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a b s t r a c t

X-ray free electron lasers (XFEL) are expected to enable molecular structure determination in single
molecule diffraction experiments. In this paper, we describe an implementation of two orthogonal
Bayesian approaches, previously introduced in Walczak and Grubmüller (2014), capable of extracting
structure information from sparse and noisy diffraction images obtained in these experiments. In the
‘Orientational Bayes’ approach, a ‘seed’ model is used to determine for every recorded diffraction image
the underlying molecular orientation. The molecular transform of the irradiated molecule is obtained by
aligning and averaging those images in three-dimensional reciprocal space. By contrast, in the ‘Structural
Bayes’ approach, a real space structure model is optimized to fit best to an entire set of diffraction images.
This approach is used in a Monte Carlo structure refinement procedure.

Both presented approaches were implemented in C; previous tests (Walczak and Grubmüller, 2014)
suggest that the algorithms are robust against low signal to noise ratios and can deliver high resolution
structural information.

Program summary

Program title: BASDet
Catalogue identifier: AEZH_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEZH_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GPL version 3
No. of lines in distributed program, including test data, etc.: 1881590
No. of bytes in distributed program, including test data, etc.: 49039580
Distribution format: tar.gz
Programming language: C (ANSI 99), Perl.
Computer:Workstation (8 CPUs).
Operating system: Linux.
Classification: 3, 4.13, 16.1.
External routines: GNU Scientific Library (GSL), Message Passing Interface (MPI) library
Nature of problem: Extracting structural information from sparse and noisy single molecule XFEL
diffraction images.
Solutionmethod:Bayes’ formalism is used to calculate eithermolecular orientationprobability distribution
with the aim to align individual images; or, alternatively, to calculate directly structure probability given
all collected images.
Running time: The examples given:
Orientation_Bayes—50 h on Ivy Bridge Cores Xeon E3-1270v2 (2 × 4 × 3, 5 GHz)

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
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Structural_Bayes—These take longer than Orientation_Bayes runs, but can be restarted from checkpoint
files.

© 2016 Published by Elsevier B.V.
1. Introduction

Structure determination techniques providing high resolution
information are important to understand how biological systems
function. X-ray crystallography, as the most widely used high
resolution technique, faces certain limitations, however. Many
proteins that cannot be crystallized are inaccessible to this
technique. For those samples that do form crystals, only intensities
at discrete Bragg peaks are measured, hence the missing phase
information needs to be retrieved by other means.

Single molecule diffraction experiments with ultra short X-ray
free electron laser (XFEL) pulses hold the promise to overcome
these limitations [1–3]. In XFEL experiments, every collected image
is created by a single molecule, randomly oriented during its
exposure to a laser pulse. Despite the very high beam intensity,
single molecules scatter only few photons that carry structural
information (10–104 per picture, depending on molecular mass
and beam intensity) [4]. The task to extract structural information
from this limited data is further complicated by the presence of
considerable background noise.

Recently developed structure determination methods from
single molecule XFEL diffraction images focus either at accurate
orientation determination for individual diffraction images and
averaging those in 3-dimensional (3D) reciprocal space [4–9],
or omit the orientation determination altogether by calculating
intensity correlations [10–13].

Previously, we developed two alternative Bayesian approaches
for structure determination with the intent to retrieve struc-
tural information at atomic resolution from sparse and noisy im-
ages [14], as depicted in Fig. 1. These approaches are referred to
as ‘Orientational Bayes’ and ‘Structural Bayes’, respectively. In the
Orientational Bayes approach, for every individual diffraction pat-
tern X, the probability of the underlying molecular orientation 2,
π(2|X), is calculated and subsequently used to align the collected
images in 3D reciprocal space. By contrast, the Structural Bayes ap-
proach does not rely on the molecular orientation determination
for individual images; instead, the probability that a model struc-
ture S gave rise to an entire recorded set of diffraction patterns {X},
π


S|{X}


, is computed. The Structural Bayes approach is applied in

aMonte Carlo (MC) structure refinement scheme. In this paper, we
describe the implementation of both approaches.

2. Theory

Beforewe dwell on the implementation and use of the program,
we briefly outline the theoretical foundations of the algorithms.
For a derivation of formulas presented here and their in depth
discussion, please refer to our previous work [14].

2.1. Orientational Bayes

The aim of the Orientational Bayes approach is to determine
the underlying molecular orientation for each of the recorded
diffraction patterns. The likelihood f (X|2) that a particular
diffraction pattern X is observed for an orientation 2 is directly
calculated from the recorded image, given a ‘seed’ structuremodel.
However, to extract the hidden information about the underlying
orientation, a posterior probability π(2|X) is calculated via Bayes’
theorem, π(2|X) ∝ p(2)f (X|2), under an a priori assumption
about the molecular orientation distribution p(2).

To calculate the likelihood, we assume that every incident XFEL
pulse contains a constant total number of photons Ntotal. However,
for a diffraction image i, only ni of those photons are recorded on a
detector plane, whereas the remaining Ntotal − ni photons are not.
The arrival positions of the ni photons form a diffraction pattern
Xi =


(x(l)i , y

(l)
i )


l=1...ni

on the detector plane. The likelihood of ob-
serving a particular pattern Xi, given a molecular orientation de-
fined in terms of Euler angles 2i = (θi, ψi, ϕi), is thereby obtained
by multiplying independent probabilities of detecting individual
photons at positions (x(l)i , y

(l)
i ) and the probability of the remain-

ing Ntotal − ni photons not being recorded

f (Xi|2i) ∝


1 −

AΘi

Ntotal

Ntotal−ni
ni
l=1

IΘi [∆k(x(l)i , y
(l)
i )]

Ntotal

∝


1 −

AΘi

Ntotal

Ntotal−ni
ni
l=1

IΘi [∆k(x(l)i , y
(l)
i )]. (1)

Here, I2i [∆k(x(l)i , y
(l)
i )] is the expected scattering intensity value

registered by a detector pixel at the photon position (x(l)i , y
(l)
i ) and

AΘi =
Npixel

l=1 IΘi [∆k(x(l), y(l))] is the expected amount of scatter-
ing for orientation Θi registered by an Npixel pixel detector. Note
that in actual experiments, incident beam intensity, and the result-
ing number of photons Ntotal, will vary from shot to shot. Hence, to
account for these fluctuations, the incident beam intensity has to
be treated as an additional parameter to be optimized, similarly as
described in [15].

Assuming unpolarized XFEL pulses, the expected scattering
intensity value registered by a detector pixel is given by

I(∆k) = r2e
1 + cos2 2γ

2
∆Ω


∞

−∞

dt I0(t)
 d3r ρ(r, t)ei∆k·r

2
+

ABN

2πσ
e−∆k2/(2σ 2), (2)

where I0 is the incident beam intensity, re is the classical electron
radius, γ is the scattering angle, ∆Ω is a solid angle subtended
by the detector pixel, ρ(r, t) is the time dependent electron den-
sity [1], ABN is the expected amount of background noise due to in-
elastic scattering, and σ is the anticipatedwidth of the background
noise distribution. In our calculations, we assume sufficiently short
pulses (<10 fs) with low temporal coherence, and thus scatter-
ing amplitudes of a time-independent electron density are inco-
herently summed to compute intensity distributions. If required,
pulse polarization and partial coherence can be accounted for in
Eq. (2); however, this generalization of Eq. (2) is beyond the scope
of this paper.

Note that to account for inelastic scattering noise, in Eq. (2), a
normal distribution is added incoherently to the intensity distribu-
tion of the target molecule. The parameters ABN and σ are set such
as tomodel anticipated noise that mainly affects the central region
of the detector, but also extends to high resolution regimes. In the
actual XFEL experiments further background noise sources will af-
fect the signal photon counts. Thus the noise model in Eq. (2) will
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Fig. 1. Two alternative Bayesian approaches addressing the following questions: (a) Given a diffraction image X, what is the probability of a particular orientation 2 of
the target molecule π(2|X)? The underlying molecular transform is obtained by aligning and averaging the images in reciprocal space. (b) Given an entire set of diffraction
images {X}, how probable is it that they all stem from a particular real space structure S, π


S|{X}


?.
have to be modified to account for, e.g., electronic detector noise,
irregular photon background, scattering on hydration shells, etc.
Once single molecule scattering data is available, a suitable back-
ground noise model can be devised and implemented in the algo-
rithm in a similar fashion to XFEL scattering on nanoparticles [15].

We further assume that the orientation of a single molecule
entering the XFEL pulse follows a uniform distribution. Hence,
according to Bayes’ theorem, the posterior probability π(2i|Xi)
of the molecular orientation given the diffraction pattern is pro-
portional to the likelihood f (Xi|2i), defined in Eq. (1), with an
irrelevant proportionality constant. If the user anticipates that tar-
getmolecules follow a particular orientation distribution, different
from a uniform one, both the prior and posterior distributions in
the algorithm need to bemodified such that they reflect this initial
knowledge.

2.2. Structural Bayes

Note that the Orientational Bayes approach requires a ‘seed
model’ to calculate the intensity distribution [Eq. (2)] and conse-
quently the posterior probability distribution [Eq. (1)]. To avoid
this prerequisite, we explicitly include the molecular structure in
the posterior probability distribution as an additional parameter.
In the most general case, the initial structure is modelled utilizing
stereochemical knowledge about the target molecule, i.e., the se-
quence and the internal structure of the building blocks, e.g., amino
acids, constituting the molecule. This way, starting from a random
conformation, the structure is optimized to simultaneously fit best
to all collected diffraction images.

A molecular structure is described by N atomic positions S =
r1, . . . , rN


. The likelihood of observing a diffraction patternXi =

(x(l)i , y
(l)
i )


l=1,...,ni

obtained from photons scattered by a structure

Sj oriented according to Θ
(j)
i = (θ

(j)
i , ψ

(j)
i , ϕ

(j)
i ) is

f (Xi|Sj,Θ
(j)
i


∝


1 −

A(Θ(j)
i , Sj)

Ntotal

Ntotal−ni

×

ni
l=1

I

R(θ (j)i , ψ

(j)
i , ϕ

(j)
i )∆k(x(l)i , y

(l)
i ), Sj


. (3)

Here, I(∆k, Sj) is the expected scattering intensity value reg-
istered by a detector pixel at the photon position (x(l)i , y

(l)
i ),

the scattering vector ∆k pointing to that pixel is rotated by
a rotation matrix R(θ (j)i , ψ

(j)
i , ϕ

(j)
i ) to account for the orienta-

tion Θ
(j)
i = (θ

(j)
i , ψ

(j)
i , ϕ

(j)
i ) of the structure Sj, A(Θ

(j)
i , Sj) =
Npixels
l=1 I


R(θ (j)i , ψ

(j)
i , ϕ

(j)
i )∆k(x(l), y(l)), Sj


is the expected amount

of scattering for this molecular orientation registered by an Npixel
pixel detector, and Ntotal is the total number of incident photons.

Because individual images are recorded independently, the
likelihood of recording an entire set of diffraction patterns {Xi} is
given by the product of individual likelihoods

f

{Xi}|Sj, {Θ

(j)
i }


=


i

f

Xi|Sj,Θ

(j)
i


. (4)

The a priori distribution of structure coordinates p(Sj) is assumed
uniform, hence, according to Bayes’ theorem, the posterior
probability reads

π

Sj, {Θ

(j)
i }|{Xi}


∝


i

f

Xi|Sj,Θ

(j)
i


. (5)

Finally, by integrating the above expression with respect to Θ
(j)
i ,

the posterior probability that structure Sj gave rise to the entire set
of recorded diffraction images {Xi} is calculated

π

Sj|{Xi}


∝


i


f

Xi|Sj, θ

(j)
i , ψ

(j)
i , ϕ

(j)
i


× sin θ (j)i dθ (j)i dψ (j)

i dϕ(j)i . (6)

This expression is used to refine a structure model such that it fits
best to the entire set of images.

3. Program structure

In this section, we describe the implementation of the two
above described Bayesian approaches in computer programs for
structure determination.

3.1. Orientational Bayes

As depicted in Fig. 2, the program based on the Orientational
Bayes approach is divided into two stages. The first stage begins
with the program parsing command line arguments; then it reads
in input files containing k-space parameters, a seedmodelmolecu-
lar transform, a set ofNdp diffraction patterns, and a pixelmask. Af-
ter this preparatory stage, the Orientational Bayes approach is used
to align individual diffraction patterns in 3D reciprocal space. Sub-
sequently, the underlying molecular transform is retrieved from
averaged photon counts in the aligned images.

For tests, we generated a set of synthetic diffraction patterns
from the referencemolecular transform, as shown in Fig. 3. To gen-
erate a diffraction pattern, first, a random molecular orientation
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Fig. 2. Flowchart of the Orientational Bayes structure determination program. The
subsampling procedure is detailed in Fig. 4.

Θi = (θi, ψi, ϕi) is drawn from a uniform distribution. To this end,
Euler angles are sampled from the following probability density
g(θ, ψ, ϕ) = (8π)−1 sin θ [16], i.e., ψ ∈ I[0, 2π), ϕ ∈ I[0, π),
and θ = arccos z, where z ∈ I[−1, 1]. Next, to calculate an
intensity distribution recorded by the detector for that particu-
lar orientation IΘ[∆k(xs, ys)], molecular transform values lying on
appropriately oriented Ewald sphere are projected on the detec-
tor plane. Photon positions constituting the diffraction pattern are
drawn at random from the calculated intensity distribution. For ef-
ficiency reasons, photon count fluctuations in every detector pixel
are approximated by a Poisson distribution,

p(n,∆k) =
[IΘ(∆k)]n

n!
e−IΘ (∆k), (7)

where n is the photon count at a pixel corresponding to the scatter-
ing vector ∆k. We use the GNU Scientific Library [17] implemen-
tation of the ‘Mersenne twister’ algorithm [18] as pseudo random
number generator to generate the diffraction patterns.

In XFEL scattering experiments, elastically scattered photons
that carry the structural information are recorded along with
others that do not contribute to the signal but form background
noise. To account for the inelastic scattering noise, normally
distributed photons are added incoherently to the diffraction
patterns described above. The width and amplitude of the
distribution are provided in the input parameters. This noisemodel
is also included in posterior probability calculation by adding an
appropriate Gaussian function to the intensity distribution within
the right side of Eq. (2), as described in Section 2.1.

In the actual structure determination stage, for each diffraction
pattern Xi, the posterior probability π(Θ|Xi) is first calculated on
a coarsely sampled orientational grid using Eq. (1). To achieve
sufficient orientational resolution at a low computational cost,
high probability regions are subsampled with a fine step. Thus,
after the maximum Θcoarse

max of the coarse posterior probability
landscape is located, surrounding regions, where the ratio of
the fine sampled probability to the maximum of coarse sampled
probability exceeds a given threshold t , π(Θfine

|Xi)/π
coarse
max ≥ t ,

are subsampled. The subsampling procedure is illustrated by the
Fig. 3. Flowchart of diffraction pattern generation.

Fig. 4. Flowchart of subsampling around coarse sampled maximum Θcoarse
max .

flowchart in Fig. 4. Note that to avoid numerical underflows, in
the source code, all posterior probability values are represented as
logarithms and exponentiated when necessary.

Subsequently, photon positions are mapped onto differently
oriented Ewald spheres with weights assigned by the posterior
probability π(Θfine

|Xi)/π
fine
max. The weights are stored to calculate

the weighted average of all accumulated photon counts in the
final step. The molecular transform of the irradiated molecule
is calculated by histogramming the weighted photon counts in
corresponding 3D voxels of a Cartesian grid. The result is exported
to an output cube file.

3.2. Structural Bayes

The Structural Bayes approach was implemented within a
Monte Carlo refinement scheme. Given a sequence of amino acids,
the refinement is carried out by randomly changing dihedral angles
between residues of a peptide and calculating the probability of a
particular conformation, given a recorded set of diffraction images.
In every MC step, new dihedral angles are generated by varying
previously accepted angles using a normally distributed step. The
step size is updated during the simulation to maintain a desired
acceptance rate.
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Fig. 5. Flowchart of theMonte Carlo refinement program using the Structural Bayes approach to calculate structure probability. Probability calculation procedure is detailed
in Fig. 6.
Simulated annealing is used to prevent entrapment of MC runs
in local energy minima. To this end, we introduce a dimensionless
temperature ratio Tr = T/Ta in the Metropolis criterion

ξ < exp

(lnπj − lnπj−1)T

Ta


=

 πj

πj−1

Tr
, (8)

where ξ is a random number between [0,1), πj = π

Sj|{Xi}


is the

probability of jth structure, Ta is the annealing temperature, and
T is a pseudo temperature that ensures nondimensionality of the
argument of the exponent function.

As depicted in the flow chart in Fig. 5, the program is di-
vided into two stages: a preparatory stage and the actual MC run.
In preparation for the actual MC run, the program first parses
command line arguments, then it reads in input files containing
k-space parameters, an initial random structure, a set of diffraction
patterns, and a pixel mask. In case of a continuation run, the pro-
gram additionally reads in a checkpoint file containing the dihedral
angles combination from the last accepted step and the tempera-
ture ratio. In the last preparatory step, the starting structure prob-
ability π0 = π


Sstart|{Xi}


is calculated.

The flowchart in Fig. 6 illustrates the structure probability
calculation. First, the molecular transform is calculated for
structure Sj, using Eq. (2). To calculate scattering intensities, the
electron density of the irradiated molecule is modelled as a sum of
Gaussians centred at non-hydrogen atoms in the molecule:

ρ(r) =

N
i=0

Nel
i e−(r−ri)2/(2σ 2

i )

(
√
2πσi)3

, (9)

where Nel
i is the number of electrons in the ith atom, ri is its

position, and σi is its radius. Next, for each diffraction pattern
Fig. 6. Flowchart of the structure probability calculation procedure. The
subsampling procedure is detailed in Fig. 4.

Xi in the set, the likelihood of observing that pattern, given the
structure and its orientation, f (Xi|Sj,Θ), is first calculated on a
coarse orientational grid using Eq. (3). To increase accuracy, high
probability regions around Θcoarse

max are subsampled with a fine
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step, similar to the Orientational Bayes approach. The likelihood
of observing the diffraction pattern given a particular structure
f (Xi|Sj) is then obtained by integrating both coarse and fine
sampled likelihood distributions f (Xi|Sj,Θ) over orientations Θ.
The integration is carried out using the rectangle rule; likelihood
values are weighted by volume elements corresponding to coarse
and fine sampling steps, respectively. In case fine sampled regions
overlap with coarse sampled ones, the fine sampled volume is
subtracted from appropriate coarse volume element. According to
Eq. (6), the structure probability π


Sj|{Xi}


is proportional to the

product of structure likelihoods


i f (Xi|Sj) for individual images,
however, the irrelevant proportionality constant cancels out in the
structure probability ratioπj/πj−1 used in theMetropolis criterion.
Therefore, in the probability calculation, the structure likelihood
value is directly assigned to the structure probability, π(Sj|Xi) :=

f (Xi|Sj) in the flowchart in Fig. 6.
In the actualMC run, in every step, the structure probability of a

proposed random conformation is calculated and used to evaluate
the Metropolis criterion [Eq. (8)]. Every accepted structure is
written to a file, corresponding dihedral angle configurations and
current random step size are written to a checkpoint file. A
temperature ratio update follows each accepted step j according
to the annealing scheme Tr(j) = T f

r + (T
0
r −T f

r )e
−jτ , where T 0

r is the
initial temperature ratio, T f

r is the final temperature ratio, and τ is
a time constant. After each evaluation of the Metropolis criterion,
the acceptance rate is checked against the requested threshold.
The step size for dihedral angle generation is halved when the
acceptance rate drops below the threshold, and doubled when the
threshold is exceeded. Upon reaching the requested number of
accepted structures, the program terminates.

4. Program usage

In this section,we describe all the in- and output options of both
the Orientational Bayes and the Structural Bayes program.

4.1. Orientational Bayes

The Orientational Bayes program requires following input
parameters:

• file containing seed model molecular transform (-i),
• configuration file describing reciprocal space (-k),
• coarse (-C) and fine (-F) orientation sampling steps,
• subsampling threshold (-S),
• number of diffraction patterns (-n),
• path to diffraction pattern files (-P),
• pixel mask file (-M),
• background noise level (-l),
• scaling prefactor for background noise model (-A),
• background noise distribution width (-W).

The volumetric data of molecular transforms is stored in
Gaussian cube format [19]. The seed model molecular transform
is used to calculate posterior probability distributions. Note that in
Ref. [14], to test the structure determination quality, we used the
same molecular transform as the reference and seed model.

The configuration file describing reciprocal space contains the
following parameters:

• size specifies the number of voxels along an edge of a cubic
grid that is used to discretize a molecular transform,

• dk is the cubic grid spacing,
• sizep is the number of detector pixels along one of its edges,
• step is the size of detector pixels in m,
• pref is a multiplication prefactor of the incident beam inten-
sity I0 = pref × Ia0 , where Ia0 = 4 × 106 photons/Å2 is an antic-
ipated XFEL beam intensity in single molecule experiments [1].

An exemplary file used to simulate diffraction images and to
determine the structure of a glutathione molecule [14] reads:

size 200
dk 0.01
sizep 121
step 0.001
pref 50

The subsampling procedure depicted in Fig. 4 requires a coarse
orientation sampling step to locate regions of high posterior
probability, a fine step to subsample those regions, and a threshold
value to restrict the subsampling to relevant regions. By default,
Euler angles θ = (0, π), ψ = [0, 2π), and φ = [0, π) are
discretized on the coarse grid with a 10◦ step, the fine sampling
is carried out with a 2◦ step, and a value of 0.001 is used for
the subsampling threshold to ensure an atomic resolution of the
retrieved molecular transform [14].

The Orientational Bayes program requires diffraction pattern
files generated externally. The first line in a diffraction pattern
file contains the total number of entries. Each entry contains the
number of photons at position (xs, ys) in the first column, followed
by the coordinates in the other two columns. The photon position
is expressed in pixel indices ranging from 0 to sizep−1; position
(0, 0) corresponds to the lower left corner of the detector. An
exemplary diffraction pattern for a glutathione molecule reads:

76
1 11 54
1 38 40
1 39 46
1 40 41
...

Because photons cannot be recorded in certain areas of segmented
detectors used in experiments, additional information specifying
regions with no readout is required by the program. A pixel mask
file contains the total number of entries, and (xs, ys) pixel positions
as the entries.

To account for inelastic scattering background noise in diffrac-
tion patterns, the program requires parameters describing the
background noise model. As mentioned in Section 2.1, a nor-
mal distribution is added incoherently to the molecular transform
model. The standard deviation σ of the distribution is set from
the input parameter W relative to the detector size sizep, σ =

W × sizep/2. By default, the standard deviation is set to 1/10 of
the detector size such that the background noisemainly affects the
centre of the image, but also marginally extends towards high res-
olution regions. The amount of background noise ABN expected in
the images is calculated from the specified noise level l relative to
themean amount of elastic scattering per image A, ABN = I0×l×A.
For a glutathione molecule, A = 1.64 Å2. If no background noise
level is provided, the program assumes that images contain shot
noise only.

The output of the program is a molecular transform retrieved
from the diffraction images. The molecular transform is written to
a cube file specified by -o switch.

Example command to run the program is:

mpiexec -np 8 ./Orientational_Bayes -i moltr_gtt.cub
-o reconstructed_moltr_BN10_10nmFa.cub -p
kspace_params_gtt.txt -l 0.1 -s 10.0 -f 2.0 -n
20000 -t 0.001 -S 1.64 -W 0.2 -P
diffraction_patterns_dir/ -M pixel_mask.txt
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here, with 10% background noise. In this input parameters
configuration, the program took 12 h to run on 8 Harpertown cores
(Intel Xeon Processor E5462, 2.8 GHz).

4.2. Structural Bayes

The Monte Carlo structure refinement program based on
the Structural Bayes approach requires the following input
parameters:

• initial random structure file number (-i),
• configuration file describing reciprocal space (-k),
• run number (-r),
• random number generator seed (-B),
• input checkpoint file for a continuation run (-K),
• output checkpoint file (-V),
• path to diffraction pattern files (-P),
• pixel mask file (-M),
• number of diffraction patterns (-n),
• background noise level (-l),
• scaling prefactor for background noise model (-A),
• background noise distribution width (-W),
• initial temperature ratio T 0

r in annealing scheme (-0),
• final temperature ratio T f

r in annealing scheme (-f),
• time constant τ in annealing scheme (-t),
• coarse (-C) and fine (-F) orientation sampling steps,
• subsampling threshold (-S),
• MC acceptance rate threshold (-T),
• output directory path (-d),
• number of total accepted MC steps (-a).

The following input parameters are the same as in the Orienta-
tional Bayes program, and were described in the previous section:
configuration file describing reciprocal space, coarse and fine sam-
pling step sizes, subsampling threshold, and the number of diffrac-
tion images.

Unlike in the Orientational Bayes, in the Structural Bayes ap-
proach, molecular structure is defined in real space. X, y, z coor-
dinates and the type of all non-hydrogen atoms in the molecule
are extracted from a Protein Data Bank (PDB) structure file [20].
Those initial random structures are generated prior to the MC run.
The index number of an initial structure is passed to the program
through the -i switch. For the same structure, one might want to
initialize several independent runs. To that aim, a run number (-r)
and a random number generator seed (-B) have to be provided to
ensure sampling of different regions in configurational space.

In each MC step, dihedral angle configurations between
residues are varied. The last accepted configuration is stored in an
output checkpoint file. The first line in this file contains the last
acceptedMC step counter, the second line contains the step size for
angle variation (in radians). Remaining lines contain dihedral angle
values (in radians). The first column stores the angle of rotation
around the Cα − C′ bond (ψ) and the second around the N − Cα
bond (φ). An exemplary checkpoint file for a glutathionemolecule,
as used in Ref. [14], reads:

44
0.087266
-1.979002 0.680588
0.223303 0.967061

Note that for this tripeptide, four instead of six dihedral angles
were used because of a gamma peptide linkage between glutamate
and cysteine residues. A continuationMC run requires a checkpoint
file as an input parameter; in that case the simulation is renewed
from the last accepted MC step.

For the simulated annealing scheme described in Section 3.2,
input values of the initial and final temperature ratios along with
the time constant are required. By default, T 0
r = 0.002, T f

r = 1.2,
and τ = 0.005 values are used. Values of these parameters were
adjustedheuristically to performsimulations described inRef. [14].

Every accepted structure is written to the directory specified by
the -d flag. The output file structure is the same as the input file
structure described above.

Example command to run the program is:

mpiexec -np 8 ./structural_bayes_MC -i 1 -k
kspace_params_gtt.txt -r 2 -B 352314671 -V
checkpoint2.txt -K checkpoint1.txt -P
diffraction_patterns_dir/ -M pixel_mask.txt -n
200 -0 0.002 -f 1.2 -t 0.005 -C 10.0 -F 2.0 -S
0.001 -T 0.2 -d output_structure_dir/ -a 1000

Here, a run is continued from-K checkpoint1.txt. In this input
parameters configuration, the program generated on average 24
accepted structures in 24 h when being run on 8 Ivy Bridge cores
(Intel Xeon Processor E3-1270v2, 3.5 GHz).

5. Concluding remarks

We described the implementation of two alternative Bayesian
approaches for structure determination from singlemolecule XFEL
diffraction images. In the Orientational Bayes approach, individual
diffraction patterns are aligned and averaged in 3D reciprocal space
to retrieve the underlying molecular transform. By contrast, in the
Structural Bayes approach the probability that a particular real
space structure gave rise to the set of all recorded images is used
to identify a structure that fits best to the entire collected patterns.

In our previous work [14], we demonstrated that the Orienta-
tional Bayes approach is capable of determining molecular struc-
tures at atomic resolution even from sparse and noisy images of
small molecules, such as the glutathione. In fact, with increasing
molecular size, a better spatial resolution is to be expected. Thus,
small molecules will challenge prospective structure determina-
tion methods the most. The Orientational Bayes approach could
be implemented in an iterative refinement scheme to retrieve
the underlying molecular transform, similarly to an EMC (expan-
sion–expectation maximization–compression) method [8]. In fact,
a reader familiar with the XFEL field might notice a similarity be-
tween our likelihood formulation in Eq. (1) and that used in the
EMC algorithm. However, in our approach, we consider probabil-
ities of all individual photons, whereas the EMC approach regards
diffraction patterns in terms of photon counts per pixel and uses
a shot noise model such as the Poisson approximation. Note that
in the limit of a large number of incident photons, as expected in
XFEL experiments, the likelihood in Eq. (1) can be approximated
by a Poisson distribution. Yet, it also applies to photon counts for
which the Poisson approximation is invalid, and thereby Eq. (1) is
more general. For a more detailed discussion on this issue, please
refer to our previous work [14].

An iterative structure refinement is possible with the Structural
Bayes approach implementation in a Monte Carlo scheme. The
structure is then refined by sampling molecular conformations in
real space. To construct a structural model, a minimal amount of
a priori stereochemical knowledge about the target molecule is
required: its composition and internal structure of the building
blocks. Because a molecular structure is optimized against an
entire set of diffraction images, achieving high spatial resolution
should be possible even at very low average photon count per
image. In our previous study [14], we successfully refined the
structure of a glutathione tripeptide with a sub–Å accuracy from
synthetic images containing on average 76 elastically scattered
photons per image. Even though the algorithm was provided with
random peptide conformations (with wrong dihedral angles), MC
runs converged to a structure that closely resembled the reference.
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Note, however, that for largermolecules suchMC refinement based
on exhaustive conformational sampling is a formidable task. For
that reason, we also applied the Structural Bayes approach to
calculate structure probability of a large biological complex, the
ribosome, for a limited set of proposed structures, obtained other
than by exhaustive conformational sampling. As demonstrated in
our previous work [14], even localized minute structural changes,
e.g., tRNA chain location, should be traceable despite large and
inaccurately modelled regions, e.g., ribosomal subunits.

This computational toolkit is implemented in C and can
be easily adapted to other structure determination or imaging
problems challenged by low signal to noise ratios.
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