
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

Full correlation analysis of conformational
protein dynamics
Oliver F. Lange and Helmut Grubmüller*

Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11,

Göttingen 37077, Germany

INTRODUCTION

Collective motions of proteins are essential in many respects for protein

function, such as substrate binding and product release, regulation and allo-

steric behavior, as well as contractile and motor functions.1 Although recent

computational and algorithmic advances enable us to simulate protein dy-

namics accurately in realistic environments over hundreds of nanoseconds,2

extracting the functionally relevant collective motions from the molecular dy-

namics (MD) trajectory still poses a considerable challenge.3 The two most

widely used methods to determine these motions are normal mode analysis

(NMA)4–6 and principal component analysis (PCA).7–9

These two methods differ mainly in their respective assumptions what con-

stitutes functionally relevant motions. Since many functional processes

involve large and slow conformational changes (as opposed to small-ampli-

tude fast thermal vibrations), PCA selects those collective degrees of freedom

that contribute most to the total atomic displacements seen in the trajectory.

NMA, in contrast, is motivated by the desire to obtain uncoupled degrees of

freedom. Because of the required harmonic approximation, however, this sep-

aration is only very local in phase space, and anharmonic motions are not

captured well. Accordingly, for small molecules, and given a sufficiently accu-

rate force field or QM treatment, this approach reliably predicts infrared

vibrational spectra from the Hessian matrix, that is, the second derivatives of

the potential energy, and it has also been successfully applied to calculate

high frequency vibrational spectra of proteins.10 To what extent such a har-

monic approximation to a single local minimum of the potential energy sur-

face can characterize functional motions governed by the very complex multi-

minima energy landscape of proteins,11 however, is far from clear.

PCA partially circumvents this limitation, as it rests on the covariance ma-

trix of atomic displacements rather than on the Hessian matrix. Accordingly,

PCA is based on a multivariate Gaussian approximation to the (canonical)

configuration space density of the system, and the principal components may

be reinterpreted as (uncoupled) normal modes in an approximate harmonic

(quasi-harmonic) free energy surface.12,13 In contrast to NMA, this approxi-

mation is nonlocal, and thanks to the statistical mechanics approach PCA

also captures motions that result from visits to multiple minima, which for

applications to macromolecules is a major advantage of PCA over NMA.
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ABSTRACT

Correlated motions in biomolecules are

often essential for their function, for

example, allosteric signal transduction

or mechanical/thermodynamic energy

transport. Principal component analysis

(PCA) is a widely used method to

extract functionally relevant collective

motions from a molecular dynamics

(MD) trajectory. Being based on the co-

variance matrix, however, PCA detects

only linear correlations. Here we present

a new method, full correlation analysis

(FCA), which is based on mutual infor-

mation and thus quantifies all correla-

tions, including nonlinear and higher

order correlations. For comparison, we

applied both, PCA and FCA, to �100 ns

MD trajectories of T4 lysozyme and the

hexapeptide neurotensin. For both sys-

tems, FCA yielded better resolved confor-

mational substates and aligned its

modes more often with actual transition

pathways. This improved resolution is

shown to be due to a strongly increased

anharmonicity of FCA modes as com-

pared to the respective PCA modes. The

high anharmonicity further suggests that

the motions extracted by FCA are func-

tionally more relevant than those cap-

tured by PCA. In summary, FCA should

provide improved collective degrees of

freedom for dimension-reduced descrip-

tions of macromolecular dynamics.

Proteins 2008; 70:1294–1312.
VVC 2007 Wiley-Liss, Inc.

Key words: MD simulation; independent

component analysis; principal compo-

nent analysis; correlated motion; collec-

tive motion; protein dynamics; confor-

mational dynamics; lysozyme; mutual

information.

1294 PROTEINS VVC 2007 WILEY-LISS, INC.



Probably unexpected at first sight, those collective

modes that accumulate the largest fluctuation amplitude,

are those obtained from diagonalizing the covariance ma-

trix of atomic displacements.14 As a result, PCA identi-

fies exactly those collective modes whose covariances van-

ish. However, because the covariance matrix describes

only linear correlations, nonlinear correlations between

the PCA modes can—and often do—persist, as already

pointed out by Amadei et al.9 Furthermore, higher order

(i.e., multicoordinate) correlations between three or more

modes are also not detected.

Here we present a new method, full correlation analy-

sis (FCA), to obtain collective degrees of freedom which

minimize all, linear, non-linear, as well as multicoordi-

nate correlations. Avoiding harmonic and linear approxi-

mations altogether, we combine the advantages of PCA—

a nonlocal statistical mechanics approach—and NMA, to

yield uncoupled collective coordinates. To this aim, we

quantify the correlations by the measure of mutual infor-

mation (MI), which, derived from information theory,

captures in fact all types of correlation.15 For maximally

uncoupled collective coordinates, we suggest to minimize

the MI of the whole system by selecting from all possible

rotations in configurational space the coordinate trans-

formation with lowest MI.

To implement FCA we find help in the signal processing

field. There, minimization of mutual information is used

to extract independent sources from mixed signals, for

example, blind source separation (BSS)16 or independent

component analysis (ICA).17,18 These algorithms differ

from each other in three main aspects. First, the estimation

of MI can be either cumulant based, parametric (e.g., Fast-

ICA19), or nonparametric (e.g., MILCA20). Second, for

the minimization of MI, diverse methods like stochastic

descent, gradient descent, or a direct solution of the nor-

mal equations (e.g., FastICA) have been applied. Third, the

resulting coordinates can be linear (e.g., MILCA) or non-

linear (e.g., MISEP21). Combining and selecting suitable

features from these available algorithms, we developed an

algorithm tailored towards the specific needs of FCA of

biomolecular dynamics. We consider here, as a first step,

generalized correlations between linear collective coordi-

nates, though FCA can in principle also be applied to

extract non-linear coordinates.

In the Methods Section, we summarize basic properties

of MI and present the minimization algorithm. In the

Results Section we first evaluate our algorithm for a test-

system with known solution. Next, FCA is applied to a

117 ns MD trajectory of the T4 bacteriophage lysozyme

and to a 100 ns trajectory of the hexapeptide neuroten-

sin, and compared to PCA. Here, our main evaluation

criterion is the ability to reveal and resolve conforma-

tional substates. For neurotensin, we additionally investi-

gate to what extent PCA and FCA provide low-dimen-

sional free energy surfaces that accurately describe con-

formational transitions and thus are suitable essential

coordinates. Subsequently, we quantified the differences

of amplitude, collectivity, and anharmonicity of FCA and

PCA modes, as well as the remaining coupling between

pairs of modes. Convergence of FCA modes is finally

assessed by comparison to FCA modes extracted from a

multidimensional random walk.

MATERIALS AND METHODS

Definition of mutual information

We briefly summarize the definition of mutual infor-

mation, for more details see Refs. 22 and 23. We consider

a statistical ensemble in the 3N dimensional configurational

space of protein configurations r with mean structure hri.
The displacement vector x 5 r 2 hri consists of independ-

ent components, that is, the fluctuations in the coordinates

(x1, x2, . . . , x3N) are uncorrelated, if and only if

pðxÞ ¼
Y3N
i¼1

pi xið Þ; ð1Þ

where p(x) denotes the canonical ensemble density p(x)

5 Z21 exp[2bV(x 1 hri)], with partition function Z,

inverse temperature b, potential energy V(r), and mar-

ginal density pi(xi) 5 $p(x)dxj=i. Violations of Eq. (1)

due to possible correlations are quantified by the well-

known (Shannon) mutual information (MI),22,15

I x1; x2; . . . ; x3N½ � ¼
X3N
i¼1

H ½xi� �H ½x�; ð2Þ

where H[x] 5 2$p(x)log p(x)dx denotes the informa-

tion-entropy. This nonlinear measure quantifies any cor-

relation, that is, linear, nonlinear, and multicoordinate

contributions. In the following we exploit this property

by minimizing Eq. (2).

Full correlation analysis

We search an orthonormal coordinate transformation

R of the Cartesian displacement vector x with s(t) 5
Rx(t), such that I[s1, s2 , . . . , s3N] is minimal.

R is constructed iteratively by carrying out a sequence

of rotations which respectively act on two coordinates xi
and xj, respectively, that is, R 5

Q
kRik

jk(/k), where

Rijð/Þ � x1; . . . ; xi; . . . ; xj ; . . . ; xN
� �T

¼ x1; . . . ; ~xi; . . . ; ~xj ; . . . ; xN
� �T

;
ð3Þ

with

~xi ¼ xi cos/þ xj sin/; ~xj ¼ �xi sin/þ xj cos/:

A single plane rotation Rij(/) leaves the two-dimensional

information-entropy H[xi, xj] invariant, such that the

terms H[xi, xj] and H[x̃i, x̃j] cancel. Thus, MI changes by
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DIð/Þ ¼ I Rijð/Þx
� �� I x½ � ¼ H ~xi½ � þ H ~xj

� �

� H xi½ � � H xj
� �

:
ð4Þ

To find the global minimum of DI(/) in a specific rota-

tional plane, the angle / was optimized in two steps. At

first, the whole interval 0; p
2

� �
was sampled coarsely at 10

rotation angles {/l}l51. . .10. Subsequently, minimization

was refined within the interval [/k 2 D/, /k 1 D/],
where /k is such that DI(/k) is minimal and D/ denotes

the step-size of the coarse sampling. The refinement used

a combination of golden section search and parabolic

interpolation, as implemented in the MATLABTM

fminbnd function.24 The rotation planes for the minimi-

zation of MI were iterated with heuristically chosen coor-

dinate pairs (i,j) until convergence. The algorithm is

summarized by the following steps:

i. preprocessing: PCA to find an initial guess for R,

ii. heuristic choice of rotation plane (i,j),

iii. minimize DI(/),
iv. repeat from (ii) until convergence.

Heuristic choice of rotation planes

For the high dimensional configuration space of pro-

teins and other biological macromolecules the search

space becomes too large, and randomly chosen rotation

planes lead to slow convergence. We therefore developed

heuristic pivot searches for the selection of planes for

minimization of DI(/) that had the largest potential to

decrease MI. To this end, prior to every minimization

step rotational planes (i,j) were ranked according to pair-

wise correlation Iij 5 I[xi, xj], since for large correlations

a relatively high loss of mutual information upon mini-

mization is expected. Furthermore, unnecessary reevalua-

tions of already visited planes were avoided by using

weights wij that were initialized with one, and set to zero

after minimization in the (i,j)-plane. As rotation in the

(i,j)-plane increased the likelihood that an already visited

plane (i, k) or (j, k), k = i,j, allowed further optimiza-

tion, all respective weights were increased by |/|, thus

scheduling these planes for reevaluation.

Taken together, planes were evaluated in the order of

decreasing wi1j1
Ii1j1 > wi2 j2

Ii2 j2 > . . . , until four rotations

with |/| > 0.01 were found. Then the pairwise correla-

tions Iij were recomputed and a new succession wi1 j1
Ii1 j1

> wi2 j2
Ii2 j2 > . . . was devised.

Note, that the estimation of pairwise correlations Iij is

computationally demanding. Because, Iij was only used

for the heuristics, small errors in Iij were acceptable.

Accordingly, only those pairwise correlations were

updated, for which coordinates changed substantially. A

second book-keeping matrix mij was used to track these

changes. mij was set to zero after computation of Iij and

increased by |/| if the rotation-angle corresponded to a

(i,k) or (j,k) plane. For mij > 0.3 the respective correla-

tion Iij was re-evaluated. Convergence was assumed if all

wij � 0.01.

Mutual information estimates

The FCA algorithm described earlier requires numeri-

cal estimates of entropies H[xi]. Furthermore, the heuris-

tic selection of rotational planes requires the explicit

computation of pairwise mutual information I[xi, xj],

and hence estimates of H[xi, xj]. Accordingly, densities

pi(xi) and pij(xi, xj) of one- or two-dimensional distribu-

tions, respectively, had to be estimated from the ensem-

ble of coordinates xi provided by the trajectory.

The choice of method was guided by conflicting crite-

ria. On the one hand, the large number of evaluations

during the iterative minimization requires a computa-

tionally efficient estimator. On the other hand, suffi-

ciently high accuracy was required, because already small

absolute errors in the information-entropy estimates

H[xi] can cause large relative errors of their differences

particularly if the difference is close to zero. Here we

assumed that in typical applications of FCA the used

MD ensembles of >10,000 structures were sufficiently

large to render a fast kernel-smoothed histogram estima-

tor preferable over more accurate but computationally

much more demanding estimators such as spacing esti-

mates,25 k-nearest neighbor methods, or kernel density

estimators.26 To test this assumption, the accuracy of the

fast kernel-smoothed histogram estimator was compared

to an estimator based on a k-nearest neighbor approach

(see Results Section).

The details of the required information-entropy esti-

mation were as follows. The information-entropy H[xi]

of a one-dimensional ensemble {xi(tk)}k51. . .M was esti-

mated by counting occupations, nb, of b 5 1 � � � L1 bins,

with L1 5 200. The histogram was smoothed by convolu-

tion pb5
P

k52m
m nb1k gk/M, with a discrete Gaussian

function g(l) 5 (2pr2)21/2exp(2(lDx2/2r2)) and the

binning width r 5 k1Dx , evaluated at points l 5
2m � � � m, with m 5 3, and k1 5 1. From pb the infor-

mation-entropy of the ensemble {xi(tk)} was computed

according to H[xi] 5 2Dx
P

b51
L pb log pb.

Entropies of two-dimensional ensembles H[xi, xj] were

estimated by choosing L2 5 100 bins for every dimension

and widths ri 5 k2Dxi and rj 5 k2Dxj, respectively,

with k2 5 1.8. The reported parameter values L1, L2, k1,
and k2 were empirically choosen to yield good estimates

for Gaussian distributed data in the range of 10,000–

100,000 structures.

For efficiency reasons we did not implement a sophis-

ticated optimal bandwidth selection as, for example, in

Ref. 27. A computationally less expensive bandwidth

selection scheme26 was tested, but led to unacceptable

inaccuracies for distributions that deviated too much

from a Gaussian. Instead, the bandwidth was chosen by

O.F. Lange and H. Grubmuller
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adapting bin widths Dxi and Dxj such that a fixed num-

ber of bins (L1 and L2) covers the range between the

extremes of the respective distribution. In this way, a satis-

factory trade-off between efficiency, accuracy, and robust-

ness, was achieved.

Preprocessing of FCA

Before minimization of MI commenced, PCA was

applied to the Ca-atoms for the T4L example and to all

non-hydrogen atoms of neurotensin, respectively. For ef-

ficiency reasons only rotations within the subspace of the

first 100 eigenvectors were considered in both cases. The

small amplitude PCA modes are already sufficiently

uncoupled and, therefore, were not expected to change.

This preprocessing step greatly enhances the efficiency,

although it is not strictly required. In our experience a

minimization starting from atomic coordinates yields

similar FCA modes. Carrying out FCA on 100–200

degrees of freedom for ensembles of 10,000–30,000 pro-

tein structures, requires about 24–72 h on 6–10 of our

dual Intel Xeon 3 GHz nodes of a Linux cluster.

Ranking of FCA modes

To select ‘‘essential’’ FCA modes, they need to be

ranked. Rather than ranking by fluctuation amplitude

hxi2 as for PCA,9 we here ranked the FCA modes by

anharmonicity. The anharmonicity of a collective mode

was quantified by its negentropy,18

J xi½ � ¼ 1

2
1þ log 2pð Þ þ log hx2i i

� �� �� H xi½ �; ð5Þ

that is, the difference in the information-entropy of the

observed density and that of a Gaussian function with

the same variance. Note, that this definition, which we

consider more appropriate for the present purpose, dif-

fers from the one given in Ref. 28. The mode with the

highest anharmonicity was considered most essential, and

denoted by the lowest index.

Selection of pairs of FCA modes

The subspace of relevant FCA or PCA modes is gener-

ally more than three-dimensional, and thus difficult to

visualize. For exploratory data analysis and illustration, it

is necessary to project the motion to pairs or triples of

FCA modes, as it is customary for PCA modes.9 How-

ever, the number of possible projections can grow quite

large, and many projection pairs are redundant. The MI

used for FCA offers the advantage to more systematically

select pairs of modes that provide the best information,

for example, a selection of modes with highest pairwise

correlation. Accordingly, for the projections presented

below, each of the first 10 modes was paired with that

lower-indexed mode that showed the largest correlation

to it.

A simple test-system

As a first test we constructed a set of 10 independent

modes s(t) 5 (s1(t), s2(t) , . . . , s10(t)). To mimic typical

features of protein dynamics, five bimodal and five Gaus-

sian distributions were generated with 30,000 points

each. For the bimodal distributions, si(t) (i 5 1 � � � 5),
five 300 ns trajectories were computed from a one-

dimensional generalized Langevin model of the confor-

mational motion of the peptide neurotensin, which was

devised in Ref. 29. The five quasi-harmonic distributions,

si(t) (i 5 6 � � � 10), were drawn randomly from Gaussian

densities of differing widths hx2i1/2 5 1, 0.8, 0.6, 0.4, and

0.2, respectively.

The 10 modes were mixed by applying a random

orthonormal 10 3 10 matrix A, with x 5 As. A was

obtained from eigenvalue decomposition, that is, TTT 5
ALAT, where T denotes a 10 3 20 matrix whose ele-

ments were drawn from normal distributed random

numbers with unit variance, and L denotes a diagonal

matrix.

From the mixed components x 5 As recovery of the

rotation matrix R was attempted by FCA and PCA,

respectively. The accuracy of the obtained rotation matri-

ces RFCA and RPCA was assessed by computing inner

product matrices, ATRFCA
T and ATRPCA

T , as well as recov-

ered components, s̃FCA 5 RFCAx and s̃PCA 5 RPCAx.

Collectivity of modes

We computed the collectivity X of a mode from its

normalized direction vector in configurational space d 5
(d1,d2 , . . . , d3N), where N denotes the number of atoms,

which is given as a column of the product matrix

RFCARPRE, where RPRE denotes the 100 3 3N matrix

gained with PCA in the preprocessing step (see earlier).

To this end, the squared contribution ai
2 of the fluctua-

tion of atom i to mode s was computed as the sum of

the squared components that belong to atom i, i.e., ai
2 5P

j51
3 d3(i21)1j

2 . The collectivity was given by the informa-

tion-entropy of the distribution of motional contribu-

tions,

XðdÞ ¼ � 1

logN

XN
i¼1

a2i log a
2
i :

The normalization constant log N was chosen such that

for a mode to which all atoms contributed equally a col-

lectivity of one is regained.

The generalized correlation coefficient

To characterize the remaining coupling between FCA

modes, we used the pairwise mutual information I[xi, xj],
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which can be computed explicitly, in contrast to the full

MI of all 3N degrees of freedom, Eq. (2).

However, I yields values in the range [0� � �?), which

is unfamiliar and has no obvious interpretation. On the

contrary, the magnitude of the well-known linear Pearson

correlation coefficient r 5 jhxixji/(hxi2ihxj2i)1/2j, has the

familiar interpretation with r 5 1 fully correlated and r

5 0 uncorrelated, respectively. To allow a similarly intui-

tive interpretation also for I, we used the previously sug-

gested generalized correlation coefficient, rMI,

rMI xi; xj
� � ¼ 1� e�2I ½xi ;xj �=d

� �1
2

; ð6Þ

which yields—in case of purely linear correlations—the

same result as the Pearson coefficient, but also captures

nonlinear correlations,22 because it is derived from I.

Molecular dynamics simulations

A 117 ns molecular dynamics (MD) simulation, T4L,

was started from the crystal structure of coliphage T4 ly-

sozyme M6I (PDB entry 150L chain D). The protein was

solvated in 8898 TIP4P water molecules and 8 Cl2 coun-

ter ions using a rectangular box.

For a second simulation neurotensin (a peptide with

the sequence Ac-RRPYIL30), was solvated with 2246

TIP4P water molecules and 2 Cl2 counter ions in a cubic

box. A 100 ns simulation was started from an extended

configuration of the peptide.

All MD simulations were carried out using the Gro-

macs simulation suite31 together with the OPLS all atom

force field.32 Lincs and Settle33,34 were applied to con-

strain covalent bond lengths, allowing an integration

time-step of 2 fs. Electrostatic interactions were calcu-

lated using the Particle-Mesh-Ewald method.35,36 The

temperature was kept constant by separately coupling the

peptide and solvent to an external temperature bath (s 5
0.1 ps).37 The pressure was kept constant by weak iso-

tropic coupling to a pressure bath (s 5 0.1 ps).37 Prior

to analysis, all recorded structures were superimposed to

the crystal structure as a reference.

Conformational transition of neurotensin

Calculation of free energy surfaces G(s1, s2) 5 b21

log q(s1, s2) on a subspace spanned by pairs of modes

(s1, s2) required determination of the density q(s1, s2) of

the projected MD ensemble. This density was estimated

by smoothing a two-dimensional histogram (150 3 150

bins) with a Gaussian function of widths r1 5 3Ds1 and

r2 5 3Ds2, respectively, where Ds1 and Ds2 denote the

bin widths. The superposed trajectories shown in Figure

8 were obtained by projecting the MD trajectory onto

the respective modes and subsequent smoothing with a

Gaussian function of width r 5 20 ps.

RESULTS AND DISCUSSION

Accuracy of entropy estimates

For efficiency reasons the MI was calculated from a

relatively crude but fast estimator based on histograms.

To evaluate the accuracy of this approach estimates were

compared with those obtained from the recently devised

k-nearest neighbor approach of Kraskov et al. as a refer-

ence. This estimator is unbiased and was found to be

more accurate than a number of other methods.38 To

this end, MI estimated from Gaussian distributions

with random widths were compared to MI calculated

analytically.

Estimates of entropies determined via a histogram gen-

erally depend on the chosen bandwidth, which is given

here by the size of the bins. The optimal bandwidth

depends on the statistics of the data, and usually this op-

timum even shifts in dependence on the number of sam-

ple points. In our approach the bandwidth was deter-

mined implicitly by using a fixed relation of bandwidth

to bin-size (k1,k2) and by using a given number of equi-

distant bins for the range spanned by the data points

(see Methods). Being aware of a possible shift in optimal

bandwidth, we checked whether the implicitly chosen

bandwidth yields sufficient accuracy for both boundaries

of the envisaged range of M 5 104� � �105 of sample

points.

In Figure 1 MI estimated with both, the histogram

method and Kraskov’s method, are plotted against the

analytically obtained MI for M 5 2 3 104 and M 5 105

(cf. inset) sample points. As can be seen, estimates from

the histogram method were not less accurate than those

Figure 1
Estimation of correlation for Gaussian distributed random data sets. rMI values

estimated with the histogram method (crosses) and with the method of Kraskov

et al.38 (circles) is plotted against analytically computed rMI. The inset shows

the same comparison, but with 105 sample points used.
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of the reference method. In particular, in the low correla-

tion regime the histogram estimates were even more

accurate than Kraskov’s estimates.

Above we have shown that the histogram based

approach obtains accurate estimates of MI for Gaussian

distributions. To rule out a significantly lower accuracy

for non-Gaussian distributions, we checked also MIs of

distributions obtained from molecular dynamics data of

T4 lysozyme using Kraskov’s method as a reference

(results not shown). The achieved correlation with the ref-

erence (correlation coefficient r 5 0.98) shows that for

MD ensembles the histogram method reaches nearly the

accuracy of the computationally much more expensive

method. Therefore, we chose the faster histogram method

for FCA.

We note that a very recently developed method39

offers high accuracy at computational costs comparable

to the histogram method, but had not yet been available

at the time when the presented work was performed.

Meanwhile, we have, however, implemented the newer

approach into our FCA software.40

Application of FCA to a mock-protein
ensemble with known result

As a first test, we applied FCA and PCA to a synthetic

example where we already knew the coordinate transfor-

mation AT that transforms the atomic coordinates x of a

mock-protein ensemble into uncoupled modes s1(t),

s2(t), . . . , s10(t).
To quantify the results, note that the directions of the

original components si in the atomic coordinate system x
are given by the columns of A. Hence, an accurately
identified mode would yield an inner product near unity
with exactly one of the columns of A. Figure 2(a) shows
the respective inner products for PCA modes. Apparently,
the field of gray boxes in the upper left shows that
PCA was not able to recover the anharmonic modes
s1,s2, . . . , s5, whereas the black boxes in the lower right
demonstrates that the quasi-harmonic modes s6, . . . , s10
were retrieved successfully. For FCA, encouragingly, all
10 independent components were accurately recovered,
as shown by 10 inner products near unity [black boxes,
Fig. 2(b)].

Figure 2
(a,b) Inner products of PCA (a) and FCA (b) modes with the directions of the independent components si. The black squares denote inner products of near unity. (c,d)

Projections of the test-ensemble onto the first two modes calculated from PCA (c) and FCA (d), respectively.
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As a consequence, the projection to the first two FCA

modes shown in Figure 2(d) revealed correctly the

peaked structure of the conformational density, whereas

this structure is completely obscured in the projection to

the first two PCA modes [Fig. 2(c)], as it is the case for

any other combination of PCA modes (not shown).

FCA aims at finding collective coordinates that are the

least correlated. To assess all pairwise correlations, Figure

3 displays histograms of all off-diagonal matrix elements

of the generalized correlation matrix rMI[ci, cj], with ci
denoting either the pseudo-atomic coordinates xi, the

PCA or FCA modes, or the original input coordinates si,

respectively. As can be seen the pairwise correlations

were significantly reduced for pairs of FCA modes com-

pared to PCA modes. Small correlations below 0.1

between FCA modes remain, which are due to the finite

number (30,000) of sample points and statistical inaccur-

acies in their estimation (cf. Fig. 1). Accordingly, these

remaining correlations also appear between pairs si,sj of

the input modes, which are uncorrelated by construction.

As expected, PCA achieved only partial reduction of the

correlations.

In this test example the algorithm clearly reached the

overall minimum of mutual information. However, it

should be stressed that there is no guarantee that the

global minimum is always found. Mutual information

depends nonlinearly on the chosen directions of the

FCA-modes, such that it is likely that also local minima

are visited by the FCA algorithm. Choosing the global

minimum for every single rotation plane allows the algo-

rithm to leave most local minima, although it may get

stuck in a local minimum if concerted rotations in multi-

ple planes are required to reach lower values of mutual

information. We should point out, however, that the

(known) global minimum for the presented test-case (cf.

Fig. 2) was always found independently of various start-

ing conditions. Moreover, our experience showed that the

minimization always proceeded sufficiently far to yield

collective coordinates of similar beneficial characteristics.

Nevertheless, further work should address this issue.

Whereas this first test case was quite illuminating, it

lacked the likely property of protein dynamics that there

are no fully uncoupled modes. Therefore, we tested

whether FCA is able to reverse the mixing also in cases

where the known solution contains coupled modes.

Indeed, FCA also solved such test examples that were

constructed to contain pairs and triples of coupled co-

ordinates (results not shown).

This further test directly bears on the ability of FCA to

handle nonlinear motions. For PCA separation of nonlin-

ear motion cannot be achieved unless nonlinear coordi-

nates are considered, which, however, involves consider-

able technical and conceptual challenges.41–43 Also FCA

considers linear (orthonormal) transformations of the

atomic Cartesian coordinates. Thus, uncorrelated curvi-

linear motions will not be represented by single FCA

modes. However, in contrast to PCA, FCA does separate

also curvilinear motions into blocks of modes which

have high intra- but no(low) inter-block correlation.

Consider, for example, two uncorrelated circular

motions. FCA will describe these using four FCA modes.

Each circular motion represented by a block of two

highly correlated FCA modes (i.e., the sin and cos com-

ponent of its phase), whereas there is no correlation

between modes from different blocks. As reported earlier,

we successfully tested the algorithm on mock-protein

ensembles that contained pairs or triples of coupled

coordinates, which resulted in correlated blocks of FCA

modes. Moreover, this block-structure due to nonlinear

motion is observable in one of the real-world examples

presented later [cf. Fig. 15(b), e.g., modes 1/2, 26/27, 28/

29]. Nevertheless, it might be worth-while to integrate

the recent nonlinear coordinate approaches into the

framework of FCA, although their benefit is here likely

to be less pronounced than for PCA.

Before proceeding to the application of FCA to real

proteins, we briefly discuss the relation of the FCA algo-

rithm to algorithms used for the related Independent

Component Analysis (ICA) known from signal process-

ing (cf. Introduction).

The aim of ICA is to recover the underlying independ-

ent sources from a recorded multichannel signal of their

observed mixture. Within the context of molecular simu-

lations, the Cartesian coordinates represent observation

channels, and the collective motions are the putatively

independent signals supposed to be recovered. ICA algo-

rithms usually simplify the search problem by applying

the so-called pre-whitening, that is, a scaling which

imposes unity on all eigenvalues of the covariance

Figure 3
Histogram of generalized correlation coefficients between pairs of coordinates.

The four histograms count correlations between the si (unmixed), the xi (mixed),

and between PCA and FCA modes, respectively.
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matrix19,44,23 and thereby remove possible scaling bias.

On the contrary, for protein dynamics the relative ampli-

tudes of all coordinates are important. Therefore, the

simplification offered by pre-whitening was not applied

here. Moreover, in analogy to PCA, FCA was set-up to be

restricted to rotations in configurational space, thereby

conserving the geometry of the conformational ensemble.

One particular purpose of this restriction was to keep

phase space volumes unchanged, thus enabling a straight-

forward computation of thermodynamics quantities such

as free energies or entropies.

The algorithm devised for FCA is an adaption of

MILCA, which outperforms many other ICA algorithms.20

The main changes upon MILCA lie in the treatment of

MI. For FCA, the sum of single dimensional entropies, Eq.

(4), was minimized directly, whereas MILCA minimizes

pairwise MI. At first glance, this is equivalent, that is, in

analogy to Eq. (4) MILCA uses

DIð/Þ ¼ I Rijð/Þx
� �� I x½ � ¼ I ~xi; ~xj

� �� I xi; xj
� �

: ð7Þ

However, this implicitly [cf. Eq. (2)] involves estimation

of two-dimensional entropies H[xi,xj] and H[x̃i,x̃j], which

renders DI(/) prone to statistical errors because of the

near cancellation of large information-entropy values (as

discussed earlier). Because of these inaccuracies, the right

hand side of Eq. (7) is a highly rugged function, such

that identification of the global minimum proves diffi-

cult. Applying here Eq. (2) instead of Eq. (7) renders

DI(/) much smoother such that we require about a tenth

of the evaluations of DI(/) in a single rotation plane.

As a further difference to MILCA rotational planes

were here chosen systematically, which increased conver-

gence speed.

Conformational motion of lysozyme
analyzed with FCA

Having provided evidence that the FCA algorithm

works as intended we applied FCA to a real protein sys-

tem, T4 lysozyme. We have chosen this protein because

it exhibits pronounced domain motion, which is essential

for function of T4L allowing the substrate to enter and

the products to leave the active site.45–48 Accordingly,

the ensemble of T4L structures gained from a 117 ns MD

Figure 4
Projections of T4L MD simulation trajectories onto the first 10 PCA (left) and FCA modes (right), respectively.
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simulation was analyzed with FCA and, for comparison,

also with PCA.

Figure 4 shows 10 projections onto PCA (left) and

FCA (right) modes as a function of time. As can be seen

virtually all projections to FCA modes show pronounced

differences from those to PCA modes, with the single

exception that PCA mode 1 is nearly identical to FCA

mode 6. Overall, and in contrast to PCA modes, the fluc-

tuations in the FCA modes are relatively small, only in-

terrupted by larger transitions.

We note that in Figure 4 PCA modes were sorted by

fluctuation amplitude, whereas FCA modes were sorted by

anharmonicity (cf. Methods). We consider such direct

comparison of the differently ranked modes justified, since

the ranking scheme is an essential part of the respective

methods. Nevertheless, neither in the highly anharmonic

nor in the large amplitude PCA modes, transitions were

as clearly distinguishable from the background fluctuations

as in PCA mode 1 or FCA modes 1–10.

This crucial feature becomes even more apparent when

turning to projections of the MD ensemble of T4L onto

pairs of PCA and FCA modes. This type of projections is

often used for analysis of conformational states and transi-

tions between them, because it reveals conformational

states as clusters of points. Figure 5 shows projections of

the MD ensemble of T4L onto those pairs of FCA modes

that were selected based on correlation and anharmonicity

using the protocol described in Methods. As can be seen

in the presented projections, the colored points, which

each represents a particular structure of T4L, cluster into

many different conformational substates. In Panel (a), for

instance, three clearly separated clusters are visible. Note

that the color chosen for the different frames is the same

in all panels to allow re-identification of configurations in

the different projections. For example, in Panel (b) the

blue points with very low values of FCA mode 3 consti-

tute a different conformational substate than the red

points separated off in Panel (a) by mode 1. Similarly, by

using all presented projections, we assigned a different

color to all identified conformational substates.

Strikingly, the projections to pairs of FCA-modes often

adopted an L-shape. Thus, FCA tended to describe tran-

Figure 5
Projections of a 117 ns T4L MD simulation trajectory of T4L onto pairs of FCA modes. The presented pairs of FCA modes were selected based on pair correlations and

anharmonicity, as described in Methods. The temporal sequence of frames is color coded (see-text).
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sitions between two conformational substates with a sin-

gle FCA mode. For instance, mode 2 described a transi-

tion in Panel (a) from the center cluster (blue, green,

and yellow points) towards the cluster on the left (cyan

and magenta points). Following this mode through all

panels shows that mainly two conformations, that is, the

cyan cluster and the green cluster, were involved in this

transition, since all other conformations (blue, yellow,

and red) had interconverted with the green conforma-

tions via modes 3 (Panel b), 4 (Panel c), and 1 (Panel a),

respectively, before they underwent transitions to the

cyan conformations via mode 2. Possibly also the ma-

genta conformations (Panel i) were involved in the cyan–

green interconversion. Taken by itself, however, the pro-

jection shown in Panel (i) of Figure 5 did not allow to

decide whether the magenta conformations were reached

from the cyan conformations after the transition along

mode 2 had taken place or as an intermediate substate

during the transition. As revealed by the time informa-

tion of the FCA modes shown in Figure 4, the latter is

the case. The magenta conformations were visited as in-

termediate substate (48–52 ns, Fig. 4) during the course

of the main transition along mode 2 (48–56 ns, cf. Fig.

4). Accordingly, the simultaneous motion along the two

modes shows up in Figure 5(i) as a diagonal connection

between the green and magenta clusters. The intermedi-

ate substate was not visited during the back-transition to

the green conformations (65–65.5 ns, cf. Fig. 4). Hence,

FCA tended indeed to describe transitions between major

conformational states by single modes, whereas minor in-

termediate conformational substates, that is, a more

detailed picture of the transition pathway, became only

resolved with additional FCA modes.

For comparison, Figure 6 shows projections of the en-

semble to pairs of the first five PCA-modes. From projec-

tions (a, b, c, d, and g), also a clustering into two or

three conformational substates may be inferred, albeit

much less resolved, as observed previously.49 To re-

identify the conformational substates revealed previously

by FCA in the projections to the PCA modes, the same

color-code as in Figure 5 was used in this plot. Appa-

rently, most conformational substates revealed by FCA

overlapped strongly in the projections to PCA modes,

such that only in the projection to mode-pairs 3:2 and

Figure 6
Projections of a 117 ns T4L MD simulation trajectory onto pairs of PCA modes. The coloring of the points corresponds to that in Figure 5.
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5:1 [Fig. 6(c,g), respectively] an assignment of points to

their respective clusters would have been unambiguous.

Nevertheless, as seen from the colors, also in these pro-

jections several different conformational substates would

be assigned to the same super-state, with insufficient re-

solution to reveal the finer substructure.

Moreover, Figure 6 indicates that the tendency of FCA

to align its modes with actual conformational transi-

tions—that is, to uncouple these transitions—is not

shared by PCA. For example, the transition along FCA

mode 2 was described by PCA modes 2 and 3, and to a

lesser extent also by PCA mode 4. Consequently, motions

which do not contribute to the transition were also

mapped onto these PCA modes, thereby, causing their

large fluctuations during the whole simulation length (cf.

Fig. 4).

To visualize which motions are actually described by

the obtained FCA modes, Figure 7 shows superpositions

of three structures obtained by projecting the Ca motion

of T4 lysozyme onto four selected FCA modes. FCA

mode 1 [cf. Fig. 7(a)] corresponds to a local swiveling

motion of the 3 N-terminal residues, whereas FCA

modes 2 and 3 describe a similar motion of the C-termi-

nus (not shown). FCA mode 4 and 9 [Fig. 7(b,d)],

describe collective motions involving the whole C-terminal

domain and helix 1. FCA mode 6 [Fig. 7(c)]—as well as

the identical PCA mode 1—show a highly collective

motion of the whole protein.

FCA modes 6 and 21 (not shown) describe the previ-

ously identified closure and twist motion of the two

domains relative to each other.49 FCA modes 4 and 9,

reveal more intricate details of the dynamics. Along FCA

mode 4 a bundle of the four parallel helices in domain 2

(H5, H7, H8, and H10) rotates inwards pushing the

functionally important H1 such that its axis tilts out-

wards. FCA mode 9 reveals an opening of domain 2 by

moving H9 outwards that is correlated to a shift of the

inner plane constituted by helices H1, H5, H6, and H7

against the outer plane of H8—H10.

The presented projections of the T4L ensemble to FCA

modes showed a substantially improved resolution of

conformational substates as compared to PCA modes.

Furthermore, transitions between substates are described

by single FCA modes, suggesting that FCA is particularly

Figure 7
Superposition of three T4 lysozyme configurations obtained by projecting its Ca motion of T4 lysozyme onto the respective FCA mode.
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suitable to yield optimally uncoupled conformational

coordinates (reaction coordinates), which is an indispen-

sable prerequisite for dimension reduced approaches. The

following subsection further explores the suitability of

FCA for dimension reduced descriptions.

Conformational transitions of neurotensin
with FCA

For a dimension reduced description of conforma-

tional dynamics, free energy surfaces of low dimensional

subspaces spanned by (collective) degrees of freedom

need to be computed. In most cases chemical and/or

physical intuition is used for selection of collective coor-

dinates (also named order parameters), such as center of

mass distances, approaching angles, radius of gyration,

and so forth. However, the particular choice of coordi-

nates critically determines the quality of the dimension

reduced description, and unsuitably chosen coordinates

can lead to wrong reaction pathways, barrier heights, and

transition rates. The main cause of such artifacts are con-

formational substates that are well separated in full con-

figurational space, but projected such that they overlap

in the subspace, and, therefore, their separating free

energy barrier seems too low. Therefore, any improve-

ment in the ability to separate substates also implies

improved description of the dynamics within the

subspace.

As discussed previously, both, PCA and FCA, enable a

systematic selection of suitable collective degrees of free-

dom for such a reduced description. As shown in Figures

5 and 6 above, FCA modes yielded an improved resolu-

tion of the substates, and less modes were needed to

describe a conformational transition. In the following

comparison, we focus on the quality of free energy surfa-

ces spanned by selected pairs of modes. As an illustra-

tion, we will compare the pathways of transitions actually

observed by MD with pathways obtained from the topog-

raphy of the free energy surfaces.

Figure 8(a) shows free energy surfaces of two PCA

modes derived from a 100 ns MD simulation of neuro-

tensin. Two major conformational states, denoted A and

B, were identified as two shallow basins of the free energy

surface (blue). The two minima are connected by a chan-

nel of relatively low free energy, implying a putative tran-

sition state at (s1, s2) � (20.5,21) (cross), which is � 1

kBT lower in energy than the remaining transition region

(white bar). One would, therefore, expect to find most

transitions between the two conformational states to pro-

ceed through this channel. However, quite the contrary

was observed: As can be seen from the smoothed trajec-

tory (black), all successful transitions occurred via the

region between 20.5 < s2 < 1.5 (white bar), where the

energy is about 1 kBT higher than the suggested transi-

tion channel. In fact, only two (unsuccessful) crossing

attempts (arrows) explored the putative lowest free

energy path, with subsequent immediate return to state

B. This peculiar behavior was explained by including

more PCA modes into the analysis. Rather than reaching

state A, the system remained in a protrusion of confor-

mational state B, whose projection just happened to

overlap with the projection of conformational state A

(data shown in Ref. 29). It is this overlap that caused by

Figure 8
Free energy surfaces derived from neurotensin MD trajectories: the smoothed

projected trajectories are plotted (black) on top of the free energy surface (colors)

in projections to (a) two PCA and (b,c) two FCA modes, respectively. Smoothing

with a Gaussian kernel function (filter width 10–20 ps) suppresses intra substate

fluctuations and reveals the transitions more clearly. The two arrows in (a)

denote two unsuccessful transition attempts, which due to a projection artifact

create the wrong impression of a transition from state B to state A, see text.
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inappropriate projection the misleading low free energy

channel.

Can FCA provide an improved energy landscape?

Figure 8(b) shows pair number four (modes 4 and 8)

from the first nine automatically selected pairs (cf. Meth-

ods) that showed the most pronounced clustering. In

this FCA projection each of the conformational states A

and B separates into three subclusters, and the transition

pathways agree well to the low free energy valleys. But

even if those FCA modes were selected that are most

similar to PCA modes 1 and 2 [Fig. 8(c)] an improved

free energy landscape is obtained. As in Figure 8(a), two

conformational states are resolved, but here the channel

of lowest free energy does agree with the observed transi-

tion pathways. Moreover, FCA mode 19 revealed a sub-

structure of conformational state A, which was not

resolved by the PCA modes.

The presented results suggest that FCA modes cause

less projection artifacts than PCA modes. In this sense,

the collective coordinates extracted by FCA render pro-

tein conformational dynamics better accessible to dimen-

sion reduced dynamics.

Comparative analysis of PCA and FCA
modes

The previous sections have shown distinctly different

characteristics between projections of protein dynamics

onto FCA modes and onto PCA modes. To pin-point the

origin of these changes, we will subsequently characterize

the differences between FCA and PCA modes.

First, the directions of FCA and PCA modes were

compared. To this end, their mutual colinearity was

quantified by inner products depicted in Figure 9 for T4

lysozyme and in Figure 10 for neurotensin. On the left

hand side of both figures, the FCA modes are sorted by

their degree of anharmonicity as defined and used in the

previous sections; on the right hand side they were

sorted by fluctuation amplitude. The figures show that

ordering of FCA modes by anharmonicity prevents a

direct comparison with PCA modes. Therefore, and to

avoid any confusions, we will sort in the following both,

FCA and PCA modes, by fluctuation amplitude.

For T4 lysozyme, Figure 9(b) shows that almost all

FCA modes differ from PCA modes (the maximum inner

product with a PCA mode is below 0.9). In particular,

from the low indexed FCA modes only the directions of

mode 1 (previously mode 6) and mode 6 (previously 23)

are colinear to PCA modes. Nonetheless, it is evident

that specific FCA modes are generally contained in a

low-dimensional subspace spanned by PCA modes of

similar amplitude. For instance, many PCA modes below

30 contribute to FCA mode 7, and FCA mode 50 is a

combination of PCA modes between 30 and 80. Thus,

the PCA and FCA subspaces of large amplitude modes of

T4L overlap to a large extent, although the directions of

their respective basis vectors differ. Note that this finding

justifies the restriction of the FCA minimization on a

sufficiently large subspace spanned by PCA modes

instead of a direct minimization of all atomic coordinates

(see Methods).

For neurotensin (NT), FCA modes were generally less

colinear with PCA modes than for T4L [cf. Fig. 10(b)].

Figure 9
Inner product matrices between FCA and PCA modes of T4 lysozyme, sorted by (a) degree of anharmonicity and (b) fluctuation amplitude.
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However, only the first 10 PCA modes contributed signif-

icantly to the first 10 FCA modes, that is, the large

amplitude subspaces overlapped, as observed already for

T4L.

An important and often exploited property of princi-

pal components of protein ensembles is the fast decrease

of their fluctuation amplitude. Figure 11 shows that for

both test systems the fluctuation amplitude of FCA

modes does not differ significantly from that of the PCA

modes, although FCA optimizes mutual information

instead of the fluctuation amplitude. Therefore, the often

very useful property of PCA that the first few modes

describe a major part of the total atomic displacement of

the protein ensemble,9 is shared by FCA.

Aiming at functionally relevant motions one is gener-

ally not interested in extracting modes that describe very

local motions, for example, displacement of single Ca-

atoms or the flip of single side chain dihedrals. Low-

indexed PCA modes are known to be typically highly col-

lective, since they maximize the fluctuation amplitude,

which is generally the larger the more atoms are

involved. FCA, on the contrary, has a less direct link to

collectivity. To address this aspect, Figure 12(a) compares

the collectivity of FCA and PCA modes. As can be seen

three FCA modes of T4L exhibit indeed a relatively little

collectivity. These modes describe the swiveling motion

of either 3 C-terminal or 3 N-terminal residues [cf. Fig.

7(a)]. The two PCA modes with lowest collectivity simi-

larly described such swiveling motions of the terminal

residues, but were less focused at it, such that their col-

lectivity was slightly higher than that of their FCA coun-

terparts. All other FCA modes had a collectivity similar

as PCA modes. For NT, the collectivities of FCA and

PCA were also very similar [cf. Fig. 12(b)]. Unexpectedly,

here the most localized modes were obtained by PCA.

So far we have shown that, amplitudes and collectiv-

ities of FCA and PCA modes did not differ very much.

In harsh contrast, Figure 13 reveals large differences for

the anharmonicities, Eq. (5). The shown scatter plot of

anharmonicity and collectivity reveals that for both test

systems, T4L and neurotensin, only FCA combined high

collectivity and high anharmonicity. In particular, for

Figure 10
Inner products between FCA and PCA modes of neurotensin. In the left plot the FCA modes are sorted by anharmonicity and in the right by fluctuation amplitude.

Figure 11
Fluctuation amplitude of PCA and FCA modes of T4 lysozyme (T4L) and

neurotensin (NT). FCA modes are sorted by fluctuation amplitude.
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both proteins FCA increased the anharmonicity of the 10

most anharmonic modes on average by more than one

order of magnitude.

This result suggests the high anharmonicity as a possi-

ble reason for the improved resolution of conformational

states obtained by FCA as documented in the two previ-

ous sections. Indeed, the two PCA modes that were

unable to resolve the conformational states of NT suffi-

ciently well [cf. Fig. 8(a)], show both a lower anharmo-

nicity than their corresponding FCA modes [dashed

arrows, Fig. 13(b)]. The other two labeled FCA modes

[solid arrows, Fig. 13(b)] improved the resolution of

conformational substates even further [cf. Fig. 8(b)], in

agreement with their high anharmonicity.

Note that for T4L the fluctuation amplitude of modes,

which is color coded in Figure 13(a), is uncorrelated to

both, collectivity and anharmonicity. High amplitude

modes (red) are seen to occur everywhere in the plot,

even for those FCA modes with low collectivity and high

anharmonicity, which describe the largely irrelevant swiv-

eling motion of the terminals. For NT, fluctuation ampli-

tude correlated with collectivity but not with anharmo-

nicity. Hence, a selection of functionally relevant modes

based purely on amplitude is expected to be less informa-

tive than one based on a combination of high collectivity

and high anharmonicity.

Remaining correlations between pairs
of modes

As noted earlier, FCA differs from PCA in its criterion

to select modes that are the least coupled, whereas PCA

identifies modes based on maximal motional amplitude.

In the previous section, we have seen that in spite of

these different objectives both methods yield coordinates

that show remarkably similar amplitudes of atomic dis-

placement (cf. Fig. 11). In this section we want to analyze

to what extent the objective of FCA to minimize mutual

information actually reduces the coupling between modes

compared to PCA.

To this aim we quantified the correlation between pairs

of modes for both approaches. Figure 14(a) shows that

only the first 10 PCA modes of T4L exhibit large mutual

correlations (rMI > 0.2). FCA reduces these correlations

to a certain degree, although the reduction may be less

pronounced than expected [cf. Fig. 14(b)]. However, the

small correlations, which occurred sporadically between

Figure 12
Collectivity of the motion described by PCA and FCA modes of (a) T4 lysozyme

and (b) neurotensin. FCA modes are sorted by fluctuation amplitude.

Figure 13
The collectivity of PCA and FCA modes is plotted against their anharmonicity. The color gradient from blue to red is in accordance to an increasing fluctuation

amplitude of the respective modes (quantified as log(Vi/Vmin), where Vi 5 hci2i) (a) T4 lysozyme. (b) neurotensin; the arrows mark those modes which have been used

above to determine the free energy surface in the respective figures.
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higher indexed PCA modes, were completely removed by

FCA.

For NT the situation differs in two aspects [cf. Fig.

15(a,b)]. First, all PCA modes of NT showed significant

mutual correlations. Second, correlations for both, high

and low indexed modes, were drastically reduced by

applying FCA, as indicated by the much lower average

pair correlation for all FCA modes (solid line). The max-

imal pair correlations, however, (dashed lines) remain

high and even increased in some instances.

As seen in the inset in Figure 15(b), remaining correla-

tions constituted small clusters of coupled modes. Thus,

FCA successfully identifies uncoupled motions in NT, but

these are described by multiple linear FCA modes. This

finding was expected, since, for example, a rotational

motion of a side-chain requires more than one linear

mode for its description.

Why did FCA not achieve a similar separation into

uncoupled (multidimensional) modes for T4L? As a possi-

ble explanation, we suggest that the 117 ns MD simulation

of T4L provides less complete sampling of configuration

space compared to the trajectory of the much smaller NT.

Thus, some modes of conformational motion of T4L were

excited only once because of the short simulation time. For

these modes ‘‘misleading’’ correlations are likely to be

detected, because any coincidental excitation of two differ-

ent modes yields a correlation of the respective modes in

the generated MD ensemble. For longer trajectories with

multiple transitions along these modes, these ‘‘misleading’’

correlations would vanish. In particular, T4L underwent a

slow opening motion of its two domains described by FCA

mode 1 [FCA mode 6 in Fig. 4(a)]. During one half of the

simulation, T4L was closed and opened during the other

half. Accordingly, all motions which occurred only once

created ‘‘misleading’’ correlations with mode 1, which is

also reflected by the high number of strong correlations of

mode 1 to others, as seen in the inset of Figure 14(a,b).

Convergence of FCA

With respect to convergence, we would expect FCA to

perform similarly as PCA. In particular, the notorious

Figure 14
Mutual correlation between pairs of FCA and PCA modes of T4 lysozyme. The

plots show correlations between pairs xi,xj quantified by the generalized

correlation coefficient rMI [xi,xj] for PCA (a) and FCA (b). For every mode xi
(horiz. axis) the correlations with higher indexed modes rMI [xi,xj]j>i were

plotted (gray dots) together with the respective average (solid line) and the

maximum correlation with a higher mode (dashed line). The inset shows, gray-

scale coded, the mutual correlations between the first 30 modes.

Figure 15
Correlation between pairs of FCA and PCA modes of neurotensin. The plots

show correlations between pairs xi,xj. The inset shows the mutual correlations

between the first 30 pairs of modes. For details see caption Figure 14.
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sampling problem in MD simulations of macromolecules

will likely be reflected in similarly slow convergence of

both PCA and FCA modes. The remarkable and at first

sight quite surprising effect of an insufficiently sampled

protein dynamics on its principal components was illus-

trated by Hess,50,51 who showed that projections to

principal components obtained from short MD trajecto-

ries, as for example, found in Ref. 9, are very similar to

principal components of a random walk. In particular,

the projections to the first PCA modes of a random walk

show sine and cosine shaped curves of large ampli-

tude,50,51 as can be seen in Figure 16(a). This result

enables one to identify those artificial large amplitude

‘‘features’’ in projections onto principal components that

stem from incomplete sampling rather than from func-

tionally relevant transitions between distinct conforma-

tional states.

Following these lines, we also applied FCA to a ran-

dom diffusion [Fig. 16(b)]. The shown projections exhi-

bit large amplitudes and slow transitions, as seen previ-

ously for PCA modes. However, in contrast to FCA

modes of the T4L ensemble (cf. Fig. 4) the random

walk FCA modes display more gradual transitions than

the T4L FCA modes, suggesting that—apart from FCA

mode 6—all FCA modes of T4L displayed in Figure 4

did converge to a sufficient extent. On the contrary, such

a clear distinction between projections of random diffu-

sion and the T4L ensemble cannot be established for

PCA (cf. Fig. 4).

CONCLUSIONS

With FCA we have developed a new approach to

extract a dimensionally reduced description of function-

ally relevant macromolecular motions from configura-

tional ensembles. FCA minimizes the coupling, that

is correlation, between the coordinates. In this way it dif-

fers from the well-established and widely used PCA,

which maximizes the fluctuation amplitude along the

coordinates.

Our comparative study of the two methods, PCA and

FCA, characterized and exemplified the new method for

two systems, T4 lysozyme and NT, and showed pro-

nounced differences.

PCA on the one hand, seeking large amplitude modes,

often does not identify modes that are aligned with the

direction of conformational transitions. Consequently,

conformational substates are not well resolved, and also

more PCA modes are needed to describe a free energy

surface that is consistent with the actually observed tra-

jectory. In particular, two PCA modes did not suffice to

describe the conformational motion of NT, because two

otherwise separated conformational substates overlapped

Figure 16
Projections of a 120 dimensional random walk to large amplitude PCA and FCA modes.
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in the projections to the first two PCA modes. Because

of the overlap a misleadingly low free energy channel

between the two conformational states emerged in a

region where no transitions were seen. To provide a con-

sistent free energy surface that resolves the barrier

between distinct states a larger number of PCA modes

had to be used.

By construction, and from our sample studies, FCA

yields collective coordinates that are adapted to the con-

formational dynamics of a protein. In particular, FCA

modes are typically aligned along the actual pathways of

conformational transitions and thus yield an improved

resolution of conformational subspaces. For both test sys-

tems, FCA modes were found to be significantly more

anharmonic than their PCA counterparts. This finding

also corroborates and explains the increased resolution of

conformational substates by FCA. Moreover, the transi-

tion regions of free energy surfaces spanned by selected

modes were found to be fully consistent with the

observed transitional dynamics. This strongly suggests

that FCA is a valuable alternative to PCA to yield a

dimension reduced description of conformational dy-

namics, for example, with a Generalized Langevin frame-

work29 to conformational transitions.

Despite our main interest in collective motions, it is

an advantageous feature of FCA to also isolate local

motions, such as the swiveling motion of the terminal

residues of T4 lysozyme. For PCA, this large amplitude

motion was distributed over many modes, thus obscuring

other more relevant motions.

Usually, the collective modes with largest amplitudes

are used to analyze conformational motions of proteins.9

However, for T4 lysozyme, this criterion selected also

large amplitude local motions such as the above swivel-

ing motions, which are unlikely to play an important

functional role in substrate binding. In such cases, where

amplitude does not point to functionally relevant modes,

and following the suggestion by Amadei et al.52 that

functional motion often implies anharmonicity, one

could select modes by their anharmonicity rather than

their amplitude. However, the FCA modes that described

the irrelevant swiveling motion were not only of large

amplitude but also highly anharmonic. Yet, they showed

a very low collectivity, such that we suggest to rank FCA

modes by a combination of the two properties, anharmo-

nicity and collectivity.

We found it helpful to visualize the matrix of mutual

correlations of FCA modes as shown in the inset of

Figure 15b. On the basis of these pair correlations, a

scheme was proposed that selects those pairs of modes

that are particularly suitable to visualize the structure of

the essential subspace (cf. Fig. 5). Moreover, the analysis

of pair correlations revealed that for neurotensin FCA

successfully separated the dynamics into several

uncoupled motions, whereas this was achieved only to a

limited extent for the larger T4 lysozyme, where in par-

ticular the slow mode 1 remained strongly correlated to

all other modes. Close analysis suggested that this partial

failure is not inherent in FCA, but rather must be attrib-

uted to the insufficient sampling of the slow opening

motion of the two T4L domains.

As shown, FCA represents a valuable alternative to

PCA. The two methods, FCA and PCA, use different

optimization criteria to define internal coordinates, and

thus the choice to select the one method over the other

will depend on the questions asked. We have shown that

FCA improves the resolution and separation of confor-

mational states, whereas many other useful features of

PCA modes are preserved. For instance, conformational

entropies of proteins are usually computed with PCA

from MD simulation trajectories.12,13 An upper bound

of this information-entropy is estimated by assuming in-

dependent harmonic oscillators for every PCA mode. A

significantly improved upper bound is expected from

maximally uncoupled modes extracted by FCA. Further

improvements are possible from combining FCA modes

which have a high remaining pair correlation into several

low-dimensional subspaces, and to estimate the informa-

tion-entropy of these subspaces directly with nearest

neighbor approaches.

Further work needs to address convergence issues.

Firstly, the convergence and robustness of the minimiza-

tion of mutual information needs to be examined. In

particular, it needs to be addressed if the global mini-

mum of mutual information is always actually found,

and whether similar FCA modes are extracted from

slightly perturbed MD ensembles. Secondly, the slow

convergence of correlations in the configurational ensem-

ble due to the sampling problem of MD53 needs to be

analyzed. The finding that FCA—just like PCA—yields

highly anharmonic modes for a random diffusion51 sug-

gest that in this respect the convergence properties are

very similar. Nonetheless, the application of FCA to a

random walk indicated that the ‘‘foot-print’’ of an

unconverged mode is more distinctly identified in projec-

tions to FCA modes than for PCA modes.

Finally, it has been suggested to use nonlinear coordi-

nates for PCA.41,43 Similarly, it will be rewarding to

combine nonlinear coordinates with the criterion of min-

imizing mutual information.
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