Biometrika (2016), **xx**, x, *pp*. 1–7 © 2007 Biometrika Trust *Printed in Great Britain*

Supplementary material for Partial least squares for dependent data

BY MARCO SINGER, TATYANA KRIVOBOKOVA, AXEL MUNK

Institute for Mathematical Stochastics, Goalgorithm2e.styldschmidtstr. 7, 37077 Göttingen,

Germany

msinger@gwdg.de tkrivob@uni-goettingen.de munk@math.uni-goettingen.de

AND BERT DE GROOT

Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany bgroot@gwdg.de

S1. PROOFS

S1.1. Derivation of the population partial least squares components Let denote $K_i \in \mathbb{R}^{k \times i}$ the matrix representation of a base for $\mathcal{K}_i(\Sigma^2, Pq)$. Then

$$\sum_{t=1}^{n} E\left(y_t - X_t^{\mathrm{T}} K_i \alpha\right)^2 = \sum_{t=1}^{n} [V^2]_{t,t} \left(\|q\|^2 + \eta_2^2 - 2\alpha^{\mathrm{T}} K_i^{\mathrm{T}} P q + \alpha^{\mathrm{T}} K_i^{\mathrm{T}} \Sigma^2 K_i \alpha \right)$$

Minimizing this expression with respect to $\alpha \in \mathbb{R}^i$ gives $K_i^T \Sigma^2 K_i \alpha = K_i P q$. Since the matrix $K_i^T \Sigma^2 K_i$ is invertible, we get the least squares fit β_i in Section 2.

Assume now that the first i < a partial least squares base vectors w_1, \ldots, w_i have been calculated and consider for $\lambda \in \mathbb{R}$ the Lagrange function

$$\sum_{t,s=1}^{n} \operatorname{cov}\left(y_{t} - X_{t}^{\mathrm{T}}\beta_{i}, X_{s}^{\mathrm{T}}w\right) - \lambda(\|w\|^{2} - 1) = w^{\mathrm{T}}\left(Pq - \Sigma^{2}\beta_{i}\right)\sum_{t,s=1}^{n} [V^{2}]_{t,s} - \lambda(\|w\|^{2} - 1).$$

Maximizing with respect to w yields

$$w_{i+1} = (2\lambda)^{-1} \left(Pq - \Sigma^2 \beta_i \right) \sum_{t,s=1}^n [V^2]_{t,s} \propto Pq - \Sigma^2 \beta_i.$$

Since $\beta_i \in \mathcal{K}_i(\Sigma^2, Pq)$, we get $w_{i+1} \in \mathcal{K}_{i+1}(\Sigma^2, Pq)$ and w_{i+1} is orthogonal to w_1, \ldots, w_i .

First consider

$$\begin{split} E\left(\left\|b-Pq\right\|^{2}\right) = & E\left[\left\|\frac{1}{\|V\|^{2}}\left\{(PN^{\mathrm{T}}+\eta_{1}F^{\mathrm{T}})V^{2}Nq + \eta_{2}(PN^{\mathrm{T}}+\eta_{1}F^{\mathrm{T}})V^{2}f\right\} - Pq\right\|^{2}\right] \\ = & \left\{E\left(\left\|\frac{1}{\|V\|^{2}}PN^{\mathrm{T}}V^{2}Nq - Pq\right\|^{2}\right) + \frac{\eta_{2}^{2}}{\|V\|^{4}}E\left(\left\|PN^{\mathrm{T}}V^{2}f\right\|^{2}\right)\right\} \\ & + \frac{\eta_{1}^{2}}{\|V\|^{4}}\left\{E\left(\left\|F^{\mathrm{T}}V^{2}Nq\right\|^{2}\right) + \eta_{2}^{2}E\left(\left\|F^{\mathrm{T}}V^{2}f\right\|^{2}\right)\right\} = S_{1} + S_{2}, \end{split}$$

20

10

15

due to the independence of N, F and f. It is easy to see that

$$S_2 = \frac{\|V^2\|^2}{\|V\|^4} \eta_1^2 k \left(\|q\|^2 + \eta_2^2 \right).$$

Furthermore, with notation $A_0 = N^{\mathrm{T}} V^2 N$ we get

$$S_{1} = \frac{1}{\|V\|^{4}} E\left(q^{\mathrm{T}} A_{0} P^{\mathrm{T}} P A_{0} q\right) - \|Pq\|^{2} + \frac{\eta_{2}^{2}}{\|V\|^{4}} E\left(\left\|PN^{\mathrm{T}} V^{2} f\right\|^{2}\right).$$

Consider now $E(q^{T}A_{0}P^{T}PA_{0}q)$ as a quadratic form with respect to the matrix $P^{T}P$. Denote $\kappa = E(N_{1,1}^{4}) - 3$. First, $E(A_{0}q) = E(N^{T}V^{2}Nq) = ||V||^{2}q$ and

$$\operatorname{var}(A_{0}q) = \left[\sum_{a,b=1}^{l} q_{a}q_{b} \sum_{t,s,u,v=1}^{n} V_{u}^{\mathrm{T}}V_{s}V_{t}^{\mathrm{T}}V_{v}E(N_{s,i}N_{u,a}N_{t,j}N_{v,b})\right]_{i,j=1}^{l} - \|V\|^{4}qq^{\mathrm{T}}$$
$$= \left[q_{i}q_{j}\|V\|^{4} + \left(q_{i}q_{j} + \delta_{i,j}\|q\|^{2}\right)\|V^{2}\|^{2} + \kappa \sum_{t=1}^{n}\|V_{t}\|^{4}\delta_{i,j}q_{i}^{2}\right]_{i,j=1}^{l} - \|V\|^{4}qq^{\mathrm{T}}$$
$$= \|V^{2}\|^{2}\left(qq^{\mathrm{T}} + \|q\|^{2}I_{l}\right) + \kappa \sum_{t=1}^{n}\|V_{t}\|^{4}\operatorname{diag}\left(q_{1}^{2}, \dots, q_{l}^{2}\right),$$

where diag (v_1, \ldots, v_l) denotes the diagonal matrix with entries $v_1, \ldots, v_l \in \mathbb{R}$ on its diagonal and δ is the Kronecker delta. In the second equation we made use of $E(N_{s,i}N_{u,a}N_{t,j}N_{v,b}) = \delta_{i,a}\delta_{j,b}\delta_{s,u}\delta_{t,v} + \delta_{i,b}\delta_{j,a}\delta_{s,v}\delta_{t,u} + \delta_{i,j}\delta_{a,b}\delta_{t,s}\delta_{u,v} + \kappa \delta_{t,s}\delta_{s,u}\delta_{u,v}\delta_{i,j}\delta_{j,a}\delta_{a,b}$. Hence,

$$\frac{1}{\|V\|^{4}} E\left(q^{\mathrm{T}}A_{0}P^{\mathrm{T}}PA_{0}q\right) = \frac{1}{\|V\|^{4}} \operatorname{tr}\left\{P^{\mathrm{T}}P\operatorname{var}\left(A_{0}q\right)\right\} - \frac{1}{\|V\|^{4}} E\left(q^{\mathrm{T}}A_{0}\right)P^{\mathrm{T}}PE\left(A_{0}q\right)$$
$$= \frac{\|V^{2}\|^{2}}{\|V\|^{4}} \left(q^{\mathrm{T}}P^{\mathrm{T}}Pq + \|P\|^{2}\|q\|^{2}\right) + q^{\mathrm{T}}P^{\mathrm{T}}Pq + \kappa \sum_{t=1}^{n} \frac{\|V_{t}\|^{4}}{\|V\|^{4}} \sum_{i=1}^{l} \|P_{i}\|^{2}q_{i}^{2}.$$

The remaining term in S_1 follows trivially, proving the result. $E \|\Sigma^2 - A\|^2$ is obtained using similar calculations.

S1.3. Proof of Theorem 2

⁴⁰ LEMMA S1. Assume that for $\nu \in (0,1]$ and some constants $\delta, \epsilon > 0$ it holds that $\operatorname{pr}(\|A - \Sigma^2\|_{\mathcal{L}} \leq \delta) \geq 1 - \nu/2$ and $\operatorname{pr}(\|b - Pq\| \leq \epsilon) \geq 1 - \nu/2$. Then each of the inequalities

$$||A^{1/2} - \Sigma|| \le 2^{-1} \delta ||\Sigma^{-1}|| \{1 + o(1)\},$$

$$||A^{-1/2}b - \Sigma^{-1}Pq|| \le \epsilon ||\Sigma^{-1}||_{\mathcal{L}} + 2^{-1} \delta (||Pq|| + \epsilon) ||\Sigma^{-2}|| ||\Sigma^{-1}|| \{1 + o(1)\}$$

hold with probability at least $1 - \nu/2$.

Proof: We show the result by using the Fréchet-derivative for functions $F : \mathbb{R}^{k \times k} \to \mathbb{R}^{k \times k}$. Due to the fact that $\eta_1 > 0$ it holds that Σ^2 is positive definite and thus invertible.

It holds due to Higham (2008), Problem 7.4, that $F'(\Sigma^2)B$ for an arbitrary $B \in \mathbb{R}^{k \times k}$ is given as the solution in $X \in \mathbb{R}^{k \times k}$ of $B = \Sigma X + X\Sigma$, i.e. due to the symmetry and positive definiti-⁵⁰ ness of Σ we have $F'(\Sigma^2)B = 2^{-1}\Sigma^{-1}B$. We take the orthonormal base $\{E_{i,j}, i, j = 1, \dots, k\}$

for the space $(\mathbb{R}^{k \times k}, \|\cdot\|)$ with $E_{i,j}$ corresponding to the matrix that has zeros everywhere except at the position (i, j), where it is one. The Hilbert-Schmidt norm $\|F'(\Sigma^2)\|_{HS}$ is

$$\|F'(\Sigma^2)\|_{HS}^2 = 4^{-1} \sum_{i,j=1}^k \|\Sigma^{-1} E_{i,j}\|^2 = 4^{-1} \sum_{i,j=1}^k [\Sigma^{-1}]_{i,j}^2 = 4^{-1} \|\Sigma^{-1}\|^2$$

This yields with the Taylor expansion for Fréchet-differentiable maps

$$\|A^{1/2} - \Sigma\|_{\mathcal{L}} \le \|F'(\Sigma)(A - \Sigma^2)\| + o(\|A - \Sigma^2\|) \le 2^{-1} \|\Sigma^{-1}\|\delta\{1 + o(1)\}$$

For the second inequality we see first that

$$\|A^{-1/2}b - \Sigma^{-1}Pq\| \le \epsilon \|\Sigma^{-1}\|_{\mathcal{L}} + \left\| (A^{-1/2} - \Sigma^{-1})b \right\|.$$
 (S1)

The Fréchet-derivative of the map $F: \mathbb{R}^{k \times k} \to \mathbb{R}^{k \times k}, A \mapsto A^{-1/2}$ is $F'(\Sigma^2)B = -2^{-1}\Sigma^{-2}B\Sigma^{-1}$ and

$$\|F'(\Sigma^2)\|_{HS}^2 = 4^{-1} \sum_{i,j=1}^k \|\Sigma^{-2} E_{i,j} \Sigma^{-1}\|^2 \le 4^{-1} \|\Sigma^{-2}\|^2 \|\Sigma^{-1}\|^2.$$

Here we used the submultiplicativity of the Frobenius norm with the Hadamard product of matrices. Thus we get via Taylor's theorem

$$||A^{-1/2} - \Sigma^{-1}|| \le 2^{-1} ||\Sigma^{-2}|| ||\Sigma^{-1}|| ||A - \Sigma^{2}|| + o(\delta).$$

Plugging this into (S1) yields

$$\|A^{-1/2}b - \Sigma^{-1}Pq\| \le \epsilon \|\Sigma^{-1}\|_{\mathcal{L}} + 2^{-1}\delta(\|Pq\| + \epsilon)\|\Sigma^{-2}\|\|\Sigma^{-1}\| \{1 + o(1)\},$$

where we used that $\|b\| \le \|Pq\| + \epsilon$.

Equivalence of conjugate gradient and partial least squares: We denote $\tilde{A} = A^{1/2}$ and $\tilde{b} = A^{-1/2}b$. The partial least squares optimization problem is

$$\min_{v \in \mathcal{K}_i(A,b)} \|y - Xv\|^2,$$

whereas the conjugate gradient problem studied in Nemirovskii (1986) is

$$\min_{v \in \mathcal{K}_i(\tilde{A}^2, \tilde{A}\tilde{b})} \|\tilde{b} - \tilde{A}v\|^2.$$
(S2)

It is easy to see that the Krylov space $\mathcal{K}_i(\tilde{A}^2, \tilde{A}\tilde{b}) = \mathcal{K}_i(A, b)$ (i = 1, ..., k). We have

$$\arg \min_{v \in \mathcal{K}_i(\tilde{A}^2, \tilde{A}\tilde{b})} \|\tilde{b} - \tilde{A}v\|^2 = \arg \min_{\mathcal{K}_i(A, b)} \|y - Xv\|^2, i = 1, \dots, k.$$

Thus it holds

$$\widehat{\beta}_i = \arg\min_{v \in \mathcal{K}_i(\tilde{A}^2, \tilde{A}\tilde{b})} \|\tilde{b} - \tilde{A}v\|^2,$$

Furthermore we have $\Sigma\beta(\eta_1) = \Sigma^{-1}Pq$, i.e. the correct problem in the population is solved by $\beta(\eta_1)$ as well. Now we will restate the main result in Nemirovskii (1986) in our context:

THEOREM S1. Nemirovskii Assume that there are $\tilde{\delta} = \tilde{\delta}(\nu, n) > 0$, $\tilde{\epsilon} = \tilde{\epsilon}(\nu, n) > 0$ such that for $\nu \in (0, 1]$ it holds that

55

60

65

70

 $\Pr\left(\|\Sigma - A^{1/2}\|_{\mathcal{L}} \le \tilde{\delta}\right) \ge 1 - \nu/2, \quad \Pr\left(\|\Sigma^{-1}Pq - A^{-1/2}b\| \le \tilde{\epsilon}\right) \ge 1 - \nu/2 \text{ and the conditional}$ tions

1. there is an $L = L(\nu, n)$ such that with probability at least $1 - \nu/2$ it holds that $\max \left\{ \|A^{1/2}\|_{\mathcal{L}}, \|\Sigma\|_{\mathcal{L}} \right\} \leq L,$ 2. there is a vector $u \in \mathbb{R}^k$ and constants $R, \mu > 0$ such that $\beta(\eta_1) = \Sigma^{\mu} u, \|u\| \leq R$

are satisfied. If we stop according to the stopping rule a^* as defined in (4) with $\tau \ge 1$ and $\zeta < \tau^{-1}$ then we have for any $\theta \in [0,1]$ with probability at least $1-\nu$

$$\left\|\Sigma^{\theta}\{\widehat{\beta}_{a^*} - \beta(\eta_1)\}\right\|^2 \le C^2(\mu, \tau, \zeta) R^{2(1-\theta)/(1+\mu)} \left(\widetilde{\epsilon} + \widetilde{\delta}RL^{\mu}\right)^{2(\theta+\mu)/(1+\mu)}$$

Proof: Note first that on the set where $\|\Sigma - A^{1/2}\|_{\mathcal{L}} \leq \tilde{\delta}$ holds with probability at least $1 - \nu/2$ condition 1 also holds with $L = \|\Sigma\|_{\mathcal{L}} + \tilde{\delta}$. Constrained on the set where all the conditions of the theorem hold with probability at least $1 - \nu$ we consider Nemirovskii's $(\Sigma, A^{1/2}, \Sigma^{-1}Pq, A^{-1/2}b)$ problem with errors $\tilde{\delta}$ and $\tilde{\epsilon}$. Furthermore by assumption Nemirovskii's $(2\theta, R, L, 1)$ conditions hold and thus the theorem follows by a simple application of the main theorem in Nemirovskii (1986).

85

We will now apply Theorem S1 to our problem. Due to the fact that $\eta_1 > 0$ it holds that Σ^2 is positive definite and thus invertible. We note that the spectral norm is dominated by the Frobenius norm. From Markov's inequality we get

$$\operatorname{pr}\left(\left\|A-\Sigma^{2}\right\| \geq \delta\right) \leq \delta^{-2} E\left(\left\|A-\Sigma^{2}\right\|^{2}\right).$$

Using Theorem 1, $\sum_{t=1}^{n} \|V_i\|^4 \le \|V^2\|^2$ and setting the right hand side to $\nu/2$ for $\nu \in (0,1]$ gives $\delta = \nu^{-1/2} \|V\|^{-2} \|V^2\| C_{\delta}$. In the same way $\epsilon = \nu^{-1/2} \|V\|^{-2} \|V^2\| C_{\epsilon}$. Lemma S1 gives

with probability at least $1 - \nu/2$ the concentration results required by Theorem S1 with

$$\tilde{\delta} = \nu^{-1/2} \frac{\|V^2\|}{\|V\|^2} C_{\delta} \{1 + o(1)\}$$

$$\tilde{\epsilon} = \left(\nu^{-1/2} \frac{\|V^2\|}{\|V\|^2} C_{\epsilon} + \nu^{-1} \frac{\|V^2\|^2}{\|V\|^4} C_{\epsilon} C_{\delta}\right) \{1 + o(1)\}$$

Conditions 1 and 2 of Theorem S1 hold with a probability of at least $1 - \nu/2$ by choosing L = $\delta = \tilde{\delta} + \|\Sigma\|_{\mathcal{L}}, \mu = 1 \text{ and } R = \|\Sigma^{-3}Pq\|.$ Here we used that $\beta(\eta_1) = \Sigma^{-2}Pq$. Thus the theorem yields for $\theta = 1$

$$\left\|\Sigma\{\beta(\eta_1) - \widehat{\beta}_{a^*}\}\right\| \le C(1,\tau,\zeta)\left(\widetilde{\epsilon} + \widetilde{\delta}RL\right).$$

Denote $c(\tau,\zeta) = C(1,\tau,\zeta)\{1+o(1)\}$. Finally we have $\|\Sigma^{-1}\|_{\mathcal{L}}^{-1}\|v\| \leq \|\Sigma v\|$ for any $v \in \mathbb{R}^k$ and thus the theorem is proven with

$$c_{1}(\nu) = \nu^{-1/2} c(\tau, \zeta) \|\Sigma^{-1}\|_{\mathcal{L}} \left(C_{\epsilon} + \|\Sigma\|_{\mathcal{L}} \|\Sigma^{-3} Pq\|C_{\delta}\right)$$

$$c_{2}(\nu) = \nu^{-1} c(\tau, \zeta) \|\Sigma^{-1}\|_{\mathcal{L}} \left(C_{\epsilon} C_{\delta} + \|\Sigma^{-3} Pq\|C_{\delta}^{2}\right).$$

100

S1.4. *Proof of Theorem* 3

The theorem is proved by contradiction. Assume that $\hat{\beta}_1 \longrightarrow \beta_1$ in probability. Choosing $v \in \mathbb{R}^k$, $v \neq 0$, orthogonal to β_1 implies that $v^T \hat{\beta}_1$ converges in probability to zero. Next we show that the second moment vanishes as well.

Let $M_d(z) = \max_{i \in \{1,...,n\}^d} E(\prod_{\nu=1}^d z_{i_\nu}^2)$ for a random vector $z = (z_1, \ldots, z_n)^T$ with existing mixed (2d)th moments. Using $(a + b)^2 \le 2(a^2 + b^2)$ for $a, b \in \mathbb{R}$ we obtain

$$\begin{split} E\left(v^{\mathrm{T}}b\right)^{4} &\leq \frac{8^{2}\|v\|^{4}}{\|V\|^{8}} E\left(\left\|PN^{\mathrm{T}}V^{2}Nq\right\|^{4} + \eta_{1}^{4}\left\|F^{\mathrm{T}}V^{2}Nq\right\|^{4} + \eta_{2}^{4}\left\|PN^{\mathrm{T}}V^{2}f\right\|^{4} + \eta_{1}^{4}\eta_{2}^{4}\left\|F^{\mathrm{T}}V^{2}f\right\|^{4}\right) \\ &\leq 8^{2}\|v\|^{4}\left\{M_{4}(N_{1})\|q\|^{4}l^{4}\|P\|^{4} + M_{2}(N_{1})M_{2}(F_{1})\eta_{1}^{4}\|q\|^{4}l^{2}k^{2} \\ &+ M_{2}(N_{1})M_{2}(f_{1})\eta_{2}^{4}l^{2}\|P\|^{4} + M_{2}(F_{1})M_{2}(f_{1})\eta_{1}^{4}\eta_{2}^{4}k^{2}\right\} < \infty, \ n \in \mathbb{N}. \end{split}$$

Thus, $(v^{T}b)^{2}$ is uniformally integrable by the theorem of de la Vallée-Poussin and it follows that the directional variance $var(v^{T}b)$ has to vanish in the limit as well. Now, calculations similar to Theorem 1 yield

$$\operatorname{var}(v^{\mathrm{T}}b) = \frac{\|V^{2}\|^{2}}{\|V\|^{4}} \left\{ \eta_{1}^{2} \|v\|^{2} \left(\|q\|^{2} + \eta_{2}^{2} \right) + \|P^{\mathrm{T}}v\|^{2} \left(\|q\|^{2} + \eta_{2}^{2} \right) + (v^{\mathrm{T}}Pq)^{2} \right\}$$
$$+ \sum_{t=1}^{n} \frac{\|V_{t}\|^{4}}{\|V\|^{4}} \sum_{i=1}^{l} q_{i}^{2} \left(v^{\mathrm{T}}P_{i} \right)^{2} \left\{ E(N_{1,1}^{4}) - 3 \right\}, \quad v \in \mathbb{R}^{k}.$$
115

We assumed that $||V||^{-2}||V^2||$ does not converge to zero. It remains to check under which conditions $\operatorname{var}(v^{\mathrm{T}}b)$ is larger than zero. This will always be the case if $v \neq 0$ and $\eta_1 > 0$, l = 1. For $\eta_1 = 0$ and l > 1 a vector v that lies in the range of P and is orthogonal to $\beta_1 \propto Pq$ exists, thus contradicting $\hat{\beta}_1 \longrightarrow \beta_1$ in probability.

S1.5. Proof of Theorem 4

It is easy to verify that $||V||^2 = tr(T^2) = n\gamma(0)$ and $||V^2||^2 = n\gamma^2(0) + 2\sum_{t=1}^{n-1} \gamma^2(t)(n-t)$. If (6) is fulfilled, then

$$n\gamma(0) \le \left\|V^2\right\|^2 \le n\gamma^2(0) \left\{1 + 2c^2 \frac{1 - \exp(-2\rho(n-1))}{\exp(2\rho) - 1}\right\} \le n\gamma^2(0) \left\{1 + \frac{2c}{\exp(2\rho) - 1}\right\}.$$

It follows that $\|V^2\| \sim n^{1/2}$.

S1.6. Proof of Theorem 5

Let $\gamma: \mathbb{N} \to \mathbb{R}$ be the autocovariance function of a stationary time series that has zero mean. For the autocovariance matrix V^2 of the corresponding integrated process of order one we get $[V^2]_{t,s} = \sum_{i,j=1}^{t,s} \gamma(|i-j|), \ (t,s=1,\ldots,n).$ Let $t \ge s$. By splitting the sum into parts with i < j and i > j we get $[V^2]_{t,s} = s\gamma(0) + \sum_{j=1}^s \sum_{i=1}^{t-j} \gamma(i) + \sum_{j=2}^s \sum_{i=1}^{j-1} \gamma(i).$ Due to symmetry, $[V^2]_{t,s} = [V^2]_{s,t}$ for s > t.

First, consider the case that all $\gamma(j)$, j > 0 are negative. Using (6) we obtain

$$\gamma(0)s \ge \left[V^2\right]_{t,s} \ge \gamma(0) \left\{ s - c \sum_{j=1}^s \sum_{i=1}^{t-j} \exp(-\rho j) - c \sum_{j=2}^s \sum_{i=1}^{j-1} \exp(-\rho j) \right\}, \ t \ge s.$$

105

125

130

M. SINGER, T. KRIVOBOKOVA, A. MUNK AND B. DE GROOT

Evaluation of the geometric sums gives

$$\left[V^{2}\right]_{t,s} \geq \gamma(0) \left(s \left\{1 - \frac{2c}{\exp(\rho) - 1}\right\} + c \frac{\exp(\rho)}{\left\{\exp(\rho) - 1\right\}^{2}} \left\{1 - \exp(-\rho s)\right\} \left[1 + \exp\{\rho(s - t)\}\right]\right)$$

¹³⁵ The second term on the right is always positive and the positivity of the first term is ensured by the condition $\rho > \log(2c+1)$. Hence, $\gamma(0) \left[1 - 2c \left\{\exp(\rho) - 1\right\}^{-1}\right] s \le \left[V^2\right]_{t,s} \le \gamma(0)s, \ s \ge 1$. If $\gamma(t), t \ge 1$ is not purely negative, it can be bound by

$$\gamma(0) \left[1 - 2c \left\{ \exp(\rho) - 1 \right\}^{-1} \right] s \le \left[V^2 \right]_{t,s} \le \gamma(0) \left[1 + 2c \left\{ \exp(\rho) - 1 \right\}^{-1} \right] s$$

We write δ_1 and δ_2 for the constants in the lower and upper bound, respectively, so that $\delta_1 \min\{s,t\} \leq [V^2]_{t,s} \leq \delta_2 \min\{s,t\}$ $(t,s=1,\ldots,n)$. This yields upper and lower bounds on the trace of V^2 and shows that $||V||^2 \sim n^2$. Additionally,

$$\begin{bmatrix} V^4 \end{bmatrix}_{t,t} = \sum_{l=1}^n \begin{bmatrix} V^2 \end{bmatrix}_{t,l} \begin{bmatrix} V^2 \end{bmatrix}_{l,t} = \sum_{l=1}^t \begin{bmatrix} V^2 \end{bmatrix}_{t,l}^2 + \sum_{l=t+1}^n \begin{bmatrix} V^2 \end{bmatrix}_{l,t}^2 \le \frac{\delta_2^2}{6} t \left(6nt - 4t^2 + 3t + 1 \right)$$
$$\begin{bmatrix} V^4 \end{bmatrix}_{t,t} \ge \frac{\delta_1^2}{6} t \left(6nt - 4t^2 + 3t + 1 \right).$$

This implies upper and lower bounds on the trace of V^4 in the form $cn(n+1)(n^2+n+1)$ for $c \in \{\delta_1^2/6, \delta_2^2/6\}$ and thus $\|V^2\| \sim n^2$.

S1.7. Proof of Theorem 6

First consider $n^{-1}X^{\mathrm{T}}\widehat{V}^{-2}y$. Define $X_u = (X_{u,1}, \dots, X_{u,n})^{\mathrm{T}} = NP^{\mathrm{T}} + \eta_1 F$ and $y_u = (y_{u,1}, \dots, y_{u,n})^{\mathrm{T}} = Nq + \eta_2 f$ such that $X = VX_u$ and $y = Vy_u$. By the triangle inequality

$$\left\| n^{-1} X^{\mathrm{T}} \widehat{V}^{-2} y - Pq \right\| \leq \left\| n^{-1} X^{\mathrm{T}} V^{-2} y - Pq \right\| + \left\| n^{-1} X^{\mathrm{T}} \left(\widehat{V}^{-2} - V^{-2} \right) y \right\|$$

The first term on the right hand side is convergent to zero in probability due to Theorem 1. The second term can be bounded as

$$n^{-2} \left\| X^{\mathrm{T}} \left(\widehat{V}^{-2} - V^{-2} \right) y \right\|^{2} \leq \| V \widehat{V}^{-2} V - I_{n} \|_{\mathcal{L}}^{2} n^{-1} \| X_{u}^{\mathrm{T}} \|_{\mathcal{L}}^{2} n^{-1} \| y_{u} \|^{2}.$$

Since both $X_{u,1}, \ldots, X_{u,n}$ and $y_{u,1}, \ldots, y_{u,n}$ are independent and identically distributed, it follows that $n^{-1} ||y_u||^2$ is a strongly consistent estimator for $E(y_{u,1}^2)$, as well as that $n^{-1} ||X_u^T||_{\mathcal{L}}^2$ is bounded from above by $n^{-1} ||X_u^T||^2$, which is a strongly consistent estimator of $E(||X_{u,1}||^2)$. Convergence in probability of $||V\widehat{V}^{-2}V - I_n||_{\mathcal{L}}^2$ to zero implies the convergence of $b(\widehat{V})$ to Pqin probability. To obtain the convergence rate $||n^{-1}X^TV^{-2}y - Pq|| = O_p(r_n)$, use Theorem 1 and $||V\widehat{V}^{-2}V - I_n||_{\mathcal{L}} = O_p(r_n)$. The convergence of $||n^{-1}X^T\widehat{V}^{-2}X - \Sigma^2||$ is proven in a similar way.

To show the consistency and the rate of the corrected partial least squares estimator, we follow the same lines as in the proof of Theorem 2. First, $\delta = r_n c_A(\nu)$ and $\epsilon = r_n c_b(\nu)$ for $\nu \in (0, 1]$ with constants $c_A(\nu)$, $c_b(\nu)$ are taken, such that

$$pr\{\|A(\hat{V})^{1/2} - \Sigma\|_{\mathcal{L}} \le r_n c_A(\nu)\} \ge 1 - \nu/2,$$
$$pr\{\|A(\hat{V})^{-1/2}b(\hat{V}) - \Sigma^{-1}Pq\| \le r_n c_b(\nu)\} \ge 1 - \nu/2.$$

7

165

Moreover, $L = \|\Sigma\|_{\mathcal{L}} + \delta$ and $R = \|\Sigma^{-3}Pq\|$, $\mu = 1$, satisfies conditions 1 and 2 in Theorem S1 with probability at least $1 - \nu/2$. Thus, with probability at least $1 - \nu$ we get by setting $\theta = 1$

$$\left\|\widehat{\beta}_{a^*}(\widehat{V}) - \beta(\eta_1)\right\| \leq r_n C(1,\tau,\zeta) \{1 + o(1)\} \|\Sigma^{-1}\|_{\mathcal{L}} \left[c_b(\nu) + c_A(\nu)\|\Sigma^{-3}Pq\|\left\{\|\Sigma\|_{\mathcal{L}} + r_n c_A(\nu)\right\}\right],$$

where the constants ζ, τ are taken from the definition of a^* .

where the constants ζ , τ are taken from the definition of a^* .

S2. ADDENDUM TO SECTION 5, SIMULATIONS

Figure S1 shows the differences in empirical mean squared error of $\hat{\beta}_1$ for various dependence structures considered in Section 5 in the setting with l = i = 1. We calculated

$$n\text{MSE}(\hat{\beta}_1) = n \, 500^{-1} \sum_{i=1}^{500} (\hat{\beta}_{1,i} - \beta_1)^2,$$

where $\hat{\beta}_{1,i}$ denotes a partial least squares estimator in the *i*th Monte Carlo simulation based on n observations. If an autoregressive dependence is present in the data and is ignored in the partial least squares algorithm, $nMSE(\hat{\beta}_1)$ is proportional to a constant, which is larger than in 170 the corrected partial least squares case. Ignoring the integrated dependence in the data leads to $nMSE(\beta_1)$ growing linearly with n, which confirms our theoretical findings in Section 3.

REFERENCES

HIGHAM, N. (2008). Functions of Matrices: Theory and Computation. Phildadelphia: SIAM, 1st ed. NEMIROVSKII, A. (1986). The regularizing properties of the adjoint gradient method in ill-posed problems. Comput. 175 Math. Math. Phys. 26, 7-16.

Fig. S1: Empirical mean squared error of $\hat{\beta}_1$ multiplied by n. The dependence structures are: autoregressive (grey), autoregressive integrated moving average (black, dashed) and corrected partial least squares on integrated data (black, solid).