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The molecular dynamics simulation package GROMACS runs

efficiently on a wide variety of hardware from commodity work-

stations to high performance computing clusters. Hardware fea-

tures are well-exploited with a combination of single instruction

multiple data, multithreading, and message passing interface

(MPI)-based single program multiple data/multiple program

multiple data parallelism while graphics processing units (GPUs)

can be used as accelerators to compute interactions off-loaded

from the CPU. Here, we evaluate which hardware produces tra-

jectories with GROMACS 4.6 or 5.0 in the most economical way.

We have assembled and benchmarked compute nodes with var-

ious CPU/GPU combinations to identify optimal compositions in

terms of raw trajectory production rate, performance-to-price

ratio, energy efficiency, and several other criteria. Although

hardware prices are naturally subject to trends and fluctuations,

general tendencies are clearly visible. Adding any type of GPU

significantly boosts a node’s simulation performance. For inex-

pensive consumer-class GPUs this improvement equally reflects

in the performance-to-price ratio. Although memory issues in

consumer-class GPUs could pass unnoticed as these cards do

not support error checking and correction memory, unreliable

GPUs can be sorted out with memory checking tools. Apart

from the obvious determinants for cost-efficiency like hardware

expenses and raw performance, the energy consumption of a

node is a major cost factor. Over the typical hardware lifetime

until replacement of a few years, the costs for electrical power

and cooling can become larger than the costs of the hardware

itself. Taking that into account, nodes with a well-balanced ratio

of CPU and consumer-class GPU resources produce the maxi-

mum amount of GROMACS trajectory over their lifetime. VC 2015
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Introduction

Many research groups in the field of molecular dynamics (MD)

simulation and also computing centers need to make deci-

sions on how to setup their compute clusters for running the

MD codes. A rich variety of MD simulation codes is available,

among them CHARMM,[1] Amber,[2] Desmond,[3] LAMMPS,[4]

ACEMD,[5] NAMD,[6] and GROMACS.[7,8] Here, we focus on GRO-

MACS, which is among the fastest ones, and provide a com-

prehensive test intended to identify optimal hardware in terms

of MD trajectory production per investment.

One of the main benefits of GROMACS is its bottom-up per-

formance-oriented design aimed at highly efficient use of the

underlying hardware. Hand-tuned compute kernels allow utilizing

the single instruction multiple data (SIMD) vector units of most

consumer and high performance computing (HPC) processor plat-

forms while OpenMP multithreading and GROMACS’ built-in

thread- message passing interface (MPI) library together with non-

uniform memory access (NUMA)-aware optimizations allow for

efficient intranode parallelism. Using a neutral-territory domain-

decomposition (DD) implemented with MPI, a simulation can be

distributed across multiple nodes of a cluster. Beginning with ver-

sion 4.6, the compute-intensive calculation of short-range non-

bonded forces can be off-loaded to graphics processing unit

(GPUs), while the CPU concurrently computes all remaining forces

such as long-range electrostatics, bonds, so forth, and updates the

particle positions.[9] Additionally, through multiple program multi-

ple data (MPMD) task-decomposition the long-range electrostatics

calculation can be off-loaded to a separate set of MPI ranks for bet-

ter parallel performance. This multilevel heterogeneous paralleliza-

tion has been shown to achieve strong scaling to as little as 100

particles per core, at the same time reaching high absolute appli-

cation performance on a wide range of homogeneous and hetero-

geneous hardware platforms.[10,11]

A lot of effort has been invested over the years in software

optimization, resulting in GROMACS being one of the fastest

MD software engines available today.[7,12] GROMACS runs on a

wide range of hardware, but some node configurations pro-

duce trajectories more economically than others. In this study,

we ask: What is the “optimal” hardware to run GROMACS on

and how can optimal performance be obtained?
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Using a set of representative biomolecular systems, we deter-

mine the simulation performance for various hardware combina-

tions, with and without GPU acceleration. For each

configuration, we aim to determine the run parameters with the

highest performance at comparable numerical accuracy. There-

fore, this study also serves as a reference on what performance

to expect for a given hardware. Additionally, we provide the

GROMACS input files for own benchmarks and the settings that

gave optimum performance for each of the tested node types.

Depending on the projects at hand, every researcher will

have a somewhat different definition of “optimal,” but one or

more of the following criteria C1–C5 will typically be involved:

C1 the performance-to-price ratio,

C2 the achievable single-node performance,

C3 the parallel performance or the “time-to-solution,”

C4 the energy consumption or the “energy-to-solution,”

C5 rack space requirements.

If on a fixed total budget for hardware, electricity, and cool-

ing, the key task is to choose the hardware that produces the

largest amount of MD trajectory for the investment.

Here, we focus on the most suitable hardware for GROMACS

MD simulations. Due to the domain-specific requirements of

biomolecular MD and in particular that of algorithms and

implementation used by GROMACS, such hardware will likely

not be the best choice for a general-purpose cluster that is

intended to serve a broad range of applications. At the same

time, it is often possible to pick a middle-ground that provides

good performance both for GROMACS and other applications.

In the next section, we will describe the key determinants

for GROMACS performance, and how GROMACS settings can

be tuned for optimum performance on any given hardware.

Using two prototypic MD systems, we will then systematically

derive the settings yielding optimal performance for various

hardware configurations. For some representative hardware

setups, we will measure the power consumption to estimate

the total MD trajectory production costs including electrical

power and cooling. Finally, for situations where simulation

speed is crucial, we will look at highly parallel simulations for

several node types in a cluster setting.

Key Determinants for GROMACS Performance

GROMACS automatically detects a node’s hardware resources

such as CPU cores, hardware thread support, and compatible

GPUs, at run time. The main simulation tool, mdrun, makes an

educated guess on how to best distribute the computational

work onto the available resources. When executed on a single

node using its integrated, low-overhead thread-MPI library,

built-in heuristics can determine essentially all launch configu-

rations automatically, including number of threads, ranks, and

GPU to rank assignment, allowing to omit some or all of these

options. We use the term “rank” for both MPI processes and

thread-MPI ranks here; both have the same functionality,

whereas thread-MPI ranks can only be used within the same

node. Additionally, we use the term “threads” or “threading”

to refer to OpenMP threads; each rank may, thus, comprise a

group of threads. mdrun optimizes the thread layout for data

locality and reuse also managing its own thread affinity set-

tings. Default settings typically result in a fairly good simula-

tion performance, and especially in single-node runs and on

nodes with a single CPU and GPU often optimal performance

is reached without optimizing settings manually. However, tun-

ing a standard simulation setup with particle-mesh Ewald[13]

(PME) electrostatics for optimum performance on a compute

node with multiple CPUs and GPUs or on a cluster of such

nodes typically requires optimization of simulation and launch

parameters. To do this, it is important to understand the

underlying load distribution and balancing mechanisms.[14]

The control parameters of these allow optimizing for simula-

tion speed, without compromising numerical accuracy.

Load distribution and balancing mechanisms

GROMACS uses DD to split up the simulation system into NDD

5DDx3DDy3DDz initially equally-sized domains and each of

these is assigned to an MPI rank. If dynamic load balancing

(DLB) is active, the sizes of the DD cells are continuously

adjusted during the simulation to balance any uneven compu-

tational load between the domains.

In simulations using PME, MPMD parallelization allows dedi-

cating a group of NPME ranks to the calculation of the long-

range (reciprocal space) part of the Coulomb interactions while

the short-range (direct space) part is computed on the remain-

ing NDD ranks. A particle-mesh evaluation is also supported for

the long-range component of the Lennard–Jones potential with

the Lennard–Jones PME (LJ-PME) implementation available as of

the 5.0 release.[11,15] The coarse task-decomposition based on

MPMD allows reducing the number of ranks involved in the

costly all-to-all communication during three dimensional fast

Fourier transformation (3D FFT) needed by the PME computa-

tion, which greatly reduces the communication overhead.[7,14]

For a large number of ranks Nrank >> 8, peak performance is,

therefore, usually reached with an appropriate separation Nrank

5NDD1NPME. The number NPME of separate PME ranks can be

conveniently determined with the g_tune_pme tool,* which is

distributed with GROMACS since version 4.5.

When a supported GPU is detected, the short-range part of

Coulomb and van der Waals interactions are automatically off-

loaded, while the long-range part, as needed for PME or LJ-

PME, as well as bonded interactions are computed on the

CPU. For the PME computation, a fine PME grid in combina-

tion with a short Coulomb cutoff results in a numerical accu-

racy comparable to that of a coarse grid with a large cutoff.

Therefore, by increasing short-range interaction cutoff while

also increasing the PME grid spacing, GROMACS can gradually

shift computational load between particle–particle (PP) and

PME computation when the two are executed on different

resources. This is implemented in form of an automated static

load-balancing between CPU and GPU or between PP and

*From version 5.0, the tune_pme command of the gmx tool.
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PME ranks, and it is performed during the initial few hundreds

to thousands of simulation steps.

By default, the GROMACS heterogeneous parallelization uses

one GPU per DD cell, mapping each accelerator to a PP rank. If

explicit threading parameters are omitted, it also automatically dis-

tributes the available CPU cores among ranks within a node by

spawning the correct number of threads per rank. Both thread

count and order takes into account multiple hardware threads per

core with hyperthreading (HT). Using fewer and larger domains

with GPU acceleration allows reducing overhead associated to

GPU off-loading like CUDA runtime as well as kernel startup and

tail overheads.† Conversely, as the minimum domain size is limited

by cutoff and constraint restrictions, using larger domains also

ensures that both small systems and systems with long-range con-

straints can be simulated using many GPUs. Often, however, per-

formance is improved using multiple domains per GPU. In

particular, with more CPUs (or NUMA regions) than GPUs per node

and also with large-core count processors, it is beneficial to reduce

the thread count per rank by assigning multiple, “narrower” ranks

to a single GPU. This reduces multithreading parallelization over-

heads, and by localizing domain data reduces cache coherency

overhead and intersocket communication. Additional benefits

come from multiple ranks sharing a GPU as both compute kernels

and transfers dispatched from each rank using the same GPU can

overlap in newer CUDA versions.

CPU–GPU and DD load balancing are triggered simultane-

ously at the beginning of the run, which can lead to unwanted

interaction between the two. This can have a detrimental effect

on the performance in cases where DD cells are, or as a result of

DLB become close in size to the cutoff in any dimension. In such

cases, especially with pronounced DD load imbalance, DLB will

quickly scale domains in an attempt to remove imbalance reduc-

ing the domain sizes in either of the x, y, or z dimensions to a

value close to the original buffered cutoff. This will limit the

CPU–GPU load-balancing in its ability to scale the cutoff, often

preventing it from shifting more work off of the CPU and leaving

the GPUs under-utilized. Ongoing work aims to eliminate the

detrimental effect of this load balancer interplay with a solution

planned for the next GROMACS release.

Another scenario, not specific to GPU acceleration, is where

DLB may indirectly reduce performance by enforcing decomposi-

tion in an additional dimension. With DLB enabled, the DD needs

to account for domain resizing when deciding on the number of

dimensions required by the DD grid. Without DLB, the same

number of domains may be obtained by decomposing in fewer

dimensions. Although, decomposition in all three-dimensions is

generally possible, it is desirable to limit the number of dimen-

sions to reduce the volumes communicated. In such cases, it can

be faster to switch off DLB, to fully benefit from GPU off-loading.

Making optimal use of GPUs

In addition to the load distribution and balancing mechanisms

directly controlled by GROMACS, with certain GPU boards

additional performance tweaks may be exploited. NVIDIA Tesla

cards starting with the GK110 microarchitecture as well as

some Quadro cards support a so-called “application clock” set-

ting. This feature allows using a custom GPU clock frequency

either higher or lower than the default value. Typically, this is

used as a manual frequency boost to trade available thermal

headroom for improved performance, but it can also be used

to save power when lower GPU performance is acceptable. In

contrast, consumer GPUs do not support application clocks

but instead use an automated clock scaling (between the base

and boost clocks published as part of the specs). This cannot

be directly controlled by the user.

A substantial thermal headroom can be available with com-

pute applications because parts of the GPU board are fre-

quently left underutilized or unutilized. Graphics-oriented

functional units, part of the on-board GDDR memory, and

even the arithmetic units may idle, especially in case of appli-

cations relying on heterogeneous parallelization. In GROMACS,

the CPU–GPU concurrent execution is possible only during

force computation, and the GPU is idle most of the time out-

side this region, typically for 15–40% of a time step. This

leaves enough thermal headroom to allow setting the highest

application clock on all GPUs to date (see Fig. 4).

Increasing the GPU core clock rate yields a proportional

increase in nonbonded kernel performance. This will generally

translate into improved GROMACS performance, but its magni-

tude depends on how GPU-bound the specific simulation is.

The expected performance gain is highest in strongly GPU-

bound cases (where the CPU waits for results from GPU). Here,

the reduction in GPU kernel time translates into reduction in

CPU wait time hence improved application performance. In

balanced or CPU-bound cases, the effective performance gain

will often be smaller and will depend on how well can the

CPU–GPU load-balancing make use of the increased GPU per-

formance. Note that there is no risk involved in using applica-

tion clocks; even if a certain workload could generate high

enough GPU load for the chip to reach its temperature or

power limit, automated frequency throttling will ensure that

the limits will not be crossed. The upcoming GROMACS ver-

sion 5.1 will have built-in support for checking and setting the

application clock of compute cards at runtime.

Indeed, frequency throttling is more common in case of the

consumer boards, and factory-overclocked parts can be espe-

cially prone to overheating. Even standard clocked desktop-

oriented GeForce and Quadro cards come with certain disad-

vantages for compute use. Being optimized for acoustics, desk-

top GPUs have their fan limited to approximately 60% of the

maximum rotation speed. As a result, frequency throttling will

occur as soon as the GPU reaches its temperature limit, while

the fan is kept at � 60%. As illustrated on Figure 1, a GeForce

GTX TITAN board installed in a well-cooled rack-mounted chas-

sis under normal GROMACS workload starts throttling already

after a couple of minutes, successively dropping its clock

speed by a total of 7% in this case. This behavior is not

uncommon and can cause load-balancing issues and applica-

tion slowdown as large as the GPU slowdown itself. The

†Kernel “tail” is the final, typically imbalanced part of a kernel execution

across multiple compute units (of a GPU), where some units already ran

out of work while others are still active.
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Supporting Information shows how to force the GPU fan

speed to higher value.

Another feature, available only with Tesla cards, is the CUDA

multiprocess server (MPS) which provides two possible per-

formance benefits. The direct benefit is that it enables the

overlap of tasks (both kernels and transfers) issued from differ-

ent MPI ranks to the same GPU. As a result, the aggregate

time to complete all tasks of the assigned ranks will decrease.

For example, in a parallel run with 2000 atoms per MPI rank,

using six ranks and a Tesla K40 GPU with CUDA MPS enabled

we measured 30% reduction in the total GPU execution time

compared with running without MPS. A secondary, indirect

benefit is that in some cases the CPU-side overhead of the

CUDA runtime can be greatly reduced when, instead of the

pthreads-based thread-MPI, MPI processes are used (in con-

junction with CUDA MPS to allow task overlap). Although,

CUDA MPS is not completely overhead-free, at high iteration

rates of< 1 ms/step quite common for GROMACS, the task

launch latency of the CUDA runtime causes up to 10–30% over-

head, but this can be decreased substantially with MPI and

MPS. In our previous example using 6-way GPU sharing, the

measured CUDA runtime overhead was reduced from 16 to 4%.

Methods

We will start this section by outlining the MD systems used for

performance evaluation. We will give details about the used

hardware and about the software environment in which the

tests were done. Then, we will describe our benchmarking

approach.

Benchmark input systems

We used two representative biomolecular systems for bench-

marking as summarized in Table 1. The membrane (MEM) sys-

tem is a membrane channel protein embedded in a lipid

bilayer surrounded by water and ions. With its size of �80 k

atoms, it serves as a prototypic example for a large class of set-

ups used to study all kinds of membrane-embedded proteins.

RIB is a bacterial ribosome in water with ions[16] and with more

than two million atoms an example of a rather large MD sys-

tem that is usually run in parallel across several nodes.

Software environment

The benchmarks have been performed with the most recent

version of GROMACS 4.6 available at the time of testing (see

5th column of Table 2). Results obtained with version 4.6 will in

the majority of cases hold for version 5.0 as the performance

of CPU and GPU compute kernels have not changed substan-

tially. Moreover, as long as compute kernel, threading and het-

erogeneous parallelization design remains largely unchanged,

performance characteristics, and optimization techniques

described here will translate to future versions, too.‡

If possible, the hardware was tested in the same software

environment by booting from a common software image; on

external HPC centers, the provided software environment was

used. Table 2 summarizes the hardware and software situation

for the various node types. The operating system was Scien-

tific Linux 6.4 in most cases with the exception of the FDR-14

Infiniband (IB)-connected nodes that were running SuSE Linux

Enterprise Server 11.

For the tests on single nodes, GROMACS was compiled with

OpenMP threads and its built-in thread-MPI library, whereas

across multiple nodes Intel’s or IBM’s MPI library was used. In

all cases, FFTW 3.3.2 was used for computing fast Fourier

transformations. This was compiled using 2enable-sse2 for

best GROMACS performance.§ For compiling GROMACS, the

best possible SIMD vector instruction set implementation was

chosen for the CPU architecture in question, that is, 128-bit

AVX with FMA4 and XOP on AMD and 256-bit AVX on Intel

processors.

Figure 1. Thermal throttling of the GPU clock frequency on a GeForce GTX

TITAN. Starting from a cool, idle state at time t 5 0, at about T 5 368C,

the GPU is put under normal GROMACS load. The clock frequency is first

scaled to 1006 MHz, but with the temperature quickly increasing due to

the fan speed being capped at the default 60%, the GPU quickly reaches

T 5 808C, starts throttling, gradually slowing down to 941 MHz.

Table 1. Specifications of the two MD systems used for benchmarking.

MD system

Membrane protein

(MEM) Ribosome (RIB)

Symbol used in plots � $

# particles 81,743 2,136,412

System size (nm) 10.8 3 10.2 3 9.6 31.2 3 31.2 3 31.2

Time step length (fs) 2 4

Cutoff radii[a] (nm) 1.0 1.0

PME grid spacing[a] (nm) 0.120 0.135

Neighborlist update freq. CPU 10 25

Neighborlist update freq. GPU 40 40

Load balancing time steps 5000–10,000 1000–5000

Benchmark time steps 5000 1000–5000

[a] Table lists the initial values of Coulomb cutoff and PME grid spacing.

These are adjusted for optimal load balance at the beginning of a

simulation.

‡This is has been verified for version 5.1 which is in beta phase at the time

of writing.
§Although, FFTW supports the AVX instruction set, due to limitations in

its kernel auto-tuning functionality, enabling AVX support deteriorates

performance on the tested architectures.
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GROMACS can be compiled in mixed precision (MP) or in

double precision (DP). DP treats all variables with DP accu-

racy, whereas MP uses single precision (SP) for most varia-

bles, as for example, the large arrays containing positions,

forces, and velocities, but DP for some critical components

like accumulation buffers. It was shown that MP does not

deteriorate energy conservation.[7] As it produces 1.4–23

more trajectory in the same compute time, it is in most

cases preferable over DP.[17] Therefore, we used MP for the

benchmarking.

GPU acceleration

GROMACS 4.6 and later supports CUDA-compatible GPUs with

compute capability 2.0 or higher. Table 3 lists a selection of

modern GPUs (of which all but the GTX 970 were bench-

marked) including some relevant technical information. The SP

column shows the GPU’s maximum theoretical SP flop rate,

calculated from the base clock rate (as reported by NVIDIA’s

deviceQuery program) times the number of cores times two

floating-point operations per core and cycle. GROMACS exclu-

sively uses SP floating point (and integer) arithmetic on GPUs

and can, therefore, only be used in MP mode with GPUs. Note

that at comparable theoretical SP flop rate the Maxwell

GM204 cards yield a higher effective performance than Kepler

generation cards due to better instruction scheduling and

reduced instruction latencies.

As the GROMACS CUDA nonbonded kernels are by design

strongly compute-bound,[9] GPU main memory performance has

little impact on their performance. Hence, peak performance of

the GPU kernels can be estimated and compared within an

architectural generation simply from the product of clock rate

3 cores. SP throughput is calculated from the base clock rate,

but the effective performance will greatly depend on the actual

sustained frequency a card will run at, which can be much

higher. At the same time, frequency throttling can lead to per-

formance degradation as illustrated in Figure 1.

The price column gives an approximate net original price of

these GPUs as of 2014. In general, cards with higher process-

ing power (Gflop/s) are more expensive; however, the TITAN

and Tesla models have a significantly higher price due to their

higher DP processing power (1310 Gflop/s in contrast to at

Table 2. Overview of the tested node types with the used software stack. These nodes were combined with various GPUs from Table 3

Hardware per node Software stack (versions)

Processor(s) Total cores RAM (GB) IB network GROMACS GCC MPI library[a] CUDA

Intel Core i7-4770K 4 8 – 4.6.7 4.8.3 – 6.0

Intel Core i7-5820K 6 16 – 4.6.7 4.8.3 – 6.0

Intel Xeon E3-1270v2 4 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0

Intel Xeon E5-1620 4 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0

Intel Xeon E5-1650 6 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0

Intel Xeon E5-2670 8 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0

Intel Xeon E5-2670v2 10 32 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0

Intel Xeon E5-2670v2 3 2 20 32 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0

Intel Xeon E5-2680v2 3 2 20 64 FDR-14 4.6.7 4.8.4 IBM PE 1.3 6.5

Intel Xeon E5-2680v2 3 2 20 64 QDR 4.6.7 4.8.3 Intel 4.1.3 6.0

AMD Opteron 6380 3 2 32 32 – 4.6.7 4.8.3 – 6.0

AMD Opteron 6272 3 4 64 32 – 4.6.7 4.8.3 – –

[a] For benchmarks across multiple nodes. On single nodes, GROMACS’ built-in thread-MPI library was used.

Table 3. Some GPU models that can be used by GROMACS. See Figure 4 for how performance varies with clock rate of the Tesla cards, all other bench-

marks have been done with the base clock rates reported in this table.

NVIDIA model Architecture CUDA cores Clock rate (MHz) Memory (GB) SP throughput (Gflop/s) � Price (e) (net)

Tesla K20X[a] Kepler GK110 2688 732 6 3935 2800 �

Tesla K40[a] Kepler GK110 2880 745 12 4291 3100 �

GTX 680 Kepler GK104 1536 1058 2 3250 300 �

GTX 770 Kepler GK104 1536 1110 2 3410 320 �

GTX 780 Kepler GK110 2304 902 3 4156 390 �

GTX 780Ti Kepler GK110 2880 928 3 5345 520 �

GTX TITAN Kepler GK110 2688 928 6 4989 750 �

GTX TITAN X Maxwell GM200 3072 1002 12 6156 –

Quadro M6000 Maxwell GM200GL 3072 988 12 6070 Figure 5

GTX 970 Maxwell GM204 1664 1050 4 3494 250 –

GTX 980 Maxwell GM204 2048 1126 4 4612 430 �

GTX 9801 Maxwell GM204 2048 1266 4 5186 450 �

GTX 980‡ Maxwell GM204 2048 1304 4 5341 450 �

[a] The upper part of the table lists HPC-class Tesla cards, below are the consumer-class GeForce GTX cards. Checkmarks (�) indicate which were

benchmarked. For the GTX 980 GPUs, cards by different manufacturers differing in clock rate were benchmarked (1 and ‡ symbols).
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most 210 Gflop/s for the 780Ti) and their larger memory. Note

that unless an MD system is exceptionally large, or many cop-

ies are run simultaneously, the extra memory will almost never

be used. For the membrane system (MEM), � 50 MB of GPU

memory is needed, and for the ribosome (RIB) � 225 MB. Even

an especially large MD system consisting of � 12.5 M atoms

uses just about 1200 MB and does, therefore, still fit in the

memory of any of the GPUs found in Table 3.

Benchmarking procedure

The benchmarks were run for 2000–15,000 steps, which trans-

lates to a couple of minutes wall clock runtime for the single-

node benchmarks. Balancing the computational load takes

mdrun up to a few thousand time steps at the beginning of a

simulation. As during that phase the performance is neither

stable nor optimal, we excluded the first 1000–10,000 steps

from measurements using the -resetstep or -resethway com-

mand line switches. On nodes without a GPU, we always acti-

vated DLB, as the benefits of a balanced computational load

between CPU cores usually outweigh the small overhead of

performing the balancing (see e.g., Fig. 3, black lines). On GPU

nodes, the situation is not so clear due to the competition

between DD and CPU–GPU load balancing mentioned in the

Key Determinants for GROMACS Performance section. We,

therefore, tested both with and without DLB in most of the

GPU benchmarks. All reported MEM and RIB performances are

the average of two runs each, with standard deviations on the

order of a few percent (see Fig. 4 for an example of how the

data scatter).

Determining the single-node performance. We aimed to find

the optimal command-line settings for each hardware configu-

ration by testing the various parameter combinations as men-

tioned in the Key Determinants for GROMACS Performance

section. On individual nodes with Nc cores, we tested the fol-

lowing settings using thread-MPI ranks:

a. Nrank 5 Nc

b. A single process with Nth 5 Nc threads

c. Combinations of Nrank ranks with Nth threads each, with

Nrank 3 Nth 5 Nc (hybrid parallelization)

d. For Nc � 20 without GPU acceleration, we additionally

checked with g_tune_pme whether separate ranks for

the long-range PME part do improve performance

For most of the hardware combinations, we checked (a–d)

with and without HT, if the processor supports it. The Support-

ing Information contains a bash script that automatically per-

forms tests (a–c).

To share GPUs among multiple DD ranks, current versions of

mdrun require a custom -gpu_id string specifying the map-

ping between PP ranks and numeric GPU identifiers. To obtain

optimal launch parameters on GPU nodes, we automated con-

structing the -gpu_id string based on the number of DD ranks

and GPUs and provide the corresponding bash script in the

Supporting Information.

Determining the parallel performance. To determine the opti-

mal performance across many CPU-only nodes in parallel, we

ran g_tune_pme with different combinations of ranks and

threads. We started with as many ranks as cores Nc in total (no

threads), and then tested two or more threads per rank with

an appropriately reduced number of ranks as in (c), with and

without HT.

When using separate ranks for the direct and reciprocal

space parts of PME (N5NDD1NPME) on a cluster of GPU nodes,

only the NDD direct space ranks can make use of GPUs. Setting

whole nodes aside for the PME mesh calculation would mean

leaving their GPU(s) idle. To prevent leaving resources unused

with separate PME ranks, we assigned as many direct space

(and reciprocal space) ranks to each node as there are GPUs

per node, resulting in a homogeneous, interleaved PME rank

distribution. On nodes with two GPUs each, for example, we

placed N 5 4 ranks (NDD5NPME52) with as many threads as

needed to make use of all available cores. The number of

threads per rank may even differ for NDD and NPME. In fact, an

uneven thread count can be used to balance the compute

power between the real and the reciprocal ranks. On clusters

of GPU nodes, we tested all of the above scenarios (a–c) and

additionally checked whether a homogeneous, interleaved

PME rank distribution improves performance.

Table 4. Frequency of consumer-class GPUs exhibiting memory errors.

NVIDIA model

GPU memory

checker[20]
# Of cards

tested

# Memtest

iterations

# Cards with

errors

GTX 580 MemtestG80 1 10,000 –

GTX 680 MemtestG80 50 4500 –

GTX 770 MemtestG80 100 4500 –

GTX 780 MemtestCL 1 50,000 –

GTX TITAN MemtestCL 1 50,000 –

GTX 780Ti MemtestG80 70 4310; 000 6

GTX 980 MemtestG80 4 4310; 000 –

GTX 9801 MemtestG80 70 4310; 000 2

Table 5. GROMACS 4.6 single-node performance with thread-MPI (and

CUDA 6.0) using different compiler versions on AMD and Intel hardware

with and without GPUs.

Hardware Compiler

MEM

(ns/d)

RIB

(ns/d)

Av. speedup

(%)

AMD 6380 3 2 GCC 4.4.7 14 0.99 0

GCC 4.7.0 15.6 1.11 11.8

GCC 4.8.3 16 1.14 14.7

ICC 13.1 12.5 0.96 26.9

AMD 63803 2 GCC 4.4.7 40.5 3.04 0

with 23 GTX 9801 GCC 4.7.0 38.9 3.09 21.2

GCC 4.8.3 40.2 3.14 1.3

ICC 13.1 39.7 3.09 20.2

Intel E5–2680v2 3 2 GCC 4.4.7 21.6 1.63 0

GCC 4.8.3 26.8 1.86 19.1

ICC 13.1 24.6 1.88 14.6

ICC 14.0.2 25.2 1.81 13.9

Intel E5–2680v2 3 2 GCC 4.4.7 61.2 4.41 0

with 23 GTX 9801 GCC 4.8.3 62.3 4.69 4.1

ICC 13.1 60.3 4.78 3.5

The last column shows the speedup compared to GCC 4.4.7 calculated

from the average of the speedups of the MEM and RIB benchmarks.
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Results

This section starts with four pilot surveys that assess GPU

memory reliability (i), and evaluate the impact of compiler

choice (ii), neighbor searching frequency (iii), and paralleliza-

tion settings (iv) on the GROMACS performance. From the

benchmark results and the hardware costs, we will then derive

for various node types how much MD trajectory is produced

per invested e. We will compare performances of nodes with

and without GPUs and also quantify the performance depend-

ence on the GPU application clock setting. We will consider

the energy efficiency of several node types and show that bal-

anced CPU–GPU resources are needed for a high efficiency.

We will show how running multiple simulations concurrently

maximizes throughput on GPU nodes. Finally, we will examine

the parallel efficiency in strong scaling benchmarks for a

selected subset of node types.

GPU error rates

Opposed to the GeForce GTX consumer GPUs, the Tesla

HPC cards offer error checking and correction (ECC) memory.

ECC memory, as also used in CPU server hardware, is able

to detect and possibly correct random memory bit-flips that

may rarely occur. While in a worst-case scenario such events

could lead to silent memory corruption and incorrect simu-

lation results, their frequency is extremely low.[18,19] Prior to

benchmarking, we performed extensive GPU stress-tests on

a total of 297 consumer-class GPUs (Table 4) using tools

that test for “soft errors” in the GPU memory subsystem

and logic using a variety of proven test patterns.[20] Our

tests allocated the entire available GPU memory and ran for

� 4500 iterations, corresponding to several hours of wall-

clock time. The vast majority of cards were error-free, but

for eight GPUs, errors were detected. Individual error rates

differed considerably from one card to another with the

largest rate observed for a 780Ti, where during 10,000 iter-

ations> 50 Million errors were registered. Here, already the

first iteration of the memory checker picked up> 1000

errors. On the other end of the spectrum were cards exhib-

iting only a couple of errors over 10,000 iterations, including

the two problematic 9801. Error rates were close to con-

stant for each of the four repeats over 10,000 iterations. All

cards with detected problems were replaced.

Figure 2. Impact of neighbor searching frequency on the performance on

a node with 23E5-2680v2 processors and 23K20X GPUs. In the MEM

benchmark the number of ranks and threads per rank was also varied.

Figure 3. Single-node performance as a function of the number of GPUs (color coded) and of how the 40 hardware threads are exploited using a combina-

tion of MPI ranks and OpenMP threads. Solid lines show performance with, dotted lines without DLB. Test node had 23E5–2680v2 processors and 43 GTX

9801 GPUs. Left panel MEM, right panel RIB benchmark system.
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Impact of compiler choice

The impact of the compiler version on the simulation perform-

ance is quantified in Table 5. From all tested compilers, GCC

4.8 provides the fastest executable on both AMD and Intel

platforms. On GPU nodes, the difference between the fastest

and slowest executable is at most 4%, but without GPUs it can

reach 20%. Table 5 can also be used to normalize benchmark

results obtained with different compilers.

Impact of neighbor searching frequency

With the advent of the Verlet cutoff scheme implementation

in version 4.6, the neighbor searching frequency has become a

Figure 4. Performance as a function of the GPU application clock rate on a node with 23E5–2680v2 processors and K20X (dark blue, dark green) or K40

(light blue, light green) GPUs. Gray vertical lines indicate default clock rates. MEM, circles (RIB, stars) benchmarks were run using the settings found in Table

6 (Table 7).

Figure 5. Maximizing throughput by running multiple simulations per node. a) Single-simulation performance P of the MEM benchmark on a node with

23E5–2680v2 CPUs using 0, 1, or 2 GTX 9801 GPUs (blue colors) compared to the aggregated performance of five replicas (red/black). b) Similar to (a),

but for different node types and benchmark systems (Available at: http://www.gromacs.org/gpu and ftp://ftp.gromacs.org/pub/CRESTA/CRESTA_Gromacs_-

benchmarks_v2.tgz). GLC–144 k atoms GluCL CRESTA benchmark, 1 nm cutoffs, PME grid spacing 0.12 nm. RNA–14.7 k atoms solvated RNAse, 0.9 nm cut-

offs, PME grid spacing 0.1125 nm. VIL–8 k atoms villin protein, 1 nm cutoffs, PME grid spacing 0.125 nm. In (b), a 5 fs time step and GROMACS 5.0.4 was

used. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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merely performance-related parameter. This is enabled by the

automated pair list buffer calculation based on the maximum

error tolerance and a number of simulation parameters and

properties of the simulated system including search frequency,

temperature, atomic displacement distribution, and the shape

of the potential at the cutoff.[9]

Adjusting this frequency allows trading the computational

cost of searching for the computation of short-range forces.

As the GPU is idle during list construction on the CPU, reduc-

ing the search frequency also increases the average CPU–GPU

overlap. Especially in multi-GPU runs where DD is done at the

same step as neighbor search, decreasing the search fre-

quency can have considerable performance impact. Figure 2

indicates that the search frequency optimum is between 20

and 70 time steps. The performance dependence is most pro-

nounced for values � 20, where performance quickly deterio-

rates. In our benchmarks, we used a value of 40 on GPU

nodes (see Table 1).

Influence of hybrid parallelization settings and DLB

The hybrid (OpenMP/MPI) parallelization approach in GRO-

MACS can distribute computational work on the available CPU

cores in various ways. As the MPI and OpenMP code paths

exhibit a different parallel scaling behavior,[10] the optimal mix

of ranks and threads depends on the used hardware and MD

system, as illustrated in Figure 3.

For the CPU-only benchmarks shown in the figure (black

lines), pure MPI parallelization yields the highest performance,

which is often the case on nodes without GPUs (see fig. 4 in

Ref. [10]). For multisocket nodes with GPU(s) and for nodes

with multiple GPUs, the highest performance is usually

reached with hybrid parallelism (with an optimum at about 4–

5 threads per MPI rank, colored curves). The performance dif-

ferences between the individual parallel settings can be con-

siderable: for the single-GPU setting of the MEM system, for

example, choosing 40 MPI ranks results in less than half the

performance of the optimal settings, which are four MPI ranks

and 10 threads each (24 ns/d compared to 52 ns/d, see blue

line in Fig. 3). The settings at the performance optimum are

provided in the benchmark summary Tables 6, 7, 11, and 12.

As described in Key Determinants for GROMACS Performance

section, especially with GPUs, DLB may in some cases cause per-

formance degradation. A prominent example is the right plot of

Figure 3, where the highest RIB performances are recorded

without DLB when using GPUs. However, there are also cases

where the performance is similar with and without DLB, as for

example, in the 4-GPU case of the left plot (light blue).

Fitness of various node types

Tables 6 and 7 list single-node performances for a diverse set

of hardware combinations and the parameters that yielded

peak performance. “DD grid” indicates the number of DD cells

per dimension, whereas “Nth“ gives the number of threads per

rank. As each DD cell is assigned to exactly one MPI rank, the

total number of ranks can be calculated from the number of

DD grid cells as Nrank 5DDx3DDy3DDz plus the number NPME

of separate PME ranks, if any. Normally, the number of physical

cores (or hardware threads with HT) is the product of the

number of ranks and the number of threads per rank. For MPI

parallel runs, the DLB column indicates whether peak perform-

ance was achieved with (symbol �) or without DLB (symbol �)

or whether the benchmark was done exclusively with enabled

DLB (symbol (�)).

The “cost” column for each node gives a rough estimate on

the net price as of 2014 and should be taken with a grain of

salt. Retail prices can easily vary by 15–20% over a relatively

short period. To provide a measure of “bang for buck,” using

the collected cost and performance data we derive a

performance-to-price ratio metric shown in the last column.

We normalize with the lowest performing setup to get � 1

values. While this ratio is only approximate, it still provides

insight into which hardware combinations are significantly

more competitive than others.

When a single CPU with 4–6 physical cores is combined with

a single GPU, using only threading without DD resulted in the

best performance. On CPUs with 10 physical cores, peak per-

formance was usually obtained with thread-MPI combined with

multiple threads per rank. When using multiple GPUs, where at

least Nrank 5 NGPU ranks is required, in most cases an even

larger number of ranks (multiple ranks per GPU) were optimal.

Speedup with GPUs

Tables 6 and 7 show that GPUs increase the performance of a

compute node by a factor of 1.7–3.8. In case of the inexpen-

sive GeForce consumer cards, this also reflects in the node’s

performance-to-price ratio, which increases by a factor of 2–3

when adding at least one GPU (last column). When installing a

significantly more expensive Tesla GPU, the performance-to-

price ratio is nearly unchanged. Because both the performance

itself (criterion C2, as defined in the introduction) as well as

the performance-to-price ratio (C1) are so much better for

nodes with consumer-class GPUs, we focused our efforts on

nodes with this type of GPU.

When looking at single-CPU nodes with one or more GPUs

(see third column of Tables 6 and 7), the performance benefit

obtained by a second GPU is <20% for the 80 k atom system

(but largest on the 10-core machine), and on average about

25% for the 2 M atom system, whereas the performance-to-

price ratio is nearly unchanged.

The dual-GPU, dual-socket E5-2670v2 nodes are like the

single-GPU, single-socket E5-2670v2 nodes with the hardware

of two nodes combined. The dual-CPU nodes with several

GPUs yielded the highest single-node performances of all

tested nodes, up to �67 ns/d for MEM and �5 ns/d for RIB on

the E5-2680v2 nodes with four GTX 9801. The performance-to-

price ratio (C1) of these 20-core nodes seems to have a sweet

spot at two installed GPUs.

GPU application clock settings. For the Tesla K20X and K40

cards, we determined how application clock settings influence

the simulation performance (as mentioned previously, GeForce

cards do not support manual adjustment of the clock fre-

quency). While the default clock rate of the K20X is 732 MHz, it
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supports seven clock rates in the range of 614–784 MHz. The

K40 defaults to 745 MHz and supports four rates in the range

of 666–875 MHz. Application clock rates were set using NVIDIA’s

system management interface tool. For example, nvidia-smi -ac

2600,875 -i 0 sets the GPU core clock rate to 875 MHz and the

memory clock rate to 2600 MHz on interface 0.

Figure 4 shows measured performances as a function of the

clock rate as well as linear fits (lines). For the K40, the

Table 6. Single-node performance P of the MEM benchmark on various node types.

U Processor(s) clock rate CPUs 3 cores GPUs DD Grid NPME Nth DLB P (ns/d) � cost (e net) ns/d per 205 e

x y z

D i7-4770K 1 3 4 – 2 3 1 2 1 (�) 7.4 800 1.9

(3.4-3.9 GHz) 980‡ 1 1 1 – 8 – 26.1 1250 4.3

D i7-5820K 1 3 6 – 3 3 1 3 1 � 10.1 850 2.4

(3.3-3.6 GHz) 770 1 1 1 – 12 – 26.5 1170 4.6

980‡ 1 1 1 – 12 – 32 1390 4.7

1 E3-1270v2 1 3 4 – 1 1 1 – 8 – 5.3 1080 1

(3.5 GHz) 680 1 1 1 – 8 – 20 1380 3

770 1 1 1 – 8 – 20.5 1400 3

1 E5-1620 1 3 4 680 1 1 1 – 8 – 21 1900 2.3

(3.6-3.8 GHz) 770 1 1 1 – 8 – 21.7 1900 2.3

780 1 1 1 – 8 – 21.8 1970 2.3

780Ti 1 1 1 – 8 – 23.4 2100 2.3

TITAN 1 1 1 – 8 – 23.8 2330 2.1

1 E5-1650 1 3 6 680 1 1 1 – 12 – 22.6 2170 2.1

(3.2-3.8 GHz) 770 1 1 1 – 12 – 23.4 2170 2.2

780 1 1 1 – 12 – 25 2240 2.3

780Ti 1 1 1 – 12 – 27 2370 2.3

680 3 2 2 1 1 – 6 (�) 24.8 2470 2.1

770 3 2 2 1 1 – 6 (�) 25.1 2470 2.1

1 E5-2670 1 3 8 770 1 1 1 – 16 – 26.9 2800 2

(2.6-3.3 GHz) 780 1 1 1 – 16 – 28.3 2870 2

780Ti 1 1 1 – 16 – 29.6 3000 2

TITAN 1 1 1 – 16 – 29.3 3230 1.9

770 3 2 2 1 1 – 8 (�) 27.6 3120 1.8

1 E5-2670v2 1 3 10 – 4 5 1 – 1 � 11.2 2480 0.9

(2.5-3.3 GHz) 770 1 5 1 – 4 � 29 2800 2.1

780 1 1 1 – 20 – 29.8 2870 2.1

780Ti 1 5 1 – 4 (�) 31.5 3000 2.2

TITAN 1 1 1 – 20 – 32.7 3230 2.1

980 1 5 1 – 4 (�) 33.6 2900 2.4

770 3 2 10 1 1 – 2 � 33.7 3120 2.2

780Ti 3 2 10 1 1 – 2 (�) 35.7 3520 2.1

98032 10 1 1 – 2 (�) 36.8 3330 2.3

4 E5-2670v2 2 3 10 – 8 5 1 – 1 � 21.4 3360 1.3

(2.5-3.3 GHz) 770 8 1 1 – 5 � 35.9 3680 2

770 3 2 10 1 1 – 4 � 51.7 4000 2.6

2 780Ti 8 1 1 – 5 (�) 45.5 4100 2.3

780Ti 3 2 10 1 1 – 4 � 56.9 4620 2.5

780Ti 3 3 10 1 1 – 4 (�) 61.1 5140 2.4

780Ti 3 4 10 1 1 – 4 (�) 64.4 5660 2.3

2 E5-2680v2 2 3 10 – 8 2 2 8 1 � 26.8 4400 1.2

(2.8-3.6 GHz) K20X 3 2 8 1 1 – 5 � 55.2 10,000 1.1

K40 3 2 8 1 1 – 5 � 55.9 10,600 1.1

9801 4 1 1 – 10 � 52 4850 2.2

9801 3 2 10 1 1 – 4 � 62.3 5300 2.4

9801 3 3 10 1 1 – 4 � 65.1 5750 2.3

9801 3 4 8 1 1 – 5 � 66.9 6200 2.2

1 AMD 6272 (2.1) 4 3 16 – 5 5 2 14 1 � 23.7 3670 1.3

4 AMD 6380 2 3 16 – 5 5 1 7 1 � 16 2880 1.1

(2.5 GHz) TITAN 8 1 1 – 4 � 32.5 3630 1.8

770 3 2 8 1 1 – 4 � 35.8 3520 2.1

9801 8 1 1 – 4 � 35.6 3330 2.2

9801 3 2 8 1 1 – 4 � 40.2 3780 2.2

U 5 rack space requirements in units per node, D for desktop chassis. Prices do not include IB network adapter.
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maximum clock rate is about 17% higher than the default,

and performance increases about 6.4% when switching from

the default to the maximum frequency using a single GPU.

The maximum clock rate of the K20X is about 7% higher than

the default, resulting in a 2.8% performance increase. For two

K40 or K20X GPUs, using the maximum clock rate only results

in a 2.1% increased performance, likely because this hardware/

benchmark combination is not GPU-bound. Highest

Table 7. Same as Table 6, but for the RIB benchmark.

U Processor(s) clock rate CPUs 3 cores GPUs DD Grid NPME Nth DLB P (ns/d) �Cost (e net) ns/d per 3600 e

x y z

D i7-4770K 1 3 4 – 2 3 1 – 1 (�) 0.51 800 2.3

(3.4-3.9 GHz) 980‡ 8 1 1 – 1 � 1.3 1250 3.7

D i7-5820K 1 3 6 – 3 3 1 3 1 � 0.69 850 2.9

(3.3-3.6 GHz) 770 4 1 1 – 3 – 1.54 1170 4.7

980‡ 1 1 1 – 12 – 1.8 1390 4.7

1 E3-1270v2 1 3 4 – 1 1 1 – 8 – 0.3 1080 1

(3.5 GHz) 680 1 1 1 – 8 – 0.89 1380 2.3

770 1 1 1 – 8 – 0.91 1400 2.3

1 E5-1620 1 3 4 680 1 1 1 – 8 – 1.03 1900 2

(3.6-3.8 GHz) 770 1 1 1 – 8 – 1.02 1900 1.9

780 1 1 1 – 8 – 1.06 1970 1.9

780Ti 1 1 1 – 8 – 1.14 2100 2

TITAN 1 1 1 – 8 – 1.11 2330 1.7

1 E5-1650 1 3 6 680 1 1 1 – 12 – 1.09 2170 1.8

(3.2-3.8 GHz) 770 1 1 1 – 12 – 1.13 2170 1.9

780 1 1 1 – 12 – 1.17 2240 1.9

780Ti 1 1 1 – 12 – 1.22 2370 1.9

68032 2 1 1 – 6 (�) 1.4 2470 2

77032 2 1 1 – 6 (�) 1.41 2470 2

1 E5-2670 1 3 8 770 1 1 1 – 16 – 1.39 2800 1.8

(2.6-3.3 GHz) 780 8 1 1 – 2 (�) 1.6 2870 2

780Ti 1 1 1 – 16 – 1.64 3000 2

TITAN 4 1 1 – 4 (�) 1.67 3230 1.9

77032 2 1 1 – 8 (�) 1.72 3120 2

1 E5-2670v2 1 3 10 – 4 2 2 4 1 � 0.79 2480 2.3

(2.5-3.3 GHz) 770 10 1 1 – 2 � 1.78 2800 2.3

780 1 1 1 – 20 – 1.6 2870 2

780Ti 5 1 1 – 4 (�) 2.06 3000 2.5

TITAN 1 1 1 – 20 – 1.75 3230 2

980 5 1 1 – 4 (�) 2.22 2900 2.8

77032 10 1 1 – 2 � 2.16 3120 2.5

780Ti32 4 1 1 – 5 (�) 2.31 3520 2.4

98032 5 1 1 – 4 (�) 2.34 3330 2.5

4 E5-2670v2 2 3 10 – 8 2 2 8 1 � 1.54 3360 1.7

(2.5-3.3 GHz) 770 20 1 1 – 2 � 2.71 3680 2.7

77032 8 5 1 – 1 � 3.41 4000 3.1

2 780Ti 8 5 1 – 1 (�) 3.3 4100 2.9

780Ti32 8 1 1 – 5 � 4.02 4620 3.1

780Ti33 8 5 1 – 1 (�) 4.17 5140 2.9

780Ti34 8 5 1 – 1 (�) 4.17 5660 2.7

2 E5-2680v2 2 3 10 – 10 3 1 10 1 � 1.86 4400 1.5

(2.8-3.6 GHz) K20X32 20 1 1 – 2 � 3.99 10,000 1.4

K4032 20 1 1 – 2 � 4.09 10,600 1.4

9801 20 1 1 – 2 � 3.99 4850 3

9801 3 2 20 1 1 – 2 � 4.69 5300 3.2

9801 3 3 20 1 1 – 2 � 4.85 5750 3

9801 3 4 20 1 1 – 2 � 4.96 6200 2.9

1 AMD 6272 (2.1) 4 3 16 – 5 5 2 14 1 � 1.78 3670 1.7

4 AMD 6380 2 3 16 – 5 5 1 7 1 � 1.14 2880 1.4

(2.5 GHz) TITAN 16 2 1 – 1 � 2.58 3630 2.6

770 3 2 16 1 1 – 2 � 2.74 3520 2.8

9801 16 1 1 – 2 � 2.81 3330 3

9801 3 2 16 1 1 – 2 � 3.14 3780 3
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performance is in all cases reached with the GPU application

clock set to the highest possible value.

Energy efficiency

For a given CPU model, the performance/Watts ratio usually

decreases with increasing clock rate due to disproportionately

higher energy dissipation. CPUs with higher clock rates are,

therefore, both more expensive and less energy efficient. On

the GPU side, there has been a redesign for energy efficiency

with the Maxwell architecture, providing significantly improved

performance/Watt compared to Kepler generation cards.

For several nodes with decent performance-to-price ratios

from Tables 6 and 7, we determined the energy efficiency by

measuring the power consumption when running the bench-

marks at optimal settings (Tables 8 and 9). On the E5-2670v2

nodes, we measured the average power draw over an interval

of 300 s using a Voltcraft “EnergyCheck 3000” meter. On the

E5-2680v2 nodes, the current energy consumption was read

from the power supply with ipmitool.¶ We averaged over 100

readouts one second apart each. Power measurements were

taken after the initial load balancing phase. For the power

consumption of idle GPUs, we compared the power draw of

idle nodes with and without four installed cards, resulting in

�27 W (�24 W) for a single idle 780Ti (980).

While the total power consumption of nodes without GPUs

is lowest, their trajectory costs are the highest due to the very

low trajectory production rate. Nodes with one or two GPUs

produce about 1.5–23 as much MD trajectory per invested e

than CPU-only nodes (see last column in Tables 8 and 9). While

trajectory production is cheapest with one or two GPUs, due

to the runs becoming CPU-bound, the cost rises significantly

with the third or fourth card, though it does not reach the

CPU-only level. To measure the effect of GPU architectural

change on the energy efficiency of a node, the E5-2670v2

node was tested both with GTX 780Ti (Kepler) and GTX 980

(Maxwell) cards. When equipped with 1–3 GPUs, the node

draws >100 W less power under load using Maxwell genera-

tion cards than with Kepler. This results in about 20% reduc-

tion of trajectory costs, lowest for the node with two E5-

2670v2 CPUs combined with a single GTX 980 GPU. Exchang-

ing the E5-2670v2 with E5-2680v2 CPUs, which have �10%

higher clock frequency, yields a 52% (44%) increase in energy

consumption and 30% (21%) higher trajectory costs for the

case of one GPU (two GPUs).

Well-balanced CPU/GPU resources are crucial. With GPUs, the

short-range pair interactions are off-loaded to the GPU, while

the calculation of other interactions like bonded forces, con-

straints, and the PME mesh, remains on the CPU. To put all

available compute power to optimum use, GROMACS balances

the load between CPU and GPU by shifting as much computa-

tional work as possible from the PME mesh part to the short-

range electrostatic kernels. As a consequence of the off-load

approach, the achievable performance is limited by the time

spent by the CPU in the nonoverlapping computation where

the GPU is left idle, like constraints calculation, integration,

neighbor search, and DD.

Table 10 shows the distribution of the PME and short-range

nonbonded workload with increasing graphics processing

power. Adding the first GPU relieves the CPU from the com-

plete short-range nonbonded calculation. Additionally, load

balancing shifts work from the PME mesh (CPU) to the non-

bonded kernels (GPU), so that the CPU spends less time in the

PME 3D FFT calculation. Both effects yield a 2.13 higher per-

formance compared with the case without a GPU. The benefit

of additional GPUs is merely the further reduction of the PME

3D FFT workload (which is just part of the CPU workload) by a

Table 8. Electric power consumption for nodes with up to four GPUs when running the RIB benchmark.

CPU cores Installed GPUs RIB (ns/d) Power draw (W) Energy costs (e) Node costs (e) 5 yr yield (ns/ke)

E5-2670v2

2 3 10 c.

2.5-3.3 GHz

(GCC 4.4.7)

– (Node idle) 120 1051 3360

– 1.38 252 2208 3360 453

780Ti 3.3 519 4546 3880 714

780Ti 3 2 3.87 666 5834 4400 690

780Ti 3 3 4.17 933 8173 5430 559

780Ti 3 4 4.17 960 8410 5950 530

980 3.68 408 3574 3780 914

980 3 2 4.18 552 4836 4200 844

980 3 3 4.2 696 6097 5130 683

980 3 4 4.2 840 7358 5550 594

E5-2680v2

2 3 10 c.

2.8-3.6 GHz

(GCC 4.8.3)

– (Node idle) 150 1314 4400

– 1.86 446 3907 4400 408

9801 3.99 6.22 5449 4850 707

9801 3 2 4.69 799 6999 5300 696

9801 3 3 4.85 926 8112 5750 638

9801 3 4 4.96 1092 9566 6200 574

Assuming 5 years of continuous operation and a price of 0.2 e per kWh including cooling, the yield in produced trajectory per invested 1000 e is given

in the last column.

¶http://ipmitool.sourceforge.net/
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Table 9. As Table 8, but for the MEM benchmark.

CPU cores Installed GPUs MEM (ns/d) Power draw (W) Energy costs (e) Node costs (e) 5-yr yield (ms/ke)

E5–2680v2

2 3 10 c.

2.8–3.6 GHz

(GCC 4.8.3)

– 26.8 446 3907 4400 5.89

9801 52.05 547 4792 4850 9.85

9801 3 2 62.34 725 6351 5300 9.77

9801 3 3 65.1 824 7218 5750 9.16

9801 3 4 66.92 899 7875 6200 8.68

Table 10. Dependence of simulation performance P, cutoff settings, and total power consumption on the graphics processing power for the RIB system

on a node with 2 3 2680v2 CPUs and up to 4 GTX 9801 GPUs.

Installed GPUs P (ns/d) Tot. power draw (W) Cutoff (nm) Cost ratio short range Cost ratio PME 3D FFT Energy efficiency (W/ns/d)

0 1.86 446 1 1 1 240

1 3.99 622 1.16 2.6 0.65 156

2 4.69 799 1.38 3.75 0.46 170

3 4.85 926 1.45 4.22 0.42 191

4 4.96 1092 1.61 5.36 0.36 220

The “cost ratios” indicate the floating point operations in this part of the calculation relative to the CPU-only case.

Table 11. Scaling of the MEM benchmark on different node types with performance P and parallel efficiency E.

No. of nodes Processor(s) Intel GPUs, IB DD Grid NPME/node N
th

DLB P (ns/d) E

x y z

1 E3-1270v2 770, 1 1 1 – 8 (ht) – 20.5 1

2 (4 cores) QDR[a] 2 1 1 – 8 (ht) (�) 27.2 0.66

4 4 1 1 – 8 (ht) (�) 22.1 0.27

8 8 1 1 – 8 (ht) (�) 68.3 0.42

16 16 1 1 – 8 (ht) (�) 85.7 0.26

32 8 4 1 – 8 (ht) (�) 119 0.18

1 E5-1620 680, 1 1 1 – 8 ht – 21 1

2 (4 cores) QDR 2 1 1 – 8 ht (�) 29 0.69

4 4 1 1 – 8 ht (�) 46.9 0.56

1 E5-2670v2 780Ti32, 10 1 1 – 4 ht � 56.9 1

2 (2310 cores) QDR 4 5 1 – 2 � 74.2 0.65

4 8 1 1 2 5 � 103.4 0.45

8 8 1 2 2 5 � 119.1 0.26

16 8 4 1 2 5 � 164.8 0.18

32 8 8 1 2 5 � 193.1 0.11

1 E5-2670v2 98032, 10 1 1 – 4 ht (�) 58 1

2 (2310 cores) QDR 4 5 1 – 2 (�) 75.6 0.65

4 8 5 1 – 2 � 96.6 0.42

1 E5-2680v2 – 8 2 2 8 1 ht � 26.8 1

2 (2310 cores) FDR-14, 4 5 3 10 1 ht � 42 0.78

4 8 5 3 10 1 ht � 76.3 0.71

8 8 7 2 6 2 ht � 122 0.57

16 8 8 4 4 1 � 162 0.38

32 8 8 8 4 1 � 209 0.24

64 10 8 6 2.5 2 � 240 0.14

1 E5-2680v2 K20X32 8 1 1 – 5 ht � 55.2 1

2 (2310 cores) (732 MHz), 4 5 1 – 4 ht � 74.5 0.67

4 FDR-14 8 1 2 – 5 � 118 0.53

8 8 1 2 2 5 � 163 0.37

16 8 4 1 2 5 � 226 0.26

32 8 8 1 2 5 � 304 0.17

[a] A black “ht” symbol indicates that using all hyperthreading cores resulted in the fastest execution, otherwise using only the physical core count was

more advantageous. A gray “(ht)” denotes that this benchmark was done only with the hyperthreading core count (52 3 physical). Note: These nodes

cannot use the full QDR IB bandwidth due to insufficient number of PCIe lanes, see “Strong Scaling” section.
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few extra percent. The third and fourth GPU only reduce the CPU

workload by a tiny amount, resulting in a few percent extra per-

formances. At the same time, the GPU workload is steadily

increased, and with it increases the GPU power draw, reflecting

in a significantly increased power consumption of the node (see

also the other 3- and 4-GPU benchmarks in Table 8).

Hence, GPU and CPU resources should always be chosen in

tandem keeping in mind the needs of the intended simulation

setup. More or faster GPUs will have little effect when the bot-

tleneck is on the CPU side. The theoretical peak throughput as

listed in Table 3 helps to roughly relate different GPU configu-

rations to each other in terms of how much SP compute

power they provide and of how much CPU compute power is

needed to achieve a balanced hardware setup. At the lower

end of GPU models studied here are the Kepler GK104 cards:

GTX 680 and 770. These are followed by GK110 cards, in order

of increasing compute power, GTX 780, K20X, GTX TITAN, K40,

and GTX 780Ti. The GTX 980 and TITAN X, based on the recent

Maxwell architecture, are the fastest as well as most power-

efficient GPUs tested. The dual-chip server-only Tesla K80 can

provide even higher performance on a single board.

The performance-to-price ratios presented in this study

reflect the characteristics of the specific combinations of hard-

ware setups and workloads used in our benchmarks. Different

types of simulations or input setups may expose slightly differ-

ent ratios of CPU to GPU workload. For example, when com-

paring a setup using the AMBER force-field with 0.9 nm

cutoffs to a CHARMM setup with 1.2 nm cutoffs and switched

van der Waals interactions, the latter results in a larger amount

of pair interactions to be computed, hence more GPU work-

load. This in turn leads to slight differences in the ideal CPU–

GPU balance in these two cases. Still, given the representative

choices of hardware configurations and simulation systems,

our results allow for drawing general conclusions about similar

simulation setups.

Multisimulation throughput

Our general approach in this study is using single-simulation

benchmarks for hardware evaluation. However, comparing the

performance P on a node with just a few cores to P on a node

with many cores (and possibly several GPUs) is essentially a

Table 12. Same as Table 11, but for the RIB benchmark.

No. of nodes Processor(s) Intel GPUs, IB DD Grid NPME /node Nth DLB P (ns/d) E

x y z

1 E3-1270v2 770, 1 1 1 – 8 (ht) – 0.91 1

2 (4 cores) QDR[a] 2 1 1 – 8 (ht) (�) 1.87 1.03

4 4 1 1 – 8 (ht) (�) 2.99 0.82

8 8 1 1 – 8 (ht) (�) 4.93 0.68

16 16 1 1 – 8 (ht) (�) 4.74 0.33

32 16 2 1 – 8 (ht) (�) 10.3 0.35

1 E5-2670v2 780Ti32, 8 1 1 – 5 (ht) � 4.02 1

2 (2310 cores) QDR 20 1 1 – 4 ht � 6.23 0.77

4 8 5 1 – 4 ht � 10.76 0.67

8 16 10 1 – 2 ht � 16.55 0.51

16 16 10 1 – 2 � 23.78 0.37

32 16 10 2 – 2 � 33.51 0.26

1 E5-2670v2 98032, 8 5 1 – 1 ht (�) 4.18 1

2 (2310 cores) QDR 20 1 1 – 4 ht � 6.6 0.79

4 8 5 1 – 4 ht � 11 0.66

1 E5-2680v2 – 10 3 1 10 1 ht � 1.86 1

2 (2310 cores) FDR-14 10 3 1 5 2 ht � 3.24 0.87

4 10 2 3 5 2 ht � 6.12 0.82

8 8 5 3 5 2 ht � 12.3 0.83

16 10 8 3 5 2 ht � 21.8 0.73

32 10 7 7 4.69 2 ht � 39.4 0.66

64 16 10 6 5 1 � 70.7 0.59

128 16 16 8 4 1 � 128 0.54

256 16 17 15 4.06 1 � 186 0.39

512 20 16 13 1.88 2 � 208 0.22

1 E5-2680v2 K20X32 20 1 1 – 2 ht � 3.99 1

2 (2310 cores) (732 MHz), 10 8 1 – 1 ht � 5.01 0.63

4 FDR-14 10 8 1 – 2 ht � 9.53 0.6

8 16 10 1 – 2 ht � 16.2 0.51

16 16 10 1 – 2 � 27.5 0.43

32 8 8 1 2 5 � 49.1 0.38

64 16 8 1 2 5 � 85.3 0.33

128 16 16 1 2 5 � 129.7 0.25

256 16 8 4 2 5 � 139.5 0.14

[a] Note: These nodes cannot use the full QDR IB bandwidth due to insufficient number of PCIe lanes, see ”Strong Scaling“ section.
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strong scaling scenario involving efficiency reduction due to

MPI communication overhead and/or lower multithreading

efficiency.

This is alleviated by partitioning available processor cores

between multiple replicas of the simulated system, which, for

example, differ in their starting configuration. Such an approach

is generally useful if average properties of a simulation ensem-

ble are of interest. With several replicas, the parallel efficiency is

higher, as each replica is distributed to fewer cores. A second

benefit is a higher GPU utilization due to GPU sharing. As the

individual replicas do not run completely synchronized, the frac-

tion of the time step that the GPU is normally left idle is used by

other replicas. The third benefit, similar to the case of GPU shar-

ing by ranks of a single simulation, is that independent simula-

tions benefit from GPU task overlap if used in conjunction with

CUDA MPS. In effect, CPU and GPU resources are both used

more efficiently, at the expense of getting multiple shorter tra-

jectories instead of a single long one.

Figure 5 quantifies this effect for small to medium MD sys-

tems. Subplot A compares the the MEM performance for a

single-simulation (blue colors) to the aggregated performance

of five replicas (red/black). The aggregated trajectory produc-

tion of a multisimulation is the sum of the produced trajectory

lengths of the individual replicas. The single simulations set-

tings are found in Table 6; in multisimulations, we used one

rank with 40/Nrank threads per replica. For a single GTX 980,

the aggregated performance of a 5-replica simulation (red bar)

is 47% higher than the single simulation optimum. While there

is a performance benefit of �25% already for two replicas, the

effect is more pronounced for � 4 replicas. For two 980 GPUs,

the aggregated performance of five replicas is 40% higher

than the performance of a single simulation at optimal set-

tings or 87% higher when compared with a single simulation

at default settings (Nrank 5 2, Nth 5 20).

Subplot B compares single and multisimulation throughput

for MD systems of different size for an octacore Intel (blue

bars) and a 16-core AMD node (green bars). Here, within each

replica we used OpenMP threading exclusively, with the total

number of threads being equal to the number of cores of the

node. The benefit of multisimulations is always significant and

more pronounced the smaller the MD system. It is also more

pronounced on the AMD Opteron processor as compared with

the Core i7 architecture. For the 8 k atom VIL example, the

performance gain is nearly a factor of 2.5 on the 16-core AMD

node.

As with multisimulations one essentially shifts resource use

from strong scaling to the embarrassingly parallel scaling

regime, the benefits increase the smaller the input system, the

larger the number of CPU cores per GPU, and the worse the

single-simulation CPU–GPU overlap.

Section 2.3 in the Supporting Information gives examples of

multisimulation setups in GROMACS and additionally quantifies

the performance benefits of multisimulations across many

nodes connected by a fast network.

Strong scaling

The performance P across multiple nodes is given in Tables 11

and 12 for selected hardware configurations. The parallel effi-

ciency E is the performance on m nodes divided by m times

Figure 6. Benchmark performances in relation to the total hardware investment (net) for investments up to 10,000 e. MEM (circles) and RIB (stars) symbols

colored depending on CPU type. Symbols with white fill denote nodes without GPU acceleration. Dotted lines connect GPU nodes to their CPU-only coun-

terparts. The gray lines indicate constant performance-to-price ratio, they are a factor of 2 apart each. For this plot, all benchmarks not done with GCC 4.8

(see Table 2) have been renormalized to the performance values expected for GCC 4.8, that is, plus �19% for GCC 4.7 benchmarks on CPU nodes and plus

�4% for GCC 4.7 benchmarks on GPU nodes (see Table 5). The costs for multiple node configurations include 370 e for QDR IB adapters (600 e per FDR-14

IB adapter) per node. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the performance on a single node: Em5Pm=ðm3P1Þ. In the spi-

rit of pinpointing the highest possible performance for each

hardware combination, the multinode benchmarks were done

with a standard MPI library, whereas on individual nodes the

low-overhead and therefore faster thread-MPI implementation

was used. This results in a more pronounced drop in parallel

efficiency from a single to many nodes than what would be

observed when using a standard MPI library throughout. The

prices in Tables 6 and 7 do neither include an IB network

adapter nor proportionate costs for an IB switch port. There-

fore, the performance-to-price ratios are slightly lower for

nodes equipped for parallel operation as compared to the val-

ues in the tables. However, the most important factor limiting

the performance-to-price ratio for parallel operation is the par-

allel efficiency that is actually achieved.

The raw performance of the MEM system can exceed 300

ns/d on state-of-the-art hardware, and also the bigger RIB sys-

tem exceeds 200 ns/d. This minimizes the time-to-solution,

however, at the expense of the parallel efficiency E (last col-

umn). Using activated DLB and separate PME ranks yielded the

best performance on CPU-only nodes throughout. With GPUs,

the picture is a bit more complex. On large node counts, a

homogeneous, interleaved PME rank distribution showed a sig-

nificantly higher performance than without separate PME

ranks. DLB was beneficial only for the MEM system on small

numbers of GPU nodes. HT helped also across several nodes

in the low- to medium-scale regime, but not when approach-

ing the scaling limit. The performance benefits from HT are

largest on individual nodes and in the range of 5–15%.

The E3-1270v2 nodes with QDR IB exhibit an unexpected,

erratic scaling behavior (see Tables 11 and 12, top rows). The

parallel efficiency is not decreasing strictly monotonic, as one

would expect. The reason could be the CPU’s limited number

of 20 PCI Express (PCIe) lanes, of which 16 are used by the

GPU, leaving only four for the IB adapter. However, the QDR IB

adapter requires eight PCIe 2.0 lanes to exploit the full QDR

bandwidth. This was also verified in an MPI bandwidth test

between two of these nodes (not shown). Thus, while the E3-

1270v2 nodes with GPU offer an attractive performance-to-

price ratio, they are not well-suited for parallel operation.

Intel’s follow-up model, the E3-1270v3 provides only 16 PCIe

lanes, just enough for a single GPU. For parallel usage, the

processor models of the E5-16x0, E5-26x0, and E5-26x0v2 are

better suited as they offer 40 PCIe lanes, enough for two GPUs

plus IB adapter.

Discussion

A consequence of off-loading the short-ranged nonbonded

forces to graphics card(s) is that performance depends on the

ratio between CPU and GPU compute power. This ratio can,

therefore, be optimized, depending on the requirements of

the simulation systems. Respecting that, for any given CPU

configuration there is an optimal amount of GPU compute

power for most economic trajectory production, which

depends on energy and hardware costs.

Figures 6 and 7 relate hardware investments and perform-

ance, thus, summarizing the results in terms of our criteria

performance-to-price (C1), single-node performance (C2), and

parallel performance (C3). The gray lines indicate both perfect

parallel scaling as well as a constant performance-to-price

ratio; configurations with better ratios appear more to the

lower right. Perhaps not unexpectedly, the highest single-node

performances (C2) are found on the dual-CPU nodes with two

or more GPUs. At the same time, the best performance-to-

price ratios (C1) are achieved for nodes with consumer-class

GPUs. The set of single nodes with consumer GPUs (filled sym-

bols in the figures) is clearly shifted toward higher

performance-to-price as compared with nodes without GPU

(white fill) or with Tesla GPUs. Adding at least one consumer-

grade GPU to a node increases its performance-to-price ratio

by a factor of about two, as seen from the dotted lines in the

figures that connect GPU nodes with their GPU-less counter-

parts. Nodes with HPC instead of consumer GPUs (e.g., Tesla

K20X instead of GeForce GTX 980) are, however, more

expensive and less productive with GROMACS (black dotted

lines).

Consumer PCs with an Intel Core processor and a GeForce

GPU in the low-cost regime at around 1000 e produce the

largest amount of MD trajectory per money spent. However,

these machines come in a desktop chassis and lack ECC mem-

ory. Even less expensive than the tested Core i7-4770K and i7-

5830K CPUs would be a desktop equivalent of the E3-1270v2

Figure 7. Same representation as in Figure 6 (yellow box depicts section

plotted there), now focusing on the parallel performance across multiple

nodes (the small number next to the data points indicates the number of

nodes used). The gray lines indicate perfect scaling and constant

performance-to-price ratio, they are a factor of two apart each. A number

next to a data point indicates how many compute nodes were used in

that benchmark. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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system with i7-3770 processor, which would cost about 600 e

without GPU, or a Haswell-based system, for example, with i5-

4460 or i5-4590, starting at less than 500 e.

Over the lifetime of a compute cluster, the costs for electric-

ity and cooling (C4) become a substantial or even the domi-

nating part of the total budget. Whether or not energy costs

are accounted for, therefore, strongly influences what the opti-

mal hardware will be for a fixed budget. Whereas the power

draw of nodes with GPUs can be twice as high as without,

their GROMACS performance is increased by an even larger

factor. With energy costs included, configurations with bal-

anced CPU/GPU resources produce the largest amount of MD

trajectory over their lifetime (Tables 8 and 9).

Vendors giving warranty for densely packed nodes with

consumer-class GPUs can still be difficult to find. If rack space

is an issue (C5), it is possible to mount 23 Intel E26xx v2/3

processors plus up to four consumer GPUs in just 2 U standard

rack units. However, servers requiring less than 3 U that are

able to host GeForce cards are rare and also more expensive

than their 3–4 U counterparts. For Tesla GPUs, however, there

Figure 8. GROMACS performance checklist. Number of MPI ranks, Nrank; number of OpenMP threads, Nth; number of CPU cores, Nc.
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are supported and certified solutions allowing for up to three

GPUs and two CPUs in a 1 U chassis.

Small tweaks to reduce hardware costs are acquiring just

the minimal amount of RAM proposed by the vendor, which is

normally more than enough for GROMACS. Also, chassis with

redundant power supply adapters are more expensive but

mostly unnecessary. If a node fails for any reason, the GRO-

MACS built-in checkpointing support ensures that by default

at most 15 min of trajectory production are lost and that the

simulation can easily be continued.

For parallel simulations (Fig. 7), the performance-to-price

ratio mainly depends on the parallel efficiency that is achieved.

Nodes with consumer GPUs (e.g., E5-2670v2 1 23780Ti) con-

nected by QDR IB network have the highest performance-to-

price ratios on up to about eight nodes (dark blue lines). The

highest parallel performance (or minimal time-to-solution, C3)

for a single MD system is recorded with the lowest latency

interconnect. This, however, comes at the cost of trajectories

that are 2–83 as expensive as on the single nodes with the

best performance-to-price ratio.

Figure 8 summarizes best practices helping to exploit the

hardware’s potential with GROMACS. These rules of thumb for

standard MD simulations with PME electrostatics and Verlet

cutoff scheme hold for moderately parallel scenarios. When

approaching the scaling limit of �100 atoms per core, a more

elaborate parameter scan will be useful to find the perform-

ance optimum. Unfavorable parallelization settings can reduce

performance by a factor of two even in single node runs. On

single nodes with processors supporting HT, for the MD sys-

tems tested, exploiting all hardware threads showed the best

performance. However, when scaling to higher node counts

using one thread per physical core gives better performance.

On nodes with Tesla GPUs, choosing the highest supported

application clock rate never hurts GROMACS performance but

will typically mean increased power consumption. Finally, even

the compiler choice can yield a 20% performance difference

with GCC � 4.7 producing the fastest binaries.

For the researcher it does not matter from which hardware

MD trajectories originate, but when having to purchase the

hardware it makes a substantial difference. In all our tests,

nodes with good consumer GPUs exhibit the same (or even

higher) GROMACS performance as with HPC GPUs—at a frac-

tion of the price. If one has a fixed budget, buying nodes with

expensive HPC instead of cheap consumer GPUs means that

the scientists will have to work with just half of the data they

could have had. Consumer GPUs can be easily checked for

memory integrity with available stress-testing tools and

replaced if necessary. As consumer-oriented hardware is not

geared toward nonstop use, repeating these checks from time

to time helps catching failing GPU hardware early. Subject to

these limitations, nodes with consumer-class GPUs are nowa-

days the most economic way to produce MD trajectories not

only with GROMACS. The general conclusions concerning hard-

ware competitiveness may also have relevance for several

other MD codes like CHARMM,[1] LAMMPS,[4] or NAMD,[6]

which like GROMACS also use GPU acceleration in an off-

loading approach.
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