Supplementary material for Partial least squares for dependent data

By MARCO SINGER, TATYANA KRIVOBOKOVA, AXEL MUNK
Institute for Mathematical Stochastics, Goalgorithm2e.styldschmidtstr. 7, 37077 Göttingen, Germany
msinger@gwdg.de tkrivob@uni-goettingen.de munk@math.uni-goettingen.de
and BERT DE GROOT
Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany bgroot@gwdg.de

S1. Proofs

S1•1. Derivation of the population partial least squares components Let denote $K_{i} \in \mathbb{R}^{k \times i}$ the matrix representation of a base for $\mathcal{K}_{i}\left(\Sigma^{2}, P q\right)$. Then

$$
\sum_{t=1}^{n} E\left(y_{t}-X_{t}^{\mathrm{T}} K_{i} \alpha\right)^{2}=\sum_{t=1}^{n}\left[V^{2}\right]_{t, t}\left(\|q\|^{2}+\eta_{2}^{2}-2 \alpha^{\mathrm{T}} K_{i}^{\mathrm{T}} P q+\alpha^{\mathrm{T}} K_{i}^{\mathrm{T}} \Sigma^{2} K_{i} \alpha\right) .
$$

Minimizing this expression with respect to $\alpha \in \mathbb{R}^{i}$ gives $K_{i}^{\mathrm{T}} \Sigma^{2} K_{i} \alpha=K_{i} P q$. Since the matrix $K_{i}^{\mathrm{T}} \Sigma^{2} K_{i}$ is invertible, we get the least squares fit β_{i} in Section 2.

Assume now that the first $i<a$ partial least squares base vectors w_{1}, \ldots, w_{i} have been calculated and consider for $\lambda \in \mathbb{R}$ the Lagrange function

$$
\sum_{t, s=1}^{n} \operatorname{cov}\left(y_{t}-X_{t}^{\mathrm{T}} \beta_{i}, X_{s}^{\mathrm{T}} w\right)-\lambda\left(\|w\|^{2}-1\right)=w^{\mathrm{T}}\left(P q-\Sigma^{2} \beta_{i}\right) \sum_{t, s=1}^{n}\left[V^{2}\right]_{t, s}-\lambda\left(\|w\|^{2}-1\right) .
$$

Maximizing with respect to w yields

$$
w_{i+1}=(2 \lambda)^{-1}\left(P q-\Sigma^{2} \beta_{i}\right) \sum_{t, s=1}^{n}\left[V^{2}\right]_{t, s} \propto P q-\Sigma^{2} \beta_{i} .
$$

Since $\beta_{i} \in \mathcal{K}_{i}\left(\Sigma^{2}, P q\right)$, we get $w_{i+1} \in \mathcal{K}_{i+1}\left(\Sigma^{2}, P q\right)$ and w_{i+1} is orthogonal to w_{1}, \ldots, w_{i}.

S1-2. Proof of Theorem 1

First consider

$$
\begin{aligned}
E\left(\|b-P q\|^{2}\right)= & E\left[\left\|\frac{1}{\|V\|^{2}}\left\{\left(P N^{\mathrm{T}}+\eta_{1} F^{\mathrm{T}}\right) V^{2} N q+\eta_{2}\left(P N^{\mathrm{T}}+\eta_{1} F^{\mathrm{T}}\right) V^{2} f\right\}-P q\right\|^{2}\right] \\
= & \left\{E\left(\left\|\frac{1}{\|V\|^{2}} P N^{\mathrm{T}} V^{2} N q-P q\right\|^{2}\right)+\frac{\eta_{2}^{2}}{\|V\|^{4}} E\left(\left\|P N^{\mathrm{T}} V^{2} f\right\|^{2}\right)\right\} \\
& +\frac{\eta_{1}^{2}}{\|V\|^{4}}\left\{E\left(\left\|F^{\mathrm{T}} V^{2} N q\right\|^{2}\right)+\eta_{2}^{2} E\left(\left\|F^{\mathrm{T}} V^{2} f\right\|^{2}\right)\right\}=S_{1}+S_{2},
\end{aligned}
$$

due to the independence of N, F and f. It is easy to see that

$$
S_{2}=\frac{\left\|V^{2}\right\|^{2}}{\|V\|^{4}} \eta_{1}^{2} k\left(\|q\|^{2}+\eta_{2}^{2}\right)
$$

Furthermore, with notation $A_{0}=N^{\mathrm{T}} V^{2} N$ we get

$$
S_{1}=\frac{1}{\|V\|^{4}} E\left(q^{\mathrm{T}} A_{0} P^{\mathrm{T}} P A_{0} q\right)-\|P q\|^{2}+\frac{\eta_{2}^{2}}{\|V\|^{4}} E\left(\left\|P N^{\mathrm{T}} V^{2} f\right\|^{2}\right)
$$

Consider now $E\left(q^{\mathrm{T}} A_{0} P^{\mathrm{T}} P A_{0} q\right)$ as a quadratic form with respect to the matrix $P^{\mathrm{T}} P$. Denote $\kappa=E\left(N_{1,1}^{4}\right)-3$. First, $E\left(A_{0} q\right)=E\left(N^{\mathrm{T}} V^{2} N q\right)=\|V\|^{2} q$ and

$$
\begin{aligned}
\operatorname{var}\left(A_{0} q\right) & =\left[\sum_{a, b=1}^{l} q_{a} q_{b} \sum_{t, s, u, v=1}^{n} V_{u}^{\mathrm{T}} V_{s} V_{t}^{\mathrm{T}} V_{v} E\left(N_{s, i} N_{u, a} N_{t, j} N_{v, b}\right)\right]_{i, j=1}^{l}-\|V\|^{4} q q^{\mathrm{T}} \\
& =\left[q_{i} q_{j}\|V\|^{4}+\left(q_{i} q_{j}+\delta_{i, j}\|q\|^{2}\right)\left\|V^{2}\right\|^{2}+\kappa \sum_{t=1}^{n}\left\|V_{t}\right\|^{4} \delta_{i, j} q_{i}^{2}\right]_{i, j=1}^{l}-\|V\|^{4} q q^{\mathrm{T}} \\
& =\left\|V^{2}\right\|^{2}\left(q q^{\mathrm{T}}+\|q\|^{2} I_{l}\right)+\kappa \sum_{t=1}^{n}\left\|V_{t}\right\|^{4} \operatorname{diag}\left(q_{1}^{2}, \ldots, q_{l}^{2}\right)
\end{aligned}
$$

where $\operatorname{diag}\left(v_{1}, \ldots, v_{l}\right)$ denotes the diagonal matrix with entries $v_{1}, \ldots, v_{l} \in \mathbb{R}$ on its diagonal and δ is the Kronecker delta. In the second equation we made use of $E\left(N_{s, i} N_{u, a} N_{t, j} N_{v, b}\right)=$ $\delta_{i, a} \delta_{j, b} \delta_{s, u} \delta_{t, v}+\delta_{i, b} \delta_{j, a} \delta_{s, v} \delta_{t, u}+\delta_{i, j} \delta_{a, b} \delta_{t, s} \delta_{u, v}+\kappa \delta_{t, s} \delta_{s, u} \delta_{u, v} \delta_{i, j} \delta_{j, a} \delta_{a, b}$. Hence,
${ }_{35} \frac{1}{\|V\|^{4}} E\left(q^{\mathrm{T}} A_{0} P^{\mathrm{T}} P A_{0} q\right)=\frac{1}{\|V\|^{4}} \operatorname{tr}\left\{P^{\mathrm{T}} P \operatorname{var}\left(A_{0} q\right)\right\}-\frac{1}{\|V\|^{4}} E\left(q^{\mathrm{T}} A_{0}\right) P^{\mathrm{T}} P E\left(A_{0} q\right)$

$$
=\frac{\left\|V^{2}\right\|^{2}}{\|V\|^{4}}\left(q^{\mathrm{T}} P^{\mathrm{T}} P q+\|P\|^{2}\|q\|^{2}\right)+q^{\mathrm{T}} P^{\mathrm{T}} P q+\kappa \sum_{t=1}^{n} \frac{\left\|V_{t}\right\|^{4}}{\|V\|^{4}} \sum_{i=1}^{l}\left\|P_{i}\right\|^{2} q_{i}^{2}
$$

The remaining term in S_{1} follows trivially, proving the result. $E\left\|\Sigma^{2}-A\right\|^{2}$ is obtained using similar calculations.

S1•3. Proof of Theorem 2

Lemma S1. Assume that for $\nu \in(0,1]$ and some constants $\delta, \epsilon>0$ it holds that $\operatorname{pr}\left(\left\|A-\Sigma^{2}\right\|_{\mathcal{L}} \leq \delta\right) \geq 1-\nu / 2$ and $\operatorname{pr}(\|b-P q\| \leq \epsilon) \geq 1-\nu / 2$. Then each of the inequalities

$$
\begin{aligned}
\left\|A^{1 / 2}-\Sigma\right\| & \leq 2^{-1} \delta\left\|\Sigma^{-1}\right\|\{1+o(1)\} \\
\left\|A^{-1 / 2} b-\Sigma^{-1} P q\right\| & \leq \epsilon\left\|\Sigma^{-1}\right\|_{\mathcal{L}}+2^{-1} \delta(\|P q\|+\epsilon)\left\|\Sigma^{-2}\right\|\left\|\Sigma^{-1}\right\|\{1+o(1)\}
\end{aligned}
$$

hold with probability at least $1-\nu / 2$.
Proof: We show the result by using the Fréchet-derivative for functions $F: \mathbb{R}^{k \times k} \rightarrow \mathbb{R}^{k \times k}$. Due to the fact that $\eta_{1}>0$ it holds that Σ^{2} is positive definite and thus invertible.

It holds due to Higham (2008), Problem 7.4, that $F^{\prime}\left(\Sigma^{2}\right) B$ for an arbitrary $B \in \mathbb{R}^{k \times k}$ is given as the solution in $X \in \mathbb{R}^{k \times k}$ of $B=\Sigma X+X \Sigma$, i.e. due to the symmetry and positive definitiness of Σ we have $F^{\prime}\left(\Sigma^{2}\right) B=2^{-1} \Sigma^{-1} B$. We take the orthonormal base $\left\{E_{i, j}, i, j=1, \ldots, k\right\}$
for the space $\left(\mathbb{R}^{k \times k},\|\cdot\|\right)$ with $E_{i, j}$ corresponding to the matrix that has zeros everywhere except at the position (i, j), where it is one. The Hilbert-Schmidt norm $\left\|F^{\prime}\left(\Sigma^{2}\right)\right\|_{H S}$ is

$$
\left\|F^{\prime}\left(\Sigma^{2}\right)\right\|_{H S}^{2}=4^{-1} \sum_{i, j=1}^{k}\left\|\Sigma^{-1} E_{i, j}\right\|^{2}=4^{-1} \sum_{i, j=1}^{k}\left[\Sigma^{-1}\right]_{i, j}^{2}=4^{-1}\left\|\Sigma^{-1}\right\|^{2}
$$

This yields with the Taylor expansion for Fréchet-differentiable maps

$$
\left\|A^{1 / 2}-\Sigma\right\|_{\mathcal{L}} \leq\left\|F^{\prime}(\Sigma)\left(A-\Sigma^{2}\right)\right\|+o\left(\left\|A-\Sigma^{2}\right\|\right) \leq 2^{-1}\left\|\Sigma^{-1}\right\| \delta\{1+o(1)\}
$$

For the second inequality we see first that

$$
\begin{equation*}
\left\|A^{-1 / 2} b-\Sigma^{-1} P q\right\| \leq \epsilon\left\|\Sigma^{-1}\right\|_{\mathcal{L}}+\left\|\left(A^{-1 / 2}-\Sigma^{-1}\right) b\right\| . \tag{S1}
\end{equation*}
$$

The Fréchet-derivative of the map $F: \mathbb{R}^{k \times k} \rightarrow \mathbb{R}^{k \times k}, A \mapsto A^{-1 / 2} \quad$ is $\quad F^{\prime}\left(\Sigma^{2}\right) B=$ $-2^{-1} \Sigma^{-2} B \Sigma^{-1}$ and

$$
\left\|F^{\prime}\left(\Sigma^{2}\right)\right\|_{H S}^{2}=4^{-1} \sum_{i, j=1}^{k}\left\|\Sigma^{-2} E_{i, j} \Sigma^{-1}\right\|^{2} \leq 4^{-1}\left\|\Sigma^{-2}\right\|^{2}\left\|\Sigma^{-1}\right\|^{2}
$$

Here we used the submultiplicativity of the Frobenius norm with the Hadamard product of matrices. Thus we get via Taylor's theorem

$$
\left\|A^{-1 / 2}-\Sigma^{-1}\right\| \leq 2^{-1}\left\|\Sigma^{-2}\right\|\left\|\Sigma^{-1}\right\|\left\|A-\Sigma^{2}\right\|+o(\delta)
$$

Plugging this into (S1) yields

$$
\left\|A^{-1 / 2} b-\Sigma^{-1} P q\right\| \leq \epsilon\left\|\Sigma^{-1}\right\|_{\mathcal{L}}+2^{-1} \delta(\|P q\|+\epsilon)\left\|\Sigma^{-2}\right\|\left\|\Sigma^{-1}\right\|\{1+o(1)\}
$$

where we used that $\|b\| \leq\|P q\|+\epsilon$.
Equivalence of conjugate gradient and partial least squares: We denote $\tilde{A}=A^{1 / 2}$ and $\tilde{b}=$ $A^{-1 / 2} b$. The partial least squares optimization problem is

$$
\min _{v \in \mathcal{K}_{i}(A, b)}\|y-X v\|^{2}
$$

whereas the conjugate gradient problem studied in Nemirovskii (1986) is

$$
\begin{equation*}
\min _{v \in \mathcal{K}_{i}\left(\tilde{A}^{2}, \tilde{A} \tilde{b}\right)}\|\tilde{b}-\tilde{A} v\|^{2} \tag{S2}
\end{equation*}
$$

It is easy to see that the Krylov space $\mathcal{K}_{i}\left(\tilde{A}^{2}, \tilde{A} \tilde{b}\right)=\mathcal{K}_{i}(A, b)(i=1, \ldots, k)$. We have

$$
\arg \min _{v \in \mathcal{K}_{i}\left(\tilde{A}^{2}, \tilde{A} \tilde{b}\right)}\|\tilde{b}-\tilde{A} v\|^{2}=\arg \min _{\mathcal{K}_{i}(A, b)}\|y-X v\|^{2}, i=1, \ldots, k
$$

Thus it holds

$$
\widehat{\beta}_{i}=\arg \min _{v \in \mathcal{K}_{i}\left(\tilde{A}^{2}, \tilde{A} \tilde{b}\right)}\|\tilde{b}-\tilde{A} v\|^{2}
$$

Furthermore we have $\Sigma \beta\left(\eta_{1}\right)=\Sigma^{-1} P q$, i.e. the correct problem in the population is solved by $\beta\left(\eta_{1}\right)$ as well. Now we will restate the main result in Nemirovskii (1986) in our context:

Theorem S1. Nemirovskii

65
\square
$\operatorname{pr}\left(\left\|\Sigma-A^{1 / 2}\right\|_{\mathcal{L}} \leq \tilde{\delta}\right) \geq 1-\nu / 2, \operatorname{pr}\left(\left\|\Sigma^{-1} P q-A^{-1 / 2} b\right\| \leq \tilde{\epsilon}\right) \geq 1-\nu / 2$ and the conditions

1. there is an $L=L(\nu, n)$ such that with probability at least $1-\nu / 2$ it holds that $\max \left\{\left\|A^{1 / 2}\right\|_{\mathcal{L}},\|\Sigma\|_{\mathcal{L}}\right\} \leq L$,
2. there is a vector $u \in \mathbb{R}^{k}$ and constants $R, \mu>0$ such that $\beta\left(\eta_{1}\right)=\Sigma^{\mu} u,\|u\| \leq R$
are satisfied. If we stop according to the stopping rule a^{*} as defined in (4) with $\tau \geq 1$ and $\zeta<\tau^{-1}$ then we have for any $\theta \in[0,1]$ with probability at least $1-\nu$

$$
\left\|\Sigma^{\theta}\left\{\widehat{\beta}_{a^{*}}-\beta\left(\eta_{1}\right)\right\}\right\|^{2} \leq C^{2}(\mu, \tau, \zeta) R^{2(1-\theta) /(1+\mu)}\left(\tilde{\epsilon}+\tilde{\delta} R L^{\mu}\right)^{2(\theta+\mu) /(1+\mu)}
$$

Proof: Note first that on the set where $\left\|\Sigma-A^{1 / 2}\right\|_{\mathcal{L}} \leq \tilde{\delta}$ holds with probability at least $1-\nu / 2$ condition 1 also holds with $L=\|\Sigma\|_{\mathcal{L}}+\delta$. Constrained on the set where all the conditions of the theorem hold with probability at least $1-\nu$ we consider Nemirovskii's ($\Sigma, A^{1 / 2}, \Sigma^{-1} P q, A^{-1 / 2} b$) problem with errors $\tilde{\delta}$ and $\tilde{\epsilon}$. Furthermore by assumption Ne mirovskii's $(2 \theta, R, L, 1)$ conditions hold and thus the theorem follows by a simple application of the main theorem in Nemirovskii (1986).

We will now apply Theorem S1 to our problem. Due to the fact that $\eta_{1}>0$ it holds that Σ^{2} is positive definite and thus invertible. We note that the spectral norm is dominated by the Frobenius norm. From Markov's inequality we get

$$
\operatorname{pr}\left(\left\|A-\Sigma^{2}\right\| \geq \delta\right) \leq \delta^{-2} E\left(\left\|A-\Sigma^{2}\right\|^{2}\right)
$$

Using Theorem 1, $\sum_{t=1}^{n}\left\|V_{i}\right\|^{4} \leq\left\|V^{2}\right\|^{2}$ and setting the right hand side to $\nu / 2$ for $\nu \in(0,1]$ ${ }_{90}$ gives $\delta=\nu^{-1 / 2}\|V\|^{-2}\left\|V^{2}\right\| C_{\delta}$. In the same way $\epsilon=\nu^{-1 / 2}\|V\|^{-2}\left\|V^{2}\right\| C_{\epsilon}$. Lemma S1 gives with probability at least $1-\nu / 2$ the concentration results required by Theorem S 1 with

$$
\begin{aligned}
& \tilde{\delta}=\nu^{-1 / 2} \frac{\left\|V^{2}\right\|}{\|V\|^{2}} C_{\delta}\{1+o(1)\} \\
& \tilde{\epsilon}=\left(\nu^{-1 / 2} \frac{\left\|V^{2}\right\|}{\|V\|^{2}} C_{\epsilon}+\nu^{-1} \frac{\left\|V^{2}\right\|^{2}}{\|V\|^{4}} C_{\epsilon} C_{\delta}\right)\{1+o(1)\}
\end{aligned}
$$

Conditions 1 and 2 of Theorem S1 hold with a probability of at least $1-\nu / 2$ by choosing $L=$ yields for $\theta=1$

$$
\left\|\Sigma\left\{\beta\left(\eta_{1}\right)-\widehat{\beta}_{a^{*}}\right\}\right\| \leq C(1, \tau, \zeta)(\tilde{\epsilon}+\tilde{\delta} R L) .
$$

Denote $c(\tau, \zeta)=C(1, \tau, \zeta)\{1+o(1)\}$. Finally we have $\left\|\Sigma^{-1}\right\|_{\mathcal{L}}^{-1}\|v\| \leq\|\Sigma v\|$ for any $v \in \mathbb{R}^{k}$ and thus the theorem is proven with

$$
\begin{aligned}
& c_{1}(\nu)=\nu^{-1 / 2} c(\tau, \zeta)\left\|\Sigma^{-1}\right\|_{\mathcal{L}}\left(C_{\epsilon}+\|\Sigma\|_{\mathcal{L}}\left\|\Sigma^{-3} P q\right\| C_{\delta}\right) \\
& c_{2}(\nu)=\nu^{-1} c(\tau, \zeta)\left\|\Sigma^{-1}\right\|_{\mathcal{L}}\left(C_{\epsilon} C_{\delta}+\left\|\Sigma^{-3} P q\right\| C_{\delta}^{2}\right)
\end{aligned}
$$

S1.4. Proof of Theorem 3

The theorem is proved by contradiction. Assume that $\widehat{\beta}_{1} \longrightarrow \beta_{1}$ in probability. Choosing $v \in$ $\mathbb{R}^{k}, v \neq 0$, orthogonal to β_{1} implies that $v^{\mathrm{T}} \widehat{\beta}_{1}$ converges in probability to zero. Next we show that the second moment vanishes as well.

Let $M_{d}(z)=\max _{i \in\{1, \ldots, n\}^{d}} E\left(\prod_{\nu=1}^{d} z_{i_{v}}^{2}\right)$ for a random vector $z=\left(z_{1}, \ldots, z_{n}\right)^{\mathrm{T}}$ with existing mixed $(2 d)$ th moments. Using $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ for $a, b \in \mathbb{R}$ we obtain

$$
\begin{aligned}
E\left(v^{\mathrm{T}} b\right)^{4} \leq & \frac{8^{2}\|v\|^{4}}{\|V\|^{8}} E\left(\left\|P N^{\mathrm{T}} V^{2} N q\right\|^{4}+\eta_{1}^{4}\left\|F^{\mathrm{T}} V^{2} N q\right\|^{4}+\eta_{2}^{4}\left\|P N^{\mathrm{T}} V^{2} f\right\|^{4}+\eta_{1}^{4} \eta_{2}^{4}\left\|F^{\mathrm{T}} V^{2} f\right\|^{4}\right) \\
\leq & 8^{2}\|v\|^{4}\left\{M_{4}\left(N_{1}\right)\|q\|^{4} l^{4}\|P\|^{4}+M_{2}\left(N_{1}\right) M_{2}\left(F_{1}\right) \eta_{1}^{4}\|q\|^{4} l^{2} k^{2}\right. \\
& \left.+M_{2}\left(N_{1}\right) M_{2}\left(f_{1}\right) \eta_{2}^{4} l^{2}\|P\|^{4}+M_{2}\left(F_{1}\right) M_{2}\left(f_{1}\right) \eta_{1}^{4} \eta_{2}^{4} k^{2}\right\}<\infty, n \in \mathbb{N}
\end{aligned}
$$

Thus, $\left(v^{\mathrm{T}} b\right)^{2}$ is uniformally integrable by the theorem of de la Vallee-Poussin and it follows that the directional variance $\operatorname{var}\left(v^{\mathrm{T}} b\right)$ has to vanish in the limit as well. Now, calculations similar to Theorem 1 yield

$$
\begin{aligned}
\operatorname{var}\left(v^{\mathrm{T}} b\right)= & \frac{\left\|V^{2}\right\|^{2}}{\|V\|^{4}}\left\{\eta_{1}^{2}\|v\|^{2}\left(\|q\|^{2}+\eta_{2}^{2}\right)+\left\|P^{\mathrm{T}} v\right\|^{2}\left(\|q\|^{2}+\eta_{2}^{2}\right)+\left(v^{\mathrm{T}} P q\right)^{2}\right\} \\
& +\sum_{t=1}^{n} \frac{\left\|V_{t}\right\|^{4}}{\|V\|^{4}} \sum_{i=1}^{l} q_{i}^{2}\left(v^{\mathrm{T}} P_{i}\right)^{2}\left\{E\left(N_{1,1}^{4}\right)-3\right\}, \quad v \in \mathbb{R}^{k}
\end{aligned}
$$

We assumed that $\|V\|^{-2}\left\|V^{2}\right\|$ does not converge to zero. It remains to check under which conditions $\operatorname{var}\left(v^{\mathrm{T}} b\right)$ is larger than zero. This will always be the case if $v \neq 0$ and $\eta_{1}>0, l=1$. For $\eta_{1}=0$ and $l>1$ a vector v that lies in the range of P and is orthogonal to $\beta_{1} \propto P q$ exists, thus contradicting $\widehat{\beta}_{1} \longrightarrow \beta_{1}$ in probability.

S1.5. Proof of Theorem 4

It is easy to verify that $\|V\|^{2}=\operatorname{tr}\left(T^{2}\right)=n \gamma(0)$ and $\left\|V^{2}\right\|^{2}=n \gamma^{2}(0)+2 \sum_{t=1}^{n-1} \gamma^{2}(t)(n-$ $t)$. If (6) is fulfilled, then

$$
n \gamma(0) \leq\left\|V^{2}\right\|^{2} \leq n \gamma^{2}(0)\left\{1+2 c^{2} \frac{1-\exp (-2 \rho(n-1))}{\exp (2 \rho)-1}\right\} \leq n \gamma^{2}(0)\left\{1+\frac{2 c}{\exp (2 \rho)-1}\right\}
$$

It follows that $\left\|V^{2}\right\| \sim n^{1 / 2}$.

S1.6. Proof of Theorem 5

Let $\gamma: \mathbb{N} \rightarrow \mathbb{R}$ be the autocovariance function of a stationary time series that has zero mean. For the autocovariance matrix V^{2} of the corresponding integrated process of order one we get $\left[V^{2}\right]_{t, s}=\sum_{i, j=1}^{t, s} \gamma(|i-j|),(t, s=1, \ldots, n)$. Let $t \geq s$. By splitting the sum into parts with $i<j$ and $i>j$ we get $\left[V^{2}\right]_{t, s}=s \gamma(0)+\sum_{j=1}^{s} \sum_{i=1}^{t-j} \gamma(i)+\sum_{j=2}^{s} \sum_{i=1}^{j-1} \gamma(i)$. Due to symmetry, $\left[V^{2}\right]_{t, s}=\left[V^{2}\right]_{s, t}$ for $s>t$.

First, consider the case that all $\gamma(j), j>0$ are negative. Using (6) we obtain

$$
\gamma(0) s \geq\left[V^{2}\right]_{t, s} \geq \gamma(0)\left\{s-c \sum_{j=1}^{s} \sum_{i=1}^{t-j} \exp (-\rho j)-c \sum_{j=2}^{s} \sum_{i=1}^{j-1} \exp (-\rho j)\right\}, t \geq s
$$

Evaluation of the geometric sums gives

$$
\left[V^{2}\right]_{t, s} \geq \gamma(0)\left(s\left\{1-\frac{2 c}{\exp (\rho)-1}\right\}+c \frac{\exp (\rho)}{\{\exp (\rho)-1\}^{2}}\{1-\exp (-\rho s)\}[1+\exp \{\rho(s-t)\}]\right)
$$

The second term on the right is always positive and the positivity of the first term is ensured by the condition $\rho>\log (2 c+1)$. Hence, $\gamma(0)\left[1-2 c\{\exp (\rho)-1\}^{-1}\right] s \leq\left[V^{2}\right]_{t, s} \leq \gamma(0) s, s \geq 1$. If $\gamma(t), t \geq 1$ is not purely negative, it can be bound by

$$
\gamma(0)\left[1-2 c\{\exp (\rho)-1\}^{-1}\right] s \leq\left[V^{2}\right]_{t, s} \leq \gamma(0)\left[1+2 c\{\exp (\rho)-1\}^{-1}\right] s
$$

We write δ_{1} and δ_{2} for the constants in the lower and upper bound, respectively, so that $\delta_{1} \min \{s, t\} \leq\left[V^{2}\right]_{t, s} \leq \delta_{2} \min \{s, t\}(t, s=1, \ldots, n)$. This yields upper and lower bounds on the trace of V^{2} and shows that $\|V\|^{2} \sim n^{2}$. Additionally,

$$
\begin{aligned}
{\left[V^{4}\right]_{t, t} } & =\sum_{l=1}^{n}\left[V^{2}\right]_{t, l}\left[V^{2}\right]_{l, t}=\sum_{l=1}^{t}\left[V^{2}\right]_{t, l}^{2}+\sum_{l=t+1}^{n}\left[V^{2}\right]_{l, t}^{2} \leq \frac{\delta_{2}^{2}}{6} t\left(6 n t-4 t^{2}+3 t+1\right) \\
{\left[V^{4}\right]_{t, t} } & \geq \frac{\delta_{1}^{2}}{6} t\left(6 n t-4 t^{2}+3 t+1\right)
\end{aligned}
$$

This implies upper and lower bounds on the trace of V^{4} in the form $c n(n+1)\left(n^{2}+n+1\right)$ for $c \in\left\{\delta_{1}^{2} / 6, \delta_{2}^{2} / 6\right\}$ and thus $\left\|V^{2}\right\| \sim n^{2}$.

S1.7. Proof of Theorem 6

First consider $n^{-1} X^{\mathrm{T}} \widehat{V}^{-2} y$. Define $X_{u}=\left(X_{u, 1}, \ldots, X_{u, n}\right)^{\mathrm{T}}=N P^{\mathrm{T}}+\eta_{1} F$ and $y_{u}=$ $\left(y_{u, 1}, \ldots, y_{u, n}\right)^{\mathrm{T}}=N q+\eta_{2} f$ such that $X=V X_{u}$ and $y=V y_{u}$. By the triangle inequality

$$
\left\|n^{-1} X^{\mathrm{T}} \widehat{V}^{-2} y-P q\right\| \leq\left\|n^{-1} X^{\mathrm{T}} V^{-2} y-P q\right\|+\left\|n^{-1} X^{\mathrm{T}}\left(\widehat{V}^{-2}-V^{-2}\right) y\right\| .
$$

The first term on the right hand side is convergent to zero in probability due to Theorem 1 . The second term can be bounded as

$$
n^{-2}\left\|X^{\mathrm{T}}\left(\widehat{V}^{-2}-V^{-2}\right) y\right\|^{2} \leq\left\|V \widehat{V}^{-2} V-I_{n}\right\|_{\mathcal{L}}^{2} n^{-1}\left\|X_{u}^{\mathrm{T}}\right\|_{\mathcal{L}}^{2} n^{-1}\left\|y_{u}\right\|^{2}
$$

Since both $X_{u, 1}, \ldots, X_{u, n}$ and $y_{u, 1}, \ldots, y_{u, n}$ are independent and identically distributed, it follows that $n^{-1}\left\|y_{u}\right\|^{2}$ is a strongly consistent estimator for $E\left(y_{u, 1}^{2}\right)$, as well as that $n^{-1}\left\|X_{u}^{\mathrm{T}}\right\|_{\mathcal{L}}^{2}$ is bounded from above by $n^{-1}\left\|X_{u}^{\mathrm{T}}\right\|^{2}$, which is a strongly consistent estimator of $E\left(\left\|X_{u, 1}\right\|^{2}\right)$. Convergence in probability of $\left\|V \widehat{V}^{-2} V-I_{n}\right\|_{\mathcal{L}}^{2}$ to zero implies the convergence of $b(\widehat{V})$ to $P q$ in probability. To obtain the convergence rate $\left\|n^{-1} X^{\mathrm{T}} V^{-2} y-P q\right\|=O_{p}\left(r_{n}\right)$, use Theorem 1 and $\left\|V \widehat{V}^{-2} V-I_{n}\right\|_{\mathcal{L}}=O_{p}\left(r_{n}\right)$. The convergence of $\left\|n^{-1} X^{\mathrm{T}} \widehat{V}^{-2} X-\Sigma^{2}\right\|$ is proven in a similar way.

To show the consistency and the rate of the corrected partial least squares estimator, we follow the same lines as in the proof of Theorem 2. First, $\delta=r_{n} c_{A}(\nu)$ and $\epsilon=r_{n} c_{b}(\nu)$ for $\nu \in(0,1]$ with constants $c_{A}(\nu), c_{b}(\nu)$ are taken, such that

$$
\begin{aligned}
\operatorname{pr}\left\{\left\|A(\widehat{V})^{1 / 2}-\Sigma\right\|_{\mathcal{L}}\right. & \left.\leq r_{n} c_{A}(\nu)\right\} \geq 1-\nu / 2, \\
\operatorname{pr}\left\{\left\|A(\widehat{V})^{-1 / 2} b(\widehat{V})-\Sigma^{-1} P q\right\|\right. & \left.\leq r_{n} c_{b}(\nu)\right\} \geq 1-\nu / 2
\end{aligned}
$$

Moreover, $L=\|\Sigma\|_{\mathcal{L}}+\delta$ and $R=\left\|\Sigma^{-3} P q\right\|, \mu=1$, satisfies conditions 1 and 2 in Theorem S 1 with probability at least $1-\nu / 2$. Thus, with probability at least $1-\nu$ we get by setting $\theta=1$
$\left\|\widehat{\beta}_{a^{*}}(\widehat{V})-\beta\left(\eta_{1}\right)\right\| \leq r_{n} C(1, \tau, \zeta)\{1+o(1)\}\left\|\Sigma^{-1}\right\|_{\mathcal{L}}\left[c_{b}(\nu)+c_{A}(\nu)\left\|\Sigma^{-3} P q\right\|\left\{\|\Sigma\|_{\mathcal{L}}+r_{n} c_{A}(\nu)\right\}\right]$,
where the constants ζ, τ are taken from the definition of a^{*}.
165

S2. Addendum to SEction 5, Simulations

Figure $S 1$ shows the differences in empirical mean squared error of $\hat{\beta}_{1}$ for various dependence structures considered in Section 5 in the setting with $l=i=1$. We calculated

$$
n \operatorname{MSE}\left(\hat{\beta}_{1}\right)=n 500^{-1} \sum_{i=1}^{500}\left(\hat{\beta}_{1, i}-\beta_{1}\right)^{2}
$$

where $\hat{\beta}_{1, i}$ denotes a partial least squares estimator in the i th Monte Carlo simulation based on n observations. If an autoregressive dependence is present in the data and is ignored in the partial least squares algorithm, $n \operatorname{MSE}\left(\hat{\beta}_{1}\right)$ is proportional to a constant, which is larger than in the corrected partial least squares case. Ignoring the integrated dependence in the data leads to $n \operatorname{MSE}\left(\hat{\beta}_{1}\right)$ growing linearly with n, which confirms our theoretical findings in Section 3.

REFERENCES

Higham, N. (2008). Functions of Matrices: Theory and Computation. Phildadelphia: SIAM, 1st ed.
NEMIROVSKII, A. (1986). The regularizing properties of the adjoint gradient method in ill-posed problems. Comput. 175 Math. Math. Phys. 26, 7-16.

Fig. S1: Empirical mean squared eror of $\widehat{\beta}_{1}$ multiplied by n. The dependence structures are: autoregressive (grey), autoregressive integrated moving average (black, dashed) and corrected partial least squares on integrated data (black, solid).

