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ABSTRACT Today’s standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic
resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient
ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally
prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel
simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of
essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of
the system staying at a reference temperature, T0. This selective excitation along with the replica framework permits efficient
approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas,
thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed
using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving
as references.

INTRODUCTION

In recent years theoretical methods, especially molecular

dynamics (MD) simulations, have been increasingly applied

to study structure-function relationships in proteins. One of

the main questions to be answered when assessing the use-

fulness of MD simulations of proteins in understanding bio-

logical functions is the degree to which the simulations

adequately sample the conformational space of the protein. If

a given property is poorly sampled over the MD simulation,

the results obtained are often of limited significance.

A straightforward way to solve this problem is to increase

the simulation time. With the improvements in computer

power and algorithms, state of the art simulations have pro-

gressed to multiple nanoseconds. This timescale is usually

too short for the observation of many important functional

processes, such as slow conformational changes and protein

folding/unfolding.

Inefficiency in sampling is a result of the ruggedness of the

energy landscape. Although the exploration of different con-

formational states and the mechanism of global conforma-

tional transitions are of higher interest than the examination of

local fluctuations during a simulation, the system will spend

most of its time in locally stable states (kinetic trapping).

Various methods have been proposed to remedy this

problem. Among them, generalized ensemble algorithms have

been widely used in recent years (for a review, see Mitsutake

et al. (1)). The idea is to achieve a random walk in potential

energy space which allows the system to easily overcome

energy barriers separating local minima, thus enabling a much

wider sampling of phase space compared to conventional

MD simulations. Besides the multi-canonical algorithm (2,3)

and simulated tempering (4,5), the replica exchange (REX)

method (6–9) is a well-known approach. In the standard

temperature formulation (6) of REX, a number of noninter-

acting simulations of the same system (replicas) is performed

in parallel, each having a different temperature; at given time

intervals, neighboring temperature replica pairs are exchanged

with a specific transition probability. The resulting random

walk in temperature space induces a random walk in energy

space, thereby allowing kinetically trapped low-energy rep-

licas to escape from local minima with the help of high-

temperature replicas.

At full atomic resolution using explicit solvent, for all but

the smallest systems simulated temperature REX simulations

have one major drawback: Since the number of replicas

needed to span a given temperature range is roughly pro-

portional to the square root of the number of degrees of free-

dom of the system, many replicas need to be simulated,

rendering temperature REX simulations of these systems

computationally very demanding.

During the last few years, multiple approaches have been

devised to deal with the large number of explicit degrees of

freedom (10–13). Often, when simulating biomolecular sys-

tems, one is mainly interested in a few large-scale motions of

the system. For the latter, collective coordinates (14,15) offer

a convenient description. They can be obtained through a

principal axis transformation of the covariance matrix of

structural fluctuations of the system of interest. Principal

components analysis (PCA) or essential dynamics analysis

(16) are routinely used for this task. It has been shown that

selective excitation of such collective modes can yield a

significant increase of sampling efficiency (17–19) at the

cost, however, of biasing the obtained ensemble.
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Here, we present a new method, combining the ideas of

REX and essential dynamics aiming at an enhanced sampling

efficiency while at the same time approximately preserving

the ensemble. Unlike temperature REX, in each replica only a

few selected degrees of freedom are coupled to a higher tem-

perature with the remainder of the system staying at a reference

temperature, T0. The excited degrees of freedom—the es-

sential subspace—are given by the dominant collective

modes of a subsystem of interest, obtained, e.g., from a PCA

or a normal mode analysis (NMA). This selective excitation

of the essential subspace along with the replica framework

permits efficient conformational sampling and allows much

larger temperature differences between replicas, thereby

considerably enhancing sampling efficiency. We show that

our new method reproduces ensembles generated by MD

very well but at much lower computational costs, making

temperature-enhanced essential subspace replica exchange

(TEE-REX), a powerful simulation technique for large all-

atom simulations using explicit solvent.

METHODS

All simulations were carried out using the MD software package

GROMACS 3.3.1 (20), supplemented by the TEE-REX module. The

OPLS-all-atom force field (21) was used for proteins and TIP4P was used as

a water model (22). All simulations were performed in the NPT ensemble. In

all MD simulations the temperature was kept constant at T ¼ 300 K by

coupling to an isotropic Berendsen thermostat (23) with a coupling time of

tt ¼ 1 ps. The pressure was coupled to a Berendsen barostat (23) with tp ¼
0.1 ps and an isotropic compressibility of 4.5 3 10�5 bar�1 in the x, y, and

z directions. All bonds were constrained by using the LINCS algorithm (24).

An integration time step of Dt ¼ 2 fs was used. Lennard-Jones and cou-

lombic interactions were calculated explicitly at a distance smaller than

10 Å; above 10 Å, long-range electrostatic interactions were calculated by

particle mesh Ewald summation (25) with a grid spacing of 0.12 nm and

fourth-order B-spline interpolation.

The MD reference simulation system of dialanine was set up as follows.

Pymol (26) was used to build an N-acetylated dialanine to neutralize the

electrostatic attraction between the N- and the C-termini. The protein was

solvated in a rhombic dodecahedral box with box vectors of 2.35-Å length.

The system comprised ;1200 atoms. One Na1 ion was added to neutralize

the system. Energy minimization of the solvated system using the steepest

descent algorithm was followed by a 100-ps MD simulation at the target

temperature using harmonic position restraints on the heavy atoms of the

protein with a force constant of k ¼ 1000 kJmol�1 nm�2 to equilibrate the

solvent. After 1 ns of equilibration, a 4.1-ms trajectory was produced by free

MD simulation. Structures were saved every 1 ps for further analysis.

Four 210-ns TEE-REX simulations of dialanine starting from different

equilibrated MD structures were performed. Each TEE-REX simulation

consisted of two replicas, with an essential subspace temperature of 500 K

for the second replica. A PCA was performed on the first 1.87 ms of the full

MD trajectory, taking all backbone atoms into account. The first two

eigenvectors, describing 92% of all backbone fluctuations, defined the es-

sential subspace. The essential subspace was coupled to a Berendsen ther-

mostat with a coupling time of tes
m ¼ Dt ¼ 2 fs. Exchanges between replicas

were attempted every n�1
ex ¼ 140 ps and were accepted with 97.7% prob-

ability. Structures were saved every 1 ps. After each successful exchange, 40

ps of trajectory were discarded to yield equilibrated structure ensembles.

Free energy landscapes of dialanine were calculated in the subspace

spanned by the first two eigenvectors (essential subspace). Assuming equil-

ibrated ensembles, the relative Gibbs free energy

DGðxi; yjÞ ¼ �kBT ln
Pðxi; yjÞ

Pmin

� �
(1)

was calculated for discrete grid points (xi, yj) using a k-nearest neighbor

scheme (27) for the spatial probability function P(xi, yj).

The MD reference simulation system of guanylin was set up as follows.

From a standard REX simulation a snapshot of the 300-K reference replica

served as the MD starting structure. The simulation system is based on the

protonated crystal structure (Protein Data Bank (PDB) entry 1GNA), sol-

vated in a rhombic dodecahedral box and neutralized adding Na1 ions

accordingly. The system comprised ;6000 atoms. Energy minimization of

the solvated system using the steepest descent algorithm was followed by a

100-ps MD simulation at the target temperature using harmonic position

restraints on the heavy atoms of the protein with a force constant of k¼ 1000

kJmol�1 nm�2 to equilibrate the solvent. After 1 ns of equilibration, a 800-ns

trajectory was produced by free MD simulation. Structures were saved every

2 ps for further analysis.

One 130-ns TEE-REX simulation of guanylin starting from an equili-

brated MD structure was performed. Three replicas were simulated, having

essential subspace temperatures of 450 K and 800 K. A PCA of a 50-ns MD

trajectory fragment taking all backbone atoms into account was performed.

The first six eigenvectors, describing 87% of all backbone fluctuations,

defined the essential subspace. Exchanges were attempted every n�1
ex ¼ 160 ps

and were accepted with 97.8% probability. Structures were saved every 1 ps.

After each successful exchange, 40 ps of trajectory were discarded.

Replica exchange

In standard REX MD (6), a generalized ensemble from M 1 1 noninteracting

trajectories at temperatures fT0, T1, . . ., TMg (Tm # Tm11; m ¼ 0, . . . , M) is

constructed. A state of this generalized ensemble is characterized by

S ¼ f. . . ; s
½i�
m ; . . .g, where s

½i�
m represents the coordinates x

½i�
m and velocities v

½i�
m of

all atoms of the ith replica at temperature Tm. Here, the superscript [i]
and the subscript m label the replica and the temperature, respectively.

The statistical weight of a state, S, is given by the product of Boltzmann

factors expf�bmHðs½i�mÞg for each replica m, WðSÞ ¼ expf�+M

m¼0
bmHðs½i�mÞg.

Here, Hðs½i�mÞ ¼ Eðx½i�mÞ1Kðv½i�mÞ denotes the Hamiltonian of replica m, with

E(x
½i�
m ) being the potential and K(v

½i�
m) the kinetic energy; b�1

m ¼ kBTm denotes

the inverse temperature of replica m. The algorithm consists of two con-

secutive steps: a), independent constant-temperature simulations of each

replica, and b), exchange of two replicas S ¼ f. . . ; s
½i�
m ; . . . ; s

½ j�
n ; . . .g/S9 ¼

f. . . ; s
½ j�9
m ; . . . ; s

½i�9
n ; . . .g according to a Metropolis-like criterion. The

exchange acceptance probability follows directly from applying the detailed

balance condition WðSÞPðS/S9Þ ¼ WðS9ÞPðS9/SÞ,

PðS/S9Þ ¼ min 1; exp ðbm � bnÞ E x
½i�
m

� �
� E x

½ j�
n

� �� �h in o
:

(2)

For simulations performed in the NPT-ensemble, Eq. 2 is modified by a

pressure correction term (7). Upon exchange, velocities v
½i�9
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tn=Tm

p
v
½i�
m

and v
½ j�9
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm=Tn

p
v
½ j�
n are rescaled, thereby eliminating the kinetic energy

terms in Eq. 2 (6). Iterating steps a and b, the trajectories of the generalized

ensemble perform a random walk in temperature space, which in turn in-

duces a random walk in energy space. This facilitates an efficient and

statistically correct conformational sampling of the energy landscape of the

system, even in the presence of multiple local minima.

The choice of temperatures is crucial for an optimal performance of the

algorithm. Replica temperatures have to be chosen such that a), the lowest

temperature is small enough to sufficiently sample low-energy states; b), the

highest temperature is large enough to overcome energy barriers of the

system of interest; and c), the acceptance probability PðS/S9Þ is suf-

ficiently high, requiring adequate overlap of potential energy distributions

for neighboring replicas. For larger systems simulated with explicit solvent,

the latter condition presents the main bottleneck. A simple estimate (13,28)
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shows that the potential energy difference DE ; NdfDT is dominated by the

contribution from the solvent degrees of freedom, Nsol
df , constituting the

largest fraction of the total number of degrees of freedom, Ndf, of the system.

Obtaining a reasonable acceptance probability therefore relies on keeping

the temperature gaps Tm11 � Tm small (typically only a few K), which

drastically increases computational demands.

Temperature-enhanced essential dynamics
replica exchange

The basis for TEE-REX is given by the replica framework, i.e., M 1

1 replicas (m ¼ 0, . . ., M) of the system are simulated simultaneously with

periodic exchange attempts. In contrast to standard REX, TEE-REX replicas

m¼ 1, . . ., M are divided into an essential subspace and its complement. The

essential subspace fesg: ¼ fmi j i ¼ 1, . . ., Nesg is defined by a set of

eigenvectors, fmkg, describing collective modes of a subsystem of interest.

A loop region or the protein backbone could be such a subsystem. The

collective degrees of freedom, fmkg, can be obtained in a variety of ways,

e.g., from an NMA of a single structure or a PCA of an ensemble of struc-

tures (e.g., NMR or x-ray data or a previous simulation). The latter method is

used here. Between exchanges, the essential subspace of replicas m¼ 1, . . .,

M is coupled to a temperature bath Tes
m .T0 with the rest of the simulation

system staying at the reference temperature, T0. For replica m ¼ 0, no

partition into fesg and its complement is applied and all degrees of freedom

are coupled to the same temperature, Tes
0 ¼ T0. The ensemble generated by

this reference replica is used for analysis later.

Temperature coupling

The temperature coupling (due to the unique assignment of temperatures

with replicas in all TEE-REX simulations reported here, the replica index [i]

is dropped henceforth) of the essential subspace fesg is carried out in the

following way: Let NI be the number of atoms of the subsystem of interest by

which the eigenvectors fmk 2 R3NI jk ¼ 1; . . . ; 3NIg are defined. We denote

these atoms ‘‘index atoms’’ to distinguish them from the remaining atoms of

the system. The total number of atoms in the system is thus given by N ¼ NI

1 NR (R for ‘‘remaining’’). At each time step, the essential subspace

temperature coupling for replica m ¼ 1, . . ., M is achieved by projecting the

velocity vector vI
mðtÞ 2 R3NI of the index group onto the selected modes mi,

i ¼ 1, . . ., Nes:

v
es

mðtÞ ¼ +
Nes

i¼1

v
I

mðtÞ � mi

� �
mi; (3)

followed by a coupling of ves
m(t) to the respective fesg temperature Tes

m using

a Berendsen thermostat,

v
es9

m ðtÞ ¼ lmv
es

mðtÞ; lm ¼ 1 1
Dt

t
es

m

T
es

m

T
es

m t � Dt
2

� �
( )" #1=2

: (4)

All velocity components not coupled to the essential subspace, i.e.,

ṽes
mðtÞ ¼ vI

mðtÞ � ves
mðtÞ and vR

m(t), are coupled to the reference temperature,

T0, using any standard coupling algorithm (23,29,30). For the Berendsen

thermostat used here, the coupling of the nonessential velocity components

is given by ṽes9
m ðtÞ ¼ l0ṽes

mðtÞ and vR9
m ðtÞ ¼ l0vR

mðtÞ. Thus, after temperature

coupling, the velocity vector v9m(t) 2 R3N of the full system reads

vmðtÞ/v9mðtÞ ¼
v

I9

mðtÞ
v

R9

m ðtÞ

	 

¼ lmv

es

mðtÞ1 l0ṽ
es

mðtÞ
l0v

R

mðtÞ

	 

:

The reference replica m ¼ 0 undergoes a standard MD simulation, since

v90(t) ¼ l0v0(t).

Exchange probability

The coupling of different degrees of freedom to different temperature baths

fTes
m ;T0g creates an inherent nonequilibrium situation. Except for the

reference replica m¼ 0, the statistical weight of each state in replica m . 0 is

therefore no longer known. To account for this new situation, the acceptance

probability of Eq. 2 used for standard REX is modified. The additional

kinetic energy (Eq. 4) put into the few essential degrees of freedom

(Nes � Ndf ) is conceptualized as distributed over the whole system, thus

defining an effective temperature. Starting from the kinetic energy of replica

m, KðvmÞ ¼ KIðves
mÞ1KRðvR

mÞ, and using the equipartition theorem 2Kj ¼
Nj

df kBT, we arrive at the effective temperature

T
eff

m ¼ 1� Nes

Ndf

	 

T0 1

Nes

Ndf

T
es

m ¼ T0 1
Nes

Ndf

T
es

m � T0

� �
; (5)

Ndf denotes the degrees of freedom of the complete system. Given Eq. 5,

the modified acceptance criterion used in TEE-REX thus reads

PðS/S9Þ ¼ min 1; exp b
eff

m � b
eff

n

� �
ðEðxmÞ � EðxnÞÞ

� � �
:

(6)

By replacing bm/beff
m in Eq. 2 of the standard REX criterion, one

implicitly assumes that the ensemble created by each replica can be

described by an equilibrium Boltzmann distribution at the effective tem-

perature introduced in Eq. 5. Since each nonreference replica by construc-

tion samples some unknown nonequilibrium distribution, this approximation

introduces—upon exchange with the reference replica—some bias in the

statistics of the reference ensemble m ¼ 0. However, the number of degrees

of freedom of the complete system is much larger than the few excited

degrees of freedom comprising the essential subspace fesg (Ndf � Nes).

Hence, the approximation made in Eq. 5 can be considered a small deviation

from an equilibrium distribution and, therefore, can be expected to be valid

for all but the smallest systems simulated with TEE-REX.

The composition of the essential subspace (i.e., what modes have been

chosen) is irrelevant with respect to the definition of Teff
m . However, the

excitations obtained using a specific fesg naturally depend on the choice of

modes. Each PCA mode represents a single (collective) degree of freedom,

contributing via equipartition—like any other degree of freedom—to the

kinetic energy. This is independent of whether the respective mode describes

a global transition or a more localized motion (e.g., involving a loop). Here,

it is important to note that PCA modes describe linearly independent col-

lective modes, thereby neglecting nonlinear couplings. If one specific eigen-

vector is excited, several other modes are indirectly excited, either outside

the fesg (like side chains) or inside the essential subspace.

To validate the approximation made in Eq. 5, extensive tests of the TEE-

REX protocol were made using a dialanine peptide. As a converged MD

ensemble is available for this system, it allows us to quantitatively assess any

systematic deviations possibly introduced by the TEE-REX protocol.

RESULTS AND DISCUSSION

To probe the ensemble generated by TEE-REX, a 4.1-ms

explicit-solvent MD simulation of an N-acetylated dialanine

peptide was compared to four 210-ns TEE-REX simulations

of the same system (see Methods section for computational

details). Dialanine was chosen since it constitutes one of the

smallest systems with a nontrivial configuration space. Because

of its small size, extensive trajectories can be generated within a

reasonable amount of time. The main motions of dialanine

occur around its (f,c)-pair of dihedrals; hence, the available

configuration space of the system is very limited. This

increases chances to achieve complete sampling with our
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simulations. Furthermore, deviations from the equilibrium

distribution due to the excitation of the essential subspace

fesg are largest for very small systems. For dialanine, the

fraction Nes/Ndf ; 10�3 is at least one order of magnitude

larger than for systems usually simulated.

Convergence of the MD reference

The thermodynamic behavior of a system is completely

known when a thermodynamic potential such as the Gibbs

free energy is available. Comparing free energies thus enables

us to decide to what degree ensembles created by both

methods coincide. However, calculating relative free energies

according to Eq. 1 requires a converged ensemble. Therefore,

as a first step, we checked whether the MD reference tra-

jectory yielded a converged ensemble, i.e., a complete sam-

pling of the configuration space of the system.

Backbone eigenvectors obtained from a PCA of the full

4.1-ms MD trajectory were compared to eigenvector sets

calculated from trajectory fragments of 180-ns to 1.87-ms

length. Then, subspaces spanned by the first four eigenvec-

tors of each set were constructed. Therein, 97% of all

backbone fluctuations are covered. Overlaps of these differ-

ent subspaces with the subspace of the full trajectory indicate

that structural convergence is reached for trajectory frag-

ments of lengths $400 ns (measured subspace overlap of

100%). As a second test for convergence, transitions be-

tween the two main dialanine conformations were counted.

Fig. 1 B shows representative structures found along the

system path overlaid onto a two-dimensional free energy

surface (eigenvectors used for projecting are derived from a

1870-ns MD run; see Methods section) derived from a 420-

ns MD trajectory piece. The main motion of the system is a

rotation around its only dihedral pair around the Ca-C bond

between the Ca atom of Ala1 and the carbon atom of the

second peptide unit. Starting from an ‘‘open’’ conformation

(with respect to the distance of the N- and C-termini) in the

left basin (eigenvector m1 # �0.1), a transition to a

‘‘closed’’ conformation in the right basin (eigenvector

m1 $ 0.2) takes place. During the 4.1 ms of MD simulation

time, more than 900 transitions between the ‘‘open’’ and the

‘‘closed’’ conformation were observed, giving further evi-

dence for a converged ensemble covering complete config-

uration space.

FIGURE 1 Comparison of dialanine ensembles generated by TEE-REX and MD. Gibbs relative free energy surfaces (in units of kJ/mol) with respect to the

first two MD-derived (see Methods section) backbone eigenvectors (fesg) are shown for a TEE-REX ensemble (A) and an ensemble from a 420-ns MD

trajectory (B) overlaid by representative structures found along the system pathway. Transitions between the ‘‘open’’ (left basin) and the ‘‘closed’’ (right basin)

conformation along the lower pathway are hindered by a free energy barrier (saddle) of ;15 kJ/mol. The saddle region is sampled more intensely by TEE-

REX. All calculations were carried out on an equal number of samples. (C and D): standard deviations (top view, units of kJ/mol) sTEE-REX (C) and sMD (D),

calculated for all four TEE-REX and all nine MD free energy surfaces, respectively. Statistical errors of #0.4 kJ/mol ’ 0.15 kBT are comparable for both

methods.
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As a further test for convergence we evaluated relative free

energy landscapes for dialanine ensembles generated by MD

and TEE-REX (see below).

Ensemble comparison—free energy landscape

Ensembles generated by both methods were compared using

relative Gibbs free energy landscapes DG(x, y) calculated

from trajectory projections onto the two-dimensional essen-

tial subspace fesg excited in all dialanine TEE-REX sim-

ulations (see Fig. 1). An 1870-ns piece of the full 4.1-ms MD

trajectory was used to define the fesg eigenvectors (see

Methods section). We used the information that ensembles

from trajectory parts of length $400 ns are converged to

define nine independent nonoverlapping 420-ns MD trajec-

tory fragments out of the full 4.1-ms MD reference. The

length of a single two-replica TEE-REX simulation was set

to 210 ns. This ensured that ensembles are compared that

were generated using the same computational effort. Four

210-ns two-replica TEE-REX simulations with fTes
m ; T0g

temperatures f300 K, 300 Kg and f500 K, 300 Kg were

started from different MD snapshots taken from the full MD

trajectory to check for any dependence of the sampling with

respect to the starting structure.

The upper panels of Fig. 1 show typical Gibbs relative free

energy surfaces (in units of kJ/mol) for TEE-REX (A) and

MD (B) ensembles with respect to the first two backbone

eigenvectors comprising the essential subspace fesg. The ob-

served ring structure seen in all ensembles is due to the fact

that a nonlinear dihedral rotation is described by two orthog-

onal linear PCA coordinates. Two distinct conformations are

distinguishable, an ‘‘open’’ conformation located in the left

minimum of the DG surface and a ‘‘closed’’ conformation

located in the right minimum. Transitions between the two

conformations occur along the free energy ‘‘valley’’ (upper

pathway), illustrated by representative structures shown in

Fig. 1 B. A free energy barrier of ;15 kJ/mol (saddle)

impedes the conformational transition along the lower path-

way. From visual inspection, no apparent difference between

the free energy surfaces determined by the two methods is

seen, indicating that TEE-REX creates ensembles very

similar to that created by MD.

Fig. 1, C and D, displays standard deviations sTEE-REX

and sMD (in units of kJ/mol), calculated from all four TEE-

REX and all nine MD DG surfaces, respectively. The sta-

tistical error of ,0.4 kJ/mol of both methods is very low with

respect to the absolute DG values. This further supports the

assumption of converged ensembles in both cases. In the

case of MD (D), the largest statistical errors are found in

the saddle region, hindering conformational transitions along

the lower pathway. These comparatively large errors are due

to the poor sampling in this part of the configuration space,

since barrier heights of 15 kJ/mol are rarely overcome by

MD during 420 ns of simulation time. Although the central

region is not sampled by MD (see Fig. 1 D), Fig. 1 C shows

that TEE-REX explores this region, indicating the ability of

the latter to sample high-energy regions more frequently than

MD. In comparing Fig. 1, C and D, it is important to note that

sTEE-REX was constructed using four samples, whereas nine

MD samples were used for sMD.

From visual inspection of panels (A) and (B) of Fig. 1, no

apparent difference in the ensembles generated by TEE-REX

and MD is seen. To investigate the shape of the free energy

surfaces generated by both methods in detail, in Fig. 2, the

difference ÆDGTEE-REX � DGMDæ averaged over all combi-

nations DGi
TEE�REX � DGj

MD (i ¼ 1, . . ., 4; j ¼ 1, . . ., 9) is

displayed in the top view. Areas colored in blue are sampled

more frequently by TEE-REX than by MD since DGTEE-REX

, DGMD in these areas. The maximum absolute deviations

of 1.5 kJ/mol ’ 0.6 kBT from the ideal case DGTEE-REX �
DGMD¼ 0 (see Fig. 2) are commensurate with the maximum

statistical errors of 0.15 kBT (see Fig. 1) found for each

method. As can be seen from the distribution of blue regions,

high-energy configurations are more frequently sampled by

TEE-REX, whereas MD sampling focuses on the stretched

low-energy basin containing the ‘‘open’’ conformation.

Thus, the excitation of essential subspace modes allows the

TEE-REX reference replica to explore high-energy config-

urations usually not available to a normal MD sampling at

the same temperature.

Sampling efficiency

To judge the sampling efficiency of the TEE-REX algorithm,

the 13 amino acid peptide hormone guanylin (PDB code

1GNA) was simulated by both MD and TEE-REX (see

Methods section for simulation details).

FIGURE 2 Top view of the difference in free energy ÆDGTEE-REX �
DGMDæ, averaged over all combinations DGi

TEE�REX � DGj
MD (i ¼ 1, . . ., 4;

j ¼ 1, . . ., 9). Areas colored in blue are more frequently sampled by TEE-

REX than by MD. Maximum differences of 61.5 kJ/mol ’ 60.6 kBT are

comparable to the statistical error of 0.15 kBT for each method. High-energy

regions (e.g., saddle region in the lower middle) are better sampled by TEE-

REX. Low-energy configurations of the ‘‘open’’ state are preferred by MD.
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It is generally accepted that standard REX improves

sampling efficiency over classical MD. However, the com-

putational effort associated with explicit solvent simulations

is often very high with respect to the gain in sampling. Initial

tests with standard temperature REX simulations of guanylin

showed only a slight increase in sampling performance over

classical MD. On the basis of these results, we omitted REX

and directly compared results from MD with TEE-REX.

To provide meaningful statements about sampling effi-

ciency, two independent 60-ns trajectory fragments from the

130-ns TEE-REX reference replica were compared to four

independent 180 ns ¼ 3 3 60 ns MD trajectory fragments

taken from one 800-ns MD trajectory. Besides employing

projections onto eigenvectors drawn from the essential

subspace fesg, both methods were compared using (f, c)

dihedral space.

Essential subspace

Every MD and TEE-REX reference ensemble was projected

onto the first two backbone eigenvectors of the six-dimensional

essential subspace fesg used in the TEE-REX simulation.

Together, both eigenvectors describe 64% of all backbone

fluctuations of the system. In Fig. 3, several of these projec-

tions are displayed, together with their respective starting

structures (shaded diamonds). Fig. 3 C shows the configura-

tion space sampled by a 180-ns fragment of an MD trajectory

ranging from 20 to 200 ns. The intensely sampled region in

the upper half of the m1m2-plane indicates a pronounced local

minimum in the free energy surface of the system. For the

remaining 600 ns of simulation time, the MD simulation gets

trapped in this region of configuration space, as can be seen

from the two 180-ns MD pieces depicted in Fig. 3, A and B.

A projection of the first 60-ns fragment of the 130-ns TEE-

REX reference replica trajectory, ranging from 5 to 65 ns, is

shown in Fig. 3 D. Although the starting structure lies within

the local minimum amply sampled by MD, the space covered

by TEE-REX not only covers that explored by MD but also

extends beyond that. This result is independent from the

starting structure, as a projection of the second 60-ns TEE-

REX reference trajectory fragment confirms (results not

shown).

To quantify TEE-REX sampling performance, the time

evolution of sampled configuration space volumes, Vi(t),

was measured using projections of all MD and TEE-REX

guanylin trajectory fragments along the first two eigenvec-

tors of the six-dimensional essential subspace fesg excited in

the TEE-REX simulation. To monitor time evolution, the

m1m2-plane (see Fig. 3) was discretized by a grid of size 0.01

nm. At each time step, the number of occupied grid cells was

recorded. Conversion of time into computational effort t

(measured in units of 180-ns MD simulation time) yielded

the Vi(t) curves shown in Fig. 4. TEE-REX sampling per-

formance curves VTEE-REX(t) (solid lines) are compared in

panel (A) against MD sampling curves VMD(t) (dotted lines)

for all 180-ns MD trajectory fragments of the 800-ns refer-

ence MD simulation.

Apart from the first 200 ns of simulation time, the

sampling performance of MD is quite limited compared to

TEE-REX. Here, the dependence of the MD sampling on the

starting structure becomes clearly visible. For TEE-REX,

sampling performance is independent of the starting struc-

ture, displaying the ability of the method to efficiently

explore large regions of configuration space within short

simulation times. Fig. 4 B summarizes the results of Fig. 4 A,

showing average TEE-REX (solid line) and MD (dashed
line) performance curves ÆVi(t)æ 6 si, with error bars

representing standard deviations, si. In the 180-ns MD

simulation windows of guanylin, on average only 10% (t ¼
0.1) of the total computational effort is necessary to sample

FIGURE 3 Trajectory projections of guanylin

MD and TEE-REX simulations on the first two

eigenvectors (for clarity, axes’ labels are only

shown for panel C). Shaded diamonds represent the

starting structure of each simulation window. (A)

and (B): projection of MD ensembles at 220–400

ns and 420–600 ns, respectively; (C) MD ensemble

from 20 to 220 ns, arrow indicates starting struc-

ture; (D) TEE-REX ensemble for the first 60-ns

piece, running 5–65 ns. A high dependence of the

MD ensembles on the starting structure is observed.

Unlike MD, TEE-REX sampling is independent of

the starting structure. The low-energy starting con-

figuration does not hinder extensive sampling of

the available subspace.
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80% of the configuration space available to MD. Thus,

exploring the remaining 20% of configuration space is com-

putationally very expensive. For TEE-REX, we see a 3.6-

fold increase in sampled configuration space using the same

computational effort, t ¼ 0.1. Although the sampling rate of

TEE-REX decreases with increasing t, it outperforms the

MD sampling rate by a factor of three.

Dihedral space

To evaluate the sampling performance of TEE-REX in

subspaces not related to the essential subspace fesg, ensem-

bles of both methods were compared within full (f, c)

dihedral space. Panels A–C of Fig. 5 show Ramachandran

plots of several 180-ns fragments of MD trajectory, ranging

220–400 ns, 420–600 ns, and 20–220 ns, respectively. In all

three fragments the left half-plane f 2 [�180�, 0�] is well

sampled by MD, whereas moderate sampling is achieved in

the remaining half-plane f 2 [0�, 180�]. For the correspond-

ing TEE-REX ensemble (Fig. 5 D), ranging from 5 to 65 ns,

a substantial increase in sampling is seen. Whereas covering

of the left half-plane is comparable to MD, a notably broader

range of c values in the right half-plane is sampled by TEE-

REX. For a more detailed analysis the volume V(t ¼ 1)

explored in dihedral space was calculated for each of the 11

pairs of dihedrals in all four MD and two TEE-REX ensem-

bles. The average gain in sampling efficiency ÆVTEE-REX/VMDæ
for (f, c) space is shown in Table 1 together with results from

additional analyses, made on two PCA subspaces linearly

independent from the fm1, m2g � fesg ¼ fm1, . . ., m6g space,

namely fm7, m8g and fm14, m15g. For all subspaces indepen-

dent from fesg, sampling performances are comparable,

FIGURE 4 Quantitative comparison of TEE-REX sampling performance with respect to MD for a guanylin test system. Sampled configuration space

volumes Vi(t) (in units of nm2) are measured versus computational effort t (in units of 180-ns MD simulation time) for trajectory projections onto the first two

eigenvectors of the six-dimensional essential subspace excited in the TEE-REX simulation of guanylin. (A) TEE-REX performance curves (dark and light solid

lines) versus MD performance curves (dashed lines); (B) Average TEE-REX (solid) and MD (dashed) sampling performance ÆVi(t)æ 6 si with error bars

denoting standard deviations si. On average, TEE-REX significantly outperforms MD. The large MD error bars show the dependence of the sampling on the

starting structure.

FIGURE 5 Ramachandran plots of different

guanylin MD and TEE-REX ensembles (for clarity,

axes’ labels are only shown for panel C). MD

ensembles 20–220 ns (C), 220–400 ns (A), and

420–600 ns (B) are compared with a TEE-REX

ensemble, running 5–65 ns (D). Enhanced sam-

pling of TEE-REX with respect to MD is observed.
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yielding an ;2.5-fold gain in TEE-REX sampling efficiency

over classical MD. Although these values are lower than the

observed 3.6-fold performance gain measured in the fm1, m2g
subspace, they clearly demonstrate the capability of TEE-

REX as an efficient sampling method.

Defining fesg using sparse structure information

The sampling enhancement in TEE-REX is largely due to

excitations of the essential subspace fesg. Hence, the ques-

tion arises of how sampling performance is influenced by the

definition of fesg.
To mimic sparse structural information, a 130-ns TEE-

REX simulation of guanylin was performed using an

essential subspace fesg9 constructed using eigenvectors

obtained from a PCA on the backbone atoms of a 1-ns piece

of MD trajectory. Compared to the six eigenvectors used

originally, the first 10 eigenvectors were necessary in the

construction of fesg9 to account for 87% of all observed

backbone fluctuations (see Methods section). Projections of

60-ns trajectory pieces from both TEE-REX simulations

onto the first two eigenvectors of fesg revealed only minor

differences in sampled regions of configuration space.

Comparing sampled configuration space volumes measured

over computational effort yields an average difference of 7%

in sampling efficiency. These results indicate that TEE-REX

sampling efficiency is hardly sensitive to the choice of the

essential subspace. To further validate these findings the

overlap of both ensembles in full (f, c) dihedral space was

estimated. To this end, the (f, c) plane was discretized by a

grid of size 1� and the grid cells shared by both ensembles

were counted, yielding an overlap of more than 84%.

Algorithm sensitivity

During development, extensive tests were made with the

TEE-REX algorithm to elucidate its sensitivity with respect

to the three main parameters: essential subspace temperature

Tes
m , size of the essential subspace Nes, and exchange attempt

frequency nex.

Excitations of the chosen fesg are controlled by Tes
m

and the corresponding coupling constant tes
m, defining the

coupling strength. Both parameters are not independent of

each other since for a weak coupling tes
m � Dt, dissipation of

the excitation energy to colder degrees of freedom leads to a

lower fesg temperature and hence reduced efficiency in

sampling. Thus, a higher subspace temperature needs to be

chosen to achieve the same sampling efficiency as with a

tight coupling and a lower fesg temperature. Values for both

of these parameters were chosen to find an optimal com-

promise between sampling efficiency and accuracy. Increas-

ing Tes
m to arbitrarily high values may allow sampling of

configurations having a low Boltzmann factor at the refer-

ence temperature, T0, leading either to slow convergence

of the reference ensemble or to a bias of the latter (in

case convergence is not reached).

The exchange frequency, nex, should be chosen low

enough to allow equilibration of the reference replica after

each exchange. Concerning the essential subspace size, in

this study Nes was always chosen such that ;87% of the total

mean-square fluctuation of the respective atoms was in-

cluded. A large dependence of the sampling efficiency on the

chosen fesg dimension is not expected, since sampling along

nonexcited modes is also enhanced (see Table 1).

CONCLUSIONS

The applicability of standard REX to all-atom simulations of

biomolecular systems using explicit solvent becomes com-

putationally prohibitive for currently studied systems com-

prising more than a few thousand atoms. Due to the large

number of degrees of freedom involved, numerous replicas

are needed to span a given temperature range. To overcome

this inherent limitation, we developed a new algorithm com-

bining the REX framework with the idea of essential dynamics.

In each TEE-REX replica only a selection of essential col-

lective modes of a subsystem of interest is excited, with the

rest of the system staying at a reference temperature. The

collective modes are taken from a PCA of a subsystem of

interest. This selective excitation of functional relevant

motions within the replica framework overcomes the com-

putational limitations inherent to REX while at the same time

efficiently sampling the configurational space of the system.

Ensembles generated for a dialanine test system agree

favorably with converged reference MD ensembles of the

same system, making TEE-REX an efficient method for the

study of thermodynamic properties of biomolecular systems.

The superior sampling performance of TEE-REX with respect

to MD was established using guanylin as a test system.

The algorithm can easily be applied to larger systems.

Because only a small fraction Nes � Ndf of the degrees of

freedom of the system are excited in each TEE-REX replica,

the exchange probability PðS/S9Þ is no longer dominated

by the solvent contribution to the potential energy. This dras-

tically cuts down computational demands, enabling TEE-

REX to address problems currently not readily accessible to

MD or other ensemble-preserving methods. The choice of

the essential subspace degrees of freedom before any TEE-

REX simulation renders the method suitable to address

TABLE 1 Average TEE-REX sampling efficiency for guanylin,

calculated in different two-dimensional subspaces

Subspace Efficiency gain

(f, c) 2.43

fm7, m8g 2.80

fm14, m15g 2.62

fm1, m2g � fesg 3.65

The efficiency measured in parts of the excited essential subspace, fm1, m2g
� fesg, is shown for comparison.
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questions related to structural and dynamical properties of

biomolecular systems.

The authors thank Andrea Amadei for useful comments and Ira Tremmel

for carefully reading the manuscript.
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