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S1. PROOFS 10

S1·1. Derivation of the population partial least squares components

Let denote Ki ∈ R
k×i the matrix representation of a base for Ki(Σ

2, P q) . Then

n∑

t=1

E (yt −XT

t Kiα)
2 =

n∑

t=1

[V 2]t,t
(
‖q‖2 + η22 − 2αTKT

i Pq + αTKT

i Σ
2Kiα

)
.

Minimizing this expression with respect to α ∈ R
i gives KT

i Σ
2Kiα = KiPq. Since the matrix

KT

i Σ
2Ki is invertible, we get the least squares fit βi in Section 2. 15

Assume now that the first i < a partial least squares base vectors w1, . . . , wi have been calcu-

lated and consider for λ ∈ R the Lagrange function

n∑

t,s=1

cov (yt −XT

t βi,X
T

s w)− λ(‖w‖2 − 1) = wT
(
Pq −Σ2βi

) n∑

t,s=1

[V 2]t,s − λ(‖w‖2 − 1).

Maximizing with respect to w yields

wi+1 = (2λ)−1
(
Pq − Σ2βi

) n∑

t,s=1

[V 2]t,s ∝ Pq − Σ2βi.

Since βi ∈ Ki(Σ
2, P q), we get wi+1 ∈ Ki+1(Σ

2, P q) and wi+1 is orthogonal to w1, . . . , wi.

S1·2. Proof of Theorem 1 20

First consider

E
(
‖b− Pq‖2

)
=E

[∥∥∥∥
1

‖V ‖2
{
(PNT + η1F

T)V 2Nq + η2(PNT + η1F
T)V 2f

}
− Pq

∥∥∥∥
2
]

=

{
E

(∥∥∥∥
1

‖V ‖2
PNTV 2Nq − Pq

∥∥∥∥
2
)

+
η22

‖V ‖4
E
(∥∥PNTV 2f

∥∥2
)}

+
η21

‖V ‖4

{
E
(∥∥FTV 2Nq

∥∥2
)
+ η22E

(∥∥FTV 2f
∥∥2
)}

= S1 + S2,
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due to the independence of N , F and f . It is easy to see that25

S2 =
‖V 2‖2

‖V ‖4
η21k

(
‖q‖2 + η22

)
.

Furthermore, with notation A0 = NTV 2N we get

S1 =
1

‖V ‖4
E (qTA0P

TPA0q)− ‖Pq‖2 +
η22

‖V ‖4
E
(∥∥PNTV 2f

∥∥2
)
.

Consider now E (qTA0P
TPA0q) as a quadratic form with respect to the matrix PTP . Denote

κ = E
(
N4

1,1

)
− 3. First, E (A0q) = E

(
NTV 2Nq

)
= ‖V ‖2q and

var(A0q) =




l∑

a,b=1

qaqb

n∑

t,s,u,v=1

V T

u VsV
T

t VvE(Ns,iNu,aNt,jNv,b)



l

i,j=1

− ‖V ‖4qqT

=

[
qiqj‖V ‖4 +

(
qiqj + δi,j‖q‖

2
)
‖V 2‖2 + κ

n∑

t=1

‖Vt‖
4δi,jq

2
i

]l

i,j=1

− ‖V ‖4qqT
30

= ‖V 2‖2
(
qqT + ‖q‖2Il

)
+ κ

n∑

t=1

‖Vt‖
4diag

(
q21 , . . . , q

2
l

)
,

where diag(v1, . . . , vl) denotes the diagonal matrix with entries v1, . . . , vl ∈ R on its diagonal

and δ is the Kronecker delta. In the second equation we made use of E (Ns,iNu,aNt,jNv,b) =
δi,aδj,bδs,uδt,v + δi,bδj,aδs,vδt,u + δi,jδa,bδt,sδu,v + κ δt,sδs,uδu,vδi,jδj,aδa,b. Hence,

1

‖V ‖4
E (qTA0P

TPA0q) =
1

‖V ‖4
tr {PTPvar (A0q)} −

1

‖V ‖4
E (qTA0)P

TPE (A0q)35

=
‖V 2‖2

‖V ‖4
(
qTPTPq + ‖P‖2‖q‖2

)
+ qTPTPq + κ

n∑

t=1

‖Vt‖
4

‖V ‖4

l∑

i=1

‖Pi‖
2q2i .

The remaining term in S1 follows trivially, proving the result. E‖Σ2 −A‖2 is obtained using

similar calculations. �

S1·3. Proof of Theorem 2

LEMMA S1. Assume that for ν ∈ (0, 1] and some constants δ, ǫ > 0 it holds that40

pr
(
‖A− Σ2‖L ≤ δ

)
≥ 1− ν/2 and pr (‖b− Pq‖ ≤ ǫ) ≥ 1− ν/2. Then each of the inequali-

ties

‖A1/2 − Σ‖ ≤ 2−1δ‖Σ−1‖{1 + o(1)},

‖A−1/2b− Σ−1Pq‖ ≤ ǫ‖Σ−1‖L + 2−1δ(‖Pq‖ + ǫ)‖Σ−2‖‖Σ−1‖ {1 + o(1)}

hold with probability at least 1− ν/2.45

Proof: We show the result by using the Fréchet-derivative for functions F : Rk×k → R
k×k. Due

to the fact that η1 > 0 it holds that Σ2 is positive definite and thus invertible.

It holds due to Higham (2008), Problem 7.4, that F ′(Σ2)B for an arbitrary B ∈ R
k×k is given

as the solution in X ∈ R
k×k of B = ΣX +XΣ, i.e. due to the symmetry and positive definiti-

ness of Σ we have F ′(Σ2)B = 2−1Σ−1B. We take the orthonormal base {Ei,j , i, j = 1, . . . , k}50
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for the space (Rk×k, ‖ · ‖) with Ei,j corresponding to the matrix that has zeros everywhere ex-

cept at the position (i, j), where it is one. The Hilbert-Schmidt norm ‖F ′(Σ2)‖HS is

‖F ′(Σ2)‖2HS = 4−1
k∑

i,j=1

‖Σ−1Ei,j‖
2 = 4−1

k∑

i,j=1

[Σ−1]2i,j = 4−1‖Σ−1‖2.

This yields with the Taylor expansion for Fréchet-differentiable maps

‖A1/2 − Σ‖L ≤ ‖F ′(Σ)(A− Σ2)‖+ o(‖A− Σ2‖) ≤ 2−1‖Σ−1‖δ{1 + o(1)}.

For the second inequality we see first that 55

‖A−1/2b− Σ−1Pq‖ ≤ ǫ‖Σ−1‖L +
∥∥∥(A−1/2 − Σ−1)b

∥∥∥ . (S1)

The Fréchet-derivative of the map F : Rk×k → R
k×k, A 7→ A−1/2 is F ′(Σ2)B =

−2−1Σ−2BΣ−1 and

‖F ′(Σ2)‖2HS = 4−1
k∑

i,j=1

‖Σ−2Ei,jΣ
−1‖2 ≤ 4−1‖Σ−2‖2‖Σ−1‖2.

Here we used the submultiplicativity of the Frobenius norm with the Hadamard product of ma-

trices. Thus we get via Taylor’s theorem

‖A−1/2 − Σ−1‖ ≤ 2−1‖Σ−2‖‖Σ−1‖‖A− Σ2‖+ o(δ).

Plugging this into (S1) yields 60

‖A−1/2b− Σ−1Pq‖ ≤ ǫ‖Σ−1‖L + 2−1δ(‖Pq‖ + ǫ)‖Σ−2‖‖Σ−1‖ {1 + o(1)} ,

where we used that ‖b‖ ≤ ‖Pq‖+ ǫ. �

Equivalence of conjugate gradient and partial least squares: We denote Ã = A1/2 and b̃ =
A−1/2b. The partial least squares optimization problem is

min
v∈Ki(A,b)

‖y −Xv‖2,

whereas the conjugate gradient problem studied in Nemirovskii (1986) is 65

min
v∈Ki(Ã2,Ãb̃)

‖b̃− Ãv‖2. (S2)

It is easy to see that the Krylov space Ki(Ã
2, Ãb̃) = Ki(A, b) (i = 1, . . . , k). We have

arg min
v∈Ki(Ã2,Ãb̃)

‖b̃− Ãv‖2 = arg min
Ki(A,b)

‖y −Xv‖2, i = 1, . . . , k.

Thus it holds

β̂i = arg min
v∈Ki(Ã2,Ãb̃)

‖b̃− Ãv‖2,

Furthermore we have Σβ(η1) = Σ−1Pq, i.e. the correct problem in the population is solved by

β(η1) as well. Now we will restate the main result in Nemirovskii (1986) in our context:

THEOREM S1. Nemirovskii 70

Assume that there are δ̃ = δ̃(ν, n) > 0, ǫ̃ = ǫ̃(ν, n) > 0 such that for ν ∈ (0, 1] it holds that
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pr
(
‖Σ−A1/2‖L ≤ δ̃

)
≥ 1− ν/2, pr

(
‖Σ−1Pq −A−1/2b‖ ≤ ǫ̃

)
≥ 1− ν/2 and the condi-

tions

1. there is an L = L(ν, n) such that with probability at least 1− ν/2 it holds that

max
{
‖A1/2‖L, ‖Σ‖L

}
≤ L,75

2. there is a vector u ∈ R
k and constants R,µ > 0 such that β(η1) = Σµu, ‖u‖ ≤ R

are satisfied. If we stop according to the stopping rule a∗ as defined in (4) with τ ≥ 1 and

ζ < τ−1 then we have for any θ ∈ [0, 1] with probability at least 1− ν

∥∥∥Σθ{β̂a∗ − β(η1)}
∥∥∥
2
≤ C2(µ, τ, ζ)R2(1−θ)/(1+µ)

(
ǫ̃+ δ̃RLµ

)2(θ+µ)/(1+µ)
.

Proof: Note first that on the set where ‖Σ−A1/2‖L ≤ δ̃ holds with probability at least

1− ν/2 condition 1 also holds with L = ‖Σ‖L + δ̃. Constrained on the set where all the80

conditions of the theorem hold with probability at least 1− ν we consider Nemirovskii’s

(Σ, A1/2,Σ−1Pq,A−1/2b) problem with errors δ̃ and ǫ̃. Furthermore by assumption Ne-

mirovskii’s (2θ,R,L, 1) conditions hold and thus the theorem follows by a simple application

of the main theorem in Nemirovskii (1986). �

85

We will now apply Theorem S1 to our problem. Due to the fact that η1 > 0 it holds that Σ2 is

positive definite and thus invertible. We note that the spectral norm is dominated by the Frobenius

norm. From Markov’s inequality we get

pr
(
‖A− Σ2‖ ≥ δ

)
≤ δ−2E

(∥∥A− Σ2
∥∥2
)
.

Using Theorem 1,
∑n

t=1 ‖Vi‖
4 ≤ ‖V 2‖2 and setting the right hand side to ν/2 for ν ∈ (0, 1]

gives δ = ν−1/2‖V ‖−2‖V 2‖Cδ. In the same way ǫ = ν−1/2‖V ‖−2‖V 2‖Cǫ. Lemma S1 gives90

with probability at least 1− ν/2 the concentration results required by Theorem S1 with

δ̃ = ν−1/2 ‖V
2‖

‖V ‖2
Cδ{1 + o(1)}

ǫ̃ =

(
ν−1/2 ‖V

2‖

‖V ‖2
Cǫ + ν−1‖V

2‖2

‖V ‖4
CǫCδ

)
{1 + o(1)}

Conditions 1 and 2 of Theorem S1 hold with a probability of at least 1− ν/2 by choosing L =
δ̃ + ‖Σ‖L, µ = 1 and R = ‖Σ−3Pq‖. Here we used that β(η1) = Σ−2Pq. Thus the theorem95

yields for θ = 1
∥∥∥Σ{β(η1)− β̂a∗}

∥∥∥ ≤ C(1, τ, ζ)
(
ǫ̃+ δ̃RL

)
.

Denote c(τ, ζ) = C(1, τ, ζ){1 + o(1)}. Finally we have ‖Σ−1‖−1
L ‖v‖ ≤ ‖Σv‖ for any v ∈ R

k

and thus the theorem is proven with

c1(ν) = ν−1/2c(τ, ζ)‖Σ−1‖L
(
Cǫ + ‖Σ‖L‖Σ

−3Pq‖Cδ

)

c2(ν) = ν−1c(τ, ζ)‖Σ−1‖L
(
CǫCδ + ‖Σ−3Pq‖C2

δ

)
.100

�
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S1·4. Proof of Theorem 3

The theorem is proved by contradiction. Assume that β̂1 −→ β1 in probability. Choosing v ∈

R
k, v 6= 0, orthogonal to β1 implies that vTβ̂1 converges in probability to zero. Next we show

that the second moment vanishes as well. 105

Let Md(z) = maxi∈{1,...,n}d E(
∏d

ν=1 z
2
iv
) for a random vector z = (z1, . . . , zn)

T with exist-

ing mixed (2d)th moments. Using (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R we obtain

E (vTb)4 ≤
82‖v‖4

‖V ‖8
E
(∥∥PNTV 2Nq

∥∥4 + η41
∥∥FTV 2Nq

∥∥4 + η42
∥∥PNTV 2f

∥∥4 + η41η
4
2

∥∥FTV 2f
∥∥4
)

≤82‖v‖4
{
M4(N1)‖q‖

4l4‖P‖4 +M2(N1)M2(F1)η
4
1‖q‖

4l2k2

+M2(N1)M2(f1)η
4
2l

2‖P‖4 +M2(F1)M2(f1)η
4
1η

4
2k

2
}
< ∞, n ∈ N. 110

Thus, (vTb)2 is uniformally integrable by the theorem of de la Vallée-Poussin and it follows that

the directional variance var(vTb) has to vanish in the limit as well. Now, calculations similar to

Theorem 1 yield

var(vTb) =
‖V 2‖2

‖V ‖4
{
η21‖v‖

2
(
‖q‖2 + η22

)
+ ‖PTv‖2

(
‖q‖2 + η22

)
+ (vTPq)2

}

+

n∑

t=1

‖Vt‖
4

‖V ‖4

l∑

i=1

q2i (v
TPi)

2
{E(N4

1,1)− 3}, v ∈ R
k. 115

We assumed that ‖V ‖−2‖V 2‖ does not converge to zero. It remains to check under which

conditions var(vTb) is larger than zero. This will always be the case if v 6= 0 and η1 > 0, l = 1.

For η1 = 0 and l > 1 a vector v that lies in the range of P and is orthogonal to β1 ∝ Pq exists,

thus contradicting β̂1 −→ β1 in probability. �

S1·5. Proof of Theorem 4 120

It is easy to verify that ‖V ‖2 = tr(T 2) = nγ(0) and
∥∥V 2

∥∥2 = nγ2(0) + 2
∑n−1

t=1 γ2(t)(n−
t). If (6) is fulfilled, then

nγ(0) ≤
∥∥V 2

∥∥2 ≤ nγ2(0)

{
1 + 2c2

1− exp(−2ρ(n− 1))

exp(2ρ) − 1

}
≤ nγ2(0)

{
1 +

2c

exp(2ρ)− 1

}
.

It follows that ‖V 2‖ ∼ n1/2. �

S1·6. Proof of Theorem 5 125

Let γ : N → R be the autocovariance function of a stationary time series that has zero mean.

For the autocovariance matrix V 2 of the corresponding integrated process of order one we get[
V 2
]
t,s

=
∑t,s

i,j=1 γ(|i− j|), (t, s = 1, . . . , n). Let t ≥ s. By splitting the sum into parts with

i < j and i > j we get
[
V 2
]
t,s

= sγ(0) +
∑s

j=1

∑t−j
i=1 γ(i) +

∑s
j=2

∑j−1
i=1 γ(i). Due to sym-

metry,
[
V 2
]
t,s

=
[
V 2
]
s,t

for s > t. 130

First, consider the case that all γ(j), j > 0 are negative. Using (6) we obtain

γ(0)s ≥
[
V 2
]
t,s

≥ γ(0)



s− c

s∑

j=1

t−j∑

i=1

exp(−ρj) − c

s∑

j=2

j−1∑

i=1

exp(−ρj)



 , t ≥ s.
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Evaluation of the geometric sums gives

[
V 2
]
t,s

≥ γ(0)

(
s

{
1−

2c

exp(ρ)− 1

}
+ c

exp(ρ)

{exp(ρ)− 1}2
{1− exp(−ρs)} [1 + exp{ρ(s − t)}]

)
.

The second term on the right is always positive and the positivity of the first term is ensured by the135

condition ρ > log(2c + 1). Hence, γ(0)
[
1− 2c {exp(ρ)− 1}−1

]
s ≤

[
V 2
]
t,s

≤ γ(0)s, s ≥ 1.

If γ(t), t ≥ 1 is not purely negative, it can be bound by

γ(0)
[
1− 2c {exp(ρ)− 1}−1

]
s ≤

[
V 2
]
t,s

≤ γ(0)
[
1 + 2c {exp(ρ)− 1}−1

]
s.

We write δ1 and δ2 for the constants in the lower and upper bound, respectively, so that

δ1 min{s, t} ≤
[
V 2
]
t,s

≤ δ2 min{s, t} (t, s = 1, . . . , n). This yields upper and lower bounds on

the trace of V 2 and shows that ‖V ‖2 ∼ n2. Additionally,140

[
V 4
]
t,t

=
n∑

l=1

[
V 2
]
t,l

[
V 2
]
l,t

=
t∑

l=1

[
V 2
]2
t,l

+
n∑

l=t+1

[
V 2
]2
l,t

≤
δ22
6
t
(
6nt− 4t2 + 3t+ 1

)

[
V 4
]
t,t

≥
δ21
6
t
(
6nt− 4t2 + 3t+ 1

)
.

This implies upper and lower bounds on the trace of V 4 in the form c n(n + 1)(n2 + n+ 1) for

c ∈ {δ21/6, δ
2
2/6} and thus ‖V 2‖ ∼ n2. �

S1·7. Proof of Theorem 6145

First consider n−1XTV̂ −2y. Define Xu = (Xu,1, . . . ,Xu,n)
T = NPT + η1F and yu =

(yu,1, . . . , yu,n)
T = Nq + η2f such that X = V Xu and y = V yu. By the triangle inequality

∥∥∥n−1XTV̂ −2y − Pq
∥∥∥ ≤

∥∥n−1XTV −2y − Pq
∥∥+

∥∥∥n−1XT

(
V̂ −2 − V −2

)
y
∥∥∥ .

The first term on the right hand side is convergent to zero in probability due to Theorem 1. The

second term can be bounded as

n−2
∥∥∥XT

(
V̂ −2 − V −2

)
y
∥∥∥
2
≤ ‖V V̂ −2V − In‖

2
L n−1‖XT

u ‖
2
L n−1‖yu‖

2.150

Since both Xu,1, . . . ,Xu,n and yu,1, . . . , yu,n are independent and identically distributed, it fol-

lows that n−1‖yu‖
2 is a strongly consistent estimator for E(y2u,1), as well as that n−1‖XT

u ‖
2
L

is bounded from above by n−1‖XT

u ‖
2, which is a strongly consistent estimator of E(‖Xu,1‖

2).

Convergence in probability of

∥∥∥V V̂ −2V − In

∥∥∥
2

L
to zero implies the convergence of b(V̂ ) to Pq

in probability. To obtain the convergence rate ‖n−1XTV −2y − Pq‖ = Op(rn), use Theorem155

1 and ‖V V̂ −2V − In‖L = Op(rn). The convergence of ‖n−1XTV̂ −2X − Σ2‖ is proven in a

similar way.

To show the consistency and the rate of the corrected partial least squares estimator, we follow

the same lines as in the proof of Theorem 2. First, δ = rncA(ν) and ǫ = rncb(ν) for ν ∈ (0, 1]
with constants cA(ν), cb(ν) are taken, such that160

pr{‖A(V̂ )1/2 − Σ‖L ≤ rncA(ν)} ≥ 1− ν/2,

pr{‖A(V̂ )−1/2b(V̂ )− Σ−1Pq‖ ≤ rncb(ν)} ≥ 1− ν/2.
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Moreover, L = ‖Σ‖L + δ and R = ‖Σ−3Pq‖, µ = 1, satisfies conditions 1 and 2 in Theorem

S1 with probability at least 1− ν/2. Thus, with probability at least 1− ν we get by setting θ = 1
∥∥∥β̂a∗(V̂ )− β(η1)

∥∥∥ ≤ rnC(1, τ, ζ){1 + o(1)}‖Σ−1‖L
[
cb(ν) + cA(ν)‖Σ

−3Pq‖ {‖Σ‖L + rncA(ν)}
]
,

where the constants ζ, τ are taken from the definition of a∗. � 165

S2. ADDENDUM TO SECTION 5, SIMULATIONS

Figure S1 shows the differences in empirical mean squared error of β̂1 for various dependence

structures considered in Section 5 in the setting with l = i = 1. We calculated

nMSE(β̂1) = n 500−1
500∑

i=1

(β̂1,i − β1)
2,

where β̂1,i denotes a partial least squares estimator in the ith Monte Carlo simulation based

on n observations. If an autoregressive dependence is present in the data and is ignored in the

partial least squares algorithm, nMSE(β̂1) is proportional to a constant, which is larger than in 170

the corrected partial least squares case. Ignoring the integrated dependence in the data leads to

nMSE(β̂1) growing linearly with n, which confirms our theoretical findings in Section 3.
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Fig. S1: Empirical mean squared eror of β̂1 multiplied by

n. The dependence structures are: autoregressive (grey),

autoregressive integrated moving average (black, dashed)

and corrected partial least squares on integrated data

(black, solid).


