain formation in biological

fluids such as membranes [3]. Because of the widespread

occurrence of these phenomena, it is desirable to obtain methods

to quantify the local and global level of disorder in a system, which

can be generally applied to a broad range of systems.

At equilibrium, disorder can be quantified by the thermody-

namic entropy, which typically necessitates the explicit knowledge

of the partition function of the system [4]. However, since

experiments or simulations are often monitoring systems away

from equilibrium, and the system Hamiltonian is often unknown

in experiments, a simple formulation using the thermodynamic

entropy is not readily available. In order to develop a useful, more

general measure of system disorder, it is therefore necessary to

consider alternative approaches. We here use the Shannon

entropy [5] from information theory, which is defined as.

S~{
X

x1,::,xN

p(x1,::,xN ) log p(x1,::,xN ), ð1Þ

where the sum is performed over all possible configurations of the

system, and p(x1,::,xN ) represents the frequency of occurrence of

the N-particle state (x1,::,xN ). The information-theoretical deri-

vation of entropy is not restricted to thermodynamic equilibrium

and it can be computed directly from the observed frequencies of

configurations. Hence, it can be a useful tool to describe any

macro-state of the system. In previous work, the Shannon entropy

has been used successfully to quantify the order in fluid mixtures

[6].

Here we present a widely applicable method to quantify

disorder in systems at or away from equilibrium, based on

Shannon and conditional entropy. It can be easily implemented

for use on physical simulation and experimental datasets. Our

approach employs the concept of conditional entropy, which

derives from the measure of entropy in images [7] and complex

networks [8]. Its main advantage is the capturing of local

correlations between particles or states, which are an important

factor for characterising disorder-order transitions.

The simplest estimate of the Shannon entropy is given by the

mean field approximation.

SMF~{
X
x

p(x) log p(x), ð2Þ

where p(x) is the probability of the single particle state. This is a

drastic simplification, which is only accurate when the N-point

joint probability distribution can be factorised into the single

particle probabilities p(x), i.e. when there are no correlations

between different particles. For example, this is a good approx-

imation for the Ising ferromagnet in the high temperature regime,

when the correlations between neighbouring spins (: or ;) are
small. However, it highly overestimates the value of the entropy
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close to the critical temperature, as the correlation length diverges

to infinity at continuous phase transitions [4]. Since the entropy is

also defined as the volume of phase space available to the system,

correlations always lead to a decrease of entropy as they are

equivalent to constraints on the configurations of the system which

reduce the volume of the phase space.

After describing the problem of quantifying disorder in

multicomponent systems, we introduce our new method based

on the conditional entropy, and we validate it by computing the

entropy in the Ising model. We then focus on fluid mixing as a case

study which best illustrates our approach and which is an

important and well studied problem in the biophysics of lipid

membranes. Its implications range from cellular organisation [9]

and endocytotic processes [10] to lipid raft formation [3,11]. Our

method captures local correlations, which makes it especially

useful to quantify the extent of disorder in systems that typically

form small domains on a local level which leave little or no signal

in mean field or global indicators, such as in the case of lipid

mixing/demixing.

The Entropy of Mixing
The entropy of mixing is defined as the increase of disorder in a

multi-component system upon transition from a fully demixed

(partitioned) to an ideally mixed state [12]. Per particle, the

entropy of mixing is defined between zero, in the fully demixed

case, and the maximum value of.

Smax~{
XM
j~1

rj logrj ð3Þ

in the fully mixed case, where rj is the mole fraction of component

j and M is the total number of components in the system. If we

assume our system to be distributed on a lattice, the entropy of

mixing is a measure of the uncertainty of the component type at

each lattice site. Note that we omit the constant kB in the

expression of the entropy in order to be consistent with the

Shannon formulation.

Evaluating the disorder of composite systems is not trivial. The

mean field approximation is bound to lead to the maximal

entropy, as in Eq. (2) the frequency of each component type is

equated with its mole fraction, such that a formulation for states of

the system between full mixing and demixing is not readily

available. In Ref. [6], Camesasca et al. have developed an

approach to evaluate the entropy of mixing which overcomes

the issue of the trivial mean field result. Their main idea was to

subdivide the system into regions, and then evaluate the Shannon

entropy of each region i using Si~{
PM

j~1 rj(i) log rj(i), where

rj(i) is the number of particles of type j inside i divided by the total

number of particles in i. The entropy of mixing of the whole

system is then estimated as the average of the entropies over all

subregions.

S~{
1

Nregions

XNregions

i~1

XM
j~1

rj(i) log rj(i): ð4Þ

This quantity has the correct limiting values of zero and Smax,

and is able to provide a good measure of the level of mixing of the

different components. In Ref. [13], a continuous version of Eq. (4)

has been successfully applied to multi-component lipid mem-

branes.

However, as noted by the authors [6], this estimate shows high

fluctuations dependent on the choice of the number of subregions.

Hence, the use of Eq. (4) becomes especially problematic when the

local organisation of the system at the inter-particle length-scale is

of interest. Our goal was, therefore, to develop an approach with a

broader generality and, in particular, applicable to systems with

strong correlations between neighbouring regions, for instance to

describe domain formation in lipid membranes.

Results and Discussion

A New Quantification Based on the Conditional Entropy
To enable both a rigorous derivation of our method and a

comparison with other approaches, we start from lattice models,

which are employed to simulate many of our systems of interest,

including fluid mixtures [14] and lipid membranes [15,16]. We

consider a translationally invariant system composed of N

identical particles on a lattice, with xi as the possible states, e.g.

occupancies by a system component, of lattice site i. To account

for correlations between sites, we must go beyond the mean-field

approximation and abandon the assumption that the full

probability distribution can be factorised into single particle

probabilities.

In a one-dimensional lattice, the Bethe approximation [17]

assumes that the N-point probability can be written in terms of 1-

and 2-point probabilities. The entropy per site thus takes the form.

SBethe~{
X

xixiz1

p(xi,xiz1) log p(xi,xiz1)z
X
xi

p(xi) log p(xi):ð5Þ

The above equation is exact if only nearest neighbour

interactions are present [18]. An improvement to the Bethe

approximation for studying lattice systems of any dimension is the

Kikuchi approximation [19,20], also known as cluster variation

method. On a square two-dimensional lattice, the entropy per

lattice site can be expressed as a sum of the entropies of three basic

clusters of the lattice.

SKikuchi~S4{2S2zS1 ð6Þ

with S4 being the entropy of four neighbouring lattice sites

arranged in a square, S2 the entropy of two nearest neighbours,

and S1 the single-particle entropy. The cluster variation method

has been extremely successful for the theoretical description of

lattice models [21], but its correct implementation depends on the

specific network of interactions in the system.

To provide a more straightforward estimate of the entropy from

computational or experimental data, where an underlying network

structure may not be present, we follow a different direction, and

start from the concepts developed by Shannon in Ref. [5]. There,

for every realisation of a certain variable x, the conditional

probability for another variable y to occur simultaneously is

defined as p(yDx)~p(x,y)=p(x), where p(x)~
P

y p(x,y). The

conditional entropy Sx(y) is defined as the average entropy of y for

each value of x weighted by the probability of obtaining that

particular value of x:

Sx(y)~
X
xy

p(x,y) log p(yDx), ð7Þ

Conditional Entropy as Quantification of Order
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so that the entropy of two variables x and y can be written as

S(x,y)~S(x)zSx(y). Generalising this equation to the entropy of

a N-particle system gives:

S(x1,::,xN )~
XN
i~1

Sx1,::,xi{1
(xi) ð8Þ

The correlations relevant to the calculation of the entropy are

usually confined within a small neighbourhood of each particle

[21]. If we use this approximation together with the translational

invariance of the system, we obtain:

S(x1,::,xN )&NSnbi
(xi)

~N
X
xi ,nbi

p(xi,nbi) log p(xi Dnbi)
ð9Þ

where nbi represents the state of the particles in the neighbour-

hood of i, confined within a certain cut-off distance from i. This
result can be made rigorous on a lattice provided that we take into

account the double counting of the sites in the neighbourhood.

Eq. (9) states that the Shannon entropy per particle can be

approximated as the conditional entropy of each particle with

respect to a variable representing the state of its neighbourhood. In

the following, we will employ Eq. (9) as a measure of disorder in

multi-component systems.

We note that the Bethe and Kikuchi approximations can be

regarded as special cases of Eq. (9). In particular, by defining the

neighbourhood as the single nearest neighbour, we obtain Eq. (5)

for one-dimensional systems, whereas by defining it as the state of

the three neighbours forming a square with i, we obtain Eq. (6) for

the lattice in two dimensions.

Moreover, Shannon proved in Ref. [5] that the entropy per

symbol of an information source is equal to the limit for N?? of

the conditional entropy of one symbol with respect to the

preceding sequence of N symbols,

S~ lim
N??

X
xi ,nbiN

p(xi,nbiN ) log p(xi,nbiN ): ð10Þ

This theorem states that the approximation of the entropy given

in Eq. (9) is rigorous in one dimension, and its generalisation

suggests that the accuracy of the estimate increases with the size of

the chosen neighbourhood. In the following, we will test and apply

Eq. (9) on disorder-order transitions in lattice and continuous

model systems.

Test on the Ferromagnetic Ising Model in 2d
A useful example to test our approximation is the ferromagnetic

Ising model on a two-dimensional square lattice [4], since it shows

a continuous order-disorder transition at temperature Tc^2:27,
and the entropy S(T) has been derived analytically by Onsager

[2]. The Hamiltonian is H~{
P

SijT xixj , where the spins can

take values xi~+1.
We performed a Monte-Carlo simulation of this Ising model

and calculated the entropy from equilibrium ensembles using

different approximations: mean field, Kikuchi and conditional

entropy. We discuss both the Glauber dynamics (system GD),

which refers to the standard Ising model in Ref. [2], and the

Kawasaki dynamics (system KD), where the magnetisation is fixed

to zero, and it can be considered as a model for a binary mixture.

In the former case we will compare our approximations to the

exact solution.

In the mean field approximation, the entropy is given by Eq. (2).

Because the system is invariant under translations, we can estimate

p(+1) as the ensemble average of the number of sites with spin

+1 in each configuration divided by N. If the average

magnetisation is zero, this approximation always gives S~ log 2,
which is exact only in the limit T??. However, as it ignores

correlations, it highly overestimates the entropy of GD as we move

towards the transition temperature (Fig. 1A ). By contrast, the

Kikuchi approximation, given by Eq. (6), provides an excellent

measure of the entropy of the Ising model (Fig. 1A).

Our formulation in terms of the conditional entropy (Eq. (9))

requires knowledge of the frequency with which states occur in the

neighbourhood of each lattice site. This leads to the question how

Figure 1. Entropy of the Ising model. Entropy per particle S for the
Ising model on a square lattice as a function of the temperature T . (A)
Glauber Dynamics (2006200 lattice). (B) Kawasaki dynamics with fixed
zero magnetisation (1006100 lattice). We estimated S from equilibrium
ensembles of Monte-Carlo simulations using different approximations:
mean field, Kikuchi and conditional entropy. In (A) we also compare our
results with the exact solution obtained by Onsager [2]. The
neighbourhood in Scond is defined as the set of lattice sites within a
maximum distance d and in the upper half-plane from each site.
doi:10.1371/journal.pone.0065617.g001
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the neighbourhood and its states should be defined. This choice is

crucial for the accuracy of our approach, since we assume that the

correlations relevant to the calculation of the entropy are confined

within the neighbourhood. As suggested by the Kikuchi approx-

imation, the inclusion of nearest and next-nearest neighbours is

sufficient to obtain a good estimate for the entropy.

In the case described here, nbi is associated with the spins +1
of the neighbourhood. The neighbourhood includes the sites

confined within a maximum distance dmax, and located in the

upper half-plane from each site. Taking into account only half of

the neighbour sites is necessary to avoid double-counting of the

interactions, and to make the approximation of the Shannon

entropy rigorous. In Fig. 1, we show two possible choices of cut-off

distance: dmax~1 times and dmax~2 times the lattice spacing.

Both choices lead to excellent agreement with the analytical

solution for system GD. This demonstrates that the choice of the

neighbourhood cut-off distance does not significantly affect the

estimate for the entropy.

There is no exact result for the entropy of system KD. However,

we notice from Fig. 1B that the conditional entropy is in good

agreement with the Kikuchi approximation, a well established

method for estimating entropies in lattice models. The conditional

entropy can then be applied to the study of multi-component and/

or multi-state lipid membranes on lattice [22], for instance to

estimate the free energy of the system.

In continuous systems, the absence of the lattice prevents us

from obtaining a rigorous expression for the Shannon entropy.

However, we will see in the following that the conditional entropy

can still be employed as a useful and accurate measure for disorder

in continuous systems.

Application to Brownian and Molecular Dynamics
simulations: Lipid Mixing and Demixing
Multicomponent fluids and their mixing/demixing phenomena

are an important field of present research, both in condensed

matter physics [14] and for the understanding of biological systems

[13]. In biophysics, especially important topics are phase

separation and the formation of domains in mixed lipid bilayers

[23], which are thought to play a crucial role in determining the

function of membrane-bound proteins [11].

Here we show that Eq. (9) can be applied to quantify the level of

demixing in multicomponent biomembranes, which are often

modelled by means of computer simulations [24]. For this

purpose, we use data from Brownian and molecular dynamics

simulations and consider two different levels of coarse graining, in

which each lipid is either represented by a single Lennard-Jones

sphere (system CG-LJ), or by a finer level of detail represented by

the MARTINI forcefield [25] (system CG-Mar).

Fig. 2 shows snapshots of a CG-LJ symmetric binary fluid of 105

particles at different times. At t~0, the two components A and B

are well separated in two different regions of the box (Fig. 2A).

Panels 2A–2C show how A and B gradually mix following simple

diffusion (all the interactions between the particles are equivalent).

Once the species are fully mixed, an attractive interaction between

particles of the same type is switched on, leading to the formation

of domains (2D), which then grow (2E), until the system has

reached a fully demixed state (2F).

In order to estimate the disorder of the system via conditional

entropy, we use Eq. (9). Here, the state of each particle xi is simply

its type (in Fig. 2 either A or B). The definition of the state of the

neighbourhood depends on its size. Our choice was governed by

the requirement to efficiently characterise, from single snapshots,

the state of the local environment of each particle. However, if the

number of possible states for the neighbourhood, nbi, is too large,

a single snapshot will provide insufficient sampling, and this can

lead to an underestimation of the entropy. In the limit of a system

of infinite size, Scond is zero when the two components of the fluid

are separated, and Scond~{
P

i ri logri~ log 2 when they are

perfectly mixed. These are also the limits for the thermodynamic

entropy of an equilibrium system under the same conditions (note

that, away from equilibrium, the term entropy only refers to a

measure of disorder within the system). Fig. 3 shows the result of

Eq. (9) applied on the CG-LJ binary mixture during mixing and

demixing as a function of time, using three different definitions of

nbi. In Fig. 4, this result is compared to the ‘‘standard’’ Shannon

entropy, as estimated by Eq. (4) [6].

To arrive at a suitable definition of the state of the

neighbourhood, we first observe that the distance between

particles is an appropriate quantity for ranking the relative

importance of the neighbours. Then, to focus on local correlations,

we can either use a cut-off distance, or a weight inversely

proportional to the inter-particle distance. In order to avoid

double-counting of the interactions, any particle j is counted as a

neighbour of another particle i only if it is located in the upper

half-space of the system from i, consistent with the definition used

for the lattice case.

We now discuss the three different definitions of nbi we used. In
the first approach, we define the neighbourhood of each particle i
as the Nnb closest particles to i. The state of the neighbourhood is

then a vector of length Nnb where component j corresponds to the

type of neighbour j:

nbi~(xi1,xi2,::,xiNnb
), ð11Þ

The number of possible states of the neighbourhood scales with

the number of components in the mixture as NNnb
type~2Nnb . We

refer to this definition as NB-cutoff in Fig. 3.

The second approach is similar but here, the neighbourhood is

divided into shells containing a certain number of particles: the

first shell contains the closest Nshell particles to i, the second shell

contains the second closest Nshell particles, etc. In this way, the

state of the neighbourhood is defined as the number of particles of

each type contained in each shell, a choice that reduces the

number of possible states fnbig. We refer to this definition as NB-

shell in Fig. 3.

Finally, for the third approach, we associate to each particle i
the following function:

fi(x)~
1

Z

X
j=i

dxxj exp {
r2ij

2j2

 !
, ð12Þ

where Z is a normalisation factor, rij the distance between

particles i and j, x is the particle type, and j is a characteristic

length scale of the system (which in our case is taken as half the

average inter-particle distance). Physically, the quantity fi(x)
represents the frequency with which a particle of a certain type

is observed in the neighbourhood of i – where each neighbour is

weighted with a factor decreasing exponentially with the distance.

After appropriate binning, fi(x) can be used as a discrete variable

to label the states fnbig in Eq. (9). We refer to this definition as

NB-weight in Fig. 3.

Interestingly, Fig. 3 shows that our quantification of disorder

(Eq. 9) is robust with respect to the three quite different definitions

of the state of the neighbourhood. All definitions lead essentially to

the same value both during the mixing (3A) and demixing (3B)

Conditional Entropy as Quantification of Order
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processes of our system, which is consistently bounded by zero and

log 2. Fig. 3C and Fig. 3D show the convergence of Scond as we

increase the number of states for NB-weight, a very desirable

property of our quantification of disorder. In all of the considered

implementations of Eq. 9, we chose the specific parameters so that

the frequencies p(xi,nbi) are estimated with sufficient sampling;

for example by making sure that the conditional entropy reaches

the maximum value in the fully demixed state.

Our method contrasts with previous approaches which use

spatial binning of the system to quantify disorder via the Shannon

entropy, and which strongly depend on the number of bins. In

Fig. 4, our approach is compared to the evaluation of Shannon

entropy according to Eq. (4), for which the system is divided into

subregions of equal size [6]. Use of Eq. (4) exhibits a strong

dependence on the number of selected subregions. This depen-

dence is especially acute during the demixing process, which is of

great relevance for the study of domain formation. The

dependence is due to the loss of information within a length-scale

smaller than the size of each subregion. This leads to a relative

insensitivity of Eq. (4) to the onset and beginning stages of domain

formation, so that subtle transitions towards demixing are not

captured well. However, these partial transitions are expected to

bear the highest biological relevance. For instance, upon division

of the system into 100 regions each containing 100 particles, the

entropy remains constant and equal to log 2 during the demixing

process up to t^105, whereas the formation of local order is

clearly observable from Fig. 2C and Fig. 2C. Choice of smaller

subregions, however, will lead to convergence and sampling issues

instead.

As we expect that one of the most important applications of our

method could lie in the field of domain formation in biological

systems, especially within lipid membranes, Fig. 5 shows an

application of our method to a coarse-grained molecular dynamics

simulation of a biomembrane. This membrane consists of a bilayer

of 504 palmitoyl-oleoyl phosphatidylcholine (POPC) and 1512

palmitoyl-oleoyl phosphatidylethanolamine (POPE) lipids, based

on the MARTINI force-field [25]. Fig. 5 shows the increase of

conditional entropy (5d), estimated using NB-cutoff and NB-

weight upon the mixing of lipids, from near zero at t~0ns (5b) to
Smax^0:56 at t~200ns (5c). An implementation of the condi-

tional entropy will be included in Membrainy, a tool-kit for lipid

bilayers analysis available at http://code.google.com/p/

membrainy/.

Methods

Our Monte-Carlo simulations of the Ising model were carried

out on a two-dimensional square lattice with periodic boundary

conditions and a Hamiltonian H~{
P

SijT xixj , where the spins

can take values xi~+1 and the sum is performed over all of the

nearest neighbours SijT. To generate an equilibrium ensemble of

configurations, we used both Glauber and Kawasaki dynamics

[26]. In the former, we attempt to change the state of a random

spin at each step of a Monte-Carlo cycle according to the

Metropolis algorithm. The final ensemble corresponds to the

Figure 2. Brownian dynamics of mixing and demixing. Different snapshots of a coarse-grained Lennard-Jones (CG-LJ) binary fluid membrane
of 105 particles are shown. Mixing is followed from (A) at t~0, (B) at t~2:106 and (C) at t~107 ; demixing takes place from (D) at t~105 , (E) at t~2:106

and (F) at t~2:107 .
doi:10.1371/journal.pone.0065617.g002

Conditional Entropy as Quantification of Order
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original system described by Onsager [2]. In Kawasaki dynamics,

only the spins of two neighbouring sites are exchanged, so that the

total magnetisation is conserved (we have chosen to work at zero

magnetisation). This type of dynamics is suitable for studying

thermodynamic quantities [22] and can be likened to diffusion

processes [27] in lipid membranes.

We studied the mixing/demixing transition in a two-dimen-

sional membrane by Brownian Dynamics (BD) simulations by

using the software LAMMPS [28]. Specifically, we performed BD

simulations of a symmetric Lennard-Jones (L-J) mixture of 105

particles: 50% of type A and 50% of type B. Each particle is

spherical, and can be thought of as a lipid molecule within a lipid

monolayer. The L-J potential governing inter-particle interactions

is given by VLJ(r)~4½(s=r)12{(s=r)6�, where r is the inter-

particle distance and the depth of the potential well; s was set to

one. The particles move inside a square box with periodic

boundary conditions and size L~110. The overall density of the

mixture is chosen such that the particles are closely packed but the

overall system is fluid. A stochastic thermostat keeps the system

temperature fixed at T~1. To study the mixing of the two

components, we initially used identical particles that can only be

distinguished by an assigned label(A or B), i.e., the interactions

between all particles are identical. For each interaction (AA, BB
and AB), e was set to 1 and a cut-off distance was used at

rAA~rBB~rAB~2 1=6s 1:12
AB interaction

(rAB~1:12), but the cut-off of the AA and BB interactions was

moved to rAA~rBB~2:5 and e was set to 2. This choice

introduces an attraction between particles of the same type, and

enables observation of a demixing transition below the critical

temperature Tcw1.

Our method can also be applied to higher resolution molecular

dynamics simulations of biomembranes [29]. To illustrate this, we

have simulated a bilayer system consisting of 504 POPC and 1512

POPE lipids, explicitly solvated in 31191 water molecules. The

bilayer was constructed such that, initially, all POPC lipids are

clustered together in one corner of the bilayer (see Fig. 5) and

mixing of the two lipid species was followed over 200 ns. The

MARTINI model [25], which is used extensively for biomolecular

simulations, was used to describe the lipids and surrounding

solvent. This reflects a relatively high-resolution coarse-grained

model that employs 4-to-1 mapping for heavy atoms. GROMACS

4.5 [30] was used for the MD simulations. The temperature was

set to 323 K, well above the phase transition temperature of both

Figure 3. Conditional entropy during mixing and demixing. The conditional entropy is quantified during mixing (A,C) and demixing (B,D) of a
CG-LJ binary fluid membrane of 105 particles. In (A) and (B), different definitions of the particle neighbourhood are compared: NB-cutoff (Nnb~6), NB-
shell (Nshell~4, 2 shells), NB-weight (32 states) (see text). In (C) and (D), the conditional entropy is compared for different numbers of states of the
neighbourhood after setting its definition to NB-weight.
doi:10.1371/journal.pone.0065617.g003
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lipids, and maintained by the Berendsen thermostat [31]. Semi-

isotropic pressure coupling was used to maintain a pressure of 1

atm [31] to model an NpT ensemble. An integration timestep of

20 fs was used.

Conclusions
In this paper, we have shown that the conditional entropy can

be applied as a useful and accurate measure of disorder. Firstly, by

considering an Ising model of spins on a lattice, we demonstrated

that the conditional entropy represents a good approximation to

the exact entropy of the system and the result is comparable to a

well established method such as the Kikuchi approximation.

Secondly, we applied our method to mixing and demixing in

multicomponent fluid membranes. This is an important problem,

with many implications for the biophysics of lipid biomembranes.

At the same time, it also illustrates the usefulness of our approach,

as quantifying the extent of demixing requires a careful evaluation

of local correlations, which cannot be captured by standard mean

field approximations.

It is important to note that rather than defining a new measure

of non-equilibrium entropy, our main goal here is to provide an

accurate quantification of disorder in multicomponent systems.

Our approach based on conditional entropy has a number of

desirable properties. First, it is, by construction, defined between

the limiting values of the entropy of mixing corresponding to fully

mixed and demixed states. Second, it is easy to implement, and,

third, it is relatively insensitive to the details of the implementation

(e.g. the definition of particle neighbourhood). The conditional

entropy is a global measure of disorder which captures the local

organisation of the system at small length-scales. This property

makes our measure more accurate with respect to other global

measures of disorder which are not generally able to capture local

correlations (e.g., mean field approximation and Shannon entropy

in Ref. [6]). Due to its generality, our approach can readily be

applied to study correlations in system exhibiting any kind of

disorder-order phase transition, such as fluid mixtures and liquid

crystals.
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