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ABSTRACT: Nucleotide-sequence-dependent interactions between
proteins and DNA are responsible for a wide range of gene regulatory
functions. Accurate and generalizable methods to evaluate the strength of
protein−DNA binding have long been sought. While numerous
computational approaches have been developed, most of them require
fitting parameters to experimental data to a certain degree, e.g., machine
learning algorithms or knowledge-based statistical potentials. Molecular-
dynamics-based free energy calculations offer a robust, system-
independent, first-principles-based method to calculate free energy
differences upon nucleotide mutation. We present an automated procedure to set up alchemical MD-based calculations to
evaluate free energy changes occurring as the result of a nucleotide mutation in DNA. We used these methods to perform a large-
scale mutation scan comprising 397 nucleotide mutation cases in 16 protein−DNA complexes. The obtained prediction accuracy
reaches 5.6 kJ/mol average unsigned deviation from experiment with a correlation coefficient of 0.57 with respect to the
experimentally measured free energies. Overall, the first-principles-based approach performed on par with the molecular
modeling approaches Rosetta and FoldX. Subsequently, we utilized the MD-based free energy calculations to construct protein−
DNA binding profiles for the zinc finger protein Zif268. The calculation results compare remarkably well with the experimentally
determined binding profiles. The software automating the structure and topology setup for alchemical calculations is a part of the
pmx package; the utilities have also been made available online at http://pmx.mpibpc.mpg.de/dna_webserver.html.

1. INTRODUCTION

The ability of proteins to recognize and interact with DNA is
vital for a multitude of cellular processes. Proteins have evolved
to identify specific regions in DNA on the basis of the nucleic
base sequence and shape of the molecule.1 The interaction
landscape is further complicated by the inherent flexibility of
the DNA helix as well as its binding partner.2 A plethora of
experimental and computational approaches are available for
the structural and thermodynamic characterization of protein−
DNA complexes.
Over the past decade a number of large-scale studies have

significantly expanded the knowledge of the DNA binding sites
recognized by transcription factors (TFs).3−5 In these high-
throughput SELEX6 and protein binding microarray (PBM)7

experiments, binding profiles for hundreds of transcription
factors were determined (Weirauch et al.5 examined more than
1000 TFs). While such studies provide invaluable insight into
the protein−DNA interaction specificity, naturally the exper-
imental investigations are also labor- and resource-demanding.
In parallel to the breakthroughs in the experimental techniques,
computational approaches have evolved to predict protein−
DNA binding specificity with increasing accuracy.8

Numerous machine learning algorithms have been trained on
the basis of amino acid sequences or simple contact models to
predict the binding profiles for specific protein motifs, e.g., zinc
fingers.9−11 A more general approach of constructing knowl-

edge-based statistical potentials allows the generation of
binding profiles for a broad range of proteins.12,13 The
physical/statistical potentials Rosetta and FoldX have also
been successfully employed to calculate the free energy
differences of nucleotide mutations and subsequently deter-
mine full binding profiles for the protein−DNA com-
plexes.14−16 Another class of approaches comprises the
molecular dynamics (MD)-based calculations that rely on first
principles of statistical mechanics. These approaches present a
robust yet computationally more expensive access to the free
energy differences upon nucleic acid mutations.
In recent years, alchemical approaches for ligand modifica-

tions17 and amino acid mutations18 have been shown to yield
accurate results in large-scale free energy calculations.
Furthermore, the previously technically demanding setup for
simulations of this type has been automated, making the
approaches widely applicable.19−21 Nucleic acid mutations by
means of MD-based free energy calculations, however, have
received less attention. Historically, a number of small-scale
studies have been performed, concentrating on one or a few
systems of interest and a handful of mutations. The early
studies exploring the suitability of free energy perturbation
methods for biomolecular applications calculated solvation free
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energies of nucleic acid bases.22 Subsequently, the field
advanced to the successful application of alchemical MD-
based approaches to estimate nucleotide-mutation-induced
changes in ligand−DNA interactions23 and the stability of the
DNA helix24 and protein−DNA complexes.25,26 A recent study
made an attempt at a nucleotide mutation scan in four protein−
DNA complexes by means of nonequilibrium thermodynamic
integration.27 In their investigation, however, the authors
observed a drastic difference between the computed and
experimentally obtained free energy differences, concluding that
the force field parametrization and insufficient sampling were
the causes of the poor predictive power.
In the current work, we aimed to push the limits of accuracy

and scale that are possible to achieve by means of first-
principles-based free energy calculations. For that purpose, we
evaluated free energy differences in protein−DNA binding due
to nucleic acid mutations in 16 protein−DNA complexes.
Overall, 397 mutation cases were analyzed and compared to the
experimental measurements, reaching an average unsigned
error of 5.6 kJ/mol. We further used our computational
methods to construct the consensus binding profile of a Zif268
protein and subsequently compared the computed results to
the experimentally obtained profiles. Our findings demonstrate
that the MD-based calculations perform on par with the well-
established modeling approaches Rosetta and FoldX as well as
with the machine learning techniques trained against the
specific protein targets.
The utilities for the automated hybrid structure and topology

generation used in this work are freely available and constitute a
part of a more general pmx library dedicated to the free energy
calculation setup. In addition, online generation of the hybrid
structures/topologies is made available via the pmx Web server.

2. METHODS
2.1. Hybrid Stuctures/Topologies. High-throughput

MD-based alchemical free energy calculations require automa-
tion of hybrid structure/topology generation. A successful
single topology approach to construct hybrid nucleotides was
demonstrated by Seeliger et al.26 In the current work, we
generalized this approach to be applicable to a number of
molecular mechanics force fields in a similar way as has
previously been done for the amino acid mutations in
proteins.19

The DNA nucleotide mutation support was incorporated
into the already established pmx workflow:19 a simplified
scheme is depicted in Figure 1. Hybrid structure/topology
generation for DNA nucleotides requires mutation libraries to
be pregenerated for every supported force field. The mutation
libraries contain the mapping information necessary for
morphing one nucleotide to any other nucleotide. We
considered only the nonmodified nucleotides: adenine,
thymine, cytosine, and guanine. In the current work, we
created libraries for the Amber99sb*ILDN-BSC128−31 and
Charmm36m32,33 force fields. Generation of the new nucleotide
mutation libraries was enabled via the pmx utilities.
Mapping between the nucleic base pairs follows the strategy

introduced by Seeliger et al.26 For purine-to-purine and
pyrimidine-to-pyrimidine mutations, maximum common sub-
structure atom pairing is used, effectively minimizing the
perturbation needed to morph one nucleotide to another. For
the purine-to-pyrimidine and pyrimidine-to-purine mutations,
the whole nucleic base is created/annihilated using dummy
atoms, i.e., atoms without the nonbonded interaction

parameters in their inactive state. In addition, for these cases
several dihedral terms are introduced to force the dummy
atoms to follow the rotations of the nucleic base in the physical
state, i.e., the state that is coupled to the environment. The
number of dummy atoms introduced for the purine/pyrimidine
mutations ranged from 26 to 29 depending on the mutation,
while purine/purine (adenine/guanine) required only seven
dummy atoms and pyrimidine/pyrimidine (thymine/cytosine)
needed eight dummy atoms.
Provided the mutation libraries and a DNA input structure,

pmx generates a structure containing all of the atoms required
to represent both physical states of a hybrid nucleotide, e.g.,
guanine and thymine in Figure 1. In the next step, the
Gromacs34 native topology generation tool pdb2gmx together
with the pmx script allow the proper topology of the hybrid
construct to be obtained. The generated files are compatible
with the current Gromacs topology organization (version 4.5
and higher).

2.2. pmx DNA Web Server. To facilitate the usability of
the pmx-based hybrid structure/topology generation workflow,
in addition to the pmx command line tools, a Web server was
created. The DNA nucleotide handling extends the previously
described web-based amino acid mutation infrastructure.20 The
back end of the Web server implements the hybrid structure/
topology creation procedure described above. The user is
allowed to interactively select the force field to be used and the
mutations to perform. Mutations can be introduced in one or
both complementary DNA chains. An additional functionality
enables a scan to be performed with all of the nucleotide
mutations possible over a DNA structure provided by the user.
This feature is particularly useful for protein−DNA binding
profile calculations.

2.3. Free Energy Calculations. For all of the MD-based
free energy calculations carried out in this work, a non-
equilibrium setup was used.35 The initial equilibrations were
performed by running a 1 ns simulation with position restraints
on all heavy atoms starting from an energy-minimized structure.

Figure 1. Schematic representation of the pmx-based nucleotide
mutation procedure. The user needs to provide an input structure and
select a mutation to be introduced. The pmx software utilizes the
pregenerated mutation libraries to generate hybrid structures and
topologies for the subsequent molecular dynamics simulations.
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Afterward followed a 5 ns nonrestrained simulation to further
equilibrate the system. The 20 ns production runs were
performed for the wild-type DNA sequence and its every
mutation under consideration. From the equilibrium produc-
tion simulations, 100 snapshots were extracted equidistantly in
time, and for every configuration a hybrid structure/topology
for the mutant was generated. Subsequently, a brief 20 ps
equilibrium simulation for every snapshot was performed to
equilibrate the velocities. Finally, for every configuration a 100
ps alchemical transition was started to morph the system from
one physical state to another. For the double nucleotide scan of
the zinc finger protein Zif268, where two mutations in each
strand were performed at once, alchemical transitions of 200 ps
were used. In these cases, the perturbation of the system was
larger, as four nucleotides (two pairs) were modified at once;
thus, the slower transitions were intended to reduce work
dissipation along the alchemical path, leading to increased
overlap between forward and backward work distributions,
hence facilitating convergence of the free energy estimates. The
transitions were performed in both directions: wild type to
mutant and mutant to wild type. The work values from the
nonequilibrium transitions were used to calculate free energy

differences based on the Crooks fluctuation theorem36 utilizing
the maximum likelihood estimator.37

2.4. Validation: Closed Thermodynamic Cycle. To
validate the constructed mutation libraries and the free energy
calculation workflow, we constructed a thermodynamic cycle
using a double-helix DNA molecule, the Drew−Dickerson
dodecamer38 (Figure 2A). The palindromic nature of the
sequence of this DNA fragment allows the generation of a cycle
where the free energy changes along the vertical branches are
both 0 kJ/mol, as illustrated in Figure 2B. In this situation, the
double free energy difference is ΔΔG = ΔG2 − ΔG3 = ΔG4 −
ΔG1 = 0 kJ/mol. We performed calculations of the double free
energy differences to cover every combination of the nucleotide
mutations: A2G, A2T, A2C, T2C, T2G, and C2G. In total,
eight simulation setups enabled the calculation of four ΔΔG
values that probed all of the mutation combinations (Table 1).
For every mutation set (Table 1), the hybrid structures/

topologies were incorporated into the system. Ten independent
equilibrium simulations of 25 ns were performed by setting the
system in physical state A. Also, 10 equilibrium simulations
were carried out by setting the system in physical state B. By
performing transitions from state A to state B, we obtained 10
distributions of the nonequilibrium work values. Running the

Figure 2. Validation of the free energy calculation workflow. (A) The palindromic Drew−Dickerson dodecamer was used as a model system for the
validation simulations. (B) Example of the thermodynamic cycle utilizing the palindromic nature of the Drew−Dickerson dodecamer: ΔΔG = ΔG2
− ΔG3 = ΔG4 − ΔG1 = 0 kJ/mol. (C) Results of calculations over a number of thermodynamic cycles with an expected outcome of 0 kJ/mol (see
(B)). The distributions were constructed from the results of a number of independent simulations (see Methods for details).
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transitions in the direction B to A, another 10 distributions for
the work values of the reverse process were calculated.
Combinations of the forward and backward work distributions
allowed 100 ΔG estimates to be obtained for one branch of the
cycle. In total, combining estimates from two branches of the
cycle, we were able to estimate ΔΔG 104 times, which in turn
provided a distribution of the double free energy differences for
every cycle considered (rows in Table 1).
All of the validation simulations and the calculations

described further in this article were performed using two
force fields: Amber99sb*ILDN-BSC1 and Charmm36m.
2.5. Nucleotide Mutations in Protein−DNA Com-

plexes. The set of protein−DNA complexes used in the
study comprised 16 systems assembled by Morozov et al.14

(Figure 3). All of the experimental values converted to free
energy differences and expressed in kilojoules per mole
together with the respective references are collected in Table
S1 in the Supporting Information. We made the following

changes to the protein−DNA set of Morozov et al.: The
mutation number for the Tus-Ter complex was extended to 38
cases, and experimental values from additional literature sources
were incorporated for the AtERF1 transcription factor. For the
c-Myb protein−DNA complex, an NMR structure was used39

in which two homologous protein fragments (R2 and R3) are
bound to the double-stranded DNA. It has been demonstrated
that the R1 c-Myb fragment has only a small influence on the
protein−DNA binding,40 thus justifying the use of the
experimental measurements on binding of the R1, R2, and
R3 fragments to DNA by Morozov et al. However, where
possible we updated the values for c-Myb with those for the R2
and R3 fragments interacting with DNA to retain consistency
with the NMR structure used for simulations. For three systems
(Zif268, Tus-Ter, and CAP proteins interacting with DNA),
some experimental values were not determined exactly, but
rather, only a lower limit for the complex destabilization upon
mutation was measured. To compare our calculations to such
cases, we also imposed equivalent constraints on the computed
results: if a calculated ΔΔG exceeded the experimental lower
bound, the calculated value was set to be equal to this lower-
bound value.
The thermodynamic cycle depicted in Figure 4A was

constructed to calculate the changes in free energy differences
(ΔΔG) in the protein−DNA complexes upon a nucleotide
mutation. The equilibrium simulations for the unbound DNA

Table 1. Mutations for the Workflow Validation Simulations

ΔG1 ΔG4 mutations probed

A5G, T20C T8C, A17G A2G, T2C
A5T, T20A T8A, A17T A2T
A5C, T20G T8G, A17C A2C, T2G
G4C, C21G C9G, G16C C2G

Figure 3. Systems simulated in this study. In total, 397 mutation cases in 16 protein−DNA complexes were investigated.
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and protein−DNA complexes were performed without
constructing the hybrid structures/topologies. The hybrids
were constructed directly onto the extracted frames from the
equilibrium trajectories. Prior to the start of the alchemical
nonequilbrium transitions, the systems were simulated for 20 ps
to equilibrate the velocities on the introduced dummy atoms.
Several protein−DNA complexes contained ligands that

needed separate parametrization. For the simulations with the
Amber99SB*ILDN-BSC1 force field, the bonded parameters
were assigned from the general Amber force field.41 The partial
charges were obtained by the restrained fit to the electrostatic
potential42 calculated with Gaussian 0943 at the Hartree−Fock/
6-31G* level of theory. Ligand topologies for the Charmm36m
force field were obtained using an automated procedure44,45 to
assign the general Charmm force field46 parameters.
Free energy calculations were carried out in the two

aforementioned force fields. Subsequently, we also employed
a consensus approach18 to reduce the force-field-imposed bias
by averaging the double free energy differences obtained from
the Amber99sb*ILDN-BSC1 and Charmm36m simulations.

Averaging the ΔΔG values effectively doubles the simulation
time used for the free energy calculation, thus increasing the
sampling as well as reducing the force-field-related artifacts. To
obtain a better understanding of the benefits coming from only
combining the force fields (and not extending the sampling
time), we also calculated the consensus free energies using only
half of the sampling from each force field.
The calculated results were compared to the experimental

measurements by means of the average unsigned error (AUE)
and Pearson correlation coefficient. The standard errors for
these estimates were obtained by bootstrapping.

2.6. Increasing the Sampling Time. Five systems were
used to assess the influence of an increased sampling time on
the free energy calculation accuracy: LacR, BamHI, c-Myb,
PU.1 ETS, and MAT a1/α2. For each of the cases, the
equilibrium sampling time was increased 5-fold, i.e., five
independent simulations, 25 ns each, were carried out for the
wild-type and mutant DNA free in solution and bound to the
protein. From every equilibrium simulation, 40 snapshots were
extracted equidistantly in time for the subsequent non-

Figure 4. Results of the free energy calculations of the nucleotide mutations in the protein−DNA complexes. (A) Thermodynamic cycle used to
calculate the change in the protein−DNA binding free energy upon nucleotide mutation: ΔΔG = ΔG2 − ΔG3 = ΔG4 − ΔG1. (B) Results from the
16 systems pooled together. The left panel shows the experimental ΔΔG values vs the consensus force field (with the doubled simulation time)
calculation results. Data points are colored according to the protein−DNA complex to which they belong. The top-right panel depicts the average
unsigned error (AUE) of the calculations with respect to the experimental results, while the bottom-right panel shows the correlation coefficients
between the calculations and experiments. (C) AUEs and correlation coefficients between the calculated and experimental ΔΔG values are shown
for individual protein−DNA complexes. The calculation results come from the consensus force field with the doubled simulation time analysis. The
letters in the correlation plot (bottom panel) denote the dynamic Rosetta model (D), static Rosetta model (S), contact model (C),14 and FoldX
model (F).16 The numbers in between the top and bottom panels are the numbers of mutation cases for the protein−DNA complexes.
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equilibrium alchemical transitions. The rest of the simulation
and free energy calculation details were kept identical to those
described in the previous section.
2.7. Consensus Profile for Zif268. Two approaches were

explored to calculate the consensus DNA binding profile for the
zinc finger protein Zif268. In the first approach, a single
nucleotide scan was performed by mutating every nucleotide
pair in the complementary chains one-by-one and obtaining the
ΔΔG estimates. By setting the ΔG of the wild-type nucleotide
to 0 kJ/mol, the double free energy differences for the mutants
were casted to the ΔG values: ΔGmut

i = ΔGwt
i + ΔΔGmutation

i ,
where i denotes the position in the DNA sequence. With the
assumption that the nucleotide contributions are independent
of one another, the free energies were converted to the
probabilities of finding nucleotide n at sequence position i:

=
∑
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p
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where R is the universal gas constant and T is the absolute
temperature.
In the second approach, we explicitly considered the

contributions of the neighboring nucleotides by calculating
the ΔΔG values for all combinations of neighboring nucleotide
pairs. To accomplish that, in addition to the already acquired
single nucleotide mutations, we scanned the DNA sequence
with double nucleic acid mutations. This approach provides
access to the probability of finding nucleotide n at position i
conditioned on the nucleotides at the neighboring positions
i − 1 and i + 1. To enable direct comparison of the obtained
results to the experimental and single nucleotide scan results,
we summed over the conditional probabilities:

=

∑ + ∑

∑ ∑ + ∑

−Δ −Δ

−Δ −Δ

|
+

|
−

|
+

|
−( )

p

e e

e e

n

k
G RT

l
G RT

j k
G RT

l
G RT

A,T,G,C / A,T,G,C /

A,T,G,C A,T,G,C / A,T,G,C /

i

ni k
i

ni l
i

ji k
i

ji l
i

1 1

1 1

(2)

where ΔGni|k
i+1 and ΔGni|l

i−1 denote the free energy difference for
nucleotide n at position i given nucleotide k at position i + 1
and nucleotide l at position i − 1, respectively. The dependence
between the positions i + 1 and i − 1 was not considered in this
case. To estimate the probabilities of the terminal nucleotides,
the free energy of only one available neighboring nucleic acid
was considered. The calculated probabilities were visualized as
logo plots47 and compared to the experimentally measured
nucleotide frequencies for every position at the binding site.7,48

We used the Jensen−Shannon (JS) divergence to quantify the
difference between the binding profiles:
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In the above expression, X and Y represent the profiles that are
being compared, L denotes the length of the sequence, and KL

stands for the Kullback−Leibler divergence, which is expressed
as

∑=x y p
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p
KL( ) lni i

n
n
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i
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where pni
x is the probability for nucleotide n to be found at

position i in sequence X. When estimating the KL divergence,
we applied Laplace smoothing by adding a constant of 0.001 to
all of the probabilities followed by a subsequent normalization.
The JS divergence was used to compare the computed

binding profiles to the experimental references. First, 104

random profiles were generated by sampling the nucleotide
probabilities from a uniform distribution. The JS divergence
was calculated for every random profile and the experimentally
obtained binding profiles. Further, we used the free energies
and the associated standard deviations (σΔG) calculated from
the single nucleotide scan to obtain 104 profiles, where the
probability for every nucleotide at each position was sampled
from a normal distribution σΔ ΔG( , )G

2 . Each of the profiles
was compared to the experimental reference by means of JS
divergence. The same sampling and comparison to the
experimental sequence procedure was repeated using the free
energies obtained from the double nucleotide scan. This
approach allowed an assessment of the significance of
recovering experimental binding profiles by the single and
double nucleotide scans. The following experimentally obtained
binding profiles were used for the comparison: SELEX
experiments4,48 and protein microarray binding (PBM) experi-
ments.3,7 The binding profiles from the PBM experiments3,7

were retrieved from the UniProbe database.49

To compare the profiles obtained from the single and double
nucleotide scans to one another, we employed another strategy.
Having obtained the profile samples for the single nucleotide
scan (in the same way as in the previous comparison), we
calculated the JS divergence among the profiles by randomly
selecting pairs of samples from the generated pool of profiles.
The same calculation was performed for the double nucleotide
scan. We termed these comparisons “intra”, since the JS
divergence calculations were performed using the profiles
sampled with the data of one nucleotide scan only. Finally, the
“inter” comparison was performed by randomly sampling pairs
of profiles from the single and double nucleotide scans and
comparing them in terms of the JS divergence.
We also calculated the binding profile entropy normalized

per nucleotide position (expressed in bits):

∑ ∑= −
=

H
L

p p
1

log
i

L

n
n n

1

A,T,G,C

2i i (5)

To compare the free-energy-based binding profile determi-
nation to other computational methods, we generated the
Zif268 binding profile using a number of established
approaches. Two random forest machine learning methods
based on the amino acid sequence were probed: B1H-RC11 and
ZFModels.9 Another approach was based on the contact model
using support vector machines.10 All of these algorithms were
trained on a large set of zinc finger binding motifs. In addition,
we also tested a more general protein−DNA binding profile
prediction algorithm that was not particularly aimed at the zinc
finger analysis. This approach, termed PiDNA,13 utilizes
structural models of protein and DNA, generates mutations,

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00849
J. Chem. Theory Comput. 2017, 13, 6275−6289

6280

http://dx.doi.org/10.1021/acs.jctc.7b00849


and calculates free energy differences using a knowledge-based
potential energy function. While PiDNA was not primarily
designed for the zinc finger binding motif detection, Zif268 was
used in the parametrization of PiDNA’s energy function.50

2.8. Molecular Dynamics Simulation Parameters. For
all of the simulations carried out in this work, the following
simulation setup was used. The system was placed in a
dodecahedral box and solvated with TIP3P water.51 Bond and
angle vibrations in water molecules were constrained using the
SETTLE algorithm.52 The bond vibrations in other molecules
were constrained using the LINCS algorithm.53 Sodium and
chloride ions were added to neutralize the system and reach a
salt concentration of 150 mM. For the simulations with the
Amber99SB*ILDN-BSC1 force field, Joung and Cheatham54

ion parameters were used. A time step of 2 fs was used to
integrate the equations of motion. The thermostating of the
system was performed with the velocity rescaling thermostat55

using a time constant of 0.1 ps and a reference temperature of
298 K. The pressure was kept at 1 bar by means of the
Parrinello−Rahman barostat56 with a time constant of 5 ps.
The particle mesh Ewald method57,58 was used to treat the
electrostatic interactions with a Fourier grid spacing of 0.12 nm,
interpolation order of 4, and relative interaction strength at the
cutoff of 10−5. A short-range electrostatic interaction cutoff of
1.1 nm was used for the equilibration simulations, while for the
nonequilibrium transitions a cutoff of 1.2 nm was employed.
The van der Waals interactions were switched off in the range
from 1.0 to 1.1 nm. A dispersion correction for energy and
pressure was applied. A soft-core function with the default
parameters59 was used for the nonbonded interactions during
the nonequilibrium transitions. Equilibrium simulations were
run with Gromacs 5.1, while nonequilibrium transitions were
performed with Gromacs 4.6 using a specialized soft-core
function.59

3. RESULTS
3.1. DNA Mutation Library Validation. The constructed

DNA mutation libraries and overall free energy calculation
workflow were validated by calculating double free energy
differences over a thermodynamic cycle using the Drew−
Dickerson dodecamer as a model system (Figure 2A,B). By
construction the theoretical ΔΔG value of such a cycle is
0 kJ/mol.
The distributions of the ΔΔG values obtained from the

alchemical calculations are shown in Figure 2C. These
estimates provide insight into the magnitude of error that
could be expected when using our approach for the subsequent
calculation of the free energies in the protein−DNA complexes.
The purine-to-purine and pyrimidine-to-pyrimidine mutations
(first column in Figure 2C) show the smallest spread around
the expected value. This is a natural consequence of the
mutation library construction: purine/purine and pyrimidine/
pyrimidine atom mappings involved minimal possible pertur-
bation to the system. For the other mutations, the mappings
follow a dual topology approach for the whole nucleic base,
thus resulting in a larger perturbation and broader ΔΔG
distributions.
On average the deviations from the theoretical value of 0 kJ/

mol overall did not exceed 0.9 kJ/mol. In all of the investigated
cycles, the 0 kJ/mol mark fell within the range of one standard
deviation from the calculated mean ΔΔG value.
These calculations validate our hybrid structure/topology

and subsequent free energy calculation setup procedures. In

addition, the calculations of the ΔΔG values over a closed
thermodynamic cycle quantify the maximal accuracy that can be
expected in the subsequent calculations of the mutations in
protein−DNA complexes.

3.2. Large-Scale Nucleotide Mutation Scan in Pro-
tein−DNA Complexes. The overall results of the nucleotide
mutation scan are summarized in Figure 4. The thermodynamic
cycle depicted in Figure 4A was constructed to calculate the
double free energy differences upon nucleic acid mutations in
16 protein−DNA complexes. In total, 397 mutation cases were
studied, and the pooled results are shown in Figure 4B. For the
most accurate protocol (consensus of the force fields and
doubled simulation time), we obtained an average unsigned
error (AUE) of 5.6 kJ/mol and a correlation coefficient of 0.57
for the whole data set when comparing the calculated values to
the experimental measurements. The results for the two force
fields considered separately drop to an AUE of ∼6.5 kJ/mol
and correlation coefficient of ∼0.5. The trends in comparison of
the calculations to the experimental measurements are clearly
visible: combination of the force fields decreases the AUE and
increases the correlation. Longer sampling time further
improves the agreement between the calculated and measured
ΔΔG values.
For an in depth analysis of the performance of the MD-based

alchemical free energy calculations, we dissected the AUE and
correlation estimates system-wise (Figures 4C and S1−S16). In
addition, as a reference value to assess the quality of the
calculations, we have indicated the correlation values obtained
by Morozov et al.14 by means of Rosetta-based modeling.60 The
letter S in the correlation plot (Figure 4C) denotes the static
model approach by Morozov et al.: here neither amino acid side
chain nor DNA rearrangements were allowed, and Rosetta was
used only to score the structural models. The dynamic model
(marked by the letter D) involved minimization of the
interfacial side chains and DNA torsion angles. The contact
model (letter C) was a simplistic yet predictive approach that
did not employ the Rosetta scoring but relied solely on the
number of contacts that the consensus DNA sequence made
with the protein. The details of the models as well as the
original calculations using the Rosetta protocols are described
in ref 14. Another reference value (indicated by the letter F in
Figure 4C) denotes correlations with the experimental ΔΔG
values obtained from calculations using the FoldX software.16

The calculated ΔΔG values for the zinc finger transcription
factor Zif268 and its D20A mutant showed a remarkable
agreement with experiment. MD-based alchemical calculations
have already been used to investigate this protein,26 and with
our current protocol we were able to reproduce the previous
observations. The direct comparison to experiment among the
different prediction approaches should be considered with
caution because not all of the experimental values were
measured exactlyin some cases only the lower bound of
destabilization could be obtained.
The λ repressor dimer (λR) is another example for which

high-accuracy agreement with the experimental measurements
was obtained. For this case, both the AUE and correlation
coefficient are significantly better than the average values
estimated over all of the systems. Only two outlier mutations
for λR were predicted to destabilize the complex significantly
more than was observed in the experiment (Figure S3). A
different situation was observed for the trp repressor (trpR)−
DNA complex. Here, in a small set of mutations (nine values),
the correct trend in terms of correlation was identified very
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accurately, but the absolute ΔΔG values strongly deviate from
the experimental ones (AUE of 12.4 kJ/mol). Interestingly,
trpR has contacts only with the DNA backbone and not with
the nucleic bases.61 Therefore, the ability to detect the correct
correlation is remarkable, as the mutation effect must majorly
be manifested via the changes in DNA geometry. The lack of
contacts with the nucleic bases also explains the poor
performance of the contact model.
For the transcription activator/repressor c-Myb protein−

DNA complex we observed predictive power similar to that of
the static Rosetta model. As described in Methods, we updated
the experimental value set for this case. When the same
experimental values as reported by Morozov et al. were used,
the results were similar to those in Figure 4C (AUE = 7.3 kJ/
mol, cor = 0.49). The c-Myb simulations, as well as those for
ethylene-responsive transcription factor AtERF1, were started
from the NMR models, in contrast to the rest of the systems,
which were initiated with crystallographically resolved
structures. This difference in the starting configuration may
explain the decreased agreement between the calculated free
energies and the experimental measurements.
BamHI restriction endonuclease has been investigated

experimentally by mutating the flanking nucleotides up- and
downstream from the recognized sequence.62 The association
constants obtained from the nitrocellulose-binding experiments
showed a decrease in binding affinity in a narrow range
reaching only up to 8 kJ/mol (Figure S7). The calculated
values, however, display a larger spread, in some cases
indicating that the mutations may be favorable (Figure S7).
The trend in terms of correlation coefficient for BamHI is
comparable to those for the static Rosetta model and FoldX
calculations, whereas the dynamic relaxation allowed Rosetta to
capture the mutation effects more accurately. In addition to the
simulations starting from the crystallographic structure (Protein
Data Bank (PDB) entry 1bhm),63 we also performed the
calculations with another structure (PDB entry 2bam).64 Here
the protein−DNA complex was resolved together with two
bound calcium ions; also, more residues in the protein’s N-
terminus interacting with DNA were resolved in the 2bam
structure. Nevertheless, the results did not change significantly
with the use of the different starting structure. It is also
important to note that for the simulations with both
crystallographic structures, the first nucleotide in the flanking
region was missing in comparison with the experimental
mutation setup.
Another endonuclease analyzed in this work, EcoRI, while

having a low sequence similarity to BamHI, shares similar
structural features.65 In this case, Lesser et al.66 mutated
nucleotides in the recognition site and observed that the
substitutions of the canonical sequence were highly unfavor-
able. The alchemical calculations captured the destabilizing
effect well for all of the mutations analyzed. While the
correlation coefficient in this case is lower than the average
value, it is partly distorted by one outlier (Figure S11) in which
a simultaneous mutation of six nucleotides was performed and
the convergence of the ΔΔG estimate was not yet achieved
(the correlation coefficient without this value reaches 0.53). In
spite of the low correlation coefficient, the alchemical
calculations were able to outperform both the static and
dynamic Rosetta models.
The MATa1 and MATα2 homeodomain proteins bind DNA

to form heterodimers and act as repressors in yeast. Jin et al.67

constructed an assay in which binding of the MATa1/α2

proteins to a consensus DNA site would repress lacZ
expression, which could be monitored by observing the
repression ratio of the β-galactosidase activity. This assay
allowed quantification of the effects of the nucleotide
substitutions in the consensus site on the gene repression.
On the other hand, the monitored quantity (repression ratio) is
only indirectly related to the free energy changes in the
protein−DNA interaction. Another complication in this case
was the range of the free energy change values for the
mutations: the experimental ΔΔG values did not exceed 9 kJ/
mol, thus posing a difficult challenge of capturing subtle
differences. The calculated double free energy differences show
only a very weak correlation with the repression ratios
converted to double free energy differences. Interestingly, the
AUE in this case is below the average value, indicating that the
absolute errors made in free energy estimation were not large.
Modeling with Rosetta or FoldX was more successful for this
case, with correlation coefficients ranging from 0.35 to 0.57.
The free energy calculations for the estrogen receptor (ER)

bound to DNA captured the trends well: in a set of only seven
mutations, weakly, intermediately, and strongly destabilizing
mutations were clearly identified (Figures 4C and S9).
Matching the exact free energy differences in this case is
difficult to expect, since the experimental measurements
provide only semiquantitative estimates of the ΔΔG values.68

For the mutations of DNA interacting with the transcrip-
tional activator Ndt80, the performance of alchemical
calculations was comparable to that of Rosetta modeling and
slightly worse than that of FoldX calculations. The ΔΔG
estimates were able to distinguish the destabilizing mutations
from those having a mild effect or even stabilizing the
interaction (Figure S10).
The prediction quality for the Cro repressor complex was

above average in terms of both AUE and correlation coefficient.
The agreement with experiment was also significantly better
than those of the Rosetta and FoldX models. Interestingly, in
this case the results obtained from the two force fields differed
significantly (Figure S12), with Charmm36m outperforming
Amber99sb*ILDN-BSC1. The consensus approach again
resulted in good agreement with the experimental measure-
ments.
In the case of the Lac repressor (LacR)−DNA complex, the

alchemical calculations captured well the trend in the double
free energy differences, whereas a large error was made in
predicting the absolute ΔΔG values. This deviation mainly
comes from the calculation in the Amber99sb*ILDN-BSC1
force field (Figure S13). Upon closer inspection of these
results, it appeared that the Amber free energy estimates lacked
convergence: the work distributions obtained from the forward
and backward transitions lacked overlap, indicating large work
dissipation along the alchemical path. To improve the
convergence, the Amber99sb*ILDN-BSC1 transitions were
repeated three times. While this did not remove the insufficient
convergence artifact completely, the increased overlap of the
forward and backward work distributions allowed more
accurate free energy estimates to be acquired, which in turn
improved the agreement with the experimental measurements
(light symbols for LacR in Figures 4C and S13).
The PU.1 ETS protein, similar to the BamHI endonuclease,

is capable of an indirect DNA readout. Its binding affinity to
DNA has been demonstrated to change with mutation of the
residues flanking the core consensus binding site.69 Similar to
the case of BamHI, the alchemical calculations for the PU.1
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ETS protein−DNA complex performed worse than average.
The indirect DNA readout based on the nucleic base coupling
was captured significantly better by Rosetta considering the
DNA conformational energies only (Figure 4C). On the other
hand, it is important to note that the AUE of the alchemical
calculations for the case was significantly lower than the average
over all of the systems analyzed. This is due to the fact that the
calculations were able to correctly predict that most of the
double free energy differences in this case were small in their
absolute value, which in turn also made it difficult to capture
the trends in this data set with more accuracy.
The double free energy differences for the catabolite gene

activator protein (CAP)−DNA complex were predicted with
above-average accuracy, outperforming the dynamic Rosetta
and FoldX models and performing on par with the static
Rosetta free energy calculation. The only troublesome
observation from the mutations of the CAP system is the
mildly stabilizing ΔΔG estimates for two mutation cases
(Figure S15), while the experimental measurements predict
destabilization of the complex. Upon closer inspection, this
erroneous prediction was identified to come from the
Amber99sb*ILDN-BSC1 calculations only.
The quality of the free energy estimates for the Tus protein

interacting with the Ter DNA sequence is slightly higher than
the Rosetta and FoldX predictions. For this protein−DNA
complex, we expanded the experimental data set in comparison
with the one used by Morozov et al. by incorporating more
mutations and the associated ΔΔG values.70 Compared with
the original data set used by Morozov et al., the calculation
quality did not change much (AUE = 4.7 kJ/mol and
correlation coefficient = 0.41).
3.3. How Much Can We Improve with Increased

Sampling Time? To probe whether longer sampling times
would yield free energy estimates closer to the experimentally
measured values, we selected five systems for an extended
investigation. For each of the systems, the 25 ns equilibrium
simulation was repeated five times independently. These
equilibrium runs were subsequently used to start the alchemical
nonequilibrium transitions (see Methods for a detailed

description). The results of the extended sampling calculations
are summarized in Figure 5.
Interestingly, while a consistent improvement in the absolute

agreement with experiment in terms of AUE is visible in all
cases, changes in capturing the trend in terms of the correlation
coefficient are not homogeneous. For the c-Myb protein−DNA
complex, the absolute prediction accuracy improved from 6.7 to
4.8 kJ/mol with the increased sampling time (AUE with respect
to the experiment). The correlation coefficient, however,
increased only marginally from 0.44 to 0.45. A very similar
situation was observed for the MAT a1/α2 protein−DNA
complex: a minor decrease in the AUE and increase in the
correlation coefficient. In the case of LacR bound to DNA, the
increased sampling increased the accuracy both in terms of the
AUE and correlation coefficient. However, for this system only
five mutations were analyzed, and thus, the improvement in the
agreement with experiment cannot be deemed significant,
falling within the range of the large error bars.
For the cases with the nucleotide mutations in the flanking

regions, BamHI and PU.1 ETS, the increased sampling reduced
the correlation coefficent of the calculated values with the
experimental measurements.
While performing five independent equilibrium simulations

for every mutation case increased the sampling time, such a
setup also introduced bias by starting each of the runs from the
same crystallographic or NMR structure. To investigate
whether reducing this bias would improve the free energy
calculation accuracy we further investigated the PU.1 ETS
protein−DNA complex. For this case an additional set of
equilibrium 25 ns simulations was performed by starting the
simulations from the last conformation of a previous
equilibrium simulation. Subsequently, the trajectory of the
last 25 ns was used to spawn the nonequilibrium transitions and
obtain the double free energy differences. The outcome of this
calculation is illustrated in Figure 5, marked as “Extended eq”.
Clearly, for this protein−DNA complex prolonged equilibrium
simulations had no effect on improving the free energy
calculation accuracy.

3.4. ΔΔG-Based Binding Profiles. The experimentally
obtained and calculated binding profiles for the zinc finger

Figure 5. Results of the increased sampling simulations. The average unsigned error (AUE) and correlation coefficient between the calculated and
experimental ΔΔG values are shown. The “x5” labels mark the results obtained from the simulations repeated five times. For the PU.1 ETS system
an additional calculation was performed (marked “Extended eq”) by extending a 25 ns run to reach an equilibrium simulation length of 50 ns. The
numbers in between the panels are the numbers of mutation cases for the protein−DNA complexes.
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protein Zif268 are depicted as logo plots in Figure 6. From
visual comparison it appears that both the single and double
nucleotide scans were able to capture the major patterns in the
consensus binding sequence. This observation is further
confirmed by the JS divergence analysis. The difference
between the calculated profiles and any of the experimental
references is significantly smaller compared with a randomly
generated profile.
In comparison with the single nucleotide scan, inclusion of

the neighbor effects increased the variability in the binding
profiles, especially at the termini of the profile. This effect can
be quantified by calculating the average information entropy for
the calculated profiles. The single nucleotide scan produced a
profile with an entropy of 0.6 bits per nucleotide position, while
the mean entropy for the double nucleotide scan profile
increased to 0.8 bits.

Including the dependence on the neighboring nucleotides
into the binding profile calculation had a significant influence
on the computed results (Figure 7). The blue and green
distributions in Figure 7 highlight the extent to which the
predicted binding profiles vary even when they are obtained
from the same set of free energy calculations. Markedly, the
intrinsic differences for both versions of the nucleotide scans
are significantly smaller than the divergence between the scans
compared with one another directly (red curve in Figure 7).
The quality of the binding profile prediction can be assessed

by comparing the calculated JS divergences to the divergences
among the experimentally obtained profiles (Figure 8, top
row). The experimentally determined motifs show divergence
comparable to that calculated from the nucleotide scans, thus
indicating that predicting a profile to be even more similar to

Figure 6. Calculated and experimental protein binding profiles for the Zif268 protein. The logo plots in the left column were generated from the
experimentally obtained binding profiles.3,4,7,48 The logo plots in the first row were calculated from the ΔΔG values obtained from the single and
double nucleotide scans. The blue or green distribution in a given row and column denotes the JS divergence calculated by comparing the
experimental binding profile to the calculated profile in the corresponding row and column, respectively, and the gray distribution depicts the JS
divergence between the experimental profile and a randomly generated sequence.
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any of the experimental references is hindered by the
experimental uncertainty itself.
Using the same strategy of JS divergence estimation between

the predicted and experimental profiles, we also evaluated a
number of established computational techniques (Figure 8,
orange symbols in the bottom four rows). All of the approaches
showed high-quality agreement with the experimental refer-
ences. Admittedly, B1H-RC,11 ZFModels,9 and the method of
Persikov and Singh10 were specifically designed to determine

zinc finger binding profiles. The PiDNA algorithm is a more
general-purpose method, but its knowledge-based energy
function was tuned against the Zif268 structure. The latter
method also has a feature allowing one to perform different
numbers of mutations and estimate the free energy changes for
the subsequent position frequency matrix generation. This
approach of relaxing the nucleotide independence assumption
resembles the double nucleotide scan performed in the current
study. With an increasing number of tested mutations, the
PiDNA-generated binding profiles diverged more from the
experimental references (Figure 8, bottom row). Interestingly,
the entropy of the generated motifs increased when using two,
three, and four mutations (0.7, 1.0, and 1.1 bits per nucleotide
position, respectively). This trend of increasing entropy
matches the observation from the single and double nucleotide
scans performed here.

4. DISCUSSION
4.1. pmx for DNA. The update to the pmx infrastructure

presented here extends the capabilities of the software to
support nucleic acid mutations in DNA. The hybrid structure/
topology generation workflow closely follows the already
established procedures for amino acid mutations.19 While
support in terms of the available mutation libraries is provided
for two contemporary molecular mechanics force fields, the
utilities are readily available to incorporate other Amber,
Charmm, and OPLS family force fields. We have further
validated the mutation libraries and the overall simulation setup
workflow in the calculations of free energy changes across a
thermodynamic cycle where the theoretical outcome is known.
Construction of the hybrid structures/topologies has also

been made available via the pmx Web server interface. The
online utilities allow the alchemical DNA mutation simulations
to be set up without the need to install any additional software
apart from the Gromacs MD engine itself.

4.2. Free Energy Estimation Accuracy. Overall, we
reached an average unsigned deviation of 5.6 kJ/mol from the
experimental measurements when considering all 397 analyzed
nucleic acid mutations in 16 protein−DNA complexes. This
AUE is larger than that observed for the amino acid mutations
in the protein thermostability analysis:18 the consensus force
field approach for the protein thermostabilities allowed an AUE
below 4 kJ/mol to be reached. On the other hand, the free
energy estimates for the amino acid mutations in protein−
protein complexes have been shown to be less accurate and
yielded results comparable in quality to those observed in the
current investigation.18

Naturally, statements regarding the accuracy in terms of
agreement with experiment are highly dependent on the
particular case studied. The accuracy of the experimental
measurements plays an important role as well: as observed in
the protein thermostability study, a difference of up to 3 kJ/mol
among experimental measurements can be expected.18 It
appears that the calculated double free energy differences for
the nucleic acid mutations span a wider range than the
experimentally measured ΔΔG values (Figure 4B). There are
several ways to interpret this observation: either the
calculations tend to over/underestimate the actual values or
the experimental measurement capabilities may be limited to
obtaining values in a certain range only. In Figure 9 we
compare the distributions of the calculated and experimental
ΔΔG values used in this study (the green and cyan curves,
respectively). In the background we also show a larger pool of

Figure 7. JS-divergence-based comparison of the binding profiles
generated from the single and double nucleotide scan calculations. The
blue and green distributions depict the internal divergences of the
calculated distributions and illustrate the uncertainty in the determined
profiles. The red distribution was generated by comparing the binding
profile from the single nucleotide scan to the profile from the double
nucleotide scan. The single and double nucleotide scans produce
binding profiles that differ from one another by significantly more than
their internal uncertainty.

Figure 8. Comparison of the binding profiles for the Zif268 protein
obtained from different computational approaches. The comparison is
based on the JS divergence between the binding profiles. The
experimental data were taken from refs 3, 4, 7, and 48. The first row
highlights the pairwise differences between the experiments. Green
and blue symbols mark comparisons using the single and double
nucleotide scan calculations, respectively. The following computational
approaches were used in the comparison: B1H-RC,11 Persikov and
Singh (2014),10 ZFModels,9 and PiDNA.13
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data gathered from the ProNit database.71,72 The strongest
measured destabilizing mutations reach ∼32 kJ/mol. This
suggests a potential experimental limitation when determining
highly destabilizing mutations, whereas the computational
estimates do not suffer from this issue.
As for the stabilizing mutations, the calculated values match

the trends expected from the large ProNit data set. The
experimental data for the 397 mutation cases used in the
mutation scan, however, seem to have the stabilizing mutations
under-represented. This observation suggests that collecting a
more representative set of mutations, including a larger number
of stabilizing mutations, could further improve the agreement
between the computation and experiment.
The quality assessment of the computed ΔΔG estimates also

depends on the data set itself and the measures used to evaluate
the quality of the calculations (AUE and correlation coefficient
with respect to the experimental values). For example, the
analyzed cases of MATa1/α2 and PU.1 ETS contained mainly
mildly destabilizing mutations. For these cases, the computed
ΔΔG values captured well the absolute changes in the binding
affinity (AUE measure), whereas obtaining correct correlation
coefficients within the narrow range of small values proved to
be difficult (Figure 10). On the other hand, capturing the
correct trends in terms of correlation coefficient was easier for
the mutation sets spanning a larger range of double free energy
differences. Figure 10 illustrates that the prediction quality in
terms of correlation coefficient increases with the increasing
absolute ΔΔG values in a data set. In contrast, the agreement of
the computed results with the experimental measurements in
terms of AUE gets worse. This highlights weak sides of the
AUE and correlation coefficient measures in the current context
and also emphasizes the importance of considering both
measures when assessing the quality of the predicted ΔΔG
values.
Morozov et al.14 noted the importance of the starting

structure for the quality of Rosetta modeling: the results
obtained from the structures resolved by means of NMR
spectroscopy agreed worse with the experimental measure-
ments. Similarly, the MD-based free energy calculations that
were started from the NMR-based structures (c-Myb and

AtERF1) showed worse than average agreement with the
experiments.
We also applied our simulation protocols to the four

transcription factors investigated by Khabiri and Freddolino27

and reached an average accuracy comparable to that obtained
for the large-scale scan described in this work (data not shown).
We are in contact with the authors of that study to investigate
the larger deviations found previously.

4.3. Force Fields and Sampling. The two force fields,
Amber99sb*ILDN-BSC1 and Charmm36m, performed com-
parably (Figure 4B). The consensus approach of averaging the
results of the two force fields resulted in an improved ΔΔG
prediction quality. A similar effect of the error cancellation
between the force fields was observed in the protein
thermostability calculations.18 A more detailed analysis of the
ΔΔG estimates from both force fields revealed that for more
than 30% of the mutations analyzed in this work,
Amber99sb*ILDN-BSC1 and Charmm36m make predictions
pointing in the opposite directions from the experimentally
measured value (Figures S17−S20 and associated text).
Calculation of the free energy changes upon nucleotide

mutation may also be considered as a means to assess the
quality of a force field. Currently, the DNA force field
modifications are primarily validated by monitoring DNA
stability and comparing structural and dynamic features
obtained from simulation to the available crystallographic and
NMR data.31,32 Computing the free energy differences over a
curated and well-tested mutation set with reliable experimental
data offers an additional method to validate newly developed
force fields.
Computationally this large-scale scan of 397 mutation cases

required a combined simulation time of ∼81 μs. While it is still
a considerable computational challenge, such simulation times
are well within the reach with the current GPU-based MD
simulation engines (e.g., ∼140 μs of simulation time was
invested in testing the Parmbsc1 DNA force field31).
Admittedly, the choice of sampling time used for mutations
in this study was mainly based on our previous investigations of
the protein thermostabilities and protein−protein interac-
tions.18 Investing more computational effort in sampling may
improve the free energy prediction quality. In fact, we observed
a better agreement with experiment once the consensus result

Figure 9. ΔΔG value ranges for the nucleotide mutations in the
protein−DNA complexes. The experimental data were extracted from
the ProNit database.71,72 A total of 1404 values were considered,
obtained from gel shift, filter binding, fluorescence, isothermal titration
calorimetry, equilibrium competition binding, footprinting, and surface
plasmon resonance experiments. The calculated value range was taken
from the consensus force field with the doubled simulation time.

Figure 10. Evaluation of the calculation quality (based on AUE and
correlation coefficient) depends on the absolute magnitude of the
ΔΔG values in the set. With increasing absolute magnitude of the
double free energy differences, the predicted free energies deviate
more from the experiment in terms of AUE, but the trends in terms of
correlation coefficient are captured more accurately.
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was constructed considering the whole simulations from both
force fields (i.e., “Consensus ff double time” in Figure 4B).
On the other hand, the results of the increased sampling

simulations for the 5 selected systems (Figure 5) are less
definitive. While the increased sampling time reduced the
average unsigned error from the experimental measurements,
capturing the trend in terms of correlation coefficient did not
improve significantly or even got worse (e.g., BamHI
endonuclease). Naturally, it may be of importance what
approach is chosen to obtain a more representative (i.e.,
better-sampled) conformational distribution of the system.
Starting a number of short equilibrium simulations (in this
work, 25 ns runs were used) from the same starting structure
may not warrant crossing higher energy barriers. Thus, in case a
mutation induces a larger conformational change, this type of
sampling may not suffice to observe the relevant transition in
simulation. To take this concern into consideration, we also
probed an approach of doubling the simulation time for the
PU.1 ETS protein−DNA complex. However, for this case we
observed no improvement in the ΔΔG estimation accuracy. It
may be that the simulation time scales of 25−50 ns still do not
cover relevant conformational changes upon nucleotide
mutation for this system, although the Rosetta-based
calculations were able to capture correlation with the
experiment for PU.1 ETS much better (Figure 4C).
4.4. Determination of Binding Profiles. The method to

obtain accurate free energy estimates in turn was extended to
the determination of the full protein−DNA binding profiles.
First, relying on the assumption of nucleotide independence in
the DNA sequence, we were able to recover the binding profile
for the zinc finger protein Zif268. The obtained position
frequency matrix (visualized as a logo plot in Figure 6) is
significantly more similar to the experimental binding profiles
than randomly generated profiles.
Binding profile determination based on free energy

calculations also allows testing of the validity of the nucleotide
independence assumption. By performing the free energy scan
mutating two neighboring nucleotides at a time, we could take
into account the effects of the nearest neighbors. The binding
profile generated this way was significantly different from a
random selection. Including the neighbor effects also
significantly altered the profile in comparison with the position
frequency matrix constructed on the basis of nucleotide
independence (Figure 7). In particular, the profile calculated
using the double nucleotide scan had higher entropy,
suggesting that the termini of the Zif268 binding site could
tolerate a more diverse set of nucleotides.
The binding profiles constructed on the basis of alchemical

free energy calculations perform on par with the previously
established methods that were tested in this work (Figure 8).
The other probed approaches have either been specifically
designed to create zinc finger binding profiles or have used
Zif268 to train the energy function. Therefore, it is remarkable
that the first-principles-based method employed here was able
to reach this level of accuracy. Obtaining a binding profile
diverging even less from the experimental references is
prohibited by the differences in the experimentally determined
motifs themselves (as also demonstrated in ref 73).

5. CONCLUSION
This large-scale nucleotide mutation scan in the protein−DNA
complexes demonstrates the readiness of molecular-dynamics-
based alchemical calculations to produce high-accuracy free

energy predictions. The obtained free energy differences can
further be translated into binding profiles, offering a robust
first-principles-based approach to contend with the already
established knowledge-based potentials and machine learning
algorithms. We have automated the hybrid structure/topology
generation required for the alchemical calculations and provide
easy-to-use access to these utilities both via a command-line
implementation and as an online service (http://pmx.mpibpc.
mpg.de/dna_webserver.html).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.7b00849.

Figures S1−S16 compare the calculated and experimen-
tal free energy differences for every protein−DNA
complex separately; Figures S17−S20 and the accom-
panying text provide details on the individual force field
performance; Table S1 contains all of the experimental
and calculated free energy values (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: vgapsys@gwdg.de.
*E-mail: bgroot@gwdg.de.
ORCID
Vytautas Gapsys: 0000-0002-6761-7780
Bert L. de Groot: 0000-0003-3570-3534
Funding
This work was done as part of the BioExcel CoE (www.
bioexcel.eu), a project funded by the European Union
(Contract H2020-EINFRA-2015-1-675728). V.G. acknowl-
edges support by Boehringer Ingelheim Pharma GmbH.
Notes
The authors declare no competing financial interest.

■ ABBREVIATIONS
MD, molecular dynamics; AUE, average unsigned error; TF,
transcription factor; PBM, protein binding microarray

■ REFERENCES
(1) Rohs, R.; Jin, X.; West, S. M.; Joshi, R.; Honig, B.; Mann, R. S.
Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem.
2010, 79, 233−269.
(2) Rohs, R.; West, S. M.; Liu, P.; Honig, B. Nuance in the double-
helix and its role in protein-DNA recognition. Curr. Opin. Struct. Biol.
2009, 19, 171−177.
(3) Badis, G.; Berger, M. F.; Philippakis, A. A.; Talukder, S.; Gehrke,
A. R.; Jaeger, S. A.; Chan, E. T.; Metzler, G.; Vedenko, A.; Chen, X.;
Kuznetsov, H.; Wang, C.-F.; Coburn, D.; Newburger, D. E.; Morris,
Q.; Hughes, T. R.; Bulyk, M. L. Diversity and complexity in DNA
recognition by transcription factors. Science 2009, 324, 1720−1723.
(4) Jolma, A.; Yan, J.; Whitington, T.; Toivonen, J.; Nitta, K. R.;
Rastas, P.; Morgunova, E.; Enge, M.; Taipale, M.; Wei, G.; Palin, K.;
Vaquerizas, J. M.; Vincentelli, R.; Luscombe, N. M.; Hughes, T. R.;
Lemaire, P.; Ukkonen, E.; Kivioja, T.; Taipale, J. DNA-binding
specificities of human transcription factors. Cell 2013, 152, 327−339.
(5) Weirauch, M. T.; Yang, A.; Albu, M.; Cote, A. G.; Montenegro-
Montero, A.; Drewe, P.; Najafabadi, H. S.; Lambert, S. A.; Mann, I.;
Cook, K.; Zheng, H.; Goity, A.; van Bakel, H.; Lozano, J.-C.; Galli, M.;
Lewsey, M. G.; Huang, E.; Mukherjee, T.; Chen, X.; Reece-Hoyes, J.
S.; Govindarajan, S.; Shaulsky, G.; Walhout, A. M.; Bouget, F.-Y.;
Ratsch, G.; Larrondo, L. F.; Ecker, J. R.; Hughes, T. R. Determination

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00849
J. Chem. Theory Comput. 2017, 13, 6275−6289

6287

http://pmx.mpibpc.mpg.de/dna_webserver.html
http://pmx.mpibpc.mpg.de/dna_webserver.html
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00849
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b00849/suppl_file/ct7b00849_si_001.pdf
mailto:vgapsys@gwdg.de
mailto:bgroot@gwdg.de
http://orcid.org/0000-0002-6761-7780
http://orcid.org/0000-0003-3570-3534
http://www.bioexcel.eu
http://www.bioexcel.eu
http://dx.doi.org/10.1021/acs.jctc.7b00849


and inference of eukaryotic transcription factor sequence specificity.
Cell 2014, 158, 1431−1443.
(6) Zhao, Y.; Granas, D.; Stormo, G. D. Inferring binding energies
from selected binding sites. PLoS Comput. Biol. 2009, 5, e1000590.
(7) Berger, M. F.; Philippakis, A. A.; Qureshi, A. M.; He, F. S.; Estep,
P. W.; Bulyk, M. L. Compact, universal DNA microarrays to
comprehensively determine transcription-factor binding site specific-
ities. Nat. Biotechnol. 2006, 24, 1429−1435.
(8) Liu, L. A.; Bradley, P. Atomistic modeling of protein−DNA
interaction specificity: progress and applications. Curr. Opin. Struct.
Biol. 2012, 22, 397−405.
(9) Gupta, A.; Christensen, R. G.; Bell, H. A.; Goodwin, M.; Patel, R.
Y.; Pandey, M.; Enuameh, M. S.; Rayla, A. L.; Zhu, C.; Thibodeau-
Beganny, S.; Brodsky, M. H.; Joung, J. K.; Wolfe, S. A.; Stormo, G. D.
An improved predictive recognition model for Cys2-His2 zinc finger
proteins. Nucleic Acids Res. 2014, 42, 4800−4812.
(10) Persikov, A. V.; Singh, M. De novo prediction of DNA-binding
specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res. 2014,
42, 97−108.
(11) Najafabadi, H. S.; Mnaimneh, S.; Schmitges, F. W.; Garton, M.;
Lam, K. N.; Yang, A.; Albu, M.; Weirauch, M. T.; Radovani, E.; Kim, J.
P. M.; Greenblatt; Frey, B. J.; Hughes, T. R. C2H2 zinc finger proteins
greatly expand the human regulatory lexicon. Nat. Biotechnol. 2015, 33,
555−562.
(12) Gabdoulline, R.; Eckweiler, D.; Kel, A.; Stegmaier, P. 3DTF: a
web server for predicting transcription factor PWMs using 3D
structure-based energy calculations. Nucleic Acids Res. 2012, 40,
W180−W185.
(13) Lin, C.-K.; Chen, C.-Y. PiDNA: predicting protein−DNA
interactions with structural models. Nucleic Acids Res. 2013, 41,
W523−W530.
(14) Morozov, A. V.; Havranek, J. J.; Baker, D.; Siggia, E. D. Protein−
DNA binding specificity predictions with structural models. Nucleic
Acids Res. 2005, 33, 5781−5798.
(15) Yanover, C.; Bradley, P. Extensive protein and DNA backbone
sampling improves structure-based specificity prediction for C2H2
zinc fingers. Nucleic Acids Res. 2011, 39, 4564.
(16) Alibes, A.; Nadra, A. D.; De Masi, F.; Bulyk, M. L.; Serrano, L.;
Stricher, F. Using protein design algorithms to understand the
molecular basis of disease caused by protein−DNA interactions: the
Pax6 example. Nucleic Acids Res. 2010, 38, 7422−7431.
(17) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.;
Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; Romero,
D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; Damm,
W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.;
Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.; Berne, B.
J.; Friesner, R. A.; Abel, R. Accurate and reliable prediction of relative
ligand binding potency in prospective drug discovery by way of a
modern free-energy calculation protocol and force field. J. Am. Chem.
Soc. 2015, 137, 2695−2703.
(18) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L.
Accurate and Rigorous Prediction of the Changes in Protein Free
Energies in a Large-Scale Mutation Scan. Angew. Chem., Int. Ed. 2016,
55, 7364−7368.
(19) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L. pmx:
Automated protein structure and topology generation for alchemical
perturbations. J. Comput. Chem. 2015, 36, 348−354.
(20) Gapsys, V.; de Groot, B. L. pmx Webserver: A User Friendly
Interface for Alchemistry. J. Chem. Inf. Model. 2017, 57, 109−114.
(21) Loeffler, H. H.; Michel, J.; Woods, C. FESetup: Automating
Setup for Alchemical Free Energy Simulations. J. Chem. Inf. Model.
2015, 55, 2485−2490.
(22) Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A. Free
energy calculations by computer simulation. Science 1987, 236, 564−
568.
(23) Cieplak, P.; Rao, S. N.; Grootenhuis, P. D. J.; Kollman, P. A.
Free energy calculation on base specificity of drug−DNA interactions:
application to daunomycin and acridine intercalation into DNA.
Biopolymers 1990, 29, 717−727.
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