Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

Molecular Simulation, 1990, Vol. 5, pp. 133-165 © 1990 Gordon and Breach Science Publishers S.A.
Reprints available directly from the publisher Printed in the United Kingdom
Photocopying permitted by license only

MOLECULAR DYNAMICS SIMULATION ON A
PARALLEL COMPUTER

H. HELLER, H. GRUBMULLER and K. SCHULTEN*

Beckman Institute and Department of Physics, University of Illinois,
405 N. Mathews Ave., Urbana, IL 61801 U.S.A.

(Received March 1989, accepted October 1989)

For the purpose of molecular dynamics simulations of large biopolymers we have built a parallel computer
with a systolic loop architecture, based on Transputers as computational units, and have programmed it
in occam I1. The computational nodes of the computer are linked together in a systolic ring. The program
based on this-topology for large biopolymers increases its computational throughput nearly linearly with
the number of computational nodes. The program developed is closely related to the simulation programs
CHARMM and XPLOR, the input files required (force field, protein structure file, coordinates) and output
files generated (sets of atomic coordinates representing dynamic trajectories and energies) are compatible
with the corresponding files of these programs. Benchmark results of simulations of biopolymers compris-
ing 66, 568, 3 634, 5 797 and 12 637 atoms are compared with XPLOR simulations on conventional
computers (Cray, Convex, Vax). These results demonstrate that the software and hardware developed
provide extremely cost effective biopolymer simulations. We present also a simulation (equilibrium of
X-ray structure) of the complete photosynthetic reaction center of Rhodopseudomenas viridis (12 637
atoms). The simulation accounts for the Coulomb forces exactly, i.e. no cut-off had been assumed.

KEY WORDS: Molecular dynamics simulation, parallel computers, parallel programming, Transputer,
photosynthetic reaction center.

1. INTRODUCTION

A major concern of molecular biology is to understand the structure-function rela-
tionship of biological polymers, mainly proteins and nucleic acids. For a long time it
had been tacitly assumed that the function of a biopolymer can be revealed from its
static structure, i.e. from a precise knowledge of the equilibrium positions of its atoms
together with a knowledge of typical atomic charges and chemical properties like
hydrogen bonding. However, during the past decade it has been realized that further
properties, which are not evident from the characteristics of the separate constituents
of biopolymers, are required to understand function. Such properties are, for exam-
ple, thermal mobilities of atoms, activated motions of constituent groups, local
electric fields and dielectric relaxation.

The properties mentioned are often very difficult to measure experimentally even
for small subsections of biopolymers, let alone for the whole polymer. It appears that
the required information can be obtained only by computer simulations of biopoly-
mers. Currently, many groups are developing a software basis in order to allow an
increasingly faithful representation of biopolymers by computer programs. These
programs are likely to contribute to biology and biotechnology beyond the scope of

*To whom correspondence should be sent.

133

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

134 H. HELLER, H. GRUBMULLER AND K. SCHULTEN

elucidating the structure-function relationship: they might guide the synthesis of new
materials, e.g. in conjunction with genetic engineering methods, as well as predict the
properties of materials, e.g. drug specificities or mechanical properties. A further
long-range goal of computer simulations is to predict secondary, tertiary and quater-
nary structures of proteins from their primary structure (amino acid sequence).

The prospects of computer simulations in molecular biology rest on the availability
of suitable computer resources. In fact, simulations until now are limited to rather
small biopolymers (of a few thousand atoms) and short simulation periods (of a few
nanoseconds). Furthermore, the cardinal issue of a faithful representation of bio-
polymers by computer simulation is closely linked to the availability of computational
resources: realistic descriptions of forces acting between the constituents of biopoly-
mers, e.g. a proper description of Coulomb forces without ‘cut-off’, require enormous
computer time; simulations must also represent enough of the surrounding medium,
e.g. lipids of biological membranes and water, in order to achieve realistic descrip-
tions.

Our study of the photosynthetic reaction center of the bacterium Rhodo-
pseudomonas viridis [1] is a case in point. We have found [2,3.4] that consideration of
all atoms of the molecule and an adequate representation of electrical interactions is
a prerequisite for reliable simulations. The photosynthetic reaction center is a protein
complex embedded in a cellular membrane and contains 12 large prosthetic groups
[5); the whole system encompasses about 12 600 atoms. The protein complex converts
the energy of the sunlight into an electric membrane potential. The two primary
processes which are responsible for the high efficiency of photosynthetic energy
conversion last 3 ps and 140 ps, respectively. If one wishes to include in a simulation
of the primary processes some of the surrounding membrane, water and ions, one
would have to simulate about 30 000 atoms over a period of a few hundred picose-
conds. The necessary computations are not yet feasible except at some extreme cost,
as is explained below.

Computer simulations are faced with a serious computational barrier which can be
illustrated by the following estimate of the requirements on computer time: In order
to determine the forces between all atoms of a protein with 12 600 atoms, i.e. of the
photosynthetic reaction center, without ‘cut-off’, about 98s on a Cray-XMP are
needed. Since the forces have to be re-evaluated at each integration step, the size of
which has to be chosen 1 fs or shorter, a simulation describing a period of 1 ns requires
at least one million steps, i.e. more than 1000 days of Cray time. A ‘cut-off’ of pair
interactions to 10 A reduces this time to about 19 days, but one may question the
soundness of such approach. The numbers illustrate a well-known point, namely, that
computational requirements for molecular dynamics simulations are prohibitive and,
for many problems, exceed all available means.

In this article we want to show that this situation can be improved by employing
parallel computers to simulate biopolymers. For the purpose of such demonstration
we have built a parallel computer with a systolic ring architecture, the design of which
will be outlined. We have developed also a program for protein simulations on this
computer. Computer and program achieve the same rate of computation as much
larger conventional vector machines, but for a small fraction of their cost. The parallel
strategy, therefore, should make the method of computer simulations accessible to
many researchers, allow simulations of larger numbers of atoms as well as of more
realistic (and computer time consuming) force models.

Our suggestion is to delegate only the computationally most intensive phase of

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

SIMULATION ON A PARALLEL COMPUTER 135

molecular dynamics simulations, namely the force evaluation and the integration
step', to a parallel computer and to employ existing simulation programs and graphics
packages for an analysis of the simulated trajectories. To implement this suggestion
a program on a parallel computer needs to interface with some existing simulation
software using standard input and output files. The program described below pro-
vides such an interface specifically for the simulation programs CHARMM [6] and
XPLOR (7, 8].

The parallel computer built and programmed by us is based on Transputers as
computational units. The Transputer is a 32 bit processor with a 64 bit floating point
coprocessor integrated on a single chip. We have chosen this chip for our parallel
computer for reasons detailed further below. One advantage of the choice of the
Transputer is that parallel computers, comparable to the one developed by us, can be
obtained from commercial manufacturers. Therefore, molecular biologists not willing
to build computer hardware, which we assume is the majority, can still use our
simulation program. The reason why we decided to build our own computer rather
than use a commercial machine is the following: We wanted to choose an optimal
computer design in order to achieve for a minimum cost a rate of computation
comparable to that of the best currently available supercomputers.

Our program has been written in occam II [9, 10, 11, 12], the language around
which the Transputer had been designed. The language facilitates distribution of
computational processes among Transputers as well as communication among these
processes. In the initial phase of the research described here, occam II had been the
only programming language for the Transputer. However, since that time more
conventional languages, e.g. FORTRAN and C, have been ported to the Transputer.
Molecular biologists who prefer these languages over a new language might want to
incorporate the programming strategies presented below in these conventional lan-
guages. Such approach would actually allow to include elements of programs, written
for sequential machines, into the program for a parallel Transputer-based machine.

The software development environment chosen by us has been the Transputer
Development System (TDS), also described below, which runs on IBM personal
computers. Recently, familiar operating systems, e.g. UNIX-like systems, have also
been adapted to Transputer workstations. We point this possibility out, since the aim
of this paper is not to propagate a particular parallel computer and a particular
concurrent algorithm but rather to provide a convincing example which demonstrates
the feasibility and the cost effectiveness of molecular dynamics simulations on parallel
computers.

It must be pointed out that we succeeded in making molecular dynamics simula-
tions more affordable because we had ready access to supercomputers such that
programming strategies for large scale molecular dynamics simulations became fami-
liar to us. Our experience that the use of supercomputers does not always lead to
bigger appetite for expensive computational equipment, but rather can have the
opposite effect, will not be an isolated one. Future development of parallel approaches
to molecular dynamics simulations will require numerical experiments on convention-
al supercomputers.

"The latter step does not require much time; however, it is so closely linked to the force evaluation and,
therefore, we do not want to separate the two.

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

136 H. HELLER, H. GRUBMULLER AND K. SCHULTEN

A most recent review on large-scale molecular dynamics simulations of simple
liquids using vector and parallel processors has been given by Rapaport [13]. This
review emphasized, however, methods for handling systems of structureless particles
with simple short-range interactions and, therefore, computational strategies dis-
cussed differ in most respects from the ones for biopolymers presented below. The
differences are the following: (i) The force fields to be employed for biopolymers are
more complex than those of condensed matter systems, i.e. there is a large family of
different forces as explained briefly in Sect. 2, (ii) Furthermore, biopolymers most
often are completely heterogeneous, i.c. no translational symmetry exists; (iii) The
native structures of biopolymers are non-trivial, i.e. they cannot be determined by
reasonable guesses and simulations, but rather need to be known beforehand from
analyses of X-ray scattering data; (iv) The atoms in biopolymers have an intricate and
heterogeneous pattern of chemical bonds which determines the force field and, hence,
needs to be known to the simulation program. These aspects require computational
approaches which differ from those taken for molecular dynamics simulations of
condensed matter systems, e.g. liquids and crystals, and only few computational
strategies can be shared between the approaches.

A most pertinent review on concurrent computation for molecular dynamics
simulation covering algorithms for homogeneous as well as heterogeneous, e.g.
biopolymer, systems has been provided by Fincham [14]. This review has influenced
the work reported here, in particular, since it discussed the use of Transputers, a
systolic loop architecture and respective algorithms for the evaluation of pair interac-
tions, the latter constituting the most time-consuming task in molecular dynamics
simulations.

In Section 2 we review briefly the computational aspects of protein simulation. In
Section 3 we discuss the strategy of parallel computation which is dictated by the long
range character of the Coulomb forces in proteins. In Section 4 we describe the
parallel computer, i.e. its nodes and board design. In Section 5 we introduce our
parallel program. In Section 6.1 we provide benchmark tests for actnal molecular
dynamics simulations comparing computational speeds with those of XPLOR run-
ning on various conventional machines producing the same output files (trajectories
of various proteins). In Section 6.2 we discuss the costs of our computer system. This
discussion reveals that the suggested parallel computation achieves biopolymer simu-
lation for a much lower price than sequential computations. Finally, in Section 7, we
present an application of parallel simulation, namely the relaxation of the complete
structure of the photosynthetic reaction center, a system of 12 600 atoms, to an
equilibrium geometry.

2. NUMERICAL TASKS IN MOLECULAR DYNAMICS SIMULATIONS

In this Section we review briefly the computational aspects of molecular dynamics
simulations and discuss the relationship between our parallel algorithm and the
programs CHARMM [6] and XPLOR [7, 8}, to which our algorithm is closely related.

Computer simulations of biological macromolecules are based on a classical me-
chanical model of biomolecules. For the nuclei of the N atoms of a molecule the
Newtonian equations of motion (i = 1, 2, ... N) are assumed to hold

mif, = —VE(F, fay. .. Fy) (1

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

SIMULATION ON A PARALLEL COMPUTER 137

where F, denotes the position of the i-th atom. Here we have used the notation
V, = 8/0F,. The function E

E = Eg+E;+E;+ Eyg+ Egy+ Eg+ E 2

defines the total energy of the molecule. It is comprised of several contributions which
correspond to the different types of forces acting in the molecule. The first contribu-
tion describes the high frequency vibrations along covalent bonds, the second contri-
bution the bending vibrations between two adjacent bonds and the third contribution
the torsional motions around bonds. The fourth contribution describes electrostatic
interactions between partial atomic charges, the charges being centered at the posi-
tions of the atomic nuclei. The next term, E,;, accounts for the van der Waals-
interactions between non-bonded atoms in the molecule, E, stands for the energy of
hydrogen bonds, and the last term describes so-called improper motions of one atom
relative to a plane described by three other atoms. Various research groups have
developed functional representations and corresponding force constants which at-
tempt to faithfully represent atomic interactions and dynamic properties of biomole-
cules [15]. The program which we have developed is based on the energy representa-
tion of CHARMM [6]. Actually, our program can read a file of force parameters
which has a format identical to that of XPLOR [7, 8], a simulation program closely
related to CHARMM. As a result, any adaptation of force constants suggested in the
framework of CHARMM or XPLOR can be transferred to our program.

Due to the intermediate state of development of our program there exist still a few
limitations in regard to compatibility with CHARMM and XPLOR: Our program
cannot account for hydrogen bonding directly, except by reparameterizing the energy
contributions other than those in E,, of participating atoms. Our program also does
not include a special representation of water. Further differences will be mentioned
in this Section.

The integration method of the Newtonian equations of motion employed by our
program is the Verlet algorithm [16]. This method determines the positions F,(t + Af),
of atoms i at the instant ¢ + At according to the formula

A+ A = 27 — 7@t — A) + F(9) (AP m, (3)
where F.(7) stands for the sum of all forces acting on the i-th atom at time 1, i.e.
F(t)y = =VEF®, K(0), . .. iy(0) 4

While integrating the Newtonian equations of motion computer time is spent mainly
on evaluation of the two-particle interactions, i.e. of interactions connected with the
Coulomb potential E; and with the van der Waals energy E,,,. The programs
CHARMM and XPLOR avoid the prohibitive computational effort of an exact
evaluation by allowing a cut-off for these interactions; this assumes that these interac-
tions do not contribute much to the dynamics for pairs of atoms separated beyond
a certain distance. We have not introduced such a criterion into our program. Rather
than providing a cut-off option we intend to introduce an option which makes it
possible to evaluate the Coulomb interaction in a hierarchical way such that, accord-
ing to a hierarchy of inter-particle distances, Coulomb forces are updated with
different frequencies. Such algorithm has been suggested in [4]. An alternative most
promising method for an efficient evalnation of Coulomb forces, the Fast Multipole
Algorithm, has been developed by Greengard and Rokhlin [17].

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

138 H. HELLER, H. GRUBMULLER AND K. SCHULTEN

Calculation of van der Waals and Coulomb forces is the most time consuming task
in molecular dynamics calculations. Therefore, we will concentrate below almost
exclusively on the strategy to determine these forces concurrently on several Trans-
puters.

The forces connected with the chemical bonds of biopolymers are determined much
more rapidly during program execution. Because of the essentially linear arrangement
of biopolymers the respective calculations can be readily ordered in a linear fashion
and, therefore, a strategy for parallel computation of forces connected with chemical
bonds is straightforward. Hence, we will not explain how these interactions are
evaluated.

Those features of CHARMM and XPLOR which, as mentioned above, are still
omitted in our current parallel program can be readily added since parallel strategies
for the corresponding algorithms are known. Somewhat problematic, though, is an
inclusion of the hydrogen bonding interaction since this interaction is an effective four
body interaction. We are currently working on a strategy to include these interactions
into our program?. Two further, but related differences exist between CHARMM or
XPLOR and our program, which have not been mentioned yet. First, we did not
include the possibility to focus a simulation on a spherical subset of protein atoms
divided by a so-called ‘stochastic boundary’ from the remaining atoms of the protein.
Second, we did not provide for the possibility to add random forces to some degrees
of freedom of the Newtonian equations of motion, i.e. describe some atoms by
Langevin dynamics. There is no essential difficulty connected with these features and
we expect to include them into our program soon.

We would like to close this section with a brief description of the input-output
requirements of our molecular dynamics program. As input the program needs a file
of force parameters, a (.pdb) file of atomic coordinates in protein data bank format,
and a protein structure file (.psf) with definitions of bonds, dihedral and improper
angles, etc. The file formats are identical to those of CHARMM and XPLOR. As
output the program delivers atomic coordinates in an internal format which is
converted on the host computer into a (binary) format for analysis of trajectory
properties by CHARMM or XPLOR.

3. COMPUTATIONAL STRATEGY FOR LONG RANGE PAIR
INTERACTIONS

The first step in considering a computational stragegy for concurrent simulation
calculations s to make a basic decision about the nature of the processing elements:
should they all receive the same instructions synchronously (so called SIMD: Single
Instruction Multiple Data) or should they each have a resident molecular dynamics
program working on local data (so called MIMD: Multiple Instruction Multiple
Data). The decision is, of course, closely tied to the hardware one wishes to employ.
Since we decided to use Transputers (which are loosely coupled processors with
distributed memory) as computational elements of our parallel computer we opted for
a solution in which each processor executes its own molecular dynamics program. The

%Since the number of atoms which are possible candidates for hydrogen bonding is much smaller than
the total number of atoms one can actually devote a single computational node to the task and compute
hydrogen bonds in a conventional, i.e. sequential, manner (see also below).

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

SIMULATION ON A PARALLEL COMPUTER 139

next decision to be made is concerned with the way the processors should be linked
together through data channels, commonly referred to as the topology of a parallel
computer. In this section we will explain the topology chosen by us, namely, the so
called systolic loop.

The computational task we are mainly concerned with is the evaluation of Coulomb
and van der Waals forces. Since these forces, from a computational point of view, are
very similar, we will consider Coulomb forces only. Actually, much of the program
code deals with the remaining interactions included in Equation (2); however, the
evaluation of these interactions, in case of large polymers, consumes only a small
fraction of computer time. Since some of these interactions involve three or four
atoms the evaluation requires that the coordinates of as many atoms are simul-
taneously available to a processor. In our approach which involves a fixed mapping
of processors to the primary sequence of the biopolymer (see below) this requirement
is not problematic as the mapping can be chosen as to keep atoms engaged in
multi-atom interactions on one processor”.

The Coulomb forces, which describe the electrostatic interactions in a homoge-
neous dielectric environment“Ldepegd on the charges g;and g; of atomic pairs (7, j) and
on the corresponding vector r; = r, — r; joining the atoms at positions r; and r;. The
force between atoms i and j acting on atom i is

7 4gry

=
4rer,

)

The force between atoms i and j acting on atom J is
F}i = —F:j : (6)

On a given atom the Coulomb forces of all other atoms act. It is, therefore, necessary
to determine Fj; for all pairs of atoms. There are N(N — 1)/2 pairs for a total number
N of atoms. For larger biopolymers the resuiting number can be extremely large,
leading to the need for parallel processing.

A key problem connected with concurrent evaluations of Coulomb forces is that
each processor has to know the coordinates of all atoms. If each processor had
enough memory to store the coordinates of all atoms, and if updating these coordina-
tes did not consume essential processing time, the problem of computing Coulomb
forces concurrently would be rather straightforward. In our approach (see below) to
molecular dynamics simulations processing elements actually spend most time on the
evaluation of forces and only little time on communication of data (coordinates,
forces). However, storage requirements for atomic coordinates and for lists defining
the bond structure can be considerable. A processor with 1 MByte of RAM can only
store coordinates of about 3 000 atoms. If one would keep all coordinates with each
processor, the rather small number of 3 000 atoms would be the limit for the largest
biopolymer to be simulated, no matter how many processors are employed. If one
could distribute, however, storage of coordinates over all processors (because of the
need of evaluating pair interactions, coordinates have to be stored at any time in two
processors simultaneously), for a 50-processor machine the largest biopolymer to be

3This mapping requires that some atoms are represented on more than one processor.

“If one wishes to determine electrostatic forces in an inhomogeneous dielectric environment, one needs
to solve the Poisson equation. For a computational method, see [18]. We have adopted this method to
describe the interior of proteins [3] and are currently implementing the method on our computer.

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

140 H. HELLER, H. GRUBMULLER AND K. SCHULTEN

Sl
1=

r:l

caiculates atoms /“/'

in this cube

Figure 1 Cube topology: Each processor is assigned to simulate all atoms within a spatial cell, e.g. within
a cube. This topology has not been adopted by us.

simulated could encompass about 75 000 atoms. Because the latter storage mode,
obviously, is more favorable, one likes to adopt a computational strategy which
distributes the storage of forces and coordinates as well as the actual computation
over all computational nodes. As already mentioned, data transfer is not critical for
molecular dynamics simulations, at least not for /arge biopolymers.

Another important consideration in devising a programming strategy for a parallel
computer is to take advantage of the fact that for any pair of atomic charges ¢; and
g;, the Coulomb forces F;; and F; acting on gq; and on g;, respectively, are related by
Equation 6. Of course, one wishes to avoid evaluating both forces, i.e. duplicating
computational effort. A programming strategy which avoids such duplication re-
quires that forces are communicated among processors.

One possible way to link processors and computational as well as storage tasks is
to assign atoms, i.e. the evaluation of the forces acting on them, to processors
according to the spatial arrangement in the protein. Such assignment is referred to as
a geometric mapping. An example is illustrated in Figure 1: to each processor are
assigned all atoms within a spatial cell, e.g. within a cube. For our purpose the
seemingly natural geometric mapping of Figure 1 has serious disadvantages:

@ The geometric mapping in Figure 1 would require each processor to communicate
with the neighbouring processors, i.. with six processors. However, the Transputer
currently has only four links for communication with other Transputers, i.e. Trans-
puters cannot reproduce the connectivity required for this mapping.

® An inhomogeneous distribution of atoms over the simulated volume can lead to a
poor balance of computational tasks of processors, i.e. some processors may need
to monitor more atoms than others and, consequently, would make other proces-
sors ‘wait’ which, therefore, remain idle. This problem could be alleviated by using
a flexible spatial grid which, however, would lead to some extra overhead in
assigning atoms to ‘their’ Transputer.

®Atoms which switch between cells require additional communication between
processors of neighbouring cells.

®Evaluating pair interactions between atoms separated by a large distance, i.e.
between atoms in two cells separated by several other cells, requires communication

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

SIMULATION ON A PARALLEL COMPUTER 141

link 0

~ T800 e link 1

network transputer) (1) link 0

ink 1 \‘ r
host transputer T800: T800
\v © @

fink 1

.) ,"\ link 0 link1
BM-AT L Ta4
(as a terminal) (B0OO04 board))j‘/* Bk 1 ik 0 -

link 2

T800 T800
(5) @)
ko ¥ R link 1

T800 .
ikt 1 @) | ™ ko

Figure2 Ring topology adopted by us: Processors are connected to form a ring with one outlet to the host
transputer. This topology had been suggested also in [19, 20).

of coordinates across other Transputers. This leads to wait states as well as impedes
computations in the Transputers involved in the communication route,

The topology of the parallel computer suggested by Figure 1 is actually suitable for
the simulation of particle systems with short-range interactions because the required
communication routes are short. Since future versions of Transputer chips are likely
to have more than four links, one will be able to map an arrangement of cells covering
the simulated volume rather easily onto a set of Transputers.

The problems mentioned above are circumvented by the systolic loop topology
illustrated in Figure 2, which is actually the topology adopted by us. This topology
had been suggested previously as optimal for the problem at hand by Ostlund and
Whiteside [19], by Hillis and Barnes [20] and by Fincham [14]. The topology connects
the processors in a ring, the ring having one outlet to the host computer. Our
implementation of this topology corresponds to that in Reference [20] and differs
from that discussed in [19] and [14] in that the mapping between atoms and processors
is fixed. The atoms are mapped onto processors (Transputers) irrespective of their
position in space. In case of protein simulations one can assign Transputers to atoms
in accordance with the amino acid sequence, but this is by no means necessary’. The
atoms assigned to a specific Transputer will be referred to as the ‘own’ atoms of that
Transputer, all other atoms are the ‘external’ atoms. For a discussion of the computa-
tional task of a processor we separate the Coulomb forces into two contributions

F = Z q:9;7y + 99" ik %
: 3
e dmer i ‘external 4TTEF, ?k
atoms j atoms k

F, is the force which acts on atom i ‘owned’ by the processor. In order to evaluate the
first contribution the processor needs to know only the coordinates of its ‘own’ atoms
J- The second contribution, however, requires knowledge of the coordinates of all
‘external’ atoms k. These coordinates are passed around the ring of processors in such
a way that any time coordinates pass by, a processor uses them to complete computa-

5 A mapping of atoms following the amino acid sequence, however, is most suitable for bond interactions,
e.g. bond stretch and bond angle interactions, since some of these interactions involve three or four atoms.

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

142 H. HELLER, H. GRUBMULLER AND K. SCHULTEN

tion of the total forces F, that act on its ‘own’ atoms. The ring topology also allows
to avoid unnecessary evaluation of forces of pairs of charges related by Equation 6.
The details will be explained further below.

4. HARDWARE

Having decided on a topology for the parallel computer, we like to describe briefly the
hardware developed by us for the purpose of molecular dynamics simulations. We like
to point out again that an application of our computational strategy does not require
a prospective user to rebuild the same parallel computer; a user may also acquire a
similar hardware available through several commercial manufacturers.

4.1 Structure of a Single Computational Node

A computational node, placed on a board with five other nodes, is shown schematic-
ally in Figure 3. The node has been constructed from the following components:

@a Transputer IMS T800G20S as the central processing unit of the node; this
processor has a 32 bit data and address bus and runs on a 22.5 MHz cycle; the
processor also contains, integrated on a single chip, a 64 bit floating point coproces-
Sor.

o1 MByte dynamic RAM (four SIP modules each with nine 100 ns 256 Kbit chips; 8
chips contain data, the 9th chip carries parity information) as local memory to store
program (currently about 30 KByte) and data; the size of the memory can be readily
extended to 4 MByte by using 1 Mbit DRAM chips.

Figure 3 Schematic drawing of a transputer-board enlarging a part of the board corresponding to one
computational node. Components on the board are explained in the text.

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

SIMULATION ON A PARALLEL COMPUTER 143

@®@an address-buffer/address-latch; these components separate address signals from
data and forward them multiplexed to the memory, i.e. the components act as an
interface between processor and memory.

@ parity logic; this serves to detect parity errors and forwards messages about detected
errors to the host transputer.

@bus bars; these devices carry the supply voltage for all components on the board;
the advantage of the use of bus bars is that their high capacity provides an excellent
buffering of the supply voltage.

e®three LEDs (not shown in Figure 3) to indicate the current status of the node.

No ROM is employed for the computational nodes. The reason is that the Trans-
puter feature ‘boot from link’ is used, and that the program is being loaded at the
beginning of computations into the RAM of each node.

Since our system is designed to have 60 computational nodes®, i.e. a rather large
number, and will have to run for long periods of time to carry out simulations, one
needs to be concerned with the recognition of so-called soft memory errors. One has
to expect 100-1000 FITs (one FIT is a Failure in Time expected during one billion
hours of operation). For a parallel computer configured with 60 MBytes of memory
this error rate amounts to about one failure every few months. In order to protect
calculations against such errors we store an additional parity check bit for each byte
(the Transputer permits byte-wise memory access) which allows to test for single-bit
errors. In case an error is detected the program can restart with the last integration
step and with correct data. This makes the more complex task of error detection and
correction, i.e. by using seven parity bits, unnecessary.

The three LEDs which are located in the front panel provide the following informa-
tion:

® A red error-LED is wired to the error pin of the Transputer; it signals errors like
division by zero, floating point overflow or array boundary violation.

® A yellow parity-LED indicates a parity error.

® A green busy-LED flashes with each external memory access. Therefore its intensity
allows to estimate the frequency of memory accesses which in turn signals to the
experienced user which kind of instructions (memory-intensive or computationally
intensive) are currently being executed. Most importantly, the busy-LED signals
which node is idle, a state to be avoided.

4.2 The Boards

One of the aims of the design of our parallel computer had been to make it compact.
We achieved a design which allowed us to locate six Transputers with memory and
necessary support chips onto a double eurocard. This was done as follows:

®We used a three layer board and chose a very high PCB density, i.e. a PCB trace
width and spacing of 0.2 mm.

®We employed passive SMD components.

®We placed chips on both sides of the board: The Transputers, the parity logic as well
as driver ICs were placed on the front side. The RAM-SIP modules were placed on
the back. The compact design resulted in short distances which, in turn, yield
well-defined signal levels and a reduced probability of error occurrence,

$This number, presently, is determined by the dimension of the chassis, and could be considerably larger.

Downloaded by [MPI Max-Planck-Institute Fuer Biophysikalische Chemie] at 05:15 27 April 2015

144 H. HELLER, H. GRUBMULLER AND K. SCHULTEN

The simulations presented below were carried out by means of these boards. We
have recently developed new (six layer) boards each with six Transputers and 4 MByte
RAM per Transputer.

4.3 Backplane and Chassis

The ‘topology’ of the parallel computer is defined through the backplane. For this
purpose all links of the Transputers on the boards (see above) have been connected
to the backplane. The backplane establishes the connections between the computa-
tional nodes. For that purpose the backplane, currently, has a layer with fixed
connections which define the ring topology. However, by placing link switches (IMS
C004 [21]) onto the backplane the topology can be reconfigured even during program
execution.

The chassis (197) holds the backplane and provides ten slots for Transputer boards,
each board contributing six computational nodes. 60 Transputers providing a com-
putational through-put for molecular dynamics calculations exceeding that of a Cray
XMP (see below) fit into the chassis. The backplane contains an interrupt logic which
allows to separately access any of the 60 Transputers.

5. THE PROGRAM
5.1 Coarse-Grained versus Fine-Grained Parallel Program

We want to address first the question of why we have opted for a coarse-grained
approach to parallel computation, i.e. the smallest computational node being a
powerful processor on which a rather long serial program is being executed. One may
argue that the best approach to parallel computation of polymer dynamics would be
to adopt a parallelism which matches that of the physical system described and
employ one computational node for each atom. Such fine-grained approach would
simplify the structure of the parallel algorithm, i.e. one would not have to differentiate
between ‘own’ and ‘external’ atoms (see Chapt. 3).

The terms coarse-grained and fine-grained are meant to refer here to the software,
rather than the hardware, i.e. a fine-grained approach implies a program for which
the longest process uninterrupted by communication of data to other processes is
rather short. In fact, we envision that the fine-grained approach suggested would be
realized on a set of Transputers as well, such that each Transputer accommodates
through its hardware scheduler a number of processes each monitoring the dynamics
of a single atom. In occam II the programmer would actually write his program as
if each of the processes joined to an atom would run on a separate Transputer, and
it is the on-chip logic of the Transputer which schedules these processes to run on the
available computational nodes.

The seemingly natural approach of matching the parallel program process structure
to atoms would lead to a run-time disadvantage. The reasons are the following:

1.Each parallel process involves a certain scheduling overhead which cannot be
ignored despite the fact that the scheduling is done by the hardware scheduler of the
Transputer.

2. The 4 KByte on chip RAM of the Transputer is a most valuable resource since it
allows faster data access than external memory. In case a Transputer runs a single
process, the on-chip RAM can hold all scalar data and access these data quickly.

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

GTO0Z |MdY /g ST:G0 e [siwayd ayosifeyisAydolg Jan4 ainisul-youeld-xe|N IdIN] Ag papeojumoq

