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ABSTRACT: Intrinsically disordered proteins (IDPs) are
notoriously challenging to study both experimentally and
computationally. The structure of IDPs cannot be described by
a single conformation but must instead be described as an
ensemble of interconverting conformations. Atomistic simu-
lations are increasingly used to obtain such IDP conformational
ensembles. Here, we have compared the IDP ensembles
generated by eight all-atom empirical force fields against
primary small-angle X-ray scattering (SAXS) and NMR data.
Ensembles obtained with different force fields exhibit marked
differences in chain dimensions, hydrogen bonding, and
secondary structure content. These differences are unexpect-
edly large: changing the force field is found to have a stronger
effect on secondary structure content than changing the entire peptide sequence. The CHARMM 22* ensemble performs best in
this force field comparison: it has the lowest error in chemical shifts and J-couplings and agrees well with the SAXS data. A high
population of left-handed α-helix is present in the CHARMM 36 ensemble, which is inconsistent with measured scalar couplings.
To eliminate inadequate sampling as a reason for differences between force fields, extensive simulations were carried out (0.964
ms in total); the remaining small sampling uncertainty is shown to be much smaller than the observed differences. Our findings
highlight how IDPs, with their rugged energy landscapes, are highly sensitive test systems that are capable of revealing force field
deficiencies and, therefore, contributing to force field development.

■ INTRODUCTION

Intrinsically disordered proteins (IDPs) carry out crucial
biological functions in all kingdoms of life.1 The human
proteome is estimated to contain approximately a million
disordered motifs, which often act as signals in cellular
pathways, including protein degradation, trafficking, and
targeting.2 IDP aggregation is involved in diverse cellular
functions including the selective passage of material through
the nuclear pore complex3 and the segregation of materials in
membrane-less organelles via intracellular phase separation.4,5 A
fundamental understanding of the structural properties of IDPs
is crucial to understanding the wide range of cellular functions
relying on protein disorder.
An IDP by definition cannot be described by a single average

structure but instead must be described as an ensemble of
interconverting conformations. Obtaining accurate structural
ensembles of IDPs is the aim of many recent studies, both
experimental and computational.6,7 The protein ensemble

database (pE-DB),8 which is analogous to the PDB for
structures of folded proteins, contains a growing collection of
IDP ensembles. On the experimental side, nuclear magnetic
resonance (NMR), small-angle X-ray scattering (SAXS), and
single-molecule spectroscopy have emerged as highly useful and
complementary methods for obtaining structural information.6,9

Fluorescence resonance energy transfer (FRET), fluorescence
correlation spectroscopy (FCS), and SAXS provide measure-
ments of overall chain dimensions. NMR spectroscopy provides
site-specific information, for example, on secondary structure
content and distances between labeled sites as well as
measurements of hydrodynamic radius using pulsed field
gradient NMR (PFG-NMR).10

On the theory side, a variety of computational methods have
been developed to obtain structural ensembles of IDPs. These
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methods can be broadly classified into two types: (1) those that
use experimental data to guide ensemble generation or
selection, and (2) those that generate ensembles of IDPs de
novo, that is, without using experimental data as an input.
An example of the first type of method is the use of

experimental data as restraints in simulations. For instance,
NMR chemical shift restraints and distance restraints based on
paramagnetic relaxation enhancement (PRE) measurements
were used in molecular dynamics (MD) simulations of the
denatured state of ACBP and α-synuclein, respectively.11−13

Other computational methods, such as ENSEMBLE14 and
ASTEROIDS,15 use experimental data to select ensembles from
pregenerated pools of conformations. Ensembles consistent
with experimental data have also been selected from
conformations obtained using MD simulations.16−18 Ball et al.
compared knowledge-based ensemble selection approaches to
ensembles obtained using de novo MD simulations.17 Because
IDP ensembles are severely underdetermined (that is, there are
many degrees of freedom and relatively few experimental
observables), cross-validation and care in avoiding overfitting
are essential to these approaches.16,19,20

Computational methods of the second type have been used
extensively to obtain ensembles of IDPs de novo. A variety of
simulation methods (MD, Monte Carlo, metadynamics, replica
exchange) and different levels of representation (coarse-
grained, implicit solvent, all-atom with explicit water) have
been used to obtain IDP ensembles.7,21−29 There are two main
challenges encountered in de novo simulations. First, extensive
simulations are needed to ensure that relevant regions of
conformational space are adequately sampled. Although this
requirement applies to all biomolecular simulations, it presents
a particularly formidable challenge in the case of IDPs due to
their high conformational heterogeneity. Second, and more
importantly, the accuracy of modern force fields for IDP
simulations is not well-characterized.
MD simulations have been used to study the structure and

dynamics of folded proteins for decades.30 During this time,
substantial effort has been put into the development and
improvement of empirical force fields. The accuracy of the
description of the structure and dynamics of globular proteins,
as well as that of the relative stabilities of different types of
secondary structure, were improved in the CHARMM and
Amber force fields.31−34 Systematic force field comparison
studies have shown that, overall, force field modifications
indeed tend to be improvements: simulations with more
recently developed force fields produce more accurate
ensembles of globular proteins compared to the older force
fields on which they are based.35,36

Some modern force fields describe small, globular proteins
quite well: NMR observables computed from these ensembles
agree with experimental values within the error expected for the
calculation of these observables.36,37 In a recent comparison of
force fields for folded proteins, Amber ff99sb*-ildn and
CHARMM22* were the only two force fields consistent with
experimental data.35 In contrast, force fields have been shown
to differ significantly in their ability to fold proteins,38 especially
in the challenging task of folding proteins from multiple
structural classes.35 A study of villin headpiece aggregation
using different force fields and solution conditions suggested
that protein−protein interactions generally tend to be over-
estimated: all of the force fields in this study showed
aggregation and are therefore inconsistent with experimental
evidence indicating no aggregation.39

Many force field modifications have been directed at
improving the accuracy of conformational ensembles of
globular proteins. In contrast, most force fields have not been
developed for simulations of IDPs. Several recent force field
modifications have improved the balance of secondary structure
propensities to be able to fold proteins of multiple structural
classes. It would in fact be somewhat surprising if accurate IDP
ensembles could be obtained using a force field optimized only
for folded proteins. Nevertheless, all-atom simulations are
increasingly being used to obtain ensembles of IDPs (see recent
studies 23, 24, and 40−43).
It is difficult to draw conclusions on the accuracy of IDP

simulations from the contradictory findings reported so far. On
the one hand, good agreement between computed and
measured experimental observables was observed in some
IDP simulations.23−25,27,28,42,44−46 On the other hand, the
accuracy of unfolded state and IDP structural ensembles
obtained using several widely used force fields has been called
into question.25−27,43,46−53 Piana et al. suggested that modern
force fields, including Amber ff99sb*-ildn and CHARMM 22*
in particular, produce IDP and unfolded state ensembles that
are on average too compact.48 It has also been suggested that
Amber force fields systematically underestimate chain dimen-
sions of IDPs and unfolded states.51 To address these force
field deficiencies, a new water model, TIP4P-D,26 and new
force field, Amber 03ws,51 were recently introduced.
While these recent studies demonstrate a substantial interest

in obtaining accurate ensembles of IDPs using all-atom
simulations, there is currently no consensus on the most
accurate force field or the suitability of any force field for this
purpose. Information on the accuracy of IDP ensembles is
sparse, anecdotal, and contradictory, which may be due a
combination of multiple factors: (1) inadequate conformational
sampling of IDP ensembles, (2) comparisons to models derived
from primary experimental data rather than the primary data
itself, and (3) comparisons to relatively few (and sometimes
only one) observables. In the absence of a comprehensive
comparison, it is not surprising that a consensus is currently
lacking concerning the accuracy of IDP simulations.
Here, we aim to evaluate the accuracy of IDP ensembles

obtained using de novo molecular simulations. Toward this
aim, we compared ensembles obtained using eight all-atom
empirical force fields (Table 1) to primary SAXS and NMR
data. For reasons of computational feasibility, we included only
eight force fields. We addressed the sampling problem using
temperature replica exchange54 as well as extensive sampling,
accumulating a total sampling time of 964 μs (a detailed list of
simulations is provided in Table S1).

Table 1. Force Fields Included in the Comparison

force field (abbreviation) peptide force field water model

Amber ff99sb*-ildn
(a99sb)

Amber ff99sb*-
ildn33

TIP3P55

Amber ff03w (a03w) Amber ff03w34 TIP4P-200556

Amber ff03ws (a03ws) Amber ff03ws51 TIP4P-200556

ABSINTH (ABS) OPLS-AA/L57 ABSINTH implicit
solvent21

CHARMM 22* (c22*) CHARMM 22*33 charmm-modified TIP3P31

CHARMM 22* (c22*/
D)

CHARMM 22*33 TIP4P-D26

CHARMM 361 (c361) CHARMM 3658 TIP3P55

CHARMM 362 (c362) CHARMM 3658 charmm-modified TIP3P31
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For such a comparative study, the choice of model system is
crucial. The model system must be small enough to make it
possible to obtain adequate sampling for each force field. In
addition, and more importantly, experimental data character-
izing both local and global structural properties are needed. We
chose a set of sequences that cover a broad spectrum of
sequence properties from highly charged in the case of a
disordered arginine/serine (RS) peptide to uncharged and
enriched in polar and hydrophobic residues in the case of FG-
nucleoporin peptides.
The RS peptide is a well-suited IDP for this comparison, it

has previously been extensively characterized by multiple NMR
experiments by Xiang et al.16 as well as by SAXS experiments in
this work. Its small size (24 residues) makes it feasible to
perform extensive simulations using multiple force fields with
current computational capabilities. The RS peptide undergoes a
phosphorylation-induced reduction in conformational entropy,
which is thought to be important in modulating protein-RNA
interactions.16 Here, we carried out simulations of only the
unphosphorylated form. Two FG-nucleoporin peptides with
sequences based on the sequence of yeast Nsp1p59 were also
studied. These peptides differ in length (16 residues and 50
residues). FG-nucleoporins are a well-studied class of IDPs that
are characterized by the presence of FG motifs and are essential
for the selectivity of the nuclear pore complex.60 We also
studied (AAQAA)3 and the HEWL peptide, which is a 19-
residue sequence derived from hen egg white lysozyme.58

■ METHODS
Simulations. The RS peptide was built in a fully extended

configuration in PYMOL with protonation states to match
experimental conditions (arginine residues as well as the N- and
C-termini were simulated in their charged states). The
simulation system consisted of the peptide in a rhombic
dodecahedral box with water molecules and 0.15 M NaCl for a
total of ∼42000 atoms. GROMACS version 4.5.461 was used
for all simulations. Prior to the production runs, energy
minimization with the steepest descent algorithm was
performed. The lengths of bonds with hydrogen atoms were
constrained using the LINCS algorithm.62 An integration time
step of 2 fs was used. A cutoff of 0.95 nm was used for the
Lennard-Jones interactions and short-range electrostatic
interactions. Long-range electrostatic interactions were calcu-
lated by particle-mesh Ewald summation with a grid spacing of
0.12 nm and a fourth order interpolation.63 The velocity
rescaling thermostat was used for all simulations.64 Equilibra-
tion was performed at 298 K for 1 ns using Berendsen pressure
coupling65 followed by 5 ns of simulation in the NPT ensemble
using the Parrinello−Rahman algorithm.66 The configuration
from this simulation with a volume closest to the average
volume was then used for subsequent replica exchange (RE)54

simulations in the canonical ensemble. A total of 97
temperatures between 298 and 450 K were used with a mean
acceptance ratio of 0.35. Temperature exchanges were
attempted every 2 ps for a total of 97 μs (1 μs of simulation
per temperature). Coordinates were stored before each
temperature exchange; a total of 0.5 × 106 configurations
were collected per temperature. Simulations with the TIP4P-D
water model26 were carried out without replica exchange,
consistent with Piana et al.,26 as conformational sampling in this
force field is fast, and RE was not needed to obtain sufficient
sampling, comparable to the other force fields. Simulations with
the ABSINTH21 implicit solvent model were carried out with

the CAMPARI software following a similar protocol to Das and
Pappu.67 The CAMPARI parameter set abs3.2_opls.prm was
used for the peptide, and the ion parameters of Mao and Pappu
were used.68 In Table S2, we provide the details of the Monte
Carlo move set used. Visual molecular dynamics (VMD) was
used for all molecular visualizations.69

Analysis of Structural Ensembles. The GROMACS
utilities g_gyrate and g_hbond were used to calculate the
radius of gyration, Rg, and number of hydrogen bonds,
respectively. Secondary structure was assigned according to
the DSSP algorithm.70 Contacts between residue pairs were
defined if any two atoms were within a cutoff of 4.5 Å. Left
handed α-helix was defined as three or more consecutive
residues in the αL basin of the Ramachandran plot. Standard
error of the mean was computed using a blocking procedure.71

For each simulation, an equilibration period was delineated on
the basis of both Rg and hydrogen bonds; this initial collapse of
the peptide to more compact conformations was excluded from
analysis.

Computing Experimental Observables. SAXS scattering
curves were computed individually for every conformation in
each ensemble using two different approaches, CRYSOL72 and
FOXS.73 Ensemble-averaged scattering curves were computed
for each force field. Each of these curves were fit to the
experimental curve following the fitting procedure used by
Chen et al.74 The software PRIMUS75 was used to compute the
Rg from each scattering curve using Guinier analysis. The
hydrodynamic radius, Rh, was computed for each configuration
using HYDROPRO76 with the parameters of Mao et al.45

Comparison is made to the hydrodynamic radius measured
using pulse-field-gradient NMR by Xiang et al.16 The Karplus
equation parameters used to calculate scalar couplings are given
in Table S3.77−81 RMS errors for the calculation of J couplings
are 0.73 Hz (3JHNHα), 0.5 Hz (1JCαCβ), 2 Hz (1JCαHα), 0.38 Hz
(3JNCγ and

3JCCγ).
77−81 Chemical shifts were calculated using

both SHIFTX282 and SPARTA+.83 The reported errors for
SHIFTX2 are the lowest of any chemical shift predictor (0.4412
ppm for Cα and 0.5330 ppm for C′).82 The RMS errors for
SPARTA+ are 0.94 ppm for Cα and 1.09 ppm for C′.83 The
errors may be higher when applied to IDPs. All of the
computed NMR observables are compared to those reported
by Xiang et al. for the unphosphorylated RS peptide.16

Experimental Methods. Small angle scattering data was
gathered on the X33 beamline at the EMBL Outstation using
the DORIS synchrotron source located in DESY, Hamburg.84

Samples at concentrations of 2 and 0.33 mg/mL or 0.67 mL in
buffer at 25 °C were loaded into sample cell using X33
automated sample changer85 and exposed for four frames, 30 s
each. The buffer was 50 mM Na-phosphate buffer, 100 mM
NaCl, and pH 7.0, which was also used for all RS peptide NMR
experiments. Data was recorded on a Pilatus 1 M photon
counting detector. After comparing frames for radiation
damage, each frame was radially averaged and then 1d-averaged
using the AutoPilatus software. I(0) and Rg analysis was done
manually to ensure quality in the presence of high noise, using
the PRIMUS program, and verified by visual checking of used
data ranges.75,86

■ RESULTS AND DISCUSSION
Chain Dimensions Depend Strongly on Force Field.

Conformational ensembles of the RS peptide were obtained
using eight different force fields (Table 1). As can be seen in
Figure 1, peptide chain dimensions depend strongly on the
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force field. This dependence is evident in both the radius of
gyration, Rg (Figure 1A), and mean separation distance
between residue pairs (Figure 1B). The ensemble obtained
with Amber ff99sb*-ildn is the most compact, resembling a
collapsed globule-like ensemble. The most expanded ensemble
is obtained with Amber ff03ws. The other six force fields
generated a broad spectrum of chain dimensions that fall
between these two extreme cases. For illustrating these
differences, a selection of structures from each force field are
shown in Figure S1. The small statistical uncertainties reported
for each structural property and each force field in Figure 1
indicate that sufficient sampling of conformational space was
obtained. This is further confirmed by analysis of the contact
maps in the first and second halves of the simulations, which
are remarkably similar (Figure S2), indicating that the
conformational ensembles are well-sampled in all cases. The
observed differences therefore must be attributed to inherent
force field differences and not to inadequate conformational
sampling.
We also assessed the effect of the chosen water model. For

three of the force fields, we have therefore kept the same force
field for the peptide and used two different water models. In
each of these cases, the difference in water model has a
significant effect on chain compactness (Figure 1A and B).
With CHARMM 22*, the TIP4P-D water model produces a
more expanded ensemble than charmm-modified TIP3P. The
relative expansion of the ensemble in TIP4P-D compared to
charmm-modified TIP3P is consistent with results reported for
other IDPs.26 Amber ff03ws produces a more expanded
ensemble than Amber ff03w; this is also to be expected given
that the depth of the Lennard-Jones potential, ε, between
protein atoms and water oxygen atoms is scaled by a factor of

1.1 in Amber ff03ws compared to ff03w.51 With CHARMM 36,
charmm-modified TIP3P produces a significantly more
expanded ensemble than TIP3P. Both of these water models
were included in the development of CHARMM 36;58 here,
they lead to significant differences in compactness. Because of
the strong dependence of chain dimensions on the water
model, no simple grouping of Amber- and CHARMM-based
force fields with respect to compactness is evident.
The differences in chain dimensions correlate with marked

differences in the balance between chain−chain and chain-water
interactions (Figure 1C and D). Conformations in the
CHARMM 361 ensemble have, on average, the highest number
of intrapeptide hydrogen bonds. Conformations in the Amber
ff99sb*-ildn ensemble have, on average, the fewest hydrogen
bonds to water molecules. Intrachain contacts in this ensemble
are formed between residues close in sequence (turns) as well
as long-range contacts (Figure 2A and Figure S3), consistent
with the behavior of a collapsed globule. The ensembles
obtained using the other force fields have intrapeptide
hydrogen bonds that occur primarily in the form of local
turns and helices with relatively few nonlocal contacts (Figure
2A and Figure S3).
Comparing the chain dimensions (Figure 1A and B) of

ensembles obtained using different force fields to hydrogen
bonding (Figure 1C and D), it can be seen that these structural
properties are not perfectly correlated. Specifically, ensembles
with significantly different structural properties may have the
same mean dimensions. For instance, the chain dimensions
CHARMM 22*/TIP4P-D ensemble are nearly the same as
those of the ABSINTH ensemble (Figure 1B), but the
ensemble with ABSINTH has a significantly higher population
of intrapeptide hydrogen bonds (Figures 1C and 2A). The

Figure 1. Chain dimensions and hydrogen bonding in different force fields. (A) Histograms of the radius of gyration, Rg, for the structural ensembles
obtained in each force field (the legend applies to all figure panels). CHARMM 22* and CHARMM 22*/D refer to simulations with charmm-
modified TIP3P and TIP4P-D, respectively. CHARMM 361 and CHARMM 362 refer to simulations with TIP3P and charmm-modified TIP3P,
respectively. (B) Ensemble-averaged distance, <Rij>, between the α-carbon atoms of residue pairs, i and j, vs sequence separation, |i − j|. (C)
Histograms of the number of intrapeptide hydrogen bonds. (D) Histograms of the number of peptide-water hydrogen bonds. Shading indicates
statistical uncertainty.
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ABSINTH implicit solvent ensemble is unique in another
respect: the low Rg peak (centered at 9 Å, Figure 1A) is due to
the presence of an arginine claw-type structure (a representa-
tive conformation is provided in Figure S4; low Rg (<9.6 Å)
conformations were observed in every replica exchange run
carried out with ABSINTH). This conformation is reminiscent
of the arginine claw observed previously in implicit solvent
simulations of a phosphorylated RS peptide in which the
phosphoserine residues were pointing outward into the
solvent.87,88 The claw-like conformation in the ABSINTH
ensemble is actually an inverse arginine claw in which the
arginine residues point outward and the serine residues point
inward.
Secondary Structure Content Depends Strongly on

Force Field. Like chain dimensions and hydrogen bonding,
secondary structure content also depends strongly on the force
field for both the RS peptide (Figure 2B) and the FG-
nucleoporin peptide (Figure S5). We compared the secondary
structure content of ensembles obtained using different force

fields for the same peptide sequence. The RMS difference in
secondary structure content between ensembles with the same
sequence and different force fields was calculated to be 0.1. We
also compared the ensembles of the RS peptide and FG-
nucleoporin peptide obtained using the same force field. The
RMS difference in secondary structure content between
ensembles obtained using the same force field and different
sequences was calculated to be 0.06. Overall, we find that a
change in force field has a stronger effect on secondary
structure content than changing the entire peptide sequence.
For the two peptides compared here, the change in sequence is
quite large. The RS peptide is highly charged, whereas the FG
peptide is composed entirely of polar and hydrophobic
residues. This result demonstrates how dramatically sensitive
IDPs are to force field selection. Their rugged energy
landscapes with many iso-energetic minima separated by low
barriers make IDPs highly sensitive test systems to assess force
field accuracy.

Figure 2. Secondary structure content in different force fields. (A) Hydrogen-bond contact maps for the ensemble in each force field. Shown are
hydrogen bonds between the carbonyl oxygen and amide nitrogen of the polypeptide backbone, which are colored according to their population in
the ensemble from black (not observed) to white (present in >20% of configurations). (B) The fraction of residues assigned a particular type of
secondary structure according to the DSSP70 algorithm. (C) A representative structure from the CHARMM 36 ensemble containing an extended,
left-handed α-helix.
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Ensembles Obtained Using CHARMM 36 Have a Bias
toward a Left-Handed α-Helix. As can be seen in Figure 2B,
the ensembles in most force fields have substantial content of
bends and turns and relatively low α-helix and β-sheet content.
There are two notable exceptions: CHARMM 36 with TIP3P
and charmm-modified TIP3P; both of these ensembles have an
exceptionally high α-helix content. Unexpectedly, this helix
does not have the usual handedness expected for proteins; it is
left-handed (a representative structure is shown in Figure 2C).
Left-handed α-helices are exceedingly rare in structured
proteins. Only 31 left-handed α-helices were found in a survey
of 7984 structures from the PDB, and only 10 contained no
glycines.89 The maximum length of any of these was 6 residues;
these helices are actually single helical turns, rather than
extended helices. Longer left-handed α-helices, such as those
seen in the ensembles with CHARMM 36, are essentially
absent from structured proteins, based on known protein
structures in the PDB.
Figure 3 compares the Ramachandran maps of all eight force

fields to that of nonproline, nonglycine coil residues in the
Top50090 set of proteins (a nonredundant set of protein
structures from the PDB). The population in the αL basin in
the Top500 coil set is low (6%). Consistent with this
population, most of the force fields also have low populations
in αL, except for the CHARMM 36 ensembles, both of which
have populations of more than 40%. No other force field has
such a strong αL bias. In fact, more than 85% of the
conformations in the CHARMM 36 ensemble contain a left-
handed α-helix. Ramachandran maps of ensembles obtained
using the same force field for the peptide, but which differ in
water model used, are very similar (Figure 3). This result
provides further independent support that sufficient conforma-
tional sampling has been achieved.
Structural Ensembles Obtained Using Different Force

Fields Exhibit High Variability. Taken together, the results
presented so far indicate the strong dependence of secondary

structure and compactness on the choice of force field. For
example, the ensemble in Amber ff99sb*-ildn has nearly four
times as many intrapeptide hydrogen bonds compared to the
Amber ff03ws ensemble. The choice of water model also has a
significant effect on compactness, consistent with other
studies.26,51 The ensembles with CHARMM 36 are unique in
their exceptionally high left-handed α-helix population.
Although it is to be expected that the conformational ensemble
of an IDP will depend, to some extent, on the chosen force
field, the magnitude of the difference between force fields seen
for the RS peptide is remarkable, spanning a range from
globular to highly expanded. This finding is particularly
surprising in light of the fact that many of these force fields
have performed well in other benchmark studies.26,35,51

Therefore, we next asked how well these ensembles compare
to a diverse set of experimental data.

Assessing the Accuracy of Chain Dimensions:
Comparison to Primary Experimental Data. For this
aim, we measured SAXS data for the RS peptide, as described in
the Experimental Methods. Figure 4a shows the measured
SAXS scattering curve, along with the scattering curve
calculated from the MD simulations using each force field.
The curves of two ensembles, those obtained using CHARMM
22* and Amber ff03w, agree within error with the experimental
data. The mean Rg and RH of each ensemble are shown in
Figure 4B and C, respectively. The mean Rg of the CHARMM
22* ensemble (12.65 ± 0.07 Å) is slightly smaller than that of
the Amber ff03w ensemble (13.3 ± 0.1 Å) and agrees best with
the measured Rg (12.62 ± 0.07 Å). These results are similar for
both approaches to computing scattering curves from structures
(results for both CRYSOL and FOXS are shown in Figure S8
and S9). Consistent with the results for radius of gyration, the
CHARMM 22* ensemble is in closest agreement with the
experimental hydrodynamic radius (11.95 ± 0.01 Å compared
to the experimentally measured value of 11.9 ± 0.1 Å).

Figure 3. Force field differences in backbone dihedral angles. The potential of mean force (PMF), −log(P(φ,ψ)), with color scale in kT, is shown for
each force field. The upper right graph (PDB, coil) corresponds to all non-Pro, non-Gly residues that are not in helix or sheet secondary structure in
the TOP50090 structures (a set of nonredundant protein structures from the PDB). The population in the αL basin in each case is Amber ff99sb*-
ildn = 0.12, Amber ff03w = 0.01, Amber ff03ws = 0.01, ABSINTH = 0.02, CHARMM 22* = 0.05, CHARMM 22* (with TIP4P-D) = 0.04,
CHARMM 36 (with TIP3P) = 0.42, CHARMM 36 (with charmm-modified TIP3P) = 0.41, and PDB, coil = 0.06. More than 85% of conformations
in the CHARMM 36 ensemble contain left-handed α-helix. Refer to Figures S6 and S7 for the same analysis for arginine and serine residues
separately.
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The collapsed globule ensemble of Amber ff99sb*-ildn and
the predominantly left-handed α-helix ensemble of CHARMM
36 are both too compact and inconsistent with the SAXS and
PFG-NMR data. These results suggest that chain-chain
interactions are too favorable compared to chain-water
interactions in these force fields, or, alternatively, that the
hydrophobic effect is too strong. A combination of these effects
is likely, but our results do not allow us to assess the relative
contributions of these effects.
In contrast, ABSINTH, Amber ff03ws, and CHARMM 22*

with the TIP4P-D water model generate ensembles that are too
expanded compared to the experimental Rg and RH, suggesting
that the balance is shifted too far in favor of chain-water
interactions in these force fields. The implicit solvent model,
ABSINTH, has previously been found to agree with measure-
ments of RH for other IDPs.45 Amber ff03ws and CHARMM
22* with TIP4P-D were both developed with the specific aim
of matching the experimental chain dimensions of IDPs.26,51

The TIP4P-D water model has a Lennard-Jones C6 parameter
50% larger than that of other water models and thus has
increased dispersion interactions.26 The fact that these force
fields result in ensembles that are too expanded in comparison

to experimental data for the RS peptide suggests that the
problem of obtaining an accurate force field for IDPs may not
be solved simply by modified water models parametrized
specifically for IDPs.

Assessing the Accuracy of Secondary Structure
Content: Comparison to 3JHNHα Couplings. The
CHARMM 22* and Amber ff03w ensembles agree well with
SAXS and PFG-NMR data. These two ensembles are similar in
compactness (Figure 1), but they differ significantly in
secondary structure content (Figure 2). To assess the accuracy
of secondary structure content, we compare to measured scalar
couplings, which report on ensemble-averaged backbone and
side chain dihedral angles. Figure 5 shows 3JHNHα scalar

couplings, which report on the φ backbone dihedral angle and
are the most-informative (and most-commonly used) for
backbone conformation.91 As can be seen, two force fields
agree well with the measured couplings, CHARMM 22* with
charmm-modified TIP3P and TIP4P-D water models. The
3JHNHα scalar couplings for both CHARMM 36 ensembles are
outside of experimental error. Because these couplings report
on the φ dihedral angle, this finding also implies that the high
left-handed α-helix population in CHARMM 36 is not
consistent with the experimental data. For all three force fields

Figure 4. Comparison to chain dimensions measured by SAXS and
PFG-NMR. (A) Shown are ensemble-averaged scattering curves for
each force field (with the same color scheme as Figure 1). The
experimental curve is shown with error in gray. The ensembles in two
force fields agree with the experimental scattering curve within error:
Amber ff03w and CHARMM 22*. (B) The radius of gyration is shown
for each force field and the experimental data (black). (C) The
hydrodynamic radius is shown for each force field, and the
experimentally measured value is shown in black. The shaded gray
lines in (B) and (C) indicate the experimental error.

Figure 5. Comparison to measured 3JHN‑Hα couplings. (A) The
3JHN‑Hα

couplings are shown for the ensemble obtained using each force field
(the color scheme is consistent with Figures 1 and 4, shading indicates
statistical uncertainty, which is on the order of the line thickness,
∼0.01 Hz). The experimental 3JHN‑Hα couplings (with error) are
shown in gray shading; arginine and serine residues in the RS repeats
have one measured 3JHN‑Hα coupling. A correction to the 3JHNHα scalar
couplings has been suggested in the literature.92 Such a correction
would shift the true values of the scalar couplings to higher values
compared to the experimentally measured values.77 This additional
uncertainty in the experimental values (estimated to be up to 5%17) is
indicated in lighter gray. (B) The average unsigned error for the
ensemble obtained using each force field is shown.
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for which different water models are tested (CHARMM 22*,
Amber ff03w, and CHARMM 36), changing the water model
has a relatively small impact on the 3JHNHα scalar couplings.
Obviously, the water model has a negligible effect on φ
backbone dihedral preferences, which can also be seen in the
Ramachandran plots in Figure 3.
Next, we compared the RS peptide ensembles to a large set

of scalar couplings and chemical shifts as summarized in Figure
6 (raw data for each observable is provided in Figures S10−

S18). Two more scalar couplings (1JCαCβ and
1JCαHα) report on

the φ backbone dihedral angle. However, these scalar couplings
are less informative than 3JHNHα.

1JCαCβ coupling constants have
been found to depend more on amino acid composition than
secondary structure preferences.79 Nevertheless, as seen with
the 3JHNHα scalar couplings, the ensembles with CHARMM 22*
are in closest agreement, and the CHARMM 36 ensembles do
not agree well for both 1JCαCβ and

1JCαHα. Comparison to side
chain scalar couplings are also reported (Figures S12 and S13).
The CHARMM 36 ensembles again show the largest errors,
whereas the average unsigned errors for the other force fields
are low (less than 0.4 Hz, the RMS prediction error). In
general, the comparison to the experimental scalar couplings is
limited primarily by the accuracy of computing scalar couplings
with Karplus relations. The typical statistical uncertainty in the
computed scalar couplings is only ∼0.01 Hz (smaller than the
line thickness in Figure 5) because of the extensive conforma-
tional sampling, which is much smaller than the RMS
prediction errors. Thus, the observed deviations do not
necessarily imply force field artifacts.
With respect to scalar couplings, CHARMM 36 ensembles

deviate most from the experimental data, which is likely due to
the high left-handed α-helix population. To investigate this
further, we calculated the scalar couplings for a subensemble

that was generated by selecting all conformations in the
CHARMM 36 ensemble that contained no left-handed α-helix
(Figure S15). This subensemble has significantly lower error
compared to the experimental backbone scalar couplings,
providing further evidence that the left-handed α-helix is
inconsistent with the experimental data.

Comparison to Chemical Shifts. Carbonyl carbon and α-
carbon chemical shifts have also been measured for the RS
peptide.16 Both of these types of chemical shifts are very
sensitive to secondary structure.93 The comparison to these
chemical shifts is primarily limited by the expected accuracy of
currently available chemical shift predictors. Within the
expected error of SPARTA+, the chemical shifts of all of the
ensembles agree with the experimental shifts. Chemical shifts
calculated with SHIFTX2 have significantly smaller reported
RMS errors than SPARTA+.82 We report chemical shifts
computed using both approaches as secondary chemical shifts
(with the random coil values subtracted) in Figures S16−S18.
Only the ensemble obtained with CHARMM 22* (and

charmm-modified TIP3P) agrees well with all available
experimental data, except for residual dipolar couplings
(RDCs). Consistent with earlier reports,17,94,95 we find that
the ensembles in all force fields are in poor agreement with
RDCs (see Figure S19). It has been suggested that the
conformational ensembles of IDPs may be affected by the
presence of alignment media used in measurements of RDCs.96

It is also well-established that IDPs are highly sensitive to
solution conditions.97,98 Therefore, it is still unclear from the
present set of evidence whether the disagreement with RDCs
comes from an effect of the alignment media on the ensembles
or due to the force field. We are therefore carrying out a more
detailed investigation into these effects. This will be published
in a further study, as it goes significantly beyond the scope of
the present work.

Generality and Causes of the Left-Handed Helix
Propensity of CHARMM 36. We next investigated whether
only the RS peptide forms a left-handed α-helix with
CHARMM 36, or whether this force field has a general
propensity for αL. To this end, simulations with (A)3,
(AAQAA)3, and the HEWL peptide were performed. The
Ramachandran plots for (A)3 and (AAQAA)3 (Figure S20)
show a 6-fold lower αL propensity than seen for the RS peptide
and are consistent with those reported by Best et al.58 We also
carried out microsecond simulations of the HEWL peptide.
Approximately 30% of the ensemble of this peptide contains
left-handed α-helix (Figure S21). At least 200 ns of simulation
were needed before the left-handed helix formed, which is
longer than earlier simulations of this peptide.58 Thus, even
though these proteins do not fold, long simulation times may
be needed to find all highly populated conformational states.
The 16-residue FG-nucleoporin peptide (Figure 7a), as well

as the longer 50-residue FG-nucleoporin peptide (Figure S22a),
also showed a high population in the αL basin for the
CHARMM 36 force field. A conformation of the FG-
nucleoporin peptide containing helices of both handedness is
shown (Figure S22b). Thus, the bias of CHARMM 36 toward
left-handed α-helix is not limited to the RS peptide but rather
seems to be quite general. This leads directly to the question:
what causes the CHARMM 36 bias toward left-handed α-helix?
Left-handed α-helix is sterically disfavored by the close

proximity of the side chain Cβ atom with the carbonyl C′ atom
of the previous residue.99 Comparing CHARMM 36 to its
predecessor, CHARMM 22/CMAP, one of the modifications is

Figure 6. Comparison to NMR and SAXS experimental data:
Summary. Average unsigned error (AUE) compared to experimental
data in (A) the hydrodynamic radius, Rh, and the radius of gyration, Rg,
(in Å), (B) J-couplings (in Hz), and (C) chemical shifts (in ppm) for
each force field.
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a change in the Lennard-Jones parameters of aliphatic hydrogen
and carbon atoms, including the side chain Cβ atom.58,100 In
particular, the Lennard-Jones σ parameter was decreased.
Because it is precisely a steric clash between this atom and the
carbonyl C′ atom that precludes the αL conformation in nature,
we tested the effect of using the aliphatic LJ parameters of the
CHARMM 22/CMAP force field in CHARMM 36, which is
here referred to as CHARMM 36, LJ mod.
In Figure 7a, Ramachandran plots are shown for the FG-

nucleoporin peptide with CHARMM 36 as well as CHARMM
36, LJ mod. Indeed, the population in the αL basin is
significantly reduced by this modification. Furthermore, the
fraction of the ensemble containing left-handed α-helix is
reduced from over 40% with CHARMM 36 to below 15% with
CHARMM 36, LJ mod, which is even less left-handed α-helix
than the CHARMM 22/CMAP ensemble (Figure 7b). It is
therefore likely that a combination of a CMAP correction
rendering the αL basin too favorable, combined with a decrease
in the LJ σ parameter of the side chain Cβ atom, promotes αL
formation. The CHARMM 36 subensemble containing no left
handed α-helix has nearly the same radius of gyration as the
entire ensemble (Figure S23). This result suggests that further
modifications to the CHARMM 36 force field would be needed

beyond adjusting the aliphatic LJ parameters; we did not pursue
this direction further.

■ CONCLUSIONS

Obtaining accurate descriptions of IDPs by means of MD
simulations is quite challenging both due to their sensitivity to
force field inaccuracies as well as the need for extensive
sampling. In addition, it is more demanding to obtain
experimental information characterizing the entire ensemble
of an IDP than the average structure of a folded protein because
more experimental information is needed in the case of IDPs
due to their high conformational heterogeneity. Furthermore,
most experimental measurements obtained for IDPs are
ensemble-averages, which only increases the challenge faced
in characterizing IDPs.
Here, we assessed the accuracy of ensembles obtained from

de novo simulations without the use of experimental
information to guide ensemble selection or generation.
Experimental data from SAXS and NMR were then used to
evaluate the accuracy of the ensembles obtained using eight
state-of-the-art force fields. Note that this study is not a
comprehensive test of all available force field combinations.
Sufficient conformational sampling was obtained using replica
exchange. Taken together, our results demonstrate an
unexpectedly high sensitivity of IDP conformational ensembles
to differences between the force fields. For example, for
CHARMM 36, an unexpectedly high propensity for left-handed
α-helix was found, which was strongly reduced by relatively
small changes in the Lennard-Jones parameters of aliphatic
carbons. A comparison of the secondary structure content of
the RS and FG peptides showed that, for these two very
different IDPs, force field is a stronger determinant of
secondary structure content than peptide sequence. Major
differences in chain dimensions were also found: ensembles
span the entire range from collapsed globule-like to highly
expanded. There was consensus, though, among all of the force
fields that the studied peptides are disordered (that is,
populating many conformations rather than a single, well-
defined native structure). Even this similarity is tenuous
because the vast majority of the CHARMM 36 ensemble
contains stretches of left-handed α-helix.
A key finding of this study is that the conformational

ensemble obtained using CHARMM 22* with charmm-
modified TIP3P agrees best with all available experimental
data. Maintaining the correct balance between solvent−solvent,
solvent−solute, and solute−solute interactions has been an
optimization criterion in the development of the CHARMM
force fields, even in much earlier versions.31,101 With a correct
balance of interactions, the quality of water as a solvent for
proteins should be well described, and this indeed appears to be
the case for the RS peptide.
This study provides a systematic benchmark of eight force

fields for a set of IDPs. Further computational-experimental
studies of other IDPs are a necessary next step to delineate the
accuracy of force fields for simulations of IDPs of different
length and sequence composition.
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Figure 7.Modified aliphatic LJ parameters significantly reduce αL-helix
in CHARMM 36. (A) The potential of mean force (PMF),
−log(P(φ,ψ)), with color scale in kT, is shown for the FG-nucleoporin
peptide in each force field. The population in the αL basin in each case
is CHARMM 361 = 0.26; CHARMM 362 = 0.23; CHARMM 22* =
0.09; and CHARMM 36, LJ mod = 0.13. (B) The fraction of the
ensemble containing left-handed α-helix is shown for each force field.
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