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Abstract
Circular dichroism (CD) spectroscopy is highly sensitive to the secondary
structure (SS) composition of proteins. Several methods exist to either es-
timate the SS composition of a protein or to validate existing structural
models using its CD spectrum. The accuracy and precision of these meth-
ods depend on the quality of both the measured CD spectrum and the used
reference structure. Using a large reference protein set with high quality CD
spectra and synthetic data derived from this set, we quantified deviations
from both ideal spectra and reference structures due to experimental limita-
tions. We also determined the impact of these deviations on SS estimation,
CD prediction, and SS validation methods of the SESCA analysis package.
With regard to the CD spectra, our results suggest intensity scaling errors
and non-SS contributions as the main causes of inaccuracies. These factors
also can lead to overestimated model errors during validation. The errors
of the used reference structures combine non-additively with errors caused
by the CD spectrum, which increases the uncertainty of model validation.
We have further shown that the effects of scaling errors in the CD spectrum
can be nearly eliminated by appropriate re-scaling, and that the accuracy of
model validation methods can be improved by accounting for typical non-SS
contributions. These improvements have now been implemented within the
SESCA package.
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1 Introduction

Circular dichroism (CD) spectroscopy is known for its high sensitivity to the
secondary structure (SS) composition of proteins, especially when bright,
synchrotron radiation (SR) light sources are used [5]. CD spectra are rou-
tinely used to estimate protein SS compositions, both as a laboratory quality
control and to monitor structural changes in proteins. The latter requires the
validation of proposed structural models, either by estimating SS composi-
tions from the measured spectra and comparing them to the SS composition
of the structural models, or by predicting CD spectra from the structural
models and then comparing those to the measured spectra.

Many established SS estimation and CD prediction methods decompose
the CD signals into linear combinations of empirical ”basis spectra”, repre-
senting contributions from SS elements of the protein. The accuracy of these
methods depends on several assumptions [2] concerning both measurements
of the reference proteins which the basis spectra are extracted from, as well
as the measurements on the proteins of interest:

1. The protein concentrations during CD measurements are accurately
known. To extract accurate basis spectra from different measurements
and proteins, the CD spectra need to be properly normalized, which
requires an accurate determination of the respective protein concentra-
tions. Unfortunately, the relevant measurements suffer from a 10-25%
[8] uncertainty, introducing scaling errors to the measured CD spectra.
The propagation of these errors reduces the accuracy of CD prediction
and SS estimation methods. Therefore, many methods apply intensity
scaling factors to correct the strength of measured CD signals.

2. The SS composition of reference proteins is accurately known, and re-
flects the SS composition under the the conditions of the CD measure-
ment. Methods that rely on empirical basis spectra require reference SS
compositions, usually obtained from structural models determined by
X-ray crystallography or nuclear magnetic resonance (NMR) measure-
ments. Structure determination typically requires conditions different
from those of CD measurements (e.g. different concentrations), which
may alter the protein structure. As a result reference SS compositions
typically deviate from those of the solution structure by 10 % on av-
erage [6], reducing the accuracy of empirical SS estimation and CD
prediction methods.

3. The measured protein samples are free of contamination, and non-SS
CD contributions can be neglected. Non-SS contributions from the pro-
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tein include tertiary structure CD contributions, far ultra-violet (UV)
CD signals from natural or modified amino acid side chains, co-factors,
and ion coordination sites. The most studied of those are side chain
contributions, which, however are typically smaller than 10% of the SS
contributions [12].

Here, we will address two questions: First, to which extent are the above
assumptions violated in typical SR-CD data sets? Second, how do such de-
viations affect the accuracy of SS estimation, CD prediction, and model vali-
dation methods? To answer the second question, we constructed a synthetic
reference data set including the typical violations, for which the deviations
in the reference data are precisely known, and their effects are exactly cal-
culable.

2 Methods

2.1 Experimental errors

Typical deviations from the assumptions listed above were estimated based
on the analysis performed by Nagy et al. [12] on the SP175 reference set [7],
which contains high-quality structures and SR-CD spectra for 71 proteins
with diverse SS compositions.

Briefly, the correct SS composition for the protein in solution was esti-
mated through deconvolution of its re-scaled CD spectrum. The scaling fac-
tors applied to the measured spectra quantified scaling errors in the data set.
Deviations between the estimated correct SS and the reference SS composi-
tion were used to quantify structural errors. Finally, non-SS contributions
were quantified by averaging the deviations between the re-scaled CD spectra
and CD signals back-calculated from the estimated SS.

The scaling factor αj for each reference protein was determined based
on six predicted spectra, each calculated from the same reference structure
using different prediction methods. Four of these predictions were made by
SESCA basis sets (DS-dT, DSSP-1, HBSS-3, DS5-4), one was determined
by the ab initio predictor DichroCalc [1], and one by a specialized basis set
BestSel der ref [12]. For each prediction, a scaling factor was calculated to
minimize root mean squared deviation (RMSD) between the measured and
predicted CD spectrum. The final αj for the protein j was calculated as the
average of its six obtained scaling factors, whereas the scaling error of its CD
spectrum is given by

∆[θ]scalej =
|αj − 1|
αj

. (1)
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After all reference CD spectra were re-scaled by the αj values, the four
SESCA basis sets were used to obtain the estimated SS composition (Cest

ji )
through CD deconvolution. The deviation (∆SSj) between the estimated
and reference SS compositions were computed according to

∆SSj =
∑
i

|Cest
ji − C

ref
ji |

2
, (2)

where Cest
ji and Cref

ji are the coefficients of SS class i in protein j for the
estimated and reference structures, respectively. The obtained ∆SSj values
from each basis set were again averaged for every protein j to estimate the
SS deviation of reference structures in the SP175 set.

For each protein the estimated prediction error caused by non-SS CD
contributions (∆[θ]0j) was calculated and normalized by the re-scaled average
spectrum intensity

∆[θ]0j =

√√√√√∑
l ([θ]estjl − αj[θ]

ref
jl )

2

∑
l (αj[θ]

ref
jl )

2 , (3)

where [θ]estjl and [θ]refjl are back-calculated and measured spectral intensities
of protein j at wavelength l, respectively. Similarly to SS deviations, ∆[θ]0j
values calculated using the 4 SESCA basis sets were averaged for each pro-
tein in the SP175 set to obtain a final estimate on its non-SS contributions.

Next, the noise-to-signal ratio ∆[θ]totj for each reference protein was de-
termined by dividing the total prediction error by the average intensity of
the estimated SS signal

∆[θ]totj =

√√√√√∑
l ([θ]predjl − [θ]refjl )

2∑
l ([θ]estjl )2

. (4)

Again, the four obtained values from SESCA basis sets were averaged for each
protein j to estimate the final noise-to-signal ratio for all reference proteins.

The distribution of scaling factors (αj), SS deviations (∆SSj), non-SS
contributions (∆[θ]0j), and noise-to-signal ratios (∆[θ]totj ) of the SP175 set
were used to describe the typical deviations from the assumed ideal experi-
mental data, as well as to generate synthetic data sets that test the effect of
these deviations during SR-CD based model validation.
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2.2 Synthetic Data

A synthetic data set of structures and CD spectra with precisely known
errors were created to test the effect of different deviations from the ideal
experimental data on the CD prediction, SS estimation, and model validation
methods.

A ”correct model” was defined with a typical SS composition of 30%
α-helix , 40% β -strand and 30% random coil .

From that model a ”correct CD signal” (purple-dashed curve in Fig. 1)
was generated by predicting the CD spectrum of the correct model with the
DS5-4 basis set of SESCA [12]. For the CD prediction, SS fractions of the
correct model were assigned to the coefficients of basis spectrum ”Helix1”,
”Beta1”, and ”Other”, respectively.

Structural deviations were modelled by constructing 20 synthetic models
with altered SS compositions that covered the α - β - coil SS space (see Table
1).

CD deviations were modelled by constructing 20 synthetic CD spectra
with scaling errors, non-SS contributions or both (Table 2).

Scaling errors were modelled multiplying the correct spectrum with 1/αk =
{0.3, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.5} to obtain four under-scaled (subsequently
S-) and four over-scaled (S+) CD spectra.

Errors from non-SS CD contributions were modelled by adding a ”con-
tamination” signal (blue-dashed curve in Fig. 1) to the correct spectrum.
The contamination signal was obtained by estimating the SS composition of
bovine lactoferrin (SP175/42) from its measured CD spectrum, and subtract-
ing its estimated SS signal from the measured one. This contamination was
re-scaled to the same average intensity as the correct spectrum, and then was
added to the correct spectrum with weights of wk = {±0.1,±0.3,±0.5,±1.0}
to create two series of CD spectra (C+ and C-) with increasing non-SS con-
tributions.

Further, a set of four CD spectra (CS) was generated that included
both contamination and scaling errors. For these spectra, weights wk =
{0.2,−0.3, 1.0,−1.0} were used to add contamination, then the resulting
spectra were scaled by 1/αk = {1.3, 0.8, 0.7, 1.1}, respectively.

The error in each synthetic spectrum k was calculated and normalized by
the correct CD signal

∆[θ]spectk =

√√√√∑
l ([θ]kl − [θ]correctl )2∑

l ([θ]correctl )2
, (5)

where [θ]kl and [θ]correctl are CD intensities of spectrum k and the correct
spectrum at wavelength l, respectively.

5

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 6, 2020. . https://doi.org/10.1101/2020.06.05.123398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.123398
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3 Deconvolution methods

We used three different deconvolution methods termed D1, D2, and D3 to
study the effects of experimental errors on SS estimation accuracy. All three
methods use the DS5-4 basis set and perform several simplex searches in the
SS composition space based on an adaptive Nelder-Mead algorithm [3], as
implemented in the deconvolution module of the SESCA package [12]. The
three methods differ in the number of searches performed as well as in the
applied constraints as described below. We note that the application of such
constraints reportedly affects the accuracy of the deconvolution, depending
on the experimental error of the CD spectrum of interest [9].

For D1, 500 simplex searches were performed, each starting from a ran-
dom SS composition. As constraints, each basis spectrum coefficient was
required to be non-negative and their sum to be unity. For D2, the sum of
coefficients was not required to be unity and, due to faster convergence, only
200 searches per protein were performed. D3 proceeds as D2, except the
coefficients are not restricted to non-negative values during the search.

At the end of the deconvolution, the search resulting in basis set coef-
ficients with the best fit to the measured spectrum was accepted. For the
accepted fit, all negative coefficients were set to zero, and subsequently coef-
ficients were re-normalized to add up to unity. This procedure yielded plau-
sible SS compositions for all three methods, and also provided the optimal
scaling factors for the measured spectra for D2 and D3.

2.4 Model validation methods

We tested the accuracy five potential validation methods, which may be used
to evaluate the quality of protein structural models with SESCA [12]. Three
methods (V1, V2, and V3) are based mainly on CD deconvolution, the other
two (V4 and V5) are based on CD predictions.

Specifically, V1 estimates the SS composition of a target protein with-
out corrections to the CD spectrum, using deconvolution method D1. The
error of its proposed model (∆SSest

j ) is then calculated according to eq. 2 .
Method V2 is similar to V1, except that the deconvolution is done by D2,
which includes re-scaling the measured CD spectrum during the SS estima-
tion. Method V3 is also similar to V1, except that prior the deconvolution
step, the measured CD spectrum is re-scaled to match the intensity of the
predicted CD spectrum of the proposed model. We note that method D3
was not considered for model validation based on its sensitivity to non-SS
contributions discussed in Section 3.2.
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V4 and V5 first predict CD spectra from the proposed protein structure,
then calculate ∆SSest

j from the deviation of the predicted and measured CD
spectra (RMSDj) according to

∆SSest
j =

RMSDj

mf

, (6)

where mf is a predetermined sensitivity parameter. For both methods, the
measured CD spectrum is re-scaled to minimize the RMSDj prior the es-
timation of the model error. The two methods differ in their sensitivity
parameters, which was mf= 15.6 kMRE for V4 and mf= 30.7 kMRE for V5.
The former was determined based on a calibration using the SP175 set as
described in [12], whereas the latter was derived using the same calibration
performed on a set of 500 random generated synthetic reference proteins,
that mimicked the distribution of SS compositions, estimated scaling errors
and non-SS contributions of the SP175 set (the latter two distributions are
discussed in Section 3.1).

2.5 Model validation accuracy

The accuracy of all model validation methods described above was evaluated
from the synthetic data set described in Section 2.2 using two different met-
rics. First, the model validation error for a given synthetic CD spectrum k
was calculated as

∆∆SSk =

∑N
j=1 (∆SSest

jk −∆SStrue
j )

N
, (7)

where ∆SSest
jk is the estimated SS deviation between model j and the correct

model, determined using spectrum k, and ∆SStrue
j is true SS deviation listed

in Table 1. Second, a ranking score Rk was determined, which quantifies how
many of the other 20 synthetic models had ∆SSest

jk values lower or equal to the
correct model. Both ∆∆SSk and Rk values were computed systematically
for each CD spectrum in the synthetic data set, to assess the change in
model validation accuracy as function of experimental errors in the reference
CD spectrum. Finally, the mean and standard deviation of model errors
(∆∆SS) and ranking scores (Avg. Rank) were computed to quantify the
overall performance of the method.
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3 Results

3.1 Experimental error distribution

First, we characterized the typical deviations from the three assumptions
that define ideal SR-CD data (Section 1). These deviations were quantified
for 71 reference proteins of the SP175 set [7] through scaling errors and non-
SS contributions of their measured CD spectra (collectively referred to as CD
deviations), as well as through SS deviations between their structural model
and estimated correct structure (Section 2.1).

Figure 2A shows the distribution of the scaling factors αj, i.e. the ratios of
assumed and correct protein concentrations, that compensate for estimated
scaling errors in the SR-CD spectra. As expected from random errors due
to measurement uncertainty, the distribution of the αj values is close to nor-
mal, with a mean of 0.87 and a standard deviation (SD) of 0.25. The SD
also agrees well with the typical uncertainty reported for protein concen-
tration measurements [8, 4]. The fact that the mean value is smaller than
unity is likely due to protein adsorption at the cell surface during the CD
measurements, effectively decreasing the actual concentration in the bulk.

Figure 2B shows the SS deviations ∆SSj, calculated as an average over
predictions from four different SESCA basis sets (Section 2.1). These are
also close to be normally distributed, with a mean of 0.14 and a SD of 0.05.
These SS deviations between the reference structures and the SS composition
derived from the measured CD spectra are larger than the 10% expected from
comparing X-ray structures and NMR structures of the the same protein [9].
Note, however, that expected 10% deviation is based on a classification of
only three SS classes, whereas the four SESCA basis sets have three to six
SS classes. The mean SS deviation over all reference proteins computed for
individual basis sets increases monotonically with the number of SS classes
from 7% for three SS classes (magenta) to 19% for six SS classes(cyan),
which may explain the obtained larger average deviations. However, we also
note that the uncertainty of the estimated correct SS compositions derived
from the CD spectra (Section 2.1) may also contribute to the obtained SS
deviations.

Figure 2C shows the distribution of non-SS contributions d[θ]0j , estimated
from the difference between the SS contribution derived from deconvolution
and the (re-scaled) measured spectrum (see Section 2.1). Clearly, the Gaus-
sian fit (black line) does not describe this distribution well. For about half
of the reference CD spectra, the non-SS contributions are smaller than 20%
of the CD signal intensity, consistent with the assumption that, for these
cases, the signal is dominated by the SS contributions. However, for the rest
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of the proteins, larger non-SS contributions of up to 60% are seen, with one
outlier close to 80%. We note that non-SS contributions tend to be smaller
for α-helical proteins (blue symbols) than for β-sheet and Coil proteins, due
to the stronger CD signal of α-helices. Further, due to the fitting procedure
used to estimate the correct SS compositions, the histogram in Figure 2C
rather underestimates the actual deviations. These findings render the ques-
tion of how the non-SS contributions affect the interpretation of CD spectra
particularly relevant. We will address this question further below.

To quantify the combined effects of the above three deviations, the noise-
to-signal ratios d[θ]totj were also calculated for each reference protein. These
ratios, similarly to the non-SS contributions, are not normally distributed,
and a wide range of ratios between 0.1 to 1.6 was obtained for the SP175 set.
This distribution also shows that, even with the best experimental informa-
tion available, the noise caused by non-ideal experimental data is larger than
40% of the SS signal for over half of the studied reference proteins.

Considering the estimated noise levels, it is surprising that in our previous
study [12] the accuracy of SESCA basis sets appeared to be robust to errors
in the SP175 reference set. This robustness is likely observed because the
basis spectra are determined from a large set of structures and CD spectra,
and the influence of errors from individual proteins is largely reduced due
to averaging. However, during model validation, we cannot rely on such
cancellation of errors in the reference CD spectrum and the SS composition of
the protein of interest (henceforth, target protein). Therefore, the remaining
sections will focus on the effect of CD and SS deviations of the target protein
with respect to the accuracy of SS estimation, CD prediction, and model
validation methods.

3.2 Effects on the accuracy of SS estimation methods

First, we tested how CD and SS deviations affect the accuracy of the three
SS estimation methods D1, D2, and D3, described in Section 2.3. All three
methods estimate the SS composition of the target protein by spectrum de-
convolution, approximating its measured CD spectrum with a linear combi-
nation of basis spectra. The methods differ in the constraints applied to the
basis spectrum coefficients during the search for the best approximation. D1
applies both normalization and non-negativity constraints to the coefficients,
D2 only applies the non-negativity constraint, and D3 applies no constraints.

As a first step, we consider the effects of CD deviations on the accu-
racy of SS estimation methods, because these deviations directly affect CD
deconvolution. Then, as a second step, we illustrate how the errors from
CD deviations and SS deviations in reference structures combine for model
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validation methods based on SS estimation, such as the scheme we used to
estimate CD and SS deviations in Section 3.1.

We test the effect of CD deviations in the target spectrum by gauging the
accuracy of SS estimates from 21 synthetic CD spectra, to which we inten-
tionally introduced given amounts of scaling errors and non-SS contributions
(listed in Table 2). The error of methods D1, D2, and D3 for synthetic (tar-
get) spectrum k was determined from the deviation ∆SSk between their SS
estimate and the correct SS composition of the synthetic data set. Figure 3
shows how these errors increase in response to different CD deviations. Com-
paring the errors we obtained from synthetic spectra with the same type of
CD deviations (corresponding colours and symbols) highlights that the SS
estimation accuracy strongly depends on the applied constraints as well as
the CD deviation type.

We first focus on the errors of method D1 (Fig. 3A). This method con-
strains the basis set coefficients to be positive and sum up to unity, such that
the coefficients are equal to the fraction of amino acids in a particular SS
class. The obtained ∆SSk for D1 average to 20.4% and increase almost lin-
early up to a 25% deviation in the target spectrum. At larger CD deviations,
D1 shows a slightly higher sensitivity to scaling errors (S+ and S- subsets
shown in light and dark green) than to non-SS contamination (C+ and C-, in
blue and black). For synthetic spectra with both scaling errors and non-SS
contributions (CS, in brown), the SS estimation error for D1 remains mod-
erately large and changes nearly linearly with summed CD deviation. We
note that, despite its limited accuracy, several methods (including SESCA)
enforce similar constraints as D1 during their SS estimation. Further, the D1
SS search did not always converge due to the applied constraints. Because the
search minimizes the error of the approximation, the error values obtained
for D1 are likely overestimated. Non-convergence is also the likely reason for
the 1.3% SS deviation observed at 0% spectrum error. Figure 3B shows the
same analysis for method D2, which only applies non-negativity constraints,
and re-normalizes the best fitting coefficients at the end of the SS search. Be-
cause this procedure effectively re-scales the measured CD spectrum during
the search, it eliminates SS estimation errors from scaling errors. However,
as seen from the errors of the C+ and C- subsets, D2 shows an increased
sensitivity to non-SS contamination. The considerable difference of ∆SSk

obtained for the C+ and C- spectrum subsets also indicates that D2 is more
sensitive to the shape of the contamination signal. Overall, D2 still yields
the smallest average error of 14.4% for the synthetic data set. The better
accuracy may explain why some of the more recent deconvolution algorithms
(e.g., BestSel [11]) are based on similar constraints.

Carrying the idea of relaxing constraints one step further, it has been
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suggested [9] not to constrain the coefficients at all during the spectrum
approximation (method D3, Fig. 3C). The errors obtained for D3 are zero for
S+ and S- subsets, but larger than 30% for all other synthetic spectra, leading
to an average SS estimation error of 27.3%. These ∆SSk values indicate
that D3 also eliminates the effect of scaling errors, but it is much more
susceptible to over-fitting due to non-SS contributions. Based on these large
SS estimation errors and the distribution of non-SS contributions reported in
Section 3.1; we expect method D3 to be rather inaccurate for about one third
of the proteins of the SP175 set. Consequently, we decided not to analyse
methods using unconstrained deconvolution further.

The obtained results enable us to determine how much the estimated SS
compositions, on average, differ from the true solution structure of the CD
measurement as a function of CD deviations in the spectrum. The synthetic
data set also allows us to assess how these differences affect model validation
methods based on SS estimation. To this aim, we consider the combined
effect of errors in the SS estimation and the error in the structural model(s)
to be validated (e.g. reference structures from X-ray crystallography). To
test the combined effect of these errors, in a second step, we use 20 synthetic
SS compositions with different SS deviations from the correct structure (see
Table 1). In Figure 4, these synthetic models play the role of experimental
’known’ structures that are compared to the estimated SS composition based
on the CD spectrum.

Initially, we estimate the true SS composition from the correct synthetic
CD spectrum (k=0 in Table 2, no scaling errors or non-SS contributions) to
determine ∆SSest

jk , the estimated SS deviation of each synthetic model j. In
Figure 4A and 4B, these estimated SS deviations (black symbols) are shown
for methods D2 and D1, respectively, as function of the true SS deviation.
Because D2 always estimates the true SS composition accurately from the
correct synthetic spectrum, the estimated model errors are equal to the true
SS deviation, and the black symbols in Fig. 4A fall on the black solid line
that indicates an accurate model validation. The estimated SS deviations for
D1 (Fig. 4B) differ slightly from the true SS deviations on several instances,
most likely because the SS estimation does not always converge. Overall,
for using an ideal CD spectrum, the correct SS compositions are exactly or
almost exactly recovered by the two methods and, therefore, in this case, the
observed SS deviations only – and trivially – reflect the difference between
the reference and true SS compositions.

Next, we estimate the SS deviations from the true structure using a syn-
thetic CD spectrum with CD deviations typical for the SP175 set (CS–1,
k=17 in Table 2), which cause a 7.9% and 25% error in the estimated SS
composition of D2 and D1 respectively. We attribute this large difference in
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the SS estimation error to the fact that D2 compensates for the 30% scaling
error in the spectrum, whereas D1 does not. If we expect the errors from
CD and SS deviation to be additive, then estimated SS deviations should fall
on the solid red lines, for which the offsets are errors of the SS estimation.
However, the obtained ∆SSest

jk values (red symbols) indicate that the effect
of CD and SS deviations are often not fully additive, because the estimated
SS deviations are usually larger than the true SS deviation, but by less than
the SS estimation error. These results suggest that CD deviations generally
lead to an overestimation of the true SS deviation, which increases with the
error of the applied SS estimation method.

Further, the dashed lines in Fig. 4 connect the smallest (empty symbols)
and largest (full symbols) estimated SS deviations in the synthetic data set
observed for a given true SS deviation. The difference between the minimum
and maximum estimated SS deviations is zero for accurate SS estimations
(Fig. 4A black lines) and increases with the SS estimation error up to 26%
(Fig. 4B red lines). In addition, some estimated SS deviations in Fig. 4B are
even smaller than the true SS deviation indicating a cancellation of errors.
The obtained data suggest that the non-additive summation of errors from
CD and SS deviations introduces and uncertainty during model validation,
which also increases with the error of the SS estimation. Potentially, the
estimated SS deviation for any SS composition may change between its true
SS deviation plus or minus the SS estimation error. When CD deviations
cause large errors in the SS estimate, this uncertainty may mislead the model
validation and prevent the precise determination of the correct SS composi-
tion. The results also highlight the importance of re-scaling the CD spectra
to reduce the uncertainty from scaling errors, and to improve the precision
of model validation.

3.3 Effects on the accuracy CD predictions

We also tested the effect of SS and CD deviations on the accuracy of CD
prediction methods. These methods compute CD spectra from proposed
model structures of the target protein, and the predicted spectra can be
compared to a measured reference spectrum for model validation. We note
that CD prediction methods are affected by errors in the proposed protein
models (i.e. the SS deviation between the proposed and correct structure),
but CD deviations in the reference spectrum do not influence their predictions
directly. However, scaling errors or non-SS contributions cause deviations
between the predicted and measured CD spectra and, therefore, they reduce
the prediction accuracy and interfere with model validation.

In Figure 5 we show the CD prediction accuracy quantified by two com-
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mon metrics. First, the root mean squared deviation (RMSDj) of CD inten-
sities between the compared spectra of protein j, and second, a normalized
version (NRMSDj) by Mao et al. [10], where the RMSD is divided by the
RMS of the measured CD intensities. The RMSD quantifies the absolute
deviation between the measured an predicted spectra, whereas the NRMSD
is a relative deviation with respect to the measured CD signal.

In Figures 5A and 5B, we depict the effect of SS deviations in the protein
model by predicting CD spectra for all 21 SS compositions of our synthetic
data set and comparing them to the correct CD spectrum of the set. In the
absence of CD deviations, both RMSDj and NRMSDj values are linearly
correlated with the SS deviation of synthetic model j, with a slope that
depends on which SS fractions deviate from the correct model. Additionally,
the prediction accuracy using both metrics can be approximated from the
SS deviation with a single linear function (Pearson correlation coefficient of
0.917), in agreement with the model validation results in our previous study
[12].

Figures 5C and 5D show the change in RMSD and NRMSD, respec-
tively, in response to increasing CD deviations. Here, the CD spectrum was
predicted from the correct SS composition and compared to all 21 synthetic
CD spectra with given scaling errors and non-SS contributions (see Table 2).
The RMSDj values in Fig. 5C increase linearly with an identical slope for
all five subsets of generated CD spectra, indicating that this metric is invari-
ant to the type of the CD deviation. In contrast, the increase of NRMSDj

values in Fig. 5D are non-linear and depend on the error type, because CD
deviations affect the normalization term (i.e. the spectrum intensity) dif-
ferently. Accordingly, the change in NRMSDj values is superlinear when
the measured spectrum intensity is underestimated (S-), but sublinear for
spectra with non-SS contributions (C+ and C-) and overestimated spectrum
intensities (S+).

We also tested the combined effect of SS and CD deviations through
synthetic spectrum and SS model pairs that include both. The observed
RMSDj and NRMSDj values for these combinations clearly show that the
effect of CD and SS deviations are not additive for CD predictions, and
introduces a similar uncertainty to the model validation as observed for SS
estimation methods in Section 3.2. Despite their non-additivity, the square
sum of the errors from CD and SS deviations show a Pearson correlation
of 0.953 with the square of total RMSDj. This behaviour is expected for
CD spectra with independent error components, as discussed in our previous
study [12]. A similar trend is also observed for NRMSDj values, with a
weaker Pearson correlation (0.911) and a slope smaller than unity (0.88).
Because the non-linear response to CD deviations leads to a more complex
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NRMSD profile, we only consider RMSD-based prediction methods for the
subsequent assessment of the effects on model validation.

3.4 Comparison between model validation methods

Finally, we compared the accuracy and reliability of five structural model
validation methods (see Section 2.5) with respect to certain deviations in
the reference CD spectrum. Our aim is to determine which method is most
suitable for assessing the quality of model structures using SESCA [12].

Three of the validation methods (V1-V3) are based on the deconvolution
of the validation spectrum, and subsequently computing the difference be-
tween the estimated SS composition and the SS of the proposed models. From
these methods, V1 and V2 use deconvolution methods D1 and D2 (Section
3.2), respectively, to estimate the correct SS composition. The comparison
of V1 and V2 illustrates how re-scaling the CD spectrum intensity affects
model validation. Method V3 mimics the model validation scheme we used
to estimate typical CD and SS deviations in Section 3.1. This method first
re-scales the measured CD spectrum based on the spectrum predicted from
the model structure, then estimates the correct SS composition using D1 to
compare it with that of the model. The other two methods, V4 and V5, are
based on CD predictions. They both re-scale the CD spectrum, and estimate
the model error from the deviation between model’s predicted spectrum and
the validation spectrum using a sensitivity parameter. The two methods dif-
fer in this parameter, which was extracted from experimental reference data
for V4, and from synthetic data for V5, respectively (see Section 2.4).

The average performance of each validation method was assessed based
on the 441 possible spectrum/model combinations of the synthetic data set.
First, for each method, we estimated the model error (∆∆SSest

jk , Section 2.5)
for every synthetic model j based on synthetic spectrum k, and compared
it to the true SS deviation of the used model from the correct model of the
set. The obtained model validation errors were averaged for each spectrum
(∆∆SSk) to determine how the CD deviations in the validation spectrum
affect the errors of the model validation method. We used the collection of
computed ∆∆SSk values with increasing CD deviations (henceforth, error
profile) to describe the behavior of each method.

Figure 6A shows the error profile of all five methods (dashed lines) for
the C- subset of synthetic spectra to illustrate the effect of non-SS contri-
butions in the reference CD spectrum. Overall, the model validation error
correlates positively with non-SS signals in the spectrum. The observed in-
crease of ∆∆SSk is almost linear for the prediction-based methods (V4 and
V5). In contrast, it increases faster at lower errors for deconvolution-based
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methods (V1-V3), but more slowly at large spectrum errors. In particular,
the largest increase is seen for V2, which is not unexpected considering that
the underlying D2 deconvolution method shows a larger sensitivity to non-SS
contributions.

It is also informative to analyse the model validation error in the absence
of CD deviations (i.e. the offset of the error profiles). Because deconvolution-
based model validation always assumes negligible non-SS signals in the CD
spectrum, the offset for V1 to V3 is expected to be zero. This is indeed the
case for V2, whereas for V1, an average 1.8% deviation is introduced due
convergence problems. For V3, re-scaling the CD spectrum to match the
predicted spectra of incorrect models introduces an even larger offset of 7%.
The prediction-based model validation methods assume an average (non-
zero) CD deviation, which should lead to a negative offset in their profiles.
This is indeed observed for V5 (-2%), but not for method V4, for which the
offset was 14%. The most likely explanation for this large positive offset is an
incorrect sensitivity parameter, which for V4 was determined by calibration
using estimated SS deviations of the SP175 reference set. We note that these
estimated deviations were determined by a modified version of method V3
(see Section 3.2), which, at typical CD deviations (30%) overestimates the
model errors by approximately 15%. The propagation of this error to V4
through its sensitivity parameter would explain the observed offset as well
as the large difference between the sensitivity parameters of V4 and V5.

We assess the effect of scaling errors in reference CD spectra in Fig. 6B,
which shows error profiles for the S+ subset of synthetic spectra. These error
profiles have the same offsets but different increase compared to the profiles
for non-SS contributions. For V1, which does not re-scale the validation
spectrum, model validation errors increase almost linearly with scaling errors,
whereas ∆∆SSk remains nearly constant for V2 to V5. This trend strongly
suggests that re-scaling the reference spectrum indeed eliminates the effects
of scaling errors during model validation.

To provide an overall measure of accuracy for the studied validation meth-
ods, we also computed the mean and SD of all obtained model validation er-
rors (∆∆SS, Section 2.5). As Table 3 shows, method V5 predicts the error of
synthetic models with the highest accuracy with ∆∆SS= 3.3%, followed by
the three deconvolution-based methods V2, V3, and V1 with 11.5%, 11.7%,
and 14.4%, respectively, whereas the lowest accuracy is achieved by method
V4 (∆∆SS=24.5%). Note, that the individual model validation errors vary
greatly between the model/spectrum pairs for most methods, as shown by
their considerable 5-15% standard deviations from the average ∆∆SS. This
variation can mainly be attributed to the uncertainty caused by the non-
additive summation of errors from CD and SS deviations, which increases
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with the CD deviations of the validation spectrum.
The presented model validation errors allow us to draw a number of con-

clusions. First, positive ∆∆SS values indicate that all five methods overes-
timate the average error of synthetic models. This fact is not unexpected,
given that the synthetic data set contains slightly larger than typical CD and
SS deviations, due to the over-representation of extreme test cases.

Second, the largest contribution to model validation errors is due to the
assumption that CD spectra are solely defined by the SS composition of
the protein. Because considerable non-SS contributions are found for more
than half of the tested reference proteins, this assumption likely leads to the
overestimation of model errors for deconvolution-based methods. Further,
the better average accuracy of method V5 indicates that assuming an average
non-SS contribution improves model validation significantly.

Third, V4 over-estimates the error of the synthetic models considerably.
This result is particularly important, since V4 is the current model validation
method of SESCA. This inaccuracy had not been detected so far, because
both the calibration and the cross-validation of the method was based on
estimated SS deviations using CD deconvolution, which led to a cancella-
tion of errors. This conclusion also suggest that the error calibration for
SESCA should be carried out using synthetic data, for which the errors in
the reference data are known.

Finally, the error profiles of method V3 indicates that the estimated SS
deviations in Section 3.1 of the SP175 set were indeed overestimated. SS de-
viations obtained by method V5 suggest an average 10% error for the SP175
reference structures. Further, estimating the model errors using different
basis sets yield more consistent results with method V5 than that of V3,
highlighting that V5 is more robust to the choice of the basis set.

In addition to the model validation accuracy, we also quantified how reli-
ably model validation methods identify the correct SS composition, given a
certain deviation from the ideal CD spectrum. To this aim, a ranking score
Rk for each synthetic spectrum k was determined using a given validation
method. The ranking is given by the number of synthetic SS models with a
lower or equal estimated error than the correct model of a synthetic data set.
For our data set, the ranking for a spectrum can change between zero and
twenty, with Rk= 0 meaning, that the correct SS composition is uniquely
identified by the validation method despite the errors in the CD spectrum.

In Figure 6C shows ranking scores of all five validation methods for rep-
resentative synthetic spectra with non-SS contributions (C- subset). As the
figure indicates, in the absence of CD errors all methods are able to identify
the correct SS composition accurately, regardless of differences in their aver-
age accuracy. However, in the presence of 10% or larger non-SS contributions
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Rk scores increase for all methods, indicating an increasing uncertainty of the
true SS composition. This uncertainty is most likely due to the non-additive
combination of CD and SS deviations, which entails partial error cancellation
for certain model-spectrum combinations.

For a comparison, Fig. 6D depicts ranking scores for CD spectra with
scaling errors only (S+ subset). The full effect of scaling errors is shown
through method V1, for which the ranking scores increased similarly as seen
for the non-SS contributions. Ranking scores for methods V2, V4, and V5,
even in the presence of large scaling errors, remains zero due to re-scaling the
CD spectra during validation. The effect of scaling errors is also reduced but
not eliminated for V3, because here, the CD spectra are re-scaled based on
the predicted spectrum of the (often incorrect) model SS composition. The
SS deviations of the model combined with re-scaling and non-convergence of
the deconvolution results in SS models within 6% deviation from the correct
one showing the smallest apparent error, and therefore yielding a non-zero
rank.

To compare the overall reliability of the five validation methods, the av-
erage and SD of the obtained ranking scores was also calculated over all
synthetic spectra. As the values listed in Table 3 show, the average rank of
V1 is close to 5, whereas V2 to V5 have similar average ranks between 2.8
and 3.0. The mean values and the large scatter of ranking scores between
individual synthetic spectra suggest that, although V1 is less reliable for CD
spectra with large scaling errors, the other four methods identify the correct
SS composition with similar uncertainty.

Taken together, ranking scores and average model errors indicate that
re-scaling the measured CD spectrum eliminates the effect of scaling errors
and improves the reliability of model validation methods. However, non-SS
contributions still impose an uncertainty on the estimated model errors and
limit their precision. Calibration using synthetic CD data allowed us to take
typical non-SS contributions into account and improve the accuracy of the
SESCA model validation scheme compared to classical deconvolution-based
methods, that neglect these contributions.

4 Conclusions

To interpret CD spectra of proteins in terms of estimating secondary struc-
ture content or validating putative model structures, several assumptions
are required. These are accurately known reference secondary structures and
protein concentrations during CD measurements, as well as negligible non-
secondary structure contributions to the spectra. Using the SP175 reference

17

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 6, 2020. . https://doi.org/10.1101/2020.06.05.123398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.123398
http://creativecommons.org/licenses/by-nc-nd/4.0/


set, we assessed and quantified to what extent these assumptions are ful-
filled or violated. Our results suggest, that, even for the most accurate CD
measurements, uncertainties in the protein concentration and non-SS contri-
butions typically lead to 30% deviation of the measured spectrum from the
true SS signal. In addition, typical reference SS compositions derived from
X-ray crystallography or NMR spectroscopy also deviate from the SS com-
position during CD measurements by an average 10%, introducing further
uncertainty to CD interpretation methods.

We also probed the effects of the observed CD and SS deviations on the
accuracy of SS estimation, CD prediction, and model validation methods.
To this aim, we constructed a synthetic reference data set of 21 CD spectra
and SS compositions, for which we deliberately introduced known amounts
of deviations based on those obtained for the SP175 set.

Testing the various methods on the synthetic data set shows that non-
ideal CD spectra lead to errors in secondary structure estimation and de-
crease the accuracy of CD spectrum predictions. During the validation of
structural models, typical CD deviations generally lead to the overestimation
of the model error, and to a 5-15% uncertainty of the true SS composition.
Although none of the tested model validation methods can eliminate the
uncertainty, applying a method that takes the average CD deviations into
account improves the model validation accuracy considerably. Our findings
suggest that SESCA secondary structure estimation and model validation
schemes can be improved based on the obtained distributions of CD devia-
tions.

Using this new information, we implemented a new version of SESCA
that automatically applies spectrum re-scaling during deconvolution and in-
cludes more accurate error parameters for model validation, obtained from
systematic calibration based on synthetic CD data. These new results will
also allow to go beyond determining the single SS composition that fits a
given CD spectrum best and calculate the likelihood of all putative SS com-
positions for an improved uncertainty assessment.
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Tables

Table 1: Synthetic models with diverse SS compositions used for error
assessment. The table provides the name and the identifier j of the model,
the fraction of residues classified as α-helix, β-strand, and other secondary
structure classes, as well as the true SS deviation (∆SSj) from the correct
model (j=0) of the synthetic data set.

Model j α-helix β-strand Other ∆SSj

correct 0 0.3 0.4 0.3 0%
AB+30 1 0.0 0.7 0.3 30%
AB+20 2 0.1 0.6 0.3 20%
AB+10 3 0.2 0.5 0.3 10%
AB-10 4 0.4 0.3 0.3 10%
AB-20 5 0.5 0.2 0.3 20%
AB-30 6 0.6 0.1 0.3 30%
AB-40 7 0.7 0.0 0.3 40%
BC+36 8 0.3 0.04 0.66 36%
BC+26 9 0.3 0.14 0.56 26%
BC+16 10 0.3 0.24 0.46 16%
BC+6 11 0.3 0.34 0.36 6%
BC-6 12 0.3 0.46 0.24 6%
BC-16 13 0.3 0.56 0.14 16%
BC-26 14 0.3 0.66 0.04 26%
AC+23 15 0.07 0.4 0.53 23%
AC+13 16 0.17 0.4 0.43 13%
AC+3 17 0.27 0.4 0.33 3%
AC-3 18 0.33 0.4 0.27 3%
AC-13 19 0.43 0.4 0.17 13%
AC-23 20 0.53 0.4 0.07 23%
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Table 2: Synthetic CD spectra with diverse CD deviations used for error
assessment. The table lists the name and identifier k of the synthetic spectra,
the scaling factors 1/αk, and weights wk used to add scaling errors and non-
SS contamination to the correct spectrum (k=0), as well as true deviation
∆[θ]spectk from the correct spectrum (k= 0), expressed as a percentage of the
true spectrum intensity.

Spectrum k 1/αk wk ∆[θ]spectk

correct 0 1.0 0.0 0%
S+10 1 1.1 0.0 10%
S+20 2 1.2 0.0 20%
S+30 3 1.3 0.0 30%
S+50 4 1.5 0.0 50%
S-10 5 0.9 0.0 10%
S-20 6 0.8 0.0 20%
S-30 7 0.7 0.0 30%
S-70 8 0.3 0.0 70%
C+10 9 1.0 0.1 10%
C+30 10 1.0 0.3 30%
C+50 11 1.0 0.5 50%
C+100 12 1.0 1.0 100%
C-100 13 1.0 -1.0 100%
C-50 14 1.0 -0.5 50%
C-30 15 1.0 -0.3 30%
C-10 16 1.0 -0.1 10%
CS–1 17 1.3 0.2 34%
CS–2 18 0.8 -0.3 56%
CS–3 19 0.7 1.0 84%
CS–4 20 1.1 -1.0 113%
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Table 3: Average performance of validation methods. The table lists
the name of the method, its average model validation error (∆∆SS) and
standard deviation (SD), as well as the average and SD of its ranking score
(Avg. Rank).

Method ddSS (%) SD (%) Avg. Rank SD
V1 14.4 8.4 4.9 3.4
V2 11.5 4.9 2.8 2.3
V3 11.7 9.2 3.0 3.3
V4 24.5 15.0 2.9 3.1
V5 3.3 7.3 2.9 3.1
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Figures

24

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 6, 2020. . https://doi.org/10.1101/2020.06.05.123398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.123398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Constructing synthetic CD spectra. Synthetic spectra are con-
structed from a SS signal (purple-dashed line), a weighed non-SS signal (blue-
dashed line), and a scaling factor (1/αk). The non-SS signal is scaled to a
given fraction (wk, here 0.2) of the average SS signal intensity, then added
to the SS signal, to imitate non-SS contributions of different sizes. Finally,
this combined CD signal (in magenta) is multiplied by a scaling factor (here
1.3) to mimic scaling errors, yielding the final synthetic spectrum (in red).
The weighs and scaling factors for all used synthetic spectra are provided in
Table 2.
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Figure 2: Estimated error distribution in the SP175 reference set. Histograms
show the binned distribution of estimated intensity scaling factors due to
incorrect normalization (A) and non-SS contributions (C) of the measured
CD spectra in the reference set, as well as the fraction of miss-classified
amino acids in the reference structures (B) and noise-to-signal ratios (D)
of the predicted CD spectra caused by the above three factors. Solid lines
indicate expected occurrences assuming Gaussian fits. The turquoise and
magenta symbols in panel B show the distribution of SS deviations estimated
using only the DS-dT and DS5-4 basis sets with three and six basis spectra,
respectively (the black distribution is an average over four basis sets). The
blue and red symbols in panel C show non-SS contributions for the α-helical
and β + coil sub-populations of SP175, respectively.
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Figure 3: Accuracy of SS estimation methods. The panels show deviations
between the estimated and correct secondary structure composition (∆SSk)
as a function of errors in the reference CD spectrum for deconvolution meth-
ods D1 (A), D2 (B), and D3 (C), described in Section 2.3. Light green and
dark green symbols denote under-scaled (S-) and over-scaled (S+) CD spec-
tra, blue and black triangles depict CD spectra with two types of non-SS
contamination signals (C+ and C-), and brown star symbols denote spectra
with both scaling and contamination errors (CS), respectively (see Section
2.2). The error of the spectrum is expressed as a percentage of the correct
secondary structure signal.
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Figure 4: Errors in the reference structure affect model validation. The
estimated SS deviation (∆SSjk) between the reference and correct structure
is shown as function of the true SS deviation for deconvolution methods D2
(A) and D1 (B). The symbols depict the smallest (empty squares) and largest
(full diamonds) estimated SS deviations for synthetic reference models of a
given true SS deviation. Symbols in black denote SS estimates based on the
correct CD spectrum of the set (no CD deviations), whereas red symbols
were based on a spectrum with typical CD deviations (CS–1, see Table 3).
The black solid lines show the expected SS deviation based on accurate SS
estimates. Red solid lines indicate expected estimated SS deviations, if the
errors caused by the CD and SS deviations were additive.
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Figure 5: Accuracy of CD spectrum predictions. RMSD (A and C) and
NRMSD (B and D) values quantify the accuracy as the deviation of a pre-
dicted CD spectrum from a reference spectrum. Panels A and B show the
accuracy of CD spectra predicted from synthetic SS compositions with a
given error (SS deviation), and compared to the correct reference CD spec-
trum. Panels C and D show deviations of the CD spectrum predicted from
the correct SS composition, compared to reference CD spectra with a given
error (CD deviation). The coloured symbols indicate different types of struc-
tural and spectral deviations. The symbols in panels A and B denote changes
between the fraction of α-helices (α) to β-strands (β) and Random coils (C).
The symbols in panels C and D denote under-scaled (S-) or over-scaled (S+)
CD spectra, spectra with two types of non-SS contamination signals (C+
and C-), and spectra with both scaling and contamination errors (CS). The
blues lines in panels A and B show the best linear fit on all SS deviation
and RMSD/NRMSD pairs. The red line in panel C shows a linear fit on all
CD deviation and RMSD pairs, whereas the red line in panel D indicates the
same linear fit with RMSD values normalized by the intensity of the correct
CD spectrum.

29

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 6, 2020. . https://doi.org/10.1101/2020.06.05.123398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.123398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Accuracy and reliability of model validation methods. Validation
results shown for the C- (triangles) and S+ (pluses) subsets of synthetic
spectra, representing the effects of non-SS contributions and scaling errors,
respectively. Results from model validation methods V1 to V5 are depicted
in different colours (shown in panel B). The accuracy of validation methods
(panels A and B) is quantified by the average difference (∆∆SSk) between
the estimated and true errors of the SS composition. These values are com-
puted over 21 synthetic SS models for each synthetic reference CD spectrum
and shown as a function of the error in the spectrum (CD deviation). The
standard error of ∆∆SSk values is shown as error bars. The reliability of
the validation methods (panels C and D) is quantified by a ranking score for
each reference spectrum, determined by the estimated error of the correct SS
model, compared to that of other models. The error in the CD spectrum is
expressed as the percentage of the correct secondary structure signal.
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