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a b s t r a c t

Short-range interatomic interactions govern many bio-molecular processes. Therefore, identifying close
interaction partners in ensemble data is an essential task in structural biology and computational
biophysics. A contact search can be cast as a typical range search problem for which efficient algorithms
have been developed. However, none of those has yet been adapted to the context of macromolecular
ensembles, particularly in a molecular dynamics (MD) framework. Here a set-decomposition algorithm
is implemented which detects all contacting atoms or residues in maximum O(N log(N)) run-time, in
contrast to the O(N2) complexity of a brute-force approach.

Program summary
Program title: g_contacts
Catalogue identifier: AEQA_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEQA_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 8945
No. of bytes in distributed program, including test data, etc.: 981604
Distribution format: tar.gz
Programming language: C99.
Computer: PC.
Operating system: Linux.
RAM: ≈Size of input frame
Classification: 3, 4.14.
External routines: Gromacs 4.6[1]
Nature of problem: Finding atoms or residues that are closer to one another than a given cut-off.
Solution method: Excluding distant atoms from distance calculations by decomposing the given set of
atoms into disjoint subsets.
Running time: ≤ O(N log(N))
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D. van der Spoel, B. Hess and Erik Lindahl, Gromacs 4.5: a high-throughput and highly parallel open source
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1. Introduction

Molecular dynamics (MD) integrators allow simulations of large
bio-molecular systems comprising millions of atoms on nanosec-
ond to millisecond time scales [1,2]. These simulations produce a
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substantial amount of trajectory data, which typically consist of
104–106 structure ‘‘snapshots’’ (frames). The computational effort
to generate the trajectory data scales with O(N log(N)), where N
is the number of simulated particles. Efficient analysis tools to ex-
tract certain observables from these data are required that exhibit
a comparable scaling behavior to the algorithms that generate the
trajectory data.

Identifying all atoms of a solute molecule which interact
with the solvent, or all close atoms from different subunits of
a molecular complex, is a recurring task. From a computational
perspective, these tasks require one to identify all pairs of atoms
that are closer to one another than a defined minimum contact
distance. This task has been described as a spherical range search
problem [3].
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Fig. 1. Decomposition reduces the number of distance calculations during the contact
search between two sets of atoms. (a) The number of required distance calculations
(black lines) is reduced by decomposing the set of atomsA (left) into disjoint subsets
A1, A2 (right). The distances to b are only calculated if b lies within the bounding
box of the atoms in Ai or is closer to the bounding box than the minimum contact
distance d, indicated by the width of the yellow and gray frames. (b) Generalization
of (a) to an arbitrary set B. Another bounding box of the set B is determined and
checked for overlap with A. (c) In the next step, the biggest remaining subset is split
along the median. The resulting subsets of B are again checked for overlap with A.
(d) The implemented set-decomposition scheme given in pseudo-code.

Here, we describe the efficient implementation of an algorithm
to obtain contacting atom pairs of two sets of atoms and respective
trajectory contact frequencies. The modified k-dimensional tree
approach employed has a worst-case run-time of ∝ O(N log(N))
for two sets of sizeN comparedwith a run-time∝ O(N2)of a brute-
force approach. This high efficiency is achieved by excluding sets
of distant atoms from the distance calculation. Combined with the
excellent scaling properties of the method on parallel machines,
this advantage will be particularly pronounced in future exascale
computing applications.

The routine is implemented within gromacs [4]. Due to the
versatile implementation, it can also be applied to other three-
dimensional contact searches. Extension to higher dimensions is
straightforward.

2. Methods

2.1. Task

Given two sets of labeled atoms, A = {ai} and B = {bj}, and a
minimum contact distance d, the task of the algorithm described
here is to identify all contacting atom pairs, i.e., all pairs of atom
indices {(i, j)} with ∥ai − bj∥ < d. A brute-force approach would
require the calculation of the Euclidean distance between all pos-
sible pairs of atoms. The set decomposition scheme implemented
here drastically reduces the number of necessary distance calcula-
tions and therefore the run-time.

2.2. Algorithm

For simplicity of presentation, we first assume the special case
where one of the two sets, B, contains only one atom b (Fig. 1(a)).
This case will subsequently be generalized to arbitrary sets A, B
(Fig. 1(b), (c)).

As a first step, the minimum bounding box (bbox, yellow) of
set A with sides aligned to the x, y, and z axes is determined. If
the distance of b to the box boundary along the direction of the
three coordinates exceeds a given contact distance d, b is not in
contact with A, and the contact search terminates. Otherwise, A is
decomposed into two subsets A = A1 ∪A2 [3]. If the distance of the
two child bboxes (gray, yellow) of subset A1 to b or A2 to b exceeds
d, the respective subset is discarded. Alternatively, the child bbox is
further decomposed into two disjoint subsets (not shown), and so
on. Decomposition is terminatedwhen all subsets contain less than
a given minimum number of atoms. As a final step, the distances
of b to all atoms in the remaining subsets are determined, and the
indices i are stored for which ∥ai − b∥ < d.

Fig. 1(b) generalizes the above decomposition procedure to a
set B comprising more than one atom. In this case, the bbox is also
determined for B (blue), and B is also recursively split into subsets.
For each subset Bq, all sets Ap overlappingwith Bq are stored.When
the decomposition terminates, only the distances for atompairs i, j
in stored pairs of sets Ap, Bq need to be calculated.

2.3. Application to ensemble data

The algorithm is applied to each frame of a given trajectory.
Atom pair contacts are counted each frame. From these, the con-
tact frequency is calculated by dividing the contact count by
the number of frames analyzed. In addition to atom contact fre-
quencies, residue contact frequencies are determined by defin-
ing two residues to be in contact if any of their respective atoms
are in contact.

2.4. Efficiency

Four particular properties of the implemented algorithm render
it efficient. First, subsets are decomposed along the median atom
coordinates, which allows for the application of the median sort
algorithm [5] such that the number of atoms in each subset is bal-
anced in minimum run-time. Second, the order of atoms is kept
from the previously analyzed frame. Thus the sorting effort is re-
duced if similar frames are analyzed. Third, after splitting a set Ap
into subsets Ap1 , Ap2 , overlap with subsets Bq ⊂ B only needs to be
checked if Bq overlapped with Ap in the previous step, thus saving
a large fraction of overlap checks for newly generated sets. Fourth,
decomposition is stopped as soon as the brute-force approach to
identify contacts between subsets Ap, Bq becomes on averagemore
efficient than further decomposition at an empirically determined
upper boundary for the minimum set size nmin.

3. Software structure

The contact search algorithm described here is implemented in
C99. It uses the gromacs application programming interface (API)
provided with the MD package gromacs 4.6 [4].

4. Run description

4.1. Data input

Input arguments are trajectory file names (flagged -f), a gro-
macs index file name that contains two index groups specifying
each set of atoms (-n), a floating-point number that holds themin-
imum contact distance in nm (-d, by default d = 0.3 nm), and the
threshold for the largest number of atoms in any node (-bsize).
If the option (-resndx) is chosen, a gromacs structure file (-s) is
read.

4.2. Optional switches

The optional switch -nopbc ignores periodic boundary condi-
tions, speeding up the calculation; -resndx calculates the con-
tacts between two groups of residues instead of two groups of
atoms.

4.3. Data output

Contact frequencies are written to an output file (name given
in -o). If the flag -resndx is set, an additional index file (name
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given in -on) is written, which contains one index group for each
contacting residue and its atom indices.

4.4. Example runs

We performed example runs on a typical test case as well as on
a worst-case scenario.

A typical case is provided by a simulation of adenosine triphos-
phate (ATP) molecules in solution which bind to ribonucleic acid
(RNA) [6]. We used an MD simulation of a solvated RNA molecule
comprising 1166 atoms and two ATP molecules in solution com-
prising 86 atoms. The atom pairs and contact frequencies of RNA
and ATP that are closer than d = 0.3 nm were determined for
20000 frames of the simulation. The index-file reads:
[ RNA ]
1 2 3 4 5 6 7 8 9 10 11 12 13
...
1161 1162 1163 1164 1165 1166
[ ATP ]
1167 1168 1169 1170 1171 1172
...
1248 1249 1250 1251 1252 1253 .

The command to analyze the given trajectory traj.xtc is:
g_contacts -f traj.xtc -n index.ndx .

A worst-case scenario is provided by two highly overlapping
sets of atoms, where many set decompositions are required, and
only a few subsets can be excluded from the contact search. The
example considered here is a contact search in trajectories of a 1 ns
simulation of TIP3P water in a periodic cubic water box of 5, 6, 7,
8 and 9 nm length (i.e., 12 426, 21483, 34251, 51393, and 72768
atoms, respectively), which were screened for contacts between
sets of N consecutively labeled atoms. Contacts were searched
between N = 1, 21, 41, . . . , 981 atoms. The default distance cut-
off of d = 0.3 nm was applied.

The respective index-file for N = 21 and a 12426 atom simu-
lation reads:
[ group_1 ]
1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21
[ group_2 ]
6213 6214 6215 6216 6217 6218
...
6228 6229 6230 6231 6232 6233 .

The analysis of the trajectory stored in traj.xtc was per-
formed issuing the following command:
g_contacts -f traj.xtc -n index.ndx .

The residue-based contact search determines contacts between
water molecules, and was performed using
g_contacts -s traj.gro -f traj.xtc -resndx .

5. Comparison with other methods

To compare the set-decomposition algorithm and the brute-
force approach, the CPU clock cycles were counted that were
required for the respective contact search and the storage of the
contacts, excluding trajectory-file reading routines.

For the system containing ATP and RNA, the required CPU cycles
for contact search and storage were recorded for 101 analyzed
frames, which were analyzed every 0.2 ns in a 20 ns trajectory. A
speed-up of 9.1-fold was obtained for the implementation of the
set decomposition algorithm over the brute-force approach.

In the water box simulation, the required CPU cycles were
averaged over the analysis of 45 frames each. Fig. 2 illustrates that
our approach exhibits the expected N log(N) scaling, even in this
Fig. 2. Scaling for the set-decomposition approach versus a brute-force contact search
between two sets of N atoms for a cubic simulation box of 5 nm, 6 nm, . . ., 9 nm and
d = 0.3 nm containing water molecules. The number of CPU cycles (rescaled) used
exhibits an N log(N) scaling for the set-decomposition scheme (blue), while the
brute-force algorithm (red) scales with N2 . The gray inset shows the ‘‘cross-over’’
regionmagnified. The inset above shows the number of CPU cycles used normalized
to N log(N).

worst-case scenario. In contrast, the brute-force approach scales
quadratically. For smaller boxes, a deviation from the ideal scaling
behavior is observed. We attribute this deviation from N log(N)
scaling to the fact that the number of contacts increases with
decreasing box-size. The sorted list of lists approach employed for
book-keeping of the contact pairs found results in a slightly worse
overall complexity than N log(N) when very many contacts are
found. Further, set decomposition works more efficiently if the
subsets are less likely to overlap, which is the case for larger water
boxes, explaining the different scaling offsets.

In the current implementation, the ‘‘cross-over’’ in efficiency
between the set-decomposition algorithm and the brute-force
algorithm (Fig. 2) is seen at set sizes of ≈40 atoms each,
where the set-decomposition algorithm becomes faster. The set-
decomposition algorithm reaches a speed gain of about ten-fold at
≈900 atoms per set.
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