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Methods

In order to examine how the initial molecular degrees of freedom, coordinates and atomic velocities, affect the
outcome of the (cis, trans) photoisomerization reaction, we prepare different initial configurations of the Schiff
base (coordinates and velocities) on the S0 PES. Then, we vertically (photo-)excite these configurations to the S1
PES, and track their subsequent relaxation dynamics. The initial configurations are extracted from anab initio
molecular dynamics (MD) trajectory of the molecule on S0 (vacuum), simulated atT = 300 K, using a stochastic
dynamics integrator. We also simulate initial PSB2 conformations obtained through excitation of its individual
normal modes and thermal ensembles with constrained dihedral angles.

We describe the PSB2 molecule by the complete active space self-consistent field (CASSCF) method in all the
performed simulations. CASSCF is a multi-configuration method [1, 2]. In CASSCF, a judicious set of occupied
and virtual orbitals is chosen, the so-called active-spaceorbitals. In this active space, a full configuration interaction
calculation is performed, while the other orbitals are being kept doubly occupied or empty in all configurations.
The occupied orbitals are optimized such that the electronic energy of the state considered is minimal.

In the S0 simulations, aimed at obtaining the unbiased thermal ensemble atT = 300 K, the molecule is described
at the CASSCF(4,4)/3-21G level, the timestep is 1 fs, and thetemperature coupling isτt = 0.01 ps (stochastic
dynamics integrator). From the 0.5 ns trajectory, we extract≈ 500 frames at 1 ps intervals, and vertically excite
the selected configurations to S1.

In preparing the pre-twisted ground state thermal ensembles, we harmonically restrain the selected dihedral angles
of the molecule with a force constant ofkdih = 10,000 kJ/mol/rad2. We run classical MD simulations (OPLS all
atom force field [3]) on the restrained molecule, extract theframes at every 10 ps, and run these at CASSCF(4,4)/3-
21G level for additional 0.5 ps each, prior to vertically exciting them to S1, where the dihedral restraints are
released.

In all the excited-state simulations, the molecular energyand momentum are preserved (no thermostat), and the
molecule is described at the state averaged (SA2) CASSCF(4,4)/6-31G* level of theory. The timestep is set to 0.5
fs. The excited molecule, initially promoted to the S1 PES, relaxes towards the conical intersection (CI) seam,
where it “hops” to the ground state. We compare the results ofthe photo-induced reaction using two hopping
algorithms, the fewest switches hopping (FSH) algorithm [4] and the diabatic surface hopping (DSH) algorithm [5].
The ground and excited state simulations are performed using the GROMACS 4.0 [6] interface to Gaussian03 [7]
and a development version of the GROMACS 4.0 interface to MOLPRO [8]. The GROMACS/MOLPRO interface
with the fewest switches surface hopping algorithm [4] codeis available upon request. We evaluated the excited
state lifetimes in the photo-excited ensembles by fitting the S1 population toe−t/τ. In all the fitting procedures, we
used the data points for the S1 population in the time intervalt = 0−500 fs. We used the same time interval in all
the fitting procedures because we noticed that fit results aresensitive to the interval length (in all the analyses, S1

population is equal to zero long before 500 fs after the photo-excitation).

In Fig. 1, we show the CAS active space molecular orbitals forthe S1 (S0 similar) state of a representative initial
geometry. Theπ1, π2, π∗

3 andπ∗
4 CAS orbitals are occupied with≈ 2e,2e,0e and 0e and≈ 2e,1e,0e and 1e on the

S0 and S1 PES, respectively.

S2



Figure 1: CAS active space molecular orbitals for the S1 state of a representative initial geometry.
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Energy profiles of S0, S1 and S2 electronic states in PSB2

We examined the characters of the S0, S1 and S2 states along the reaction pathways observed in the molecular
dynamics simulations, i.e. changes of dihedrals around theN2C3 and C4C5 bonds, starting from the Franck-
Condon geometries and ending at the conical intersection geometries. S1 and S2 states are the 1B2 (ionic) and 2A1

(covalent) states, respectively. Our results, shown in Figs. 2 and 3, show that ordering of the S1 and S2 states is
preserved along the two tested reaction pathways.

Figure 2: Potential energy profiles of the S0, S1 and S2 electronic states along the linearly interpolated pathway
between the planar S1 minimum and the N2=C3 twisted S1/S0 conical intersections. Note that because the curves
were obtained using state-averaged orbitals for the three electronic states, whereas the CI geometry was obtained
using only ground and first excited states, the degeneracy islifted. Continuous lines are SA3-CASSCF(4,4)/6-
31G(d) energies without dynamic electron-electron correlation. Dashed lines are xMCQDPT2/CASSCF(4,4)/cc-
pVTZ energies [9]
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Figure 3: Potential energy profiles of the S0, S1 and S2 electronic states along the linearly interpolated pathway
between the planar S1 minimum and the C4=C5 twisted S1/S0 conical intersections. Note that because the curves
were obtained using state-averaged orbitals for the three electronic states, whereas the CI geometry was obtained
using only ground and first excited state, the degeneracy is lifted. Continuous lines are SA3-CASSCF(4,4)/6-
31G(d) energies without dynamic electron-electron correlation. Dashed lines are xMCQDPT2/CASSCF(4,4)/cc-
pVTZ energies [9].
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Energy profiles for rigid rotation of the CN 2C3C and CC4C5C dihedrals in PSB2

Figure 4: (a) Energy profiles on the S1 surface for rigid rotation of the CN2C3C and CC4C5C dihedrals for nuclear
positions of the S0 state, which are preserved in the S1 state, immediately upon vertical excitation. (b) Same as in
(a), for the molecule with the nuclear positions of the S1 state, which develops within 15−20 fs after excitation
during the dynamics simulations. To obtain the S1 molecular geometry for the planar molecule, we optimize the
molecule geometry on S1, starting with the geometry at the S0 minimum (γmin) and holding the dihedral angles
which keep the molecular frame planar fixed. The molecule is described within SA2-CAS(4,4)/6-31G* level of
theory, as in the simulations.
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Diabatic surface hopping

Here we describe the basic assumptions behind the diabatic surface hopping algorithm. This algorithm is described
in greater detail in [5,10]. The diabatic hopping algorithmis based on the one-dimensional Landau-Zener equation,
which relates the probability of a transition between two electronic statesΨ2 andΨ1 to the nonadiabatic coupling,
via

P2→1 = exp(−
1
4

πξ) (1)

In this equationξ is the Massey parameter, defined as

ξ =
∆E

h̄ dQ
dt g(Q)

, (2)

where∆E is the energy gap between the adiabatic states,Q represents a one dimensional nuclear reaction coordi-
nate, and

g(Q) = 〈Ψ1|∇QΨ2〉 (3)

is the derivative coupling vector. If we differentiateΨ2 with respect tot via dQ
dt , we can rewriteξ as

ξ =
∆E

h̄〈Ψ1|
dΨ2
dt 〉

. (4)

To decide when to undergo a transition to a different potential energy surface, one would in principle need to
compute〈Ψ1|

dΨ2
dt 〉 at every time step (∆t) of the simulation In practice, however, it is possible to approximate the

derivative coupling vector〈Ψ1|
dΨ2
dt 〉 as〈Ψ1(t)|Ψ2(t + ∆t)〉, i.e., the overlap between the excited-state wave func-

tion at the current time step and the ground-state wave function at the previous time step. Since in our simulations
we use the complete active space self-consistent field (CASSCF) method with state-averaged (SA) orbitals to model
the wave function, we compute the overlap as the inner product of the corresponding SA-CASSCF eigenvectors
C1 andC2:

〈Ψ1(t)|Ψ2(t +∆t)〉 = Ct
1 ·C

t+∆t
2 . (5)

Calculating the energy gap∆E andCt
1 ·C

t+∆t
2 at every time step is straightforward, and we can use the Landau-

Zener formula to calculate the probability of a transition to the other surface. In principle, the transition probability
can be used to spawn a new trajectory on the other surface. However, since this procedure would lead to multiple
trajectories that have to be computed simultaneously, spawning is too demanding in practice. We therefore restrict
hopping to situations where the transition probability approaches unity. This happens at the conical intersection
seam, where∆E ≈ 0 andCt

1 ·C
t+∆t
2 ≈ 1.

Because we allow hopping only at the conical intersection seam, our classical trajectories never leave the diabatic
surface. Therefore, energy and momentum are obviously conserved. In principle, this strict diabatic hopping crite-
rion could lead to an underestimation of the population transfer probability, because a surface hop in regions with
strong non-adiabatic coupling far from the intersection isprohibited. In practice, however, the high dimensionality
of the seam ensures that all trajectories encounter such regions of high transfer probability. A major advantage of
restricting hopping to the seam is that we obtain information on the location of the seam in our trajectories. The
latter is important to understand how the interactions between a chromophore and its (protein) environment alter
the topology of the surfaces and the seam and thereby controlthe outcome of the photochemical process. The
Landau-Zener model is clearly an approximation, but can help to keep a proper physical insight, which is crucial
for understanding complex systems.
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Atomic Displacements along Normal Modes in Internal Coordinates

Here, we describe our calculations and numerical approximations used to obtain the atomic displacements along
the normal modes in the basis of non-redundant internal coordinates of the PSB2 molecule. In all the calculations
we used Gaussian03 [7]. We performed frequency calculations on the PSB2 molecule on the S0 PES, optimized
at the CASSCF/6-31G* level of theory, to obtain atomic displacements of the molecule along itsm = 42 normal
modes. The modes are expressed in the Cartesian coordinates, ~Nm,cart (~Nm,cart ~Nm,cart = 1). Since some of the
normal mode displacements involve rotations, we express all the modal displacements in curvilinear non-redundant
internal coordinates of the molecule. Several of the “rotation” modes have low frequencies and large displacements
at the room temperature (not suitably described by~Nm,cart).

In order to find out how normal modes are populated in arbitrary configurations of the molecule (thermal ensemble),
we first need to describe small perturbations of the moleculealong the normal modes in the internal coordinates.
We prepare a set of PSB2 structures,~Rm,cart , by slightly distorting the minimum energy geometry,~R0,cart , along
each of the 42 normal modes,

~Rm,cart = ~R0,cart + km~Nm,cart , m = 1, ...,42, (6)

where we choose a small value ofkm = 0.03. We project the vectors~Rm,cart onto a set of non-redundant internal
coordinates (the default set in Gaussian calculations)~Rm,int . This gives us the normal mode displacements in these
internal coordinates,

km~Nm,int ≈ ~Rm,int −~R0,int , (7)

where~R0,int is the minimum energy PSB2 geometry, expressed in the non-redundant internal coordinates. We use
the vectors~Nm,int to perform a normal mode analysis to obtain the unknownkm coefficients.

In Fig. 5 (a-c), we show the energy of the molecule,E, calculated by Gaussian03, in dependence of the displace-
ment,km, along the 1,2 and 5 modes. Two separate sets of structures are prepared, when thesekm are used in the
Cartesian and the internal coordinates. Here,E = Edispl −E0, whereEdispl is the energy of a molecule with atoms
displaced along the normal modem andE0 is the minimum energy. We also present a quadratic approximation
for the energy (E = cm(km ~Nm)2 = cmk2

m), when the constantcm is extrapolated from the energies of the molecular
structures displaced along~Nm,cart at km = 0.03. At small displacements, the threeE-curves are very similar. At
larger displacements, the energies associated with~Nm,cart largely deviate from those associated with~Nm,int and the
quadratic fit. This plot shows that our numerical approximation (Eqs. 6 and 7) leads to a quadratic-like dependence
for energies associated with~Nm,int .

We also test the energy additivity for different normal modes described by the internal coordinates. In Fig. 5 (d),
we compare the energies (Estructure) of molecules displaced along several normal modes, with those (Epredicted)
obtained by summing the energy contributions arising from displacements along the individual normal modes. We
can see a good agreement betweenEstructure andEpredicted , confirming the validity of our numerical approximation
(Eqs. 6 and 7).
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Figure 5: (a) Energies of the PSB2 molecules displaced alongthe normal mode 1 by the coefficientkm. We
compare the energies of PSB2 structures~Rcart = R0,cart + km~Nm,cart and~Rint = R0,int + km~Nm,int , where~Nm,cart

are obtained from Gaussian calculation, andNm,int are approximated as shown in Eqs. 6 and 7. These energy
profiles are compared with the energy expressed as a quadratic function of km, as described in the text. The
dashed red line markskBT . (b) Same for mode 2 and (c) mode 5. (d) Comparison of predicted energies and
calculated energies of several PSB2 geometries, when multiple normal modes are excited (the 3 cases have the
(1-3), (1-6) and (1-9) modes excited). The excitation coefficients for the first point (closest to the origin) are
km=1−3 = 0.2, 0.2, 0.2, for the second point arekm=1−6 = 0.6, 0.5, 0.2, 0.3, 0.3, 0.2, and for the third point are
km=1−9 = 1.0, 0.9, 0.4, 0.5, 0.4, 0.2, 0.2, 0.1, 0.1. For the third point, we choose the coefficients to approximately
give each excited mode the thermal energykBT . We show that the larger the number of the excited modes, and the
larger the extension coefficientkm, the moreEstructure deviates fromEpredicted .
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PSB2 geometry at the S0 minimum (CASSCF(4,4)/6-31G*)

N 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.002419
C 1.147986 0.000000 -0.583519
H 2.004300 -0.000052 0.067142
C 1.359127 0.000086 -2.009223
H 0.509029 0.000246 -2.665606
C 2.617621 -0.000078 -2.498291
H 3.444093 -0.000241 -1.805690
C -1.322139 0.000142 -0.653957
H -1.424688 -0.887660 -1.259616
H -2.072889 -0.000213 0.119265
H -1.424830 0.888381 -1.258956
C 2.969439 -0.000079 -3.952364
H 3.568873 0.873201 -4.188291
H 3.568665 -0.873486 -4.188349
H 2.090321 0.000048 -4.583737
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