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ABSTRACT: The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on
molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a
system by integrating the change of the system’s Hamiltonian with respect to a coupling parameter. These methods exploit
nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions
require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid
singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free
energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all
combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the
free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations
of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that
the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.

1. INTRODUCTION
The estimation of free energies is an important aspect of
modern computational chemistry. Alchemical methods based
on Molecular Dynamics (MD) or Monte Carlo sampling allow
accurate calculations of free energies.1−4 The alchemical
methods are often applied in predictions of protein−ligand
binding free energies,5−8 which are of great importance in
rational drug design.2,9−11 MD-based alchemical methods are
also used to estimate free energies of ligand solvation,12−15 the
influence of mutations on protein thermostability,16 or ion
permeation through channels.17

MD-based computational methods for free energy calcu-
lations can be divided into equilibrium and nonequilibrium
approaches. Free energy perturbation (FEP) (also called
exponential averaging3) introduced in 1954 by Zwanzig18 is
an equilibrium method allowing the estimation of the free
energy difference between two discrete states. The method
suffers from insufficient sampling when the phase space overlap
is low, that is, when the perturbation is large.19,20 In case of an
insufficient overlap between the ensembles, the Hamiltonian
(H) of a system can be coupled to a parameter λ, which allows
introduction of intermediates along the path between the two
end states of the system. This enables calculation of the free
energy between the end states as a sum of the free energy
differences between the intermediate states. Another approach
is to use a minimum variance estimate, Bennett’s acceptance
ratio (BAR),21 which was shown to be more efficient than the
perturbation method.22

Another branch of equilibrium approaches is based on
thermodynamic integration (TI).23 TI methods also couple the
Hamiltonian of the system to a parameter λ and integrate over
the derivative of Hamiltonian with respect to the coupling

parameter along the transition path. In case the path between
the states A and B is traversed by changing λ value from 0 to 1
continuously by small steps in λ, the system stays in a quasi-
equilibrium state (slow-groth TI). Another way is to select
discrete λ values along the path between the states and perform
simulations at those states only (discrete TI).
The branch of nonequilibrium methods for free energy

calculations takes its roots from the equations derived by
Jarzynski.24,25 A more general formulation was provided by
Crooks26 and is known as the Crooks Fluctuation Theorem
(CFT). The CFT relates the free energy difference with the
forward and reverse work distributions for the nonequilibrium
transitions between the states A and B:
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The transitions between the states exploit nonphysical
pathways, hence the name “alchemical” free energy calculations.
When atoms are created or annihilated during an alchemical
transition, points of singularity in the ∂H/∂λ may occur if no
modifications to the classical nonbonded interactions are made.
Also, strong repulsive forces may appear, which would require
the integration time step to be modified to avoid numerical
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instabilities during the simulations. The reason for the
singularities is the classical description of the nonbonded
interactions in the molecular mechanics force fields, which use
Lennard-Jones potential for the Pauli repulsion and long-range
dispersion and the Coulomb potential for electrostatic
interactions. Using this description, the potential energy as
well as the forces between two particles go to infinity when the
distance between the particles approaches zero. Numerical
instabilities may arise during an alchemical transition when
interatomic distance between atoms becomes very small and
subsequently the force acting on the particles increases rapidly.
In that case, a smaller time step would be required to avoid
integration artifacts. To avoid singularities and numerical
instabilities, Zacharias et al.27 proposed a method to scale and
shift the Lennard-Jones potential such that at short distances
the Lennard-Jones repulsion between two atoms converges to a
finite value. Beutler et al.28 used a similar shifting for both the
van der Waals and Coulombic interactions. Anwar and Heyes29

suggested a damping potential for the Ewald summation, which
could be used with the soft-cored version of the Lennard-Jones
potential. The version of the Beutler et al.28 soft-core potential
is used in the Gromacs molecular dynamics package.30 Work by
Boresch and Bruckner31 offers an alternative approach to the
usual alchemical methods. Their way to solve the van der Waals
end-state problem was not to describe the pathway between
two states by a combination of Hamiltonians coupled to a
parameter λ. Instead, the pathway was constructed from a series
of atom insertions. Free energy differences between the discrete
states then could be estimated using FEP or BAR formulas. For
the thermodynamic integration scheme, however, the soft-core
potential is still necessary.
Here, we show that, due to the nature of the current soft-core

potential, unwanted minima in the nonbonded potential energy
may occur for some combinations of Lennard-Jones and
Coulomb parameters at intermediate λ values, when attractive
electrostatic interactions are not sufficiently counterbalanced by
the van der Waals repulsion. We propose a new approach that
prevents singularities and numerical instabilities and avoids the
additional minima points during alchemical transitions. The
new soft-core potential was validated by application to the free
energy calculation of a closed thermodynamic cycle, the
mutation influence on protein thermostability, the calculation
of small ligand solvation free energies, and the estimation of
binding free energies of trypsin inhibitors. The applications
show that the new soft-core potential provides a robust and
accurate general purpose solution to alchemical free energy
calculations.

2. THEORY AND METHODS
2.1. Conventional Soft-Core Function. The commonly

used soft-core potential function described by Beutler et al.28

occasionally suffers from additional minima points occurring
during nonequilibrium transitions at intermediate λ values,
which manifest themselves as a sudden jump in ∂H/∂λ,
consequently strongly affecting the final free energy estima-
tions. This effect is illustrated by an example in Figure 1, where
we analyze an alchemical transition during which five atoms are
introduced into the system. Consider a situation where atoms
C, N, O, HN1, and HN2 are not present in the system in state A.
These atoms are appearing in the system in state B in a rapid
nonequilibrium transition. The growth of the atoms is
performed via a linear combination of Hamiltonians for both
states using a coupling parameter λ: Hλ = (1 − λ)HA + λHB.

Coulomb and Lennard-Jones interactions are turned on
simultaneously; thus, a soft-core potential must be used.
During the transition, a specific balance between electrostatic
and Lennard-Jones interactions may result in a situation where
a water molecule is likely to be attracted to the morphed atoms.
Attractive electrostatic interaction between the atoms N and
HW1 as well as OW and HN1 cannot be compensated by the
repulsive electrostatic interaction between the N and OW
atoms, which is not strong enough in this stage to push the
water molecule away. Hydrogen atoms in the OPLS force
field,32 which was used for this example, have zero Lennard-
Jones parameters. Due to the applied soft-core potential, the
van der Waals repulsion between N and OW atoms is weakened.
Such an arrangement of the atoms can result in a water
molecule remaining close to the growing atoms for several
picoseconds due to the shape of the soft-cored energy curve (as
will be explained further). During that time, electrostatic and
Lennard-Jones repulsive forces are increasing and the potential
energy of the system is rising until the point where repulsion
overcomes attraction and the water molecule is expelled. At this
point, the potential energy rapidly drops, creating a sharp peak
in the ∂H/∂λ curve. We also demonstrate the occurrence of an
additional minima by analyzing potential energy and force
surfaces for two and four interacting atoms (see the Supporting
Information, S5). This effect is not only observed in the OPLS
force field. Similar jumps in the curves were also observed in
the generalized amber force field (GAFF)33 parametrized ligand
simulations. One way to solve this problem is to switch
electrostatic and Lennard-Jones interactions separately. How-
ever, this approach would not only double or triple the

Figure 1. Origin of singularities in the ∂H/∂λ curves. The black curve
illustrates a jump in ∂H/∂λ, the red line shows a smooth behavior of
the curve. The only difference between the two cases is the initial
simulation structure, indicating that the jumps appear stochastically.
The atoms C, N, O, HN1, and HN2 are appearing in the system,
whereas Cγ and the water molecule are present in the system
throughout the transition. The Lennard-Jones parameters and partial
charges of the atoms correspond to the OPLS force-field parameters;
the water molecule is described by the TIP4P water model. State 1:
water is attracted to the morphed atoms by an electrostatic interaction
between the atoms N and HW1 as well as OW and HN1. At this stage,
the repulsive forces are weak. State 2: the water molecule remains
close to the growing atoms for several picoseconds. During that time,
electrostatic and Lennard-Jones repulsive forces are increasing, and the
potential energy of the system is rising. State 3: repulsion overcomes
attraction and the water molecule is expelled. The potential energy
rapidly drops, creating a sharp peak in the ∂H/∂λ. Molecular structures
were visualized with VMD.58
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simulation time, but it is also impracticable for a CFT setup in
which equilibrium simulations of the end-states are required.
2.2. Origin of the Singularities. To avoid singularities and

numerical instabilities during the appearance and annihilation
of the particles in a system, Beutler et al.28 suggested
“softening” the Lennard-Jones and Coulomb interactions
(blue curves in the Figure 2B, D, F). The potential energy
functions were modified, such that, instead of going to infinity
at short distances, they reach a finite plateau value. The
Gromacs implementation of the soft-core function follows a
slightly modified Beutler soft-core potential. The nonbonded
part of the potential function for the system in the state A can
be written as follows:34

πε ε
= + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V r

q q

r

C

r

C

r
( )

4ij ij
i j ij ij

0 r A

(12)

A
12

(6)

A
6

(3)

where rA = (rij
6 + ασA

6λp)1/6 is the distance between the atoms i
and j for the state A, qi and qj are partial charges of the atoms i
and j, ε0 is the dielectric constant in a vacuum, εr is the relative
dielectric constant, and Cij

(12) and Cij
(6) are the Lennard-Jones

parameters. The charges qi, qj and parameters Cij
(12), Cij

(6) usually
are different for states A and B; however, for the sake of
simplicity we omit the state indices. α, p, and σ are parameters,
where σ = (Cij

(12)/Cij
(6))1/6. If one of the Lennard-Jones

parameters is equal to 0, a user defined σ value is used. For

Figure 2. Force and potential curves for the nonbonded interactions between two atoms at λ = 0.5. Both atoms in consideration were assigned
identical Lennard-Jones parameters: σ = 0.3 nm and ε = 0.5 kJ/mol. Partial charges of the atoms were q1 = 0.5 and q2 = −0.5. Gromacs 4.5 soft-core
parameters: α = 0.3 and σ = 0.3. Parameters for the new soft-core function: αLJ = 0.85, αQ = 0.3 and σQ = 1. (A) Lennard-Jones interaction force. (B)
Lennard-Jones interaction energy. (C) Coulomb interaction force. (D) Coulomb interaction energy. (E) Total nonbonded interaction energy. (F)
Total nonbonded interaction force.
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state B, the distance between the two atoms is defined as rB =
(rij

6 + ασB
6(1 − λ)p)1/6.

The Gromacs soft-core potential implements only one
parameter α for both the Lennard-Jones and Coulomb
interactions, whereas the Beutler et al.28 formulation allows
controlling this parameter separately for the van der Waals
interaction and electrostatics. Also, Gromacs implements only
one of the parameter s = p = 6 sets (following the notation of
the eq 9 in Beutler et al.28). Hence, Gromacs uses a special case
of the Beutler soft-core potential. In addition, Gromacs allows
choosing the power of λ to be 1 or 2, which for the Beutler soft-
core was set to 2.
This approach allows overlap of the atoms involved in an

alchemical transition and avoids singularities and numerical
instabilities. However, there is a remaining risk for additional
minima, the origin of which lies in the shape of the force curves
(blue curves in the Figure 2A, C, E). With a decreasing distance
between two particles, the force rises similar to the case of the
hard-core interaction. However, at a certain distance, a maximal
force is reached. If the atoms get even closer, the force between
them decreases, reaching zero at very short distances (see
surface plots for the nonbonded interaction energy and force in
the Supporting Information, S5). This shape of the force curves
explains the jumps in the ∂H/∂λ curves (Figure 1): atoms that
are very close to each other may exert a weaker repulsion onto
each other than the attraction between the atoms that are
further apart. An unwanted minimum in the nonbonded energy
landscape is created in which two atoms remain at a close
distance to each other. Such a situation becomes a trap for the
alchemically modifiable atoms, which is abruptly escaped at
higher or lower λ values. In our analysis, we primarily tested
various subsets of parameters for the original soft-core
formulation. As shown in Supporting Information, Figure S4,
however, the risk for additional minima remains as a result of
the shape of the force curves (Figure 2).
2.3. New Soft-Core Function. The new soft-core function

is constructed as a switch between the soft and hard-core
nonbonded interactions. In our approach, modifications take
place at the level of the force and the modified potential energy
is derived from it. For large distances van der Waals and
Coulomb forces are described in their classical hard-core terms.
At a certain distance, rij

LJ for the Lennard-Jones and rij
Q for the

Coulomb interaction, forces are linearized, retaining the slope
of the force at the switch point. The switching distance is
dependent on λ, ensuring that, at the end points of the
transition, the system is described completely by a hard-core
potential. The expressions for the Lennard-Jones force and its
switching point are
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where the switching point between the soft and hard-core
Lennard-Jones forces rij

LJ = αLJ(
26/7(Cij

(12)/Cij
(6))λ)1/6 for state A

and rij
LJ = αLJ(

26/7(Cij
(12)/Cij

(6))(1 − λ))1/6 for state B and rij is the
distance between the atoms i and j.
The parameter αLJ controls the position of the switching

point between the soft-core and hard-core Lennard-Jones

interactions. With αLJ = 1 and λ = 1 for state A (or λ = 0 for
state B), the van der Waals force is linearized at the minimum
point and, thus, is equal to zero for distances shorter than rij

LJ.
The electrostatic force is described as
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where the switching point between the soft and hard-core
electrostatic forces rij

Q = (1 + σQ |qiqj|)αQλ
1/6 for state A and rij

Q =
(1 + σQ |qiqj|)αQ(1 − λ)1/6 for state B.
αQ is the control parameter for the switching point between

the soft and hard-core electrostatic forces. rij
Q also depends on

the partial charges of the interacting atoms: larger absolute
values of the charges result in a larger distance for the switching
point, consequently making the interaction “softer”. The
influence of the charges on the switching point is controlled
by the parameter σQ. The power

1/6 for λ makes sure that the
switching point for the Coulomb interaction changes at the
same rate with respect to λ as the switching point for the
Lennard-Jones interaction.
The expression for the Lennard-Jones potential energy is
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and that for the Coulomb potential energy is
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where CLJ and CQ are integration constants.
∂H/∂λ curves for distances larger than the switching point is

simply equal to VB − VA. For the distances below the switching
point
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Explicit expressions for the forces, potential energies and
∂H/∂λ curves can be found in the Supporting Information, S1.
In the Supporting Information, S2, the newly constructed force
and potential energy functions are shown to converge to the
original formulation of the Lennard-Jones and Coulomb
interactions at the switching point. The derivation of ∂H/∂λ
is provided in the Supporting Information, S3.
The new soft-core function avoids additional extrema points

in the force curves (green curves in the Figure 2A, C, E). The
force between two particles monotonically decreases with an
increase in distance in the soft-cored distance range. The
potential energy functions (green curves in the Figure 2B, D, F)
for the nonbonded interactions reach finite (but nonzero)
values when the distance between particles goes to zero. This
means that, during particle introduction/annihilation in the
system, overlaps of the modifiable atoms are allowed, but
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clashes cause repulsion that gets stronger with decreasing
distance. This construction avoids the traps inherent to the
original soft-core.
At zero interparticle distance, that is, when two atoms

completely overlap, the new formulation of the soft-core
function is discontinuous. However, we show, both analytically
and computationally (see the Supporting Information, S4), that
a complete overlap represents an entropically forbidden state,
which therefore does not affect the estimated free energies.
When using the new soft-core function, slight jumps in ∂H/

∂λ are expected in the beginning and the end of an alchemical
transition. As shown in the validation free energy calculations,
these slight jumps have no influence on the free energy
estimates. Additional smoothening of the ∂H/∂λ curves can be
achieved by adjusting soft-core controlling parameters.
2.4. Parameter Selection. Selection of the optimal soft-

core parameter set is a nontrivial task. To obtain accurate free
energy estimates, smooth ∂H/∂λ curves are desirable. Another
requirement is to maintain van der Waals repulsion between
two particles at short distances stronger than the electrostatic
attraction to prevent atoms collapsing onto each other.
However, as already shown in the example in Figure 1, the
repulsion/attraction balance is a matter of interaction of many
particles and considering only pairwise interactions would not
be sufficient to calibrate the parameter set. In the new
construction of the soft-core function, the parameter αLJ
controls the point of linearization of the van der Waals
interaction force. For αLJ, the values range from 0 to 1: αLJ = 0
implies a completely hard-core Lennard-Jones potential
throughout the whole transition, αLJ = 1 would set the van
der Waals force to 0 kJ mol−1 nm−1 at short distances for the
end states. Values larger than 1 for this parameter would result
in an attractive force at short distances, hence such values are
not reasonable. Setting αLJ to be closer to 1 smooths the ∂H/∂λ
curves. In our simulations, we chose αLJ = 0.85.
The value for the αQ parameter controls the point of

linearization of the electrostatic force. Since the Coulomb force
curve does not have an extremum point, there is no caveat of
selecting a value for αQ, which would change the repulsion into
attraction, or the other way around, as it was for the van der
Waals interaction. Smaller αQ values bring the electrostatic
interaction closer to the original hard-core Coulomb potential,
and the ∂H/∂λ curves become smoother. However, if an
electrostatic potential becomes too similar to the classical
Coulomb potential, the risk of singularities, as described by
Anwar,29 increases. Larger values of αQ may produce jumps in

∂H/∂λ in the beginning and the end of each transition. Since
these jumps are predictable and occur in every transition, their
influence on the final free energy estimate cancels. To avoid
additional minima points and to smoothen the ∂H/∂λ curves,
testing of the new soft-core function guided the choice for the
αQ to be about the van der Waals radius of the largest atom in
the system. For the validation simulations, we used αQ = 0.3.
The switching point for the linearization of the electrostatics
also depends on the partial charges of the atoms interacting: the
larger charges the atoms carry, the more soft-cored their
electrostatic interaction should be. This effect can be controlled
with the parameter σQ, which in our simulations we simply set
to be equal to 1 (details concerning the σQ parameter are
provided in the Supporting Information, S9). More information
on the validity assessment for the selected parameter set as well
as on the behavior of the forces and potentials depending on
the parameters is provided in the Supporting Information, S6
and S7.
Parameters used for the Gromacs soft-core implementation

were the following: α = 0.3, σ = 0.25, p = 1.
2.5. Simulation Details. In our approach, free energies

were estimated from the nonequilibrium simulations relying on
the Crooks Fluctuation Theorem. The nonequilibrium
transition runs need to be started from structures taken from
an equilibrium ensemble. Equilibrium simulations were
performed for 10 ns at the states λ = 0 and λ = 1 using a
stochastic dynamics integrator. From the last 8 ns of these
simulations, 100 snapshots were extracted and fast non-
equilibrium transitions were performed for 50 ps each using a
leapfrog integrator. A time step of 2 fs was used for all the
simulations. For the simulations of the barnase mutations in the
Amber99sb35 force-field, equilibrium ensembles generated by
Seeliger and de Groot16 were used. The work values for the
forward and backward transitions were calculated using eq 2.
The Crooks Gaussian Intersection36 method was used to
estimate free energy differences.
The new soft-core function was validated by calculating free

energies of a closed thermodynamic cycle, changes in the free
energy due to the mutations of the enzyme barnase, solvation
free energies of small organic compounds, and ligands binding
affinities to the enzyme trypsin. For the closed cycle, deviations
from the expected value of zero were monitored. For the other
cases, root-mean-square differences (RMSD) between the
computed and experimental values were calculated. RMSDs
retrieved using the new soft-core function were compared to
the RMSDs calculated with the soft-core function implemented

Figure 3. Schematic representations of the thermodynamic cycles. (A) Closed thermodynamic cycle. The free energy of the cycle is calculated by
ΔGcycle = ΔG1 + ΔG2 + ΔG3, which should be zero by construction. (B) Thermodynamic cycle for the alanine mutations in the enzyme barnase. The
relative free energy difference is calculated by ΔΔG = ΔG1 − ΔG2 = ΔG3 − ΔG4. (C) Thermodynamic cycle for trypsin inhibitors. Differences in
free energies of binding between the ligands were calculated using the expression ΔΔG = ΔG2 − ΔG1 = ΔG4 − ΔG3. The 2D representation of the
molecules was created with Marvin 5.3.8, 2010, ChemAxon (http://www.chemaxon.com).
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in Gromacs 4.5. For the barnase mutations in the Amber99sb
force-field, simulations with the Gromacs 4.5 soft-core were not
performed, but the results from Seeliger and de Groot, who
used Gromacs 4.0 with the Beutler et al.28 type soft-core, were
considered for comparison. All the simulations involving the
new soft-core function were carried out with Gromacs 4.0.
Standard deviations for the calculated free energies were

estimated, as described by Goette and Grubmüller.36

Closed Cycle. A closed thermodynamic cycle was con-
structed by morphing benzamidinium derivatives, as shown in
Figure 3A. In the first step, a hydrogen on the benzene ring was
morphed into a methyl group; in the second step, methyl was
transformed into ethyl. The cycle was closed by morphing ethyl
back to hydrogen. The free energy difference of traveling over
the closed cycle was evaluated by ΔGcycle = ΔG1 + ΔG2 + ΔG3,
which should be zero by construction. ΔGcycle was calculated
for various numbers of transitions in order to assess the
convergence for the different soft-core functions. The
simulations were prepared by putting each ligand in a
dodecahedron box with at least 1.2 nm distance from the
solute to a box wall. Ligands were solvated with TIP3P37 water,
resulting in around 800 water molecules in a box. Na+ and Cl−

ions were added to neutralize the system and reach 150 mM
salt concentration. The Amber99sb force field was used for the
simulations; topology parameters for the ligands were retrieved
using GAFF. Gaussian 0338 was used to calculate partial
charges. Temperature coupling was performed with the velocity
rescaling thermostat39 with a time constant of 0.1 ps and a
reference temperature of 298 K. The Parrinello−Rahman
barostat40 with a time constant of 1 ps was used to maintain a
pressure of 1 bar. A cutoff of 1.1 nm for the Lennard-Jones
potential with a switch function starting at 1 nm was used. The
switch function for the van der Waals interactions that we used
in all the simulations is acting at the force level, allowing for a
smooth transition to 0 kJ mol−1 nm−1 in the region defined by
the switching cutoff and the Lennard-Jones cutoff. The relevant
equations for the switch function implemented in Gromacs can
be found in a work by van der Spoel and van Maaren41 and the
Gromacs User Manual.34 Dispersion was corrected for energy
and pressure. Short-range electrostatic interactions were cutoff
at 1.2 nm. Particle Mesh Ewald (PME)42,43 was used for the
long-range electrostatic interactions with the Fourier grid
spacing set to 0.14 nm and interpolation of order 4. Bonds and
angles of water molecules were constrained using SETTLE.44

LINCS45 was used to constrain all bonds in the ligands.
Barnase Mutations. To investigate the influence of

mutations on the thermostability of the microbial ribonuclease
barnase (PDB id 1BNI), alanine at position 32 was mutated
into 14 different amino acids. Free energy differences caused by
an alanine mutation were calculated in both the folded and the
unfolded states of barnase. The unfolded state of the protein
was approximated by using tripeptides GXG, where X was the
mutated residue. Relative free energy differences were
estimated from the thermodynamic cycle shown in Figure
3B: ΔΔG = ΔG1 − ΔG2 = ΔG3 − ΔG4. Simulations were
carried out using two different force fields: Amber99sb and
OPLS. The simulation set up was analogous to that described
by Seeliger and de Groot.16 A switch function was used for the
van der Waals interactions between 1.0 and 1.1 nm.
Electrostatics were treated with PME using a real space cutoff
of 1.2 nm, a Fourier grid spacing of 0.14 nm, and an
interpolation of order 4. Topologies for the mutated residues
were generated using PYMACS (http://wwwuser.gwdg.de/

dseelig/pymacs.html). For the simulations with the Amber99sb,
systems were solvated with TIP3P water, whereas the TIP4P
water model was chosen for the simulations using the OPLS
force field. Estimated free energy differences were compared to
the experimental values obtained by Horovitz et al.46

Free Energies of Ligand Solvation. A set of 17 compounds
preselected and analyzed by Nicholls et al.13 was chosen for a
further validation of the new soft-core function by calculating
free energies of ligand solvation. During the alchemical
transitions, nonbonded interactions between a ligand and the
solvent were switched on/off while intramolecular nonbonded
interactions for the ligand were retained. The simulation system
was set up by putting each ligand in a cubic box with
dimensions of 2.5 × 2.5 × 2.5 nm. The TIP3P water model was
used to solvate the ligands, resulting in ≈500 water molecules
in a box. Topology parameters for the ligands were taken from
GAFF. AM1-BCC v147,48 partial charges provided by Nicholls
et al. were used. All the set up parameters were set to be the
same as those used by Nicholls et al. and described by Mobley
et al.,12 except the following: a neighbor list of 0.9 nm was used
and both the equilibrium runs and the nonequilibrium
transitions were performed using Berendsen pressure coupling
algorithm49 with a reference pressure set to 1.0 bar and time
constant 0.5 ps. Following Nicholls et al., we set the van der
Waals interactions to switch off between 0.8 and 0.9 nm, the
Coulomb real space cutoff was set to 0.9 nm, and PME
electrostatics treatment was employed with an interpolation of
order 6 and a grid spacing of 0.1 nm. For the nonequilibrium
transition runs, a velocity rescaling thermostat with a time
constant 0.1 ps and reference temperature 300 K was used. The
results were compared to the free energies estimated by
Nicholls et al. using alchemical methods with the Merck-Frosst
AM1-BCC v1 partial charges. The experimental values of the
solvation free energies were selected by Nicholls et al. from refs
50−55.

Trypsin Inhibitors. For the protein-ligand binding free
energy estimation, a set of trypsin binders described and tested
by Talhout et al.56 was selected. Simulations of the ligands in
water and in the active site of the enzyme were performed, and
the relative free binding energies were estimated following the
thermodynamic cycle in Figure 3C: ΔΔG = ΔG2 − ΔG1 = ΔG4
− ΔG3. To prepare ligands in solution and to generate the
topologies, the same protocol as that used for the ligands in the
closed cycle simulations was followed. For the simulations of
the ligands in the active site of the enzyme, the trypsin X-ray
structure (PDB id 3PTB) was chosen. The ligand and trypsin
were put in a dodecahedron box with at least 1.2 nm distance
from a box wall. The system was solvated with TIP3P water
resulting in ≈9000 water molecules in the box. Ions were added
to neutralize the system and mimick 150 mM salt
concentration. Simulations were carried out in the Amber99sb
force field; GAFF was used for ligand parametrization. The
molecular dynamics parameters were identical to those used in
the closed cycle simulations.

3. RESULTS
3.1. Closed Cycle. The results of the free energy difference

calculations for the closed thermodynamic cycle are shown in
Figure 4. For both cases, Gromacs 4.5 and the new soft-core,
the sum of three free energy differences across the closed cycle
converges to zero as the number of transitions increases.
Calculations using the soft-core function implemented in
Gromacs 4.5 converge to ≈0 kJ/mol already after 50

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300220p | J. Chem. Theory Comput. 2012, 8, 2373−23822378

http://wwwuser.gwdg.de/dseelig/pymacs.html
http://wwwuser.gwdg.de/dseelig/pymacs.html


transitions; however, with the further increase in the number of
transitions ΔGcycle starts slightly deviating from zero. The new
soft-core function converges to zero after 70 transitions and
stays at that value. After 100 transitions Gromacs 4.5 soft-core
showed the value of −0.24 ± 1.03 kJ/mol, whereas the new
soft-core ended up in 0.08 ± 0.50 kJ/mol for the closed cycle.
The statistical accuracy for the closed thermodynamic cycle
calculations with the new-soft core function is approximately
two times higher in comparison to the calculations with the
Gromacs 4.5 soft-core function.
3.2. Barnase Mutations. The influence of the soft-core

potential function used for the free energy calculations of the
barnase mutations was assessed for two force fields, Amber99sb
and OPLS (Figure 5 A and B, respectively). In the simulations
with the Amber99sb force-field, 10 out of 14 calculated free
energy values were closer to the experimentally measured
values when the new soft-core function was used. Average
RMSD between free energies calculated by Seeliger and de
Groot with the Gromacs 4.0 soft-core and the experimental
values was 1.61 ± 0.20 kJ/mol, whereas for the new soft-core
average RMSD was 1.35 ± 0.15 kJ/mol. For the OPLS force-
field, free energies for 8 out of 14 amino acid mutations were
more accurate when the new soft-core was used. Average

RMSD for the Gromacs 4.5 soft-core was 2.80 ± 0.22 kJ/mol
and for the new soft-core 2.60 ± 0.17 kJ/mol. When comparing
the performance of two force-fields, free energies calculated in
the Amber99sb in eight cases are closer to the experimental
values than the calculations with the OPLS for the new soft-
core potential. For five mutations, the free energy estimation
with the new soft-core in the OPLS force-field deviates from
the experimental results by more than 1 kcal/mol, whereas
Amber99sb estimations are within 1 kcal/mol from the
experimental values in all 14 cases.

3.3. Free Energies of Ligand Solvation. Solvation free
energies were calculated for 17 small organic compounds.
Results of the calculations were compared to the experimental
values provided in the work of Nicholls et al. (Figure 6). For

nine compounds, the new soft-core function performed better
than the Gromacs 4.5 soft-core. When compared to the discrete
TI calculations performed by Nicholls et al., 13 out of 17
solvation free energies were predicted more accurately by our
nonequilibrium approach with the new soft-core function.
Average RMSDs between calculated and experimentally

Figure 4. Free energy difference over a closed thermodynamic cycle.
The X-axis denotes the number of transitions considered for the
calculation of the free energies. Error bars represent standard errors.
The dashed line marks the expected 0 kJ/mol.

Figure 5. RMSD of the alanine mutation associated free energy changes in barnase from the experimental values.46 (A) Results of the simulations in
the Amber99sb force field. (B) Results using the OPLS force field. Error bars represent standard errors. The dashed line marks a 1 kcal/mol
deviation.

Figure 6. RMSD of the solvation free energies from the experimental
values.13,50−55 Error bars represent standard errors. The dashed line
marks a 1 kcal/mol deviation.
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obtained free energies are 6.26 ± 0.21 kJ/mol for the Nicholls
et al. calculations, 5.36 ± 0.24 kJ/mol for the new soft-core, and
5.67 ± 0.23 kJ/mol for the Gromacs 4.5 soft-core function.
3.4. Trypsin Inhibitors. Free energies of binding were

calculated for seven trypsin inhibitors described by Talhout et
al.56 (Figure 7). In five cases, calculations with the new soft-

core function yielded more accurate results than the Gromacs
4.5 soft-core. Average RMSDs for the trypsin inhibitors are 1.14
± 0.34 kJ/mol for Talhout et al.56 calculations, 1.15 ± 0.32 kJ/
mol for the new soft-core function, and 2.31 ± 0.46 kJ/mol for
the Gromacs 4.5 soft-core potential.

4. DISCUSSION
The free energy calculation for the closed cycle served as a
robust and simple validation case for the new soft-core
function. The expected outcome of this test (0 kJ/mol) was
reached using both constructions of the soft-core potential
indicating correctness of both approaches. The larger error bars
and slight divergence from zero for the Gromacs 4.5 soft-core
can be attributed to minor jumps in the ∂H/∂λ curves observed
during the simulations of the transitions in the closed cycle.
The calculation of free energies for barnase in the

Amber99sb force field was intended as another check for the
correctness of the new soft-core function. Calculations with the
Gromacs 4.0 soft-core function showed no jumps in ∂H/∂λ in
the simulations performed by Seeliger and de Groot. Therefore,
it is interesting to notice that even in this case where the
original soft-core function performs properly, calculations with
the new soft-core function yield more accurate results. For the
OPLS force field, the new soft-core also gives more accurate
free energy estimates. For the mutations where the jumps in
∂H/∂λ were observed (Asn, Gln, Ser, Thr, Trp an Tyr) during
the transitions with the Gromacs 4.5 soft-core potential, no
jumps occurred when the new soft-core function was used. For
all these cases, except tyrosine, free energy estimates were more
accurate once the jumps in the curves were eliminated.
Concerning the tyrosine mutation, we analyzed the behavior

of the ∂H/∂λ curves in more detail and discovered that, in cases
where the original soft-core potential was used, the jumps in the
curves occurred in the part of the thermodynamic cycle (Figure
3B) where the transitions in the unfolded form of the protein
took place (data not shown). Integration over the curves

containing jumps influenced the final ΔΔG such that it
appeared to be closer to the experimentally observed value.
This result exemplifies the danger of the jumps in the ∂H/∂λ
curves during the alchemical transitions: the results may appear
to be more accurate due to an accidental trap for the modifiable
atoms, as explained in Figure 1. Situations such as this one limit
the predictive power and reliability of alchemical free energy
methods.
The performance of the new soft-core function in the

calculations of the ligand solvation free energies and binding
affinities of the trypsin inhibitors is of particular importance
because of the applicability of the alchemical methods in
rational drug design. In spite of the fact that no jumps in the
∂H/∂λ curves were observed for the ligand solvation
simulations with the Gromacs 4.5 soft-core, results obtained
with new soft-core are more accurate. Also, the nonequilibrium
free energy calculations appear to be superior to the discrete TI
used by Nicholls et al. Application of the new soft-core
potential for the binding free energy calculations of the trypsin
inhibitors has a significant effect on the accuracy of the binding
affinity estimates. Removal of the jumps in the curves reduced
the RMSD to the experimental values in the free energy
estimations by a factor of 2, on average.
In some cases, the usage of the original soft-core does not

cause entrapment in the additional minima, hence, no jumps in
the ∂H/∂λ occur. For such cases, our aim was to illustrate that
the new soft-core potential was providing consistent results
with the original soft-core calculations. In other cases, such as
trypsin inhibitor analysis, removal of the jumps in the ∂H/∂λ
curves increased the accuracy of the free energy estimates.
Lawrenz et al.57 demonstrated how additional sampling using
independent MD runs, dramatically increased accuracy of the
absolute free energy of binding estimation. In this context,
improvements of using the new soft-core potential may be used
in combination with additional sampling to enhance the
accuracy of the free energy calculations.
Accurate free energy estimates and predictable behavior of

the ∂H/∂λ curves make the nonequilibrium alchemical free
energy calculations in combination with the new soft-core
function an attractive method for the design of new drug
candidates and ligand optimization. In addition, the new soft-
core potential can be applied to the equilibrium free energy
calculations that may also suffer from additional minima when
the original soft-core is applied.

5. CONCLUSIONS
We have introduced a novel soft-core potential for nonbonded
interactions in alchemical free energy simulations, that alleviates
additional minima in the nonbonded potential energy that may
occur with the original soft-core formulation. The new soft-core
function works as a switch between the traditional (hard-core)
description of the nonbonded interactions and the linearized
form of the Coulomb and Lennard-Jones forces. The switching
point for the force linearization in the new soft-core function is
λ dependent, ensuring that the end states of a transition are
described by classical hard-core potentials. The new soft-core
function was validated by calculating the free energy over a
closed thermodynamic cycle, free energy differences caused by
mutations in an enzyme barnase in the Amber99sb and OPLS
force fields, solvation free energies of small organic compounds,
and free binding energies of trypsin inhibitors. In all cases, the
new soft-core function leads to more accurate free energy
estimates.

Figure 7. RMSD of the trypsin inhibitors binding free energies from
the experimental values. Error bars represent standard errors. The
dashed line marks a 1 kcal/mol deviation.
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