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Membrane topology changes such as poration, stalk formation, and hemi-fusion rupture are es-
sential to cellular function, but their molecular details, energetics, and kinetics are still not fully
understood. Here we present a unified energetic and mechanistic picture of metastable pore defects
in tensionless lipid membranes. We used an exhaustive committor analysis to test and select optimal
reaction coordinates and also to determine the nucleation mechanism. These reaction coordinates
were used to calculate free energy landscapes that capture the full process and end states. The
identified barriers agree with the committor analysis. To enable sufficient sampling of the complete
transition path for our atomistic simulations, we developed a novel ”gizmo” potential biasing scheme.
The simulations suggest that the essential step in the nucleation is the initial merger of lipid head-
groups at the nascent pore center. To facilitate this event, an indentation pathway is energetically
preferred to a hydrophobic defect. Continuous water columns that span the indentation were deter-
mined to be on-path transients that precede the nucleation barrier. This study gives a quantitative
description of the nucleation mechanism and energetics of small metastable pores and illustrates a
systematic approach to uncover the mechanisms of diverse cellular membrane remodeling processes.

STATEMENT OF SIGNIFICANCE

The primary steps and nucleation of lipid membrane
pore formation are key to membrane fusion, viral infec-
tion, and vesicular cellular transport. Despite decades
experimental and theoretical studies, the underlying
mechanisms are still not fully understood at the atomic
level. Using a committor-based reaction coordinate and
atomistic simulations, we report new structural and ener-
getics insight into the full poration process. We find that
the pore nucleates via an elastic indentation rather than
by forming a hydrophobic defect. Subsequently, water
pierces the thinned slab as a prerequisite for the following
axial merger of the first lipid headgroups from opposite
monolayers, which precedes and best characterizes the
transition state. We also identify a metastable prepore
basin, thereby explaining previous indirect experimental
evidence.

INTRODUCTION

Lipid membranes can undergo a number of topological
remodelling processes — such as endo- and exocytosis,
vesiculation, viral entry, and fertilization — that involve
the formation or closure of aqueous pore defects. Pore
nucleation is key to transmembrane transport [1], ion per-
meation [2, 3], antimicrobial peptide function [4, 5], and
bilayer equilibration [6, 7] and is the essential step of
synaptic transmission [8–10]. Despite the evidence for
small, metastable aqueous pores from conductivity [11]
and tension [12] experiments, as well as molecular simu-

lations [13–15], the atomistic details, driving forces, and
kinetics of their formation and closure are not entirely
understood [16, 17].

In the long established continuum description for
pores, namely the Litster model [18], a pore’s energy is
governed by the membrane surface tension and the pore
rim line tension, both of which depend on the pore ra-
dius. This model is suited for already-formed pores but
does not explain the large energies required to create the
topological defect, nor can it describe metastable pore
defects in the absence of applied tension [11–13, 15]. In
a more recent continuum description, a nascent pore is
treated explicitly as a hydrophobic cylinder of solvent-
exposed lipid tails, with both a height and radius [19].
Here we focus on the formation of metastable prepores
(henceforth pores) that arise in a tensionless bilayer, us-
ing atomistic molecular dynamics (MD) simulations to
fully resolve the process.

Specifically, we will address the following questions. Is
the poration pathway hydrophobic, with a penetrating
water column surrounded by lipid tails, or hydrophilic,
involving an indentation where lipid head groups sub-
merge to shield water/tail interactions? In fact, ”wa-
ter wires” that span the hydrophobic slab have been ob-
served in several recent simulation studies [13, 20, 21],
but whether or not this step is rate-limiting is unclear.
In one study, the energetics of pore formation were found
to be insensitive to ”bundling” four waters together, sug-
gesting that the precise organisation of water matters
little [22]. We will therefore address the question of
whether or not these water wires are the energetic transi-
tion state, and whether single file water columns are suf-

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 17, 2020. . https://doi.org/10.1101/2020.06.15.152215doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152215
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

ficient to nucleate the pore. To address these questions,
we aim to identify optimal reaction coordinates (RCs) in
terms of collective variables (CVs) to properly describe
the progress and energetics of the nucleation mechanism.
(The terms CV and RC are both used throughout this
study, with the intention that CV indicates a collective
coordinate that may or may not be a useful RC, whereas
a RC is tasked to measure reaction progress)

Whereas spontaneous pores can form on µs timescales
for simulations of short-tailed lipids [20], biasing poten-
tials acting along a chosen RC are usually required to ac-
cess relevant structural intermediates, in particular the
transition state (TS). Typically an ad hoc RC ξ(x) —
defined as a function of the combined coordinate vec-
tor x of a suitable set of relevant atoms — is used as a
biasing coordinate to compute a free energy profile (or
potential of mean force, PMF) G(ξ) via umbrella sam-
pling or related methods [23, 24]. The proper choice of
RCs is therefore critical for obtaining correct and well-
converged energetics, and also serves to characterise the
reaction mechanism in structural terms. Indeed, for di-
verse membrane remodeling processes (stalk nucleation,
vesiculation, hemifusion) the fluid disorder of the mem-
branes makes it far from obvious which collective motions
(i.e. RCs) are best suited as mechanistic descriptors and
for biasing simulations towards transient intermediates.

A recent comparison of poration RCs documented that
many established and intuitively plausible RCs for pora-
tion were poor biasing coordinates due to prohibitively
slow convergence and resulting hysteresis effects [17].
Further, and quite generally, even for well-converged sim-
ulations, sub-optimal choice of RCs may artificially lower
— or even hide — important energy barriers if different
intermediates of the reaction progress are projected onto
similar values along the RC [3, 25]. One consequence is
that in such cases, the TS region may not be properly
described by the RCs, and the position of the obtained
PMF barrier may differ markedly from the true TS.

More recently, a poration RC based on the fraction of
cylindrical slabs (spanning the membrane) occupied by
hydrophilic particles (water, lipid headgroups) has been
proposed, which enabled converged free energy calcula-
tions suggesting a free energy barrier and TS leading to
the metastable (pre)pore state [14]. Despite this advance,
the observed barrier was sensitive to several tuning pa-
rameters, such that it remained unclear which combina-
tion provides an accurate result, and the subsequent pore
could not be well resolved.

For a more systematic approach, we exploit the opti-
mal RC for any conformational transition from a confor-
mational state A to a state B, which is — by definition
— the committor c(x) ≡ P (B|x), i.e., the probability
that an unrestrained trajectory seeded from x reaches
state B before state A (cf. Fig. 2b). This concept traces
back to Onsager [26] and has been more recently reviewed
[27–29]. In this framework, c(x) optimally reflects the re-

action progress, and all configurations x with c(x) = 0.5
comprise the TS between the basins of attraction of A
and B. Computing c(x) is, however, often computation-
ally prohibitive, as it involves starting sufficiently many
trajectories from every point x along the transition path
ensemble. In addition, c(x) is not an intuitive structural
descriptor and thus offers no structural insight by itself.
The real utility of c(x) stems from the fact that a good
RC must be a strong committor correlate in the TS re-
gion. It follows then that putative RCs can be quantita-
tively compared by how well they correlate to c(x).

Indeed, this concept has been applied to several other
systems [30–33] as well to as a highly coarse grained
lipid system [34]. For these systems, RCs were success-
fully identified which correlated strongly with c(x) and,
hence, were considered close to optimal. Notably, once
the expensive computation of c(x) is achieved for a suffi-
cient number of points, any number of candidate RCs can
be evaluated and ranked via post-processing at only lit-
tle computational cost, and without further simulations.
The appeal of this strategy is that, rather than relying
on intuition, the selection of an optimal RC becomes an
optimisation problem with a defined cost function. This
framework also allows for building more powerful descrip-
tors via linear [31] or non-linear [30] combinations of the
initial CV pool, although overly complex hybrid coordi-
nates (e.g. derived via a deep neural network), bear the
risks of overfitting and of becoming uninterpretable. Yet,
for a very broad range of systems, the approach provides
a principled method to identify RCs that are sufficiently
close to optimal and thus provide quantitative insight
into reaction paths and energetics.

Here we apply such a committor-driven scheme to
study pore nucleation in a solvated DMPC lipid bilayer,
which is known to form metastable prepores [17, 22]. To
efficiently sample states where c(x) ≈ 0.5, we will first
develop a novel biasing scheme using a membrane em-
bedded ”gizmo” which energetically biases the system
towards intermediate states and functionally resembles a
lipid scramblase [35, 36]. Using gizmo biasing, multi-µs
simulations will be used to sample TS-crossing events as
input for subsequent (unbiased) c(x) calculations. The
obtained c(x) estimates will then be used as a regression
target to score and rank putative RCs from a diverse
combinatoric pool including CVs for water, lipid head
groups, and lipid tails, as well as pairwise combinations
thereof. A second set of gizmo biased simulations will
serve to sample the full poration pathway and recover
unbiased PMFs, projected onto optimal RCs determined
from the committor analysis. Taken together, the PMF
along the optimal RC will serve to address the above
mechanistic questions.
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THEORY

Biasing Potential

To thoroughly sample the poration process, and in
particular the TS, we have developed a pseudomolecu-
lar ”gizmo” embedded within the membrane, much like
(but not intended to resemble) a membrane protein. This
gizmo imposes a potential energy bias onto adjacent lipid
and water molecules so as to direct the membrane to-
wards open, transition, or closed pore states.

To this aim, the gizmo (sketched in Fig. 1 and fully
described in the Supporting Material and Fig .S1) was
designed with two special-purpose structural elements
for driving pore opening and closure, respectively. To
drive pore opening, we used a ”chain” of lipid-tail repel-
lent (CX) beads (red) that is aligned to the bilayer nor-
mal to create a packing defect in the hydrophobic region
(light grey) of the membrane (Fig. 1(a)). To drive clo-
sure, we used a circular ”belt” of water repellent (WX)
beads (green) lying in the membrane midplane to con-
strict and pinch off the water column (blue) (Fig. 1(b)).
The chain and belt are flexible and are bound to a stiff
frame comprised of ghost particles (GG) which interact
via bonded interactions, but not with any other parti-
cles of the simulation system (i.e., no van der Waals or
electrostatic interactions).

The gizmo was implemented via the potential energy
of the combined system,

Ṽ (x,y) = Vx(x) + Vxy(x,y) + Vy(y) + Vξ(ξ(y)), (1)

where Vx(x) is the force field for the lipids and sol-
vent system, Vy(y) that for the gizmo, Vxy(x,y) =
λCXVCX(x,y) + λWXVWX(x,y) couples the system and
gizmo via repulsive CX/WX interactions, and a harmonic
restraint Vξ(ξ(y)) = 1

2k(ξ(y)−ξ0)2 controls the WX belt
radius of the gizmo with a collective radial breathing co-
ordinate ξ. In the above equations, x denotes the (com-
bined) atomic coordinates vector of the lipids and sol-
vent, and y the (combined) atomic coordinates vector of
the gizmo.

The repulsive potentials VCX and VWX were imple-
mented via Lennard-Jones potentials (σ=1.1 nm and
ε=0.01 kJ/mol). The tilde over Ṽ (x,y) indicates that
the lipid-solvent system is coupled to, and biased by, the
gizmo. The relative strengths of the gizmo’s chain and
belt biases were tuned via λCX, which scales the CX-
tail repulsion that drives opening, and ξ0, which controls
the WX belt radius via a harmonic restraint that is con-
stricted to drive closure (λWX was fixed to 1). Crucially,
except for these biasing potential contributions (i.e. Vxy),
the beads do not interact with the physical system of
lipids and solvent (see Fig. 1). Accordingly, the poten-
tial energy remains otherwise unperturbed and the gizmo
potential can be instantly switched off without creating

packing artefacts, as is required for the committor sim-
ulations. This setup also enabled us to derive PMFs
for pore opening and closure for the lipid-solvent sys-
tem from the biased MD ensemble as described in the
Supporting Material.

The gizmo has a few additional features worth noting.
First, in the open state, it functions as a lipid scram-
blase, stabilizing a pore indefinitely and allowing lipids
to flip-flop and equilibrate. Also, due to its shape and
hydrophobicity, the WX belt keeps the gizmo embedded
and properly oriented in the membrane interior. Lastly,
the gizmo’s central atom (a GG atom) provides a con-
venient reference position for the pore center, which is
useful for deriving localized CVs for the lipids and sol-
vent.

We used two different gizmo potentials to efficiently
sample two different pore formation paths. The ”hy-
drophobic” H-gizmo (Fig. 1(c)) promotes a hydrophobic
defect — where a narrow water column pierces and hy-
drates the hydrophobic slab and then head groups pivot
inwards — by a chain of 11 CX beads which creates a tail
packing defect fully spanning the membrane. In contrast,
the ”indentation” I-gizmo (Fig. 1(d)) drives indentation
and thinning of the bilayer without directly perturbing
lipid chain packing at the bilayer midplane. This effect
is achieved by a chain that has its three centermost CX
beads replaced by GG beads (acting as spacers) such that
two CX chain segments, with four beads each, penetrate
from opposite sides. The two gizmos also served to assess
how much the resulting RCs and PMFs depend on the
particular properties of the gizmos.

We used independent ensembles of gizmo biased simu-
lations to collect input structures for committor analysis
and to sample the full poration pathway for PMF calcu-
lations. As summarized in Table I, these ensembles used
different initial structures to test convergence, and dif-
ferent gizmo types to allow us to compare hydrophobic
and indentation mechanisms. For all of the computed
ensembles, we ensured sufficient TS sampling by using
extended simulations (up to 2 µs when necessary) tar-
geted to the TS region. This ensured that the PMF
calculations are well converged, irrespective of starting
structure, and that a sufficiently large number of statis-
tically uncorrelated starting structures is available in the
vicinity of the TS for the subsequent committor analy-
sis. Full details of these ensembles are provided in the
Supporting Material (see Figs. S2-4).

Collective variables to describe pore formation

To obtain structural insight into how lipids and sol-
vent reorganize when crossing the TS, we assembled a
set of CVs that capture diverse structural changes during
pore nucleation. The pool of CVs was chosen to quantify
the merger and depletion of specific atom groups α (see
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FIG. 1. (color online) Pore gizmo designs. (a) A vertical chain of (red) CX particles drives pore opening by creating a packing
defect in the hydrophobic slab. (b) A belt of (green) WX particles drives pore closure by pinching off the water column.
The belt is drawn with six WX particles for clarity, whereas the actual belt has twelve. The faces in (a-b) indicate in which
compartments the CX/WX particles are non-interacting (smiley) and purely repulsive (frowns), such that these particles can
occupy one bulk region of the system without introducing any perturbation. (c-d) When combined to form a gizmo, the CX
chain and WX belt allow reversible control of pore formation. (c) The ”hydrophobic” H-gizmo uses a chain of 11 CX beads
to create a hydrophobic packing defect spanning the bilayer. (d) The ”indentation” I-gizmo has its three centermost beads
switched off so that two partial chains penetrate the membrane from both sides, creating an indentation defect.

TABLE I. Simulation ensembles used in this study

Ensemble type Gizmo Starting state
PMF H A (closed)
PMF H B (open)
PMF I A (closed)
PMF I B (open)
Committor H A (closed)
Committor I A (closed)

Tab. II) relative to the pore center, defined by the center
y0 of the gizmo (i.e. providing a local coordinate sys-
tem). To study how different groups of atoms collectively
reorganize, we defined atom groups that combine and iso-
late individual components of the system (e.g., lipid head
groups with and without water oxygen). To compare the
effects of local versus non-local collective motions, we var-
ied the cutoff number N of atoms closest to y0 used to
compute the CVs. Finally, to distinguish different (an)-
isotropic symmetries, we implemented isotropic, axial (z-
axis), and lateral (xy plane) collective coordinates.

The isotropic mean radius rαN was computed as

rαN =
1

N

N∑
i=1

||xαi − y0||, (2)

where xαi is the position of atom i belonging to the atom
group α.

To measure lateral merger or spreading of atoms, the
’xy’ variant rxyαN was computed via

rxyαN =
1

N

N∑
i=1

||xαi − y0||xy, (3)

where ||..||xy denotes the distance between points pro-
jected onto the xy plane.

The axial variant rzαN was computed by projecting and
sorting atoms on the membrane-normal z-axis, to cap-
ture the penetration of the lipid slab. When all system
coordinates are projected onto the z-axis, thermal fluc-
tuations can create non-local projection artefacts, giving
the false appearance of membrane penetration. These in-
clude ”hanging droplets” (described in [14]), where two
laterally distant indentations partially penetrate the bi-
layer, and low-wavenumber thermal undulations [25]. To
avoid these effects, we preselected the 100 atoms closest
to y0 prior to projection and sorting.

From this set, rzαN was computed as the maximum over
N -tuples (i.e., a set of N successive, z-sorted atoms) of
the average axial distance between the atoms and their
mean position

rzαN = max
j∈1,...,101−N

 1

N

j+N−1∑
i=j

||xαi − x̄αj,N ||z

 , (4)

where ||..||z denotes the distance between points pro-

jected onto the z-axis and x̄αj,N = N−1
∑j+N−1
i=j xαi is

the moving average (of width N). This CV measures the
largest gap (depletion) in the vertical column, without
requiring the gap to be centered at any reference (y0 or
bilayer midplane) and will therefore detect a gap that is
centered above or below the bilayer midplane.

Committor regression models

A committor regression scheme was used to find opti-
mal RCs among the pool of the just described CVs and
to build low-dimensional TS models.
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TABLE II. Atom subsets (α) used for r, rxy, and rz CVs.

group label (α) group description
OW water oxygens
P lipid phosphorus
NP lipid nitrogen and phosphorus
PNO NP ∪ OW
CxN (terminal) lipid tail carbons
Cxx (all) lipid carbons

 

A

B

FIG. 2. Schematics showing (a) a commitor regression model
fc which consists of a linear combination of input features
with a logistic activation. (b) A 2D TS model T(φ1,φ2) for
the CVs φ1(x) and φ2(x). The two free energy basins A
and B are separated by the fc=0.5 isoline. The three-point
MEP estimate φMEP = [φ0.2,φ0.5,φ0.8] is drawn as cyan, red,
and blue dots. The solid black line is a linear fit to φMEP,
constrained to pass through φ0.5, and the closed and open
circles at the ends indicate the directions of the closed and
open pore states, respectively. Because a is a linear function
of input CVs, all fc = const isolines are parallel.

Given a configuration x, a committor estimate ĉ(x|Nc)
was computed from Nc = 16 unrestrained (i.e., without
gizmo potential), velocity-randomized trajectories of 6 ns
length, each spawned from x. By counting how many tra-
jectories reached the A and B basins first (NA and NB ,
respectively), we obtained ĉ(x) = NB/(NA+NB); trajec-
tories that reached neither boundary were discarded. We
denote a dataset of configurations and their committor
estimates as C = {(x, ĉ(x|Nc))}.

To predict ĉ(x) given CVs (φ1(x), φ2(x), . . .), we fit a
logistic regression model fc (cf. Fig. 2(a)),

ĉ(xi) = fc(xi) + εi =
1

1 + e−a(xi)
+ εi , (5)

where a(xi) =
∑
j wjφj(xi) is a linear combination of

CVs (including a constant offset φ0 = 1) and εi is the
residual error associated with xi. The logistic function
was chosen because ĉ(x) is expected to have a sharp tran-
sition between its limiting values 0 and 1. The weights
for each model (w0, w1, ...) were fit by gradient descent
to minimise the mean squared error, MSE =

〈
ε2i
〉
, for

a training dataset Ctrain (equivalent to maximising the
coefficient of determination R2 = 1 − 〈ε2i 〉/σ2

ĉ(x)). The

R2 value for a set of (omitted) cross-validation data Cxval
was used as the model’s score.

Each regression model fc was used with Ctrain to build a
low-dimensional TS model T(φ1,φ2,..) (cf. Fig. 2(b)) in the
corresponding CV space. This minimal TS description
comprises the CV basis (φ1, φ2, ..), the regression model
fc, and an estimate of the minimum free energy path
(MEP) that connects the A and B basins. Whereas the
fc isosurfaces are directly accessible by solving fc = 0.5,
fc does not specify where the separatrix is most likely
crossed (saddle point), nor does it specify the orientation
of the MEP [27]. In fact, the MEP may not be orthogo-
nal to the committor isosurfaces in the chosen coordinate
basis. Therefore, a partial MEP segment was estimated
with a three point ”string” φMEP = [φ0.2,φ0.5,φ0.8],
where φ0.2, φ0.5, and φ0.8 are averages of points in Ctrain
binned by ĉ(x) into the intervals (0, 0.4), [0.4, 0.6], and
(0.6, 1.0), respectively. With this definition, φ0.5 esti-
mates the free energy saddle point. Because the points
in Ctrain are drawn from Ṽ (x,y), the MEP segment is
only an estimate of the true MEP. We tested this esti-
mate by comparing the committor derived T models with
the computed PMFs for the unbiased system.

To test to what extent the H and I gizmos bias sam-
pling to the same TS regions, we built two separate com-
mittor datasets C(H) and C(I) using H and I-gizmo biased
simulations. Further details on the committor datasets
are given in the Supporting Material.

METHODS

MD simulations of the membrane-solvent-gizmo sys-
tem were carried out essentially as if the gizmo were a
transmembrane protein, using Gromacs 5.05 [37]. The
simulated system was a patch of 128 Berger DMPC lipids
[38] that was solvated with SPC water [39] to a 43:1 wa-
ter to lipid ratio using the MemGen web server [40]. The
gizmo was placed approximately at the membrane center.
The simulation box used periodic boundary conditions
and had dimensions 6.2 x 6.2 x 7.9 nm.

In all simulations, a temperature of 323 K was set
with independent, velocity-rescale, thermostats [41] for
solvent, lipids, and the gizmo, all using a coupling of
2.0 ps. A pressure of 1.0 bar, in NPT simulations, was
maintained via semi-isotropic weak coupling [42] using
a time constant of 1.0 ps. Center of mass motion was
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removed from the lipids, gizmo and solvent groups inde-
pendently. The center atom of the gizmo was position
restrained in the horizontal (x and y) dimensions with
harmonic spring constants of 1000 kJ/(mol-nm2). Elec-
trostatics were computed with particle mesh Ewald [43]
using a real space cutoff of 1.2 nm. A 1.2 nm cutoff was
also used for van der Waals interactions.

Prior to production runs, the system was prepared
using a steepest descent minimization followed by brief
NVT and NPT runs (100 ps apiece) using a 2 fs timestep.
Production runs used a 4 fs timestep. All NVT and
NPT simulations used a stochastic integrator [44]. Water
bonds and angles were constrained by the SETTLE al-
gorithm [45], and all other bonds were constrained using
LINCS [46].

The Lennard-Jones interactions between the gizmo
chain (CX beads) and lipid tails were scaled by using
an alchemical mutation to turn CX beads into (non-
interacting) GG beads, with λCX implemented via the
”vdw-lambdas” free energy option in Gromacs. The re-
straint potential for the gizmo belt radial breathing mode
Vξ (see Eq. 1) was implemented using the essential dy-
namics options in Gromacs. The Supporting Material
includes example files for including a Gizmo in a Gro-
macs simulation.

RESULTS

Committor guided search for optimal RCs

To test how accurately a single RC describes TS cross-
ing, we first used the above sketched scheme to train and
score 1D models (setting φ2 = 0) prior to building 2D
models. These 1D models (derived from C(H)) yielded
scores as high as R2 = 0.67. The atom group was found
to be highly predictive of R2 (Fig. 3), with only NP and
P based CVs having R2 > 0.38. The best CxN CVs had
weaker predictive power (R2 ≈ 0.35) and the CVs in-
volving water (PNO and OW) had R2 ≤ 0.3. In Fig. 3,
three examples of regression models are shown for the
top scoring NP, CxN, and OW based CVs.

This sorting suggests that TS passage is best charac-
terized by localized headgroup (NP) merger. Lipid tail
(CxN) expulsion is also involved, but to a much lesser ex-
tent, and the presence or absence of water (OW) in the
nascent pore is, unexpectedly, not predictive of barrier
crossing (at least by itself). The top ranked CV, with
R2 = 0.67, was rzNP

4 , which measures the axial merger
of the four N or P atoms penetrating the bilayer. Pre-
sumably, this captures a pair of lipid headgroups merging
from opposite sides. This CV is henceforth abbreviated
as φNP. We also abbreviate rCxN

20 and rzOW
10 , the top

ranked CxN and OW CVs, as φCxN and φOW, respec-
tively.

According to this ranking, the PNO CVs, which group

together the charged N and P atoms as well as water
oxygens, are less predictive than NP and P alone. This
result suggests that water and headgroup merger are not
tightly coupled at the TS; it also suggests that the mech-
anism might proceed in a step-wise fashion.

Next, we considered 2D models, testing whether any
linear combinations of two CVs were more predictive
than φNP alone. As summarized in Fig. 3, a few 2D mod-
els slightly outperformed φNP. These improved models
all contain φNP paired with another CV, however the in-
crease in R2 (at most R2 = 0.69 as opposed to R2 = 0.67)
was modest.

The high ranking of NP and P regression models is
consistent between C(H) and C(I) datasets, and the abso-
lute R2 values differ slightly (see Fig. S5 for a side-by-side
comparison). For the other atom groups with lower R2

scores (OW, CxN, Cxx and PNO), there are differences in
the relative rankings between the two datasets which we
attribute to the gizmos facilitating similar, but not iden-
tical, pathways. These pathways were probed further by
computing free energy landscapes.

Free Energy Landscapes

Next, we constructed free energy surfaces by projecting
the PMF ensembles onto the optimized CVs constructed
in the previous section. First, to examine headgroup
merger and tail depletion, we used CVs φNP and φCxN.
Later, to compare headgroup and water penetration we
use φNP and the analogous water penetration coordi-
nate. (PMF projection and unbiasing required a mod-
ified version of the weighted histogram analysis method
(WHAM)[47], described fully in the Supporting Mate-
rial). We also tested how computed PMFs vary with
gizmo design (H versus I) and tested for convergence us-
ing ensembles that were started from closed (’A’) and
open (’B’) states.

Fig. 4 shows the free energy landscapes as a function of
the two CVs φNP and φCxN. In both the 2D and marginal
PMFs, two clear minima can be seen, corresponding to
the unperturbed membrane and the metastable prepore
at a relative energy of +10 kBT . The barrier heights
are between 14 and 17 kBT , which is consistent with
the range of previously reported values for the same
system [17, 20, 21]. The PMFs also resolve the full
metastable prepore that has been experimentally pre-
dicted for decades [11, 12].

In all cases considered in Fig. 4, the quantitative agree-
ment between A/B pairs suggests that the PMFs are suf-
ficiently converged and do not suffer from marked hys-
teresis effects. An autocorrelation analysis (detailed in
the Supporting Material) showed that intermediate win-
dows in each ensemble exhibited slow, two-state switch-
ing corresponded to TS crossing, with autocorrelation
times of 50-100ns. As this switching was clearly the sam-
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Committor regression models derived using C(H), the H-gizmo committor dataset. (a)-(c) Top scoring 1D models for
CVs using the OW (a), CxN (b) and NP (c) atom groups. Training and test datasets are drawn as purple and green dots,
respectively, and a vertical gaussian jitter was added to the (discrete) ĉ(x) values. The solid black lines show fc and have
closed and open caps indicating the directions of the closed and open pore states, respectively. The dashed lines are ± two
standard deviations from fc, assuming 16 (Nc) samples drawn from a binomial distribution. (d) All regression models, 1D and
2D, co-sorted by R2. The labeled orange points are the best 1D models for each atomgroup listed in Table I. (e) The regression
fit for the 2D model using CVs φCxN and φNP, with the same formatting as (a-c). (f) 2D view of the model in (e), showing

the training dataset and the resulting TS model T (H)

(φCxN,φNP). Individual points (small markers) are colored by ĉ(x), with cyan,

red, and blue dots belonging to the intervals (0, 0.4), [0.4, 0.6], and (0.6, 1.0) respectively. Grey squares and diamonds indicate
ĉ(x) = 0 or 1, respectively. Large markers are averages of the respective subsets and the ellipses are one standard deviation
contours.

pling bottleneck, we extended these windows to 2µs to
ensure convergence. The resulting PMFs all show a net
free energy change ∆GAB of 9-11 kBT irrespective of the
particular choice of gizmo, CV, and starting structure.
Only the barrier heights vary, which is to be expected.

The PMFs in Fig. 4 exhibit some clear differences that
shed light on the nucleation mechanism. The location
of energy barriers, and to some extent their heights, de-
pend on the CV choice and the gizmo design. The I-
gizmo simulations give barriers that are lower and later
than the H-gizmo simulations. Snapshots shown in Fig. 4
((a-b) insets), reveal the difference in paths. In (a) the
membrane has partially thinned (I-gizmo), but in (b) a
hydrophobic column already connects the opposite sides
(H-gizmo). This result suggests that such hydrophobic
defects are energetically unfavorable and unlikely to ini-
tiate nucleation, whereas an indentation pathway is en-
ergetically preferred by 3-4 kBT .

Fig. 4 also shows that the computed energy barriers

somewhat depend on the chosen CV, which underscores
the well known fact that proper choice of RC is crucial.
The marginal PMFs, shown in Fig. 4 (c-d), show that
∆G‡(φNP) is always higher than ∆G‡(φCxN), suggesting
that φNP is better at distinguishing the A and B basins,
and that state densities partially overlap when projected
onto φCxN. This projection overlap for φCxN is evident in
the 2D PMFs (Fig. 4 (a-b)) as well. Given that φCxN pri-
marily captures in-plane, radial depletion of lipids, this
corroborates that pore radius is a suboptimal RC for pore
nucleation, but is better suited to track pore expansion,
such as would occur with applied surface tension.

Based on these findings, we take the PMF G(φNP), for
the I-gizmo, to be the most accurate (single RC) estimate
of the true PMF. Here, φNP resolves the TS at values be-
tween 0.6 and 0.75, which is well before the headgroups
fully reach the pore center, and before the RC saturates,
at φNP ≈ 0.2. The PMF G(φNP) indicates a barrier for
prepore closure of around 5 kBT . This value, to our
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FIG. 4. 2D (a-b) and 1D (c-d) PMFs of pore nucleation. (a),(b) PMFs computed using the I-gizmo (a) and H-gizmo (b),
with ensembles seeded from the closed (A) state. Contours have 1 kBT spacing. The insets show snapshots of pre-barrier
structures, with the orange/yellow stars indicating their positions in (φCxN, φNP) space. In the snapshots, water is drawn as a
stick with oxygen and hydrogen atoms in red and white, respectively. Lipid headgroup N and P atoms are drawn as blue and
orange spheres, respectively, and the lipid tail carbons are illustrated as a grey slab that has been cut away. (c-d) Marginal 1D
PMFs. For each RC, 1D PMFs are shown for four cases: both gizmo types (I and H) and both starting structures (A and B).
In all panels, the T overlays are as described in Fig. 2. Severely undersampled bins (bin count ≤ 20), which make the PMF
perimeters jagged, were not plotted, however this has no effect on the energetics or barrier heights shown.

knowledge, has not been reported previously because the
full PMF, including the entire metastable basin, was not
resolved with a single RC. However, a previous study re-
ported that for twenty independent, unbiased simulations
of DMPC pores, zero closed within 500ns [17], which sug-
gests that the closure barrier is substantial.

Our previous committor analysis provides an indepen-
dent estimate of the transition state and an additional
control to determine which PMF results are the most
accurate. Accordingly, we have overlaid the correspond-
ing TS models, onto the PMFs in Fig. 4. For the I-
gizmo ensemble (panel (a) and marginals (c-d)), the TS
model features align well with the projected PMF, and
the fc(x) = 0.5 isosurface (black dashed line) cuts the
PMF nearly at its saddle point. This effect is also seen
in the marginals (panels (c-d)), where φ0.5 (red dots) are
near the PMF maxima (blue and green curves). In con-
trast, the PMF barriers are higher and much earlier for
the H-gizmo ensembles and do not align well with φ0.5.
This result suggests that forming a hydrophobic column
is energetically too costly, and thus provides additional
evidence for the indentation path.

The role of water

Despite our finding that water CVs correlate poorly
with the committor, one would expect water to partially
hydrate the lipid headgroups that submerge to create the
prepore. Thus, to examine this idea and to better resolve
the sequence of events and the role of water, we computed
a 2D PMF using a water CV (rzOW

4 ) paired with φNP.
The CV rzOW

4 was chosen because it measures the axial

merger of the first (four) water molecules analogous to
how φNP (rzNP

4 ) measures the merger of headgroups.

Fig. 5 shows that, as was the case for φCxN, rzOW
4 does

not cleanly distinguish the A and B basins and gives rise
to projection overlaps, thus rendering it a poor RC by it-
self. The marginal PMFs in panel (d) do not reveal this
overlap directly, but the PMF maximum and φ0.5 (red
dot in the T overlay) are in poor agreement. Indeed,
in Fig. 5 (a-b), the MEPs (cyan, red, and blue dots)
are nearly orthogonal to rzOW

4 , suggesting that the wa-
ter penetration is largely orthogonal to TS crossing. In
addition, rzOW

4 is a poor committor correlate (R2 = 0.32
and R2 = 0.07 for C(I) and C(H) datasets, respectively).

In contrast to the linear MEPs seen in Fig. 4, both of
the 2D PMFs in Fig. 5 (a),(b) exhibit a kinked pathway
in the TS region. The kink results from rzOW

4 saturating
at its lowest values prior to the TS. The MEP overlay
also shows this kink at the cyan dot, φ0.2.

Taken together, these findings sugget a ”water first”
mechanism, where a small number of waters reach the
pore center prior to the headgroups and prior to φ0.5.
The subsequent barrier crossing, φ0.2 → φ0.5 → φ0.8,
follows a straight line in the projected space, primarily
along the φNP coordinate.

To further examine the sequential steps of nucleation
and the roles of hydration and headgroups we used the

trained TS model for the I-gizmo, T (I)

(φNP,rzOW
4 )

, to select

representative structures at different stages of nucleation.
Fig. 6 shows those frames (points x from C(I)) from just
before, at, and just after the TS (rows (c),(e),(g), respec-
tively) which agree best with fc (residuals |εi| ≤ 0.1).
The pre-barrier frames (row (c)) all yield ĉ(x) < 0.2
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FIG. 5. Free energy landscapes for headgroup and water CVs, φNP and rzOW
4 . The formatting is as in Fig. 4. The T overlays

in (c) and (d) are from the H-gizmo committor ensemble

and illustrate the diversity of water defects that pierce
the membrane prior to the TS. This finding is consis-
tent with the PMFs and kinked MEP described above,
indicating that hydration defects precede the TS. Next,
as the barrier is crossed, the merger of lipid headgroups
(φNP decreasing) is also clearly visible by comparing rows
(c),(e), and (g). Within these rows, there are variations
in hydration, shearing/skewing, pyramidal indentations,
and axial asymmetry, suggesting that this variability is
orthogonal to the MEP and thus does not correlate with
the progress of the reaction. The snapshots show that the
submerged headgroups are hydrated, as expected; how-
ever, the size and shape of the water clusters appear too
variable for water to serve as a precise measure of reac-
tion progress [3].

For comparison, we also plotted snapshots from cases
where ĉ(x) is severely under- or over-predicted in rows
(d) and (f), respectively. The structures in rows (d)-(f)
are visually similar and no striking structural differences
stand out to suggest other predictive CVs.

A considerable amount of the ĉ(x) variance here stems
from using imprecise (Nc = 16) committor estimates.
Whereas upwards of 100 shots are needed to converge a
single ĉ(x) estimate, this is largely due to statistical un-
certainty. Indeed, binomial deconvolution methods can
be used to estimate committor histograms rigorously, at
10x reduced cost[48]. Here, as Figs. 6(a) and 3(c,e) show,
the observed variance in ĉ(x|Nc = 16) is indeed compara-
ble to the statistical uncertainty (dotted lines above and
below the regression curve fc). This suggests that, for
the purpose of ranking CVs, only low resolution commit-
tor estimates are required, provided a sufficient number
of uncorrelated configurations near the TS. (For more in-
formation about the comittor datasets see the Supporting
Material.)

DISCUSSION

We have used a combination of atomistic MD simla-
tions, free energy calculations, and committor analysis to
probe the mechanism of metastable prepore formation in
a lipid membrane.

Several previous simulation studies of poration have
proposed and employed one or a few possible RCs, con-
sidering specific atom groups and CVs in isolation. These
approaches include restraining a single lipid headgroup
relative to the bilayer midplane [17, 21, 22, 49, 50], bi-
asing hydrophilic atoms to occupy a stack of cylindri-
cal slabs spanning the membrane [14], biasing water to
occupy a cylindrical column [51], and growing a lateral
depletion of lipid centers of mass [52].

Here we adopted a more general approach and con-
structed a combinatoric pool of CVs to systematically
vary the different factors relevant to the mechanism, in-
cluding the atom group, geometric bias, and locality (via
N , the number of atoms in the CV definition). These
CVs were then assessed systematically as RCs, using a
committor regression scheme. For comparison, hybrid
RCs built from pairwise linear combinations of individual
CVs were also tested, but not found to be substantially
superior.

Our results showed that the achievable RC quality
largely depends on the choice of atom group. Head-
group (NP and P) based CVs yielded the highest corre-
lation with the committor and in this sense represented
the best descriptors for the RC in the vicinity of the
TS. In contrast, and somewhat unexpectedly, CVs based
only on the position of water molecules (the OW fam-
ily) provided remarkably poor RCs. Also, the PNO CVs
(grouping N,P, and (water) O atoms) described the RC
less accurately than NP alone, suggesting that these hy-
drophilic components have distinct mechanistic roles in
the TS crossing. Lipid tail based CVs (CxN) were also
less predictive than headgroups.
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FIG. 6. Configurations showing TS crossing, taken from the C(I) dataset. The regression model (a) and the corresponding TS
model (b) for the CVs φNP and rzOW

4 . In (a), fc is shown as a solid line and the dotted lines are ± two standard deviations,
assuming 16 (Nc) samples drawn from a binomial distribution. In (b) the solid and dashed lines correspond to those in Fig. 5(a).
In (a) and (b), the committor dataset is shown as grey dots. The colored dots indicate configurations that are illustrated in
rows (c)-(g). These illustrated configurations were chosen based on ĉ(x) values and residual errors. Rows (c), (e), and (g) show
configurations from before, at, and after the TS respectively, with small residual errors. Configurations in rows (d) and (f)
have large negative and positive error residuals, respectively.

Among the headgroup RCs (and among all RCs
tested), rzNP

4 (φNP), which essentially measures the gap
between two penetrating lipid headgroups, provided the
best description of the commitor RC. Interestingly, none
of the combinations of φNP and CVs involving larger
numbers (10–20) of atoms, which measure larger collec-
tive motion, substantially outperformed φNP alone. This
result suggests that barrier crossing is more localized
than one might have expected.

This particular RC φNP somewhat resembles the hy-
drophobic belt height suggested by Akimov et al. [19].
The fact that our systematic and unbiased search high-
lighted this RC, corroborates its mechanistic relevance
and utility in continuum modeling. Our RC φNP is
also similar to the slab occupancy metric [14] referred to
above. Both RCs essentially measure the gap between
the penetrating hydrophilic material, but for different
groups of atoms, which turned out to be an important
distinction. This RC, as well as the other RCs considered
here, also provide a rather smoother measure of merger
progress, which does not require spatial discretization

and thereby avoids Poisson noise due to near-zero bin
counts.

Overall, our committor analysis and RC ranking un-
derscores the importance of headgroup merger, both as
a mechanistic descriptor and biasing coordinate. How-
ever, regarding the precise molecular mechanism, it is
crucial to systematically define and asses RCs against
the, by definition, optimal committor RC. Unexpectedly,
water turned out to be rather weakly correlated with
the progress of pore formation; further, the degree of
hydration fluctuates markedly during poration, which,
taken together, renders hydration a rather poor RC. Wa-
ter based CVs (by themselves), therefore, seem to provide
less suitable biasing coordinates for portion and, possibly,
similar systems and processes such as membrane fusion.
Lateral depletion coordinates, in contrast, such as φCxN,
are better for describing pore expansion than nucleation.

To obtain sufficient sampling of the hard-to-reach TS
region, we developed a new biasing scheme, the pore
gizmo. The intended effect of this gizmo bias potential,
exerted via repulsive beads, is similar in spirit to other
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schemes using repulsive plates [53], hydrophilic beads
[54], depletion coordinates [52], or constrictive ”cuff po-
tentials” [55]. What distinguishes the gizmo, and, as it
turned out, renders it particularly suitable for the present
purpose, is its flexibility, which provides the combined
system with sufficient flexibility to enhance sampling and
thereby to also probe asymmetric states. In particular,
the axial flexibility of the CX chain allows for proper
sampling of asymmetric or skewed tail packing defects.

Using our gizmo biasing potential enabled us to obtain
sufficient sampling to study, by atomistic simulations,
the full poration pathway and the mechanistic steps of
a DMPC lipid bilayer prior to nucleation. Two different
biasing schemes were used to direct a membrane thinning
(indentation) path and a hydrophobic defect path, both
leading to open pores. By computing PMFs, projected
onto the optimal RCs determined before, and by compar-
ing snapshots close to the TS, a sequential penetration
of water and headgroups was resolved.

Taken together, our simulations and committor-based
RCs suggest the following mechanism. A pore nucleates
via an elastic indentation that is energetically preferred
to forming a hydrophobic defect. After thinning, but
just prior to the TS, water pierces the thinned slab. This
water defect is required but does not suffice to finally
nucleate the pore. Instead, it is the axial merger of the
first lipid headgroups from opposite monolayers (φNP)
that precedes — and best characterizes — the subsequent
nucleation and thus crossing of the TS.

This mechanism could be biologically relevant for the
structure and rupture of the hemifusion diaphragm (HD)
[56, 57]. In this context, the HD perimeter is a three-way
membrane junction that is predicted to stabilize, and po-
tentially lower the nucleation barrier for, transient pore
defects [10]. These rim pores are likely on-path precur-
sors to rupture, and therefore might also explain flicker-
ing prior to HD opening [58]. A similar combination of
enhanced sampling and committor analysis could enable
one to study this and other biologically relevant topolog-
ical membrane remodelling mechanisms, such as fusion
stalk formation.

Similar to lipids, intrinsically disordered proteins
(IDPs) can regulate transport, but are challenging to
control and characterize structurally. For example, there
is an ongoing discussion on how the IDPs that form
the interior of nuclear pore complexes (Phe–Gly nucle-
oporins or FG-Nups) are organized and spatially dis-
tributed within the nuclear pore in order to achieve se-
lectivity for karyopherins [59]. Gizmo based enhanced
sampling may enable one to energetically distinguish be-
tween these hypotheses.

In a broader context, future studies that seek to un-
cover atomistic mechanisms and to compute energetics
with kBT precision particularly for permutationally frus-
trated systems such as membranes, solvent surface layers,
or IDPs, will benefit from hybrid schemes that combine

committor analysis based RC optimisation and free en-
ergy calculations using gizmo biased enhanced sampling.
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