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Optimal Superpositioning of Flexible Molecule Ensembles
Vytautas Gapsys and Bert L. de Groot*
Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
ABSTRACT Analysis of the internal dynamics of a biological molecule requires the successful removal of overall translation
and rotation. Particularly for flexible or intrinsically disordered peptides, this is a challenging task due to the absence of
a well-defined reference structure that could be used for superpositioning. In this work, we started the analysis with a widely
known formulation of an objective for the problem of superimposing a set of multiple molecules as variance minimization
over an ensemble. A negative effect of this superpositioning method is the introduction of ambiguous rotations, where different
rotation matrices may be applied to structurally similar molecules. We developed two algorithms to resolve the suboptimal
rotations. The first approach minimizes the variance together with the distance of a structure to a preceding molecule in the
ensemble. The second algorithm seeks for minimal variance together with the distance to the nearest neighbors of each
structure. The newly developed methods were applied to molecular-dynamics trajectories and normal-mode ensembles of
the Ab peptide, RS peptide, and lysozyme. These new (to our knowledge) superpositioning methods combine the benefits
of variance and distance between nearest-neighbor(s) minimization, providing a solution for the analysis of intrinsic motions
of flexible molecules and resolving ambiguous rotations.
INTRODUCTION
The identification of internal motions in large biomolecules
is of key interest in the field of structural biology. The unam-
biguous identification of intrinsic molecular movements
requires the rigorous removal of the external degrees of
freedom. Although one can trivially eliminate translational
motion by fixing the center of mass of a molecule, rotational
superpositioning makes it necessary to define an objective
function whose minimization results in the generation of
a rotation matrix that optimally superimposes the mole-
cules. For structured molecules, robust superpositioning
algorithms are available. However, it is challenging to
unambiguously determine the internal dynamics of flexible,
unfolded, or intrinsically disordered proteins. When the
objective minimizable function is defined as a sum of
squares between two or more matrices, the problem of
finding an orthogonal rotation matrix (or a set of matrices
for an ensemble of structures) to reach the least-squares
condition is termed an orthogonal Procrustes problem (1).
A number of solutions for the orthogonal superpositioning
of two matrices are available (see the review by Flower
(2)) and can roughly be classified into iterative approaches
(3–5), singular value decomposition (SVD)-based methods
(6,7) and quaternion-based methods (8–11).

Shapiro and Botha (12) attributed the first SVD-based
solution for the superpositioning of two vectors to von
Neumann (13). In 1966, the solution was also found by
Schönemann (14). In the field of molecular modeling, the
SVD approach for structural fitting is usually referred to
as Kabsch’s algorithm (6,7). Multiple solutions for the
superpositioning of two vectors based on the quaternion
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notation have been presented (8–11). It was demonstrated
that the SVD- and quaternion-based methods are equivalent
and, when correctly applied, yield identical results (15,16).
The pairwise SVD-based solutions to the superpositioning
problem were extended to fit multiple vector sets (17–21).
At the heart of these approaches lies an iterative procedure
for calculating an average structure over an ensemble and
subsequently superpositioning onto it. Kearsley (22) and
Diamond (23) proposed algorithms for multiple structure
superpositioning based on quaternions.

Another branch of superposition methods uses least-
squares superpositioning in combination with an adaptive
selection of the atoms that participate in the calculation of
the rotation matrix. These algorithms iteratively fit subsets
of atoms to distinguish rigid core regions from the flexible
parts of a protein (24–26). Damm and Carlson (27) used
an iterative pairwise least-squares fit, applying different
weights to the atoms, to identify and anchor the more-rigid
parts of a structure. Theobald and Wuttke (28–30) proposed
a maximum-likelihood-based fitting approach for super-
positioning ensembles of structures. The method, termed
Theseus, tries to find a combination of translational and
rotational motions that will maximize the likelihood of
observing a given ensemble, assuming that the structures
in the ensemble follow Gaussian distribution in the absence
of external degrees of freedom.

The analysis of trajectories of flexible molecules (as
occurs, for example, in folding/unfolding transitions or
natively disordered peptides) remains challenging due
to two issues: 1), incomplete separation of internal and
external degrees of freedom; and 2), ambiguous rotations
of intrinsically similar structures.

The difficulty of superpositioning flexible peptides lies in
the diversity of the conformations that the molecules can
http://dx.doi.org/10.1016/j.bpj.2012.11.003
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adopt. Although the removal of translational motions re-
quires one to simply reset the center of mass of each mole-
cule, rotational superposition is more complex. Having
a diverse pool of structures renders it nontrivial to find an
optimal reference frame on which to fit all the other mole-
cules. As a consequence, highly similar structures may be
rotated differently, thereby introducing artificial internal
motion. Such artificial rotations manifest as large steps
between two subsequent steps in a trajectory, and can be
tracked in a projection on the principal components or in
an analysis of the root mean-square deviation (RMSD) of
structures that deviate from each other significantly more
when superimposed on a common reference than when
superimposed on each other, as illustrated in Fig. 1.
Throughout this work, we refer to these rotations as subop-
timal or ambiguous. One can resolve this drawback by
progressively fitting the trajectories, i.e., superpositioning
on a previous frame throughout the trajectory. Yet, the
progressive superpositioning suffers from another issue:
due to the rotation toward a constantly changing reference
structure and accumulation of the numerical rounding
errors, variance over the ensemble increases and a nonop-
timal superpositioning occurs, again leading to artificial
internal motions that in turn result in inaccuracies in subse-
quent analyses, such as estimations of conformational
entropies.

In this work, we demonstrate the problems that occur
during the superpositioning of flexible intrinsically disor-
dered peptide ensembles. We then formulate an approach
for optimal superposition based on the following two
FIGURE 1 PCA and RMSD analyses illustrating ambiguous rotations during s

(B and E), and lysozyme (C and F). (A–C) Projections of the MD trajectories o

between a structure at time t and t � 1. Suboptimal superpositions result in lar
principles: 1), minimal variance (all motion that can be
considered external is removed); and 2), RMSDs between
pairs of structures in the superimposed ensemble should
deviate minimally from an optimal, direct pairwise superpo-
sition of these structures. The atoms are weighted according
to their masses, and no additional structure-dependent bias
is introduced. Note that this results in a minimization of
the overall rotation and does not guarantee that rigid subsec-
tions of a molecule will perfectly align (other methods have
been designed for this purpose (24–27)). For the variance
minimization, we rewrite Kabsch’s derivation for the
SVD-based least-squares optimization problem and arrive
at an iterative algorithm that is identical to the solution of
least-squares minimization over all pairs of members in an
ensemble proposed by Ten Berge (19). To fulfill the second
requirement of minimal deviation from an optimal pairwise
superposition, we modify the previously obtained mini-
mal variance solution. For arbitrary structure ensembles,
we propose two different approaches: 1), a traveling-
salesman-type trajectory rearrangement; and 2), nearest-
neighbor-based variance minimization superpositioning. We
compare our method to an essentially different maximum-
likelihood-based superpositioning approach. The new
algorithms are designed to be specifically suited for large
numbers of structurally diverse molecules, such as in molec-
ular dynamics (MD) and Monte Carlo (MC) trajectories
of disordered peptides. The approaches presented here do
not require the definition of a single reference structure or
a superposition region within the molecule, and thus provide
an unbiased way to remove rotational degrees of freedom
uperpositioning. (A–F) Ensembles of the Ab peptide (A and D), RS peptide

n the eigenvectors with the largest eigenvalues. (D–F) RMSDs calculated

ge RMSD values despite structural similarity.
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from a structural ensemble. The proposed methods are
demonstrated to provide a robust framework for the
quantitative analysis of the internal dynamics of flexible
molecules.
THEORY

Variance minimization: min(Var)

A number of procedures for ensemble superpositioning
based on least-squares minimization are well established
(18–21). In this work, we first derive the solution for itera-
tive ensemble superposition based on the convenient matrix
decomposition approach introduced by Kabsch (6,7).
This then allows us to modify the method for an optimal
ensemble superposition, as discussed in the following
sections.

We define our problem as a minimization of the
function E:

E ¼ 1
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where xnt is a vector of coordinates of an atom n at time t,
Ut is a rotation matrix applied to the system at time t, wn

is an atom-specific weight (which in our analysis corre-
sponds to the atomic mass), and T is the total number
of frames in an ensemble. The term 1=T

P
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as a reference for superpositioning every structure in an
ensemble. Following the derivation by Kabsch, we intro-
duce a constraint in terms of a Lagrange multiplier to
keep the rotation matrix orthogonal. Because we are dealing
with an ensemble of structures, the constraint is defined for
a rotation matrix at every frame t:
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where ukit are the elements of a rotation matrix Ut, lij
are the elements of a Lagrange multiplier matrix Lt and
dij are the elements of an identity matrix. Subsequently,
we minimize Eþ F by setting the derivative vðEþ FÞ=
vuij ¼ 0 and requiring the second derivative v2ðEþ FÞ=
ðvumkvuijÞ to be positive definite, to obtain a solution in
the form of

Ut
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When t>2, no closed-form solution to this problem

exists (21); therefore, from this point, a numerical proce-
dure is required. The SVD approach applied by Kabsch
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for the pairwise superpositioning can be used in an itera-
tive algorithm, where at each iteration a Qt matrix is
calculated using the rotation matrix ensemble Ut as
determined to that point. Various applications of similar
algorithms have been used in the past. In the approach
proposed by Kristof and Wingersky (17), an average
matrix is calculated once every cycle and all the other
matrices are fitted onto it, after which the average matrix
is recalculated and the procedure is iterated. The same
approach was also described by Gower (18) and Sutcliffe
et al. (20).

Ten Berge (19) suggested an improved version of the
Kristof and Wingersky algorithm wherein the reference
frame ðQtÞ is updated after every update of a rotation
matrix. More importantly, by minimizing the sum of squares
over all pairs of matrices, Ten Berge showed that the refer-
ence matrix Qt must not contain the contribution from the
Utxt structure. In our derivation, we arrived at the same
result by minimizing variance over the ensemble. Further,
we employed Ten Berge’s iterative procedure to minimize
the variance over an ensemble.
Progressive fitting and variance minimization:
min(VarDPrev)

When variance minimization alone is used, deviations from
optimal, direct pairwise superposition solutions can occur.
Hence, we propose a modification of the variance mini-
mization algorithm by combining it with the progressive
fit approach. The function to be minimized is written as
follows:

Et ¼ 1
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where ut ¼ e�RMSDoptimal
t�1 . RMSDoptimal

t�1 is an RMSD value
between a structure at time t and a preceding frame t � 1

after the t and t � 1 structures are superpositioned directly
onto each other. This value is precalculated before the iter-
ative minimization procedure is started. The weight ensures
that only similar structures may contribute to the determina-
tion of the rotation of a structure t. This is required, because
superpositioning of a structure onto a very different frame
may result in an ambiguous rotation. The weight for the
ut for the first structure is set to zero.

The construction of the function Et enables each frame,
except for the first one, to be rotated such that the variance
and the RMSD to a previous structure are minimized. By
imposing the constraints that keep the rotation matrices
Ut orthogonal (Eq. 2), and calculating the derivative of
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the Et with respect to the Ut, we get an expression similar
to Eq. 3:
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where rijt ¼
P

nwnxnjt
P

kuikt�1xnkt�1 is an outer product of
a structure at time t with a preceding in time structure that
has already been rotated in a previous step.

This formulation of the minimization problem aims to
reduce the variance over the ensemble by removing as
much of rotational motion as possible, and at the same
time resolves ambiguous superpositions with the previous
frames in a trajectory, i.e., it ensures that similar structures
are superimposed similarly, deviating minimally from
a direct, pairwise superposition. We apply an iterative
procedure to minimize the function in Eq. 4 similarly to
the min(Var) algorithm: at every iteration, a reference frame
for superpositioning is defined as a combination of the
average over an ensemble and a previous frame, weighted
by a distance to it. Following Ten Berge’s method, the
average is updated after every rotation.

An important feature of the min(VarþPrev) approach is
that it resolves suboptimal rotations for the ensembles in
which the structures are ordered such that two subsequent
frames are sufficiently similar to each other to provide an
unambiguous reference for an optimal pairwise superposi-
tion. Uninterrupted MD trajectories fulfill this requirement,
whereas ensembles retrieved by MC or another stochastic
sampler (e.g., CONCOORD (31)) will not benefit from the
min(VarþPrev) method without additional trajectory prepro-
cessing. One way to restructure a trajectory such that two
subsequent, directly superpositioned frames have a suitably
low RMSD is presented in the SupportingMaterial as a Ham-
iltonian path minimization problem, for which the solution
to the traveling-salesman problem (TSP)was applied (32,33).
Nearest Neighbors: min(VarDNN)

Trajectory rearrangement by minimizing the Hamiltonian
path together with the min(VarþPrev) algorithm is one way
to solve the problem of suboptimal rotations of similar
structures. Here we also propose another method, termed
min(VarþNN), that does not require a specific ordering of an
ensemble. Instead of using only a previous frame in a trajec-
tory as a modification to the min(Var) algorithm, we consider
a subensemble of the nearest neighbors for each member of
an ensemble. The function to be minimized is written as
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where SNNt denotes summing over the nearest neighbors of

the structure t. The weight is defined as uNNt
¼ e�RMSDoptimal

NNt .

RMSDoptimal
NNt

is the RMSD value obtained after superposi-

tioning the structure t and a member NNt of the ensemble
of its nearest neighbors. These values are precalculated
before the minimization is started. In analogy to the
construction of the weight for the min(VarþPrev) algorithm,
uNNt

ensures that similar structures contribute to the super-
positioning most, because they allow for the most unambig-
uous superposition.

Minimization of the function Et requires an iterative
solution of the equation similar to Eq. 5:
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where pijt ¼
P
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xnkNNt

. Equation 7 is
derived in a manner similar to that used for Eqs. 3 and 5,
by constraining rotation matrices to be orthogonal and
calculating a derivative of the function Et.

We applied an iterative procedure based on Ten Berge’s
approach to minimize the function min(VarþNN). We
observed a dependence of the iterative algorithm for the
function in Eq. 7 on the initial rotations of the structures.
The effect becomes more pronounced for larger numbers
of nearest neighbors considered. To obtain consistent results
from the min(VarþNN), we implemented a step of progres-
sive superpositioning of the trajectory before starting the
iterative procedure, thus directing the algorithm to converge
to a certain local minimum and ensuring reproducibility of
the results.

The analysis of convergence of the min(Var),
min(VarþPrev), and min(VarþNN) algorithms is presented
in the Supporting Material.

The min(VarþNN) approach requires one to precalculate
the RMSD values for the pairwise superimposed structures
over the whole structural ensemble before starting the itera-
tive procedure. To alleviate the computational complexity
of this step, we employed a rapid RMSD calculation
approach based on the quaternion notation (34). Addition-
ally, we parallelized the pairwise RMSD calculation step
to enable running it on a user-defined number of threads.
MATERIALS AND METHODS

Analyzed systems

To illustrate the difficulty of superpositioning multiple flexible,

intrinsically disordered peptides, we used MD ensembles of the 40-

amino-acids-long Ab peptide and the 15-residues-long RS peptide. The

trajectory of the Ab peptide was 100 ns in length and consisted of

10,001 frames, whereas the RS peptide’s trajectory was created by con-

catenating two independent MD runs with different starting conforma-

tions, each 50 ns long, and consisted of 2005 frames. Additionally, a T4
Biophysical Journal 104(1) 196–207
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lysozyme ensemble (460.1 ns, 4601 frames) was used to allow the

comparison of flexible peptide fitting with the superpositioning of an

enzyme with a well-defined secondary and tertiary structure. Detailed

information about the simulation parameters used to generate the ensem-

bles of the Ab and RS peptides is provided in the Supporting Material.

The simulation parameters for the lysozyme trajectory have been

described previously (35). For all of the superpositioning analyses

described in this work, we removed the translational degrees of freedom

by setting the center of mass of each structure in an ensemble to the origin

of the coordinate axes.
Superpositioning of flexible peptides

Throughout the work for all of the superpositioning cases of the MD

trajectories, we calculated the mass-weighted variance over each ensemble

considering the Ca atoms of the structures. To avoid ambiguities that could

arise due to rounding errors when using different formulas for the variance

estimation, here and in all subsequent analyses we calculated the variance

as a trace of a covariance matrix as implemented in the g_covar tool in the

Gromacs (36) package. For all iterative schemes, 1000 iterations were

carried out to ensure convergence.
Analysis of the local neighborhood

To quantify the orientation of a structure to the structurally similar members

of an ensemble, we analyzed the local neighborhood for every frame in

a trajectory. The local neighborhood of a structure is represented by its

nearest neighbors that are identified by the pairwise superimposition of

a molecule of interest onto all the structures in the ensemble. The procedure

is performed for every member in an ensemble, and the sum of the RMSDs

over the nearest neighbor subensemble is calculated for every structure. The

RMSD sum yields an estimate of an optimal rotation of a structure with

respect to its local neighborhood. After superpositioning of the whole

ensemble, every structure is expected to be oriented such that the RMSD

to its nearest neighbors is as close to the optimum value as possible. This

consideration generalizes the progressive RMSD analysis for the local

neighborhood of the ensemble members. We constructed two estimators,

RMSD based and variance based, as described in detail in the Supporting

Material.
Normal-mode ensembles: comparison with
maximum-likelihood-based superpositioning

Structural ensembles that contain no translational and rotational motions by

construction were generated as a reference case. For this purpose, we energy

minimized the structures and performed normal-mode (NM) analysis for

each of the studied proteins. Details of the procedure are provided in the

Supporting Material.

To illustrate the importance of superpositioning for assessing the flexible

structure ensembles, we calculated the absolute conformational entropies of

the nonfitted NM ensembles for the Ab peptide, RS peptide, and lysozyme

using Schlitter’s formula (37). These entropies were used as a reference for

comparison with the superpositioned ensemble entropies calculated in the

same way.

The principal motions of lysozyme were analyzed to gain a deeper

insight into how the different superpositioning methods affect the percep-

tion of protein dynamics. The MD and NM ensembles of lysozyme were

superimposed with both the min(Var) and maximum-likelihood-based

methods, considering the Ca atoms only. The superimposed structures

were subjected to a principal component analysis (PCA). We depicted

the characteristic motions by projecting extreme conformations along the

eigenvector with the largest eigenvalue and interpolating between the

extremes.
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RESULTS

Superpositioning of flexible peptides

Three cases of superpositioning are illustrated in Fig. 1 for
three different systems: Ab, RS peptide, and lysozyme. In
the projections on the two principal components with the
largest eigenvalues, some large steps between two subse-
quent frames are highlighted for the Ab (Fig. 1 A) and RS
(Fig. 1 B) peptides when superpositioning is performed on
the initial structure. The suboptimal rotations can also be
observed in the plots of the RMSDs calculated between
subsequent frames that show occasional high RMSD values
between adjacent frames (Fig. 1, D and E). A clear indica-
tion that such high RMSD values are based on a superposi-
tioning artifact is the fact that the RMSD for such structure
pairs is significantly lower when these pairs are directly
superimposed onto each other. Once the peptides were
superimposed onto the average structures of the respective
ensembles, some of the spikes in the RMSD plots were
removed or decreased, indicating that superpositioning arti-
facts were partially resolved. Consistent with this result, the
progressively superimposed structures also exhibit much
smoother RMSD profiles (bright curves in Fig. 1, D
and E). The spike in the RS peptide RMSD plot at ~50 ns
remains even for the progressively superimposed ensemble,
and marks the position where two independent trajectories
were concatenated. Fig. 1, C and F, show the PCA plots
and RMSDs for the lysozyme trajectory. Apparently, no
superpositioning artifacts affect the ensemble even when
superpositioning is performed on a single starting structure.
The RMSD traces match almost perfectly, independently of
the superpositioning method used. For lysozyme, which has
a well-defined secondary and tertiary structure, the refer-
ence frame shares a lot of similarity with any other frame
in the trajectory, and therefore fitting is less ambiguous.

The variance values in Table 1 reveal that superposition-
ing on an initial structure and progressive fit yield larger
variances over an ensemble than superpositioning onto
an average structure. Hence, even though progressive fit
trajectories removed large RMSD values for neighboring
ensemble members (Fig. 1, D and E), the variance over
the trajectory accumulated to a value significantly larger
than that obtained with other superpositioning methods.
Progressive fitting and variance minimization:
min(VarDPrev)

The iterative procedure of variance minimization, min(Var),
reduces the variance over the ensembles of the Ab and RS
peptides (Table 1), whereas in the case of lysozyme, the
variance could not be reduced significantly as compared
with fitting onto an average structure. Interestingly, a
minimal variance of a trajectory does not guarantee removal
of the suboptimal rotations, as can be seen for both the Ab
and RS peptide ensembles in Fig. 2. The result of the



TABLE 1 Mass-weighted variances ðnm2uÞ over the MD ensembles

Structure Fit on starting structure Fit on average structure Progressive fitting min(Var)

min(VarþPrev)

min(VarþNN)*MD TSP

Ab peptide 183.287 144.895 171.919 143.745 144.067 144.075 146.044

RS peptide 23.696 21.842 30.762 21.268 21.603 21.669 23.362

Lysozyme 65.231 65.176 65.956 65.172 65.175 65.174 65.186

*Fifty nearest neighbors were considered.

Optimal Superpositioning of Flexible Molecule Ensembles 201
superpositioning method combining the progressive fit with
the variance minimization, min(VarþPrev), is illustrated by
the bright-colored curves in Fig. 2. The ambiguous rotations
with respect to the previous frame in each trajectory were
resolved, as can be inferred from the absence of spikes in
the RMSD profiles. The removal of the rotational artifacts
comes at the cost of a slight increase in the variance over
the ensemble (Table 1). For the Ab and RS peptide ensem-
bles, the rise in the variance was marginal, and the lysozyme
trajectory shows almost the same variance for the min(Var)
and min(VarþPrev) algorithms.
Nearest neighbors: min(VarDNN)

In case trajectory rearrangement is not desired, we propose
another approach to resolve ambiguities in the superposi-
tioning. The min(VarþNN) algorithm is a generalization
of the min(VarþPrev) method: instead of using a single
previous frame to modify min(Var) fitting, we construct
FIGURE 2 RMSD from a previous frame analysis after min(Var) and

min(VarþPrev) superpositioning. (A and B) The original MD ensembles

for the Ab (A) and RS (B) peptides.
the reference for every member of an ensemble by taking
its nearest neighbors into account. The influence of the
number of nearest neighbors is analyzed in depth in the
Supporting Material. As could be expected, larger NN
numbers increase the variance over an ensemble and resolve
ambiguous rotations with respect to a preceding structure.
However, using large numbers of nearest neighbors forces
the algorithm to behave similarly to the min(Var) approach:
the variance starts decreasing and ambiguous rotations
reoccur. Hence, our observations suggest that a smaller
NN number (up to 100) is sufficient to remove suboptimal
rotations in an ensemble.

Including the nearest neighbors for the superpositioning
makes it interesting to not only compare a structure with
its preceding frame, as we have done so far, but to also
consider the RMSDs of a local neighborhood. In fact, anal-
ysis of a local neighborhood of each member of an ensemble
can be seen as a generalization of the RMSD to a preceding
structure analysis. We calculated the RMSDmatrices for the
Ab peptide (Fig. 3) and the RS peptide (Supporting
Material) after applying different fitting methods to the
trajectories. Superpositioning with the min(VarþPrev) and
min(VarþNN) algorithms significantly smoothens the
RMSD landscape in the local neighborhood of a structure.
A smoother RMSD surface indicates that the suboptimal
rotations, which we previously depicted as spikes in the
RMSD plots (Figs. 1 and 2, and Supporting Material), are
removed not only for the subsequent frames but also for
the structures in the local neighborhood, i.e., subensembles
of similar conformations. The min(VarþNN) algorithm
used 50 nearest neighbors to construct a reference for the
superpositioning, which allowed a strong reduction of the
RMSDs among the similar structures (Fig. 3 F). However,
the resolved ambiguous rotations in the local neighborhood
come at the cost of an increased overall variance over the
ensembles (last column in Table 1).
Analysis of the local neighborhood

We formulated the requirements for an optimal global
ensemble superposition as 1), a minimal variance over an
ensemble; and 2), a minimal deviation from an optimal pair-
wise superposition. Thus far, we have provided a quantita-
tive estimate of variance for different fitting algorithms
(Table 1). To quantify the second criterion, we analyze local
neighborhoods over an ensemble, because the pairwise
Biophysical Journal 104(1) 196–207



FIGURE 3 Pairwise RMSD matrices and surfaces of the Ab peptide ensemble. (A–C) RMSD values after the min(Var) (A), min(VarþPrev) (B), and

min(VarþNN) (C) superpositioning. (D–F) Excerpts from the matrices shown as surfaces illustrate the smoothening effect of the min(VarþPrev) and

min(VarþNN) algorithms.
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superposition is unambiguously defined for such pairs and
hence serves as a suitable reference. As described in the
Materials and Methods section, we constructed two estima-
tors, RMSD based and variance based, defining the require-
ments of an optimal superposition method to quantify the
quality of the fitting algorithms. This enabled us to compare
the methods by mapping them in space defined by both esti-
mators (Fig. 4).

The optimal solution, having low variance and small devi-
ation from the optimal pairwise superposition in the local
neighborhood, should be located in the lower-left quadrant
in the graphs in Fig. 4. The min(VarþNN) (with NN ¼ 50)
and min(VarþPrev) algorithms fulfill both requirements,
whereas the min(Var) approach has a higher RMSD value.
An exception is the RS peptide case (Fig. 4 B), where
min(Var) mildly outperforms min(VarþPrev). This effect
comes from the fact that the RS peptide’s trajectory is con-
structed by concatenating two independent MD ensembles,
and thus taking into account the preceding structure for an
ensemble superpositioning may not lead to the RMSD
reduction in the local neighborhood. Superpositioning on
an initial or average structure yields larger variance and
deviations from an optimal pairwise superpositioning than
could be achieved with the methods introduced here. It is
interesting to note that progressive superpositioning not
only results in large variances but, in the case of lysozyme,
also exhibits a stronger deviation from the optimal RMSD
Biophysical Journal 104(1) 196–207
in the local neighborhood than the other methods. A local
neighborhood of 10 nearest neighbors was considered for
the analysis presented in Fig. 4. The analysis of a local
neighborhood consisting of different NN numbers is pro-
vided in the Supporting Material.
NM ensembles: comparison with maximum-
likelihood-based superpositioning

An unbiased way to evaluate the performance of superposi-
tioning algorithms is to apply the fitting procedure to an
ensemble that by construction contains only internal fluctu-
ations and therefore serves as reference for an optimal
superposition procedure. Removal of the external degrees
of freedom may introduce bias into the description of the
internal dynamics. To generate a reference ensemble
without external degrees of freedom, we performed an
NM analysis for the Ab peptide, RS peptide, and lysozyme.
Ordering the eigenmodes of the Hessian matrices in an
ascending manner by their corresponding eigenvalues
revealed that the first six eigenvalues, corresponding to the
translational and rotational motions (38), are equal to zero
to machine precision, for all of the protein systems
analyzed. Hence, the ensembles generated by sampling the
seventh mode fulfill the requirement of having no external
degrees of freedom. In Table 2, the variances over the
superpositioned NM ensembles are summarized for the



FIGURE 4 Mapping of the superpositioning algorithms into a common

space defined by the ensemble variance and local neighborhood RMSD.

(A–C) MD ensembles of the Ab (A) and RS (B) peptides, and lysozyme

(C) were used for the analysis. The local neighborhood of 10 nearest neigh-

bors was considered for the RMSD calculation. The background colors of

the quadrants are to guide the eye only and do not represent any calculated

result.
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various fitting algorithms. Fitting on the initial structure
and progressive superpositioning left the variance over the
Ab peptide’s ensemble unaltered in comparison with the
nonfitted ensemble, whereas a slight decrease was observed
for the RS peptide. The min(Var), min(VarþPrev), and
min(VarþNN) approaches rotated the structures such that
the variance for the ensembles of both peptides remained
close to the nonfitted ensemble. The least-squares-based
superpositioning practically had no influence on the vari-
ance of the lysozyme’s NM ensemble. The maximum-likeli-
hood approach Theseus introduced additional variance for
all three ensembles.

Conformational entropy calculations based on the vari-
ances along the principal components of the ensembles
(Schlitter’s formula (37)) revealed a strong effect of the
different fitting approaches (Table 3). For the flexible Ab
and RS peptides, superpositioning on the initial structure,
as well as the iterative procedures, provided entropy values
close to those of the reference ensembles. The progressive
superpositioning significantly overestimated the confor-
mational entropy of the RS peptide, but not that of the
Ab peptide. Interestingly, the min(VarþPrev) method re-
turned the conformational entropy value for the RS peptide
closer to the reference estimate. The estimation of the
entropy in the case of lysozyme was only slightly affected
by the least-squares-based superpositioning. Similarly to
the variance estimation, the Theseus fitting increased the
conformational entropy of all ensembles considered in
the analysis. However, it should be noted that part of the
increase in entropies may be attributed to the level of preci-
sion at which Theseus stores the trajectories. The algorithm
is based on the PDB file format, allowing a precision of
10�13 m, whereas the other algorithms used a precision of
10�15 m. Conformational entropy estimates for the MD
ensembles are provided in the Supporting Material.

The principal motions of lysozyme and therefore
the interpretation of internal dynamics differ significantly
depending on the superpositioning algorithm applied
(Fig. 5). The motion along the first eigenvector of the non-
superimposed NM ensemble (Fig. 5 A) matches the motion
of a fitted min(Var) ensemble (Fig. 5 B). The maximum-
likelihood approach represents the motion differently
(Fig. 5 C): half of the protein is kept rigid, whereas the other
part undergoes a large conformational transition. The same
(albeit more pronounced) effect is observed for the charac-
teristic motion extracted from the MD trajectory (Fig. 5, D
and E). A more quantitative analysis of the principal
motions of lysozyme in terms of the root mean-square fluc-
tuations, as well as the eigenvalue spectra, is provided in the
Supporting Material.

The NM ensembles were also generated for the stromal-
cell-derived factor-1 (PDB ID: 2SDF (39); model 1), which
was used by Theobald and Wuttke (30). Following their
approach, we calculated the correlation matrices between
the atoms in the ensemble after applying min(Var) and
Theseus superpositioning (Fig. 6, A–C). The nonfitted NM
ensemble served as a reference, because by definition it
contains no external degrees of freedom. It is evident that
the variance-minimizing fitting has a smaller influence on
the correlation matrix pattern than the maximum-likelihood
based approach. Additionally, we evaluated the variance of
the Ca atoms in the ensemble (Fig. 6, D–F), which shows
a significant change in the atom flexibility when the Theseus
algorithm is applied.
DISCUSSION

An iterative approach for finding a set of rotation matrices
to minimize the pairwise sum of squares over an ensemble
Biophysical Journal 104(1) 196–207



TABLE 2 Mass-weighted variances ðnm2uÞ over the NM ensembles

Structure No fit Fit on first structure Progressive fit min(Var) min(VarþPrev) min(VarþNN)* Theseus

Ab peptide 5.187 5.187 5.187 5.187 5.187 5.187 5.422

RS peptide 8.657 8.656 8.657 8.656 8.656 8.656 9.883

Lysozyme 6.033 6.033 6.033 6.033 6.033 6.033 6.879

*Fifty nearest neighbors were considered.
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of vectors is well established (17–20). We reformulated the
problem into the variance minimization over a trajectory
and arrived at the known SVD-based solution by following
Kabsch’s derivation (6). Ten Berge’s iterative procedure
(19) was found to be suitable for the variance minimization,
and provided rapid convergence even for large structural
ensembles of highly flexible molecules. Although the
results achieved with the iterative min(Var) algorithm
meet the requirement of minimal variance over an
ensemble, some rotations may position similar molecules
differently with respect to each other, as illustrated in
Fig. 1. This effect is not a malfunction of the algorithm or
a product of an improper rotation. Rather, it is a result of
ambiguous superpositioning of structures onto an unsuitable
reference frame, which for the case of variance minimiza-
tion is represented by an average structure. Removal of all
the rotational motion from an ensemble by means of vari-
ance minimization is suitable for a semirigid body (e.g.,
structured enzyme lysozyme), whereas in the case of highly
flexible peptides, some rotational motion bears the character
of an intrinsic motion. Removal of such motions results in
ambiguous rotations, whereas the ambiguities may be
resolved by reintroducing the rotations and returning some
variance to an ensemble. The superpositioning method
may have an effect on the free-energy landscape of a struc-
tural ensemble. Although the rotation of a molecule does
not change its conformation, different schemes for sepa-
rating internal from overall motion may affect the analysis
of internal dynamics. For example, when PCA is used to
analyze the energy landscape of a trajectory, the superposi-
tioning method will influence not only the projection itself
(and therefore the projected phase space densities) but
also the eigenvectors of the covariance matrix, thereby
changing the whole coordinate system for the projected
ensemble.

A reformulation of the problem of optimal removal of the
external degrees of freedom resulted in the min(VarþPrev)
and min(VarþNN) algorithms, yielding solutions that both
minimize the variance and resolve the ambiguous rotations.
TABLE 3 Conformational entropies (J/mol K) of the NM ensembles

Structure No fit Fit on first structure Progressive fit

Ab peptide 61.925 61.828 61.820

RS peptide 52.589 52.914 57.794

Lysozyme 123.217 123.065 123.124

*Fifty nearest neighbors were considered.
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The min(VarþPrev) is suited for ensembles ordered such
that the neighboring frames share structural similarity.
Although MD trajectories fulfill this requirement, for other
types of trajectories we suggest an ordering approach based
on the solution to the TSP. An interesting side observa-
tion from the application of the TSP algorithm to the
MD trajectories was the reordering of the sequential-in-
time ensembles into the new trajectories with even shorter
Hamiltonian paths than the original time ordering.
This possibly has implications for ensemble clustering
and convergence checks. Another method we presented,
min(VarþNN), alleviates the need for ensemble reordering
by precalculation of the local neighborhood for each
member of an ensemble. In this approach, the size of the
neighborhood to be smoothened, in terms of a pairwise
RMSD between the structures, can be chosen freely.
We assessed the performance of the new superposition
approaches using large structural ensembles, and thus
demonstrated the ability of our methods to remove external
degrees of freedom efficiently when an average structure is
smeared out over a long trajectory.

Mapping different superpositioning methods in the space
defined by two estimators, the variance over an ensemble
and the RMSD of the local neighborhood, revealed the
inherent complexity of the removal of external degrees of
freedom from the structural ensembles. Satisfying one of
the constraints results in a strong violation of the other.
For example, the progressive superposition closely matches
the optimal pairwise superposition, but it leads to a signifi-
cant increase of the variance over an ensemble. Also, mini-
mizing the variance does not guarantee that similar
structures will be rotated in a similar way. The approaches
introduced here optimize both criteria, removing as much
external rotation as possible and ensuring a minimal devia-
tion from an optimal pairwise superposition.

In contrast to the superposition algorithms that assign
different weights to the atoms of structures being superim-
posed (24–27), our methods weigh the atoms according to
their mass, and assign a unique reference frame for each
min(Var) min(VarþPrev) min(VarþNN)* Theseus

61.827 61.836 61.840 65.968

52.924 53.007 52.910 76.682

123.055 123.077 123.147 127.166



FIGURE 5 Principal motions of lysozyme. (A–C) Principal motions ex-

tracted from the NM ensembles. (D and E) Principal motions from the

MD ensembles. (A) Nonsuperimposed NM ensemble. (B and D) min(Var)

superpositioned ensembles. (C and E) Theseus superpositioned ensembles.
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structure. The former approach allows one to predict the
dynamics from the superposition of several structures by
elucidating the rigid and flexible parts of a protein. In
contrast to that approach, our methods do not bias the rota-
tions according to the assumed intrinsic motions of a mole-
cule; rather, they remove the external degrees of freedom,
FIGURE 6 Correlation matrices and mass-weighted variances of the Ca a

Nonsuperimposed ensemble. (B and E) min(Var) superpositioning. (C and F) T
leaving the interpretation of the dynamics to further anal-
ysis. This makes the min(VarþPrev) and min(VarþNN)
particularly suitable for large structural ensembles and their
analysis in terms of internal fluctuations, such as by PCA
(38,40,41).

Ensembles of multiple structures can be superpositioned
based on a maximum-likelihood approach such as Theseus
(28–30). Using the NM ensembles of the lysozyme and
stromal-cell-derived factor-1, as well as the lysozyme’s
MD trajectory, we demonstrated that the maximum-likeli-
hood approach may lead to a significantly different interpre-
tation of the internal protein motions. The nonsuperimposed
NM ensembles in our analysis served as a reference without
any external degrees of freedom. By comparing the motions
extracted from the ensembles treated with the different
fitting procedures, we observed that the least-squares-based
methods yielded results in better agreement with the
reference ensembles than the Theseus algorithm. From
our analysis, we conclude that for large structural ensem-
bles, such as molecular or stochastic dynamics, NM,
CONCOORD trajectories, where the full removal of the
external degrees of freedom is required, least-squares-based
superpositioning provides a robust and minimal basis for the
analysis of internal dynamics. Maximum-likelihood-based
superpositioning finds its strength in fitting NMR-like
ensembles, where the implicit prediction of rigid and flex-
ible regions of a protein is desired.
toms for the NM ensemble of stromal-cell-derived factor-1. (A and D)

heseus superpositioned ensembles.
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As revealed by the comparison of the ensembles treated
with different superpositioning methods (see Supporting
Material), the min(Var), min(VarþPrev), and min(VarþNN)
approaches yield comparable sets of rotations. Hence, the
selection of an algorithm for ensemble superpositioning
by minimizing variance and removing ambiguous rotations
depends only on the ordering of the trajectory and user
preference.
CONCLUSIONS

We have introduced a new (to our knowledge) class of
methods for multiple-structure superpositioning that mini-
mize the variance over an ensemble. Ambiguous rotations,
which often occur in the ensembles of the flexible intrinsi-
cally disordered peptides, are alleviated by applying the
min(VarþPrev) algorithm, in case subsequent frames in
a trajectory are structurally similar. Otherwise, a solution
to the TSP may be used to reorder an ensemble before using
the min(VarþPrev) superpositioning. The min(VarþNN)
algorithm allows one to resolve suboptimal rotations by
minimizing the variance and the RMSD to the structures
in the local neighborhood of each member of the ensemble.
We showed that both approaches are able to remove the
external degrees of freedom from large structural ensem-
bles while at the same time they eliminate ambiguous
rotations and avoid bias toward any intrinsic molecular
motion. Therefore, the algorithms introduced here pro-
vide a solid basis for the unbiased analysis of internal
dynamics.

The implementation of the methods developed in this
work is based on the Gromacs framework and is freely avail-
able from our group’s website: http://www3.mpibpc.mpg.
de/groups/de_groot/software.html.
SUPPORTING MATERIAL

Nine figures, four tables, additional analysis, simulation parameters, and

references (42–66) are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(12)01195-2.
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