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Abstract

In this Supplementary Material (SM) we present detailed derivations of the main results for the
Gaussian-Chain and tilted single-file diffusion model presented in the main Letter, as well as several
supplementary examples with figures. We also present counterexamples demonstrating that the uphill-
downhill asymmetry is not universal as it vanishes in sufficiently asymmetric multi-well potentials. How-
ever, we establish generic conditions under which the asymmetry is obeyed. Finally, we also discuss the
non-Markovian Mpemba effect.

GAUSSIAN CHAIN AND ORNSTEIN-UHLENBECK PROCESS

We consider a Gaussian Chain with N+1 beads with coordinates R = {ri} connected by harmonic springs with

potential energy U(R) = 1
2

∑N
i=1 |ri − ri+1|2. The overdamped Langevin equation governing the dynamics of a

Gaussian Chain with N+1 beads connected by ideal springs with zero rest-length and diffusion coefficient D is given
by the set of coupled Itô equations

dr1(t) = [−r1(t) + r(t)2]dt+
√

2Dξ1(t)

dri(t) = [ri−1(t)− 2ri(t) + ri+1(t)]dt+
√

2Dξi(t)

drN+1(t) = [−rN+1(t) + rN (t)]dt+
√

2DξN+1(t), (S1)

where ξi(t) stands for zero mean Gaussian white noise, i.e.

〈ξi(t)〉 = 0, 〈ξi,k(t)ξi,l(t
′)〉 = δklδ(t− t′). (S2)

It is straightforward to generalize these formulas to any reversible 3(N + 1)-dimensional Ornstein-Uhlenbeck process
R(t) ≡ {ri(t)} with some R3(N+1)×R3(N+1) symmetric force matrix Ξ and potential energy function U(R) = 1

2RTΞR

dR(t) = ΞR(t)dt+
√

2dWt, (S3)

where dWt is the 3(N + 1)-dimensional super-vector of independent Wiener increments with zero mean and unit
variance, E[dWi,tdWj,t′ ] = δi,jδ(t − t′). In this super-vector/super-matrix notation the Gaussian is recovered by
introducing R3(N+1) × R3(N+1) tridiagnal super-matrix Ξ with elements

Ξii = 1, Ξii+1 = Ξii−1 = (−1− 1δi,1+δi,N+1)1, (S4)

where 1 is the 3 × 3 identity matrix. This leads to the equations of motion presented in the Letter. Since Ξ is
supposed to be symmetric these equations can be decoupled by diagonalizing Ξ i.e. by passing to normal coordinates
R→ X ≡ {xi}:

ATΞA = diag(µ) (S5)

where the diagonal super-matrix has elements diag(µ)kk = µk1. This yields eigenvalues µi and orthogonal super-
matrices (A)ij ≡ Aij1, where the ith row Aij , j = 0, . . . , N corresponds to an eigenvector of the 1-dimensional
contraction of Ξ (see e.g. Eq. (S4) for the Gaussian chain, i.e. Ξii → 1 and Ξii−1 → (−1− 1δi,1+δi,N+1)).

In the particular case of the Gaussian chain the eigenvalues and eigenvectors read

µk = 4 sin2

(
kπ

2(N + 1)

)
, Aij =

√
21−δj,0

N + 1
cos

[
(2i− 1)jπ

2(N + 1)

]
. (S6)

The back-transformation corresponds to ri =
∑N
k=0Aikxk. In normal coordinates the the potential energy reads

U(X) = 1
2

∑N
k=1 µkx

2
k while the corresponding Fokker-Planck equation for the evolution of the Green’s function at a
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temperature T , GT (x, t|x0), reads[
∂t −D

N∑
k=0

(
∂2
xk

+ βµk∂xk
xk
)]
GT (x, t|x0) = δ(x− x0), (S7)

where β = 1/kBT . Note that we are interested only in internal dynamics and not on the center-of-mass dynamics,
therefore we will henceforth ignore the k = 0 contribution, as the zero mode with µ0 = 0 pertains only to the center-
of-mass motion. Without any loss of generality we henceforth set D = 1 and measure energies in units of kBTeq,
where Teq is the equilibrium (post-quench) temperature as defined in the manuscript. Moreover, since we are only

interested in the evolution at temperature Teq, we further express temperature relative to Teq, i.e. T̃ ≡ T/Teq, such

that T̃ = 1 corresponds to Teq. The stationary solution of Eq. (S7) corresponds to the Boltzmann-Gibbs density

P eq

T̃
(X) =

N∏
k=1

(µk
2π

)3/2

exp

(
−µkx

2
k

2T̃

)
. (S8)

The probability density of X starting from an initial probability density function P eq

T̃
(X) is obtained from the Green’s

function via

PT̃ (X, t) =

∫
dX0G1(X, t|X0)P eq

T̃
(X0), (S9)

where

G1(X, t|X0, 0) =

N∏
k=1

(
µk

2π(1− e−2µkt)

)3/2

exp

[
− µk

2(1− e−2µkt)

(
x2
k − 2xk · x0ke−µkt + x2

0ke−2µkt
)]
, (S10)

is the well-known Green’s function of an Ornstein-Uhlenbeck process. Note that limt→∞GT̃ (X, t|X0, 0) = P eq

T̃
(X).

The intergal Eq. (S9) can easily be performed analytically and yields

PT̃ (X, t) =

N∏
k=1

(
µk

2π[1 + (T̃ − 1)e−2µkt]

)
exp

(
− µkx

2
k

2[1 + (T̃ − 1)e−2µkt]

)
. (S11)

Eq. (S11) can now be used to calculate the Kullback-Leibler divergence (Eq. (3) in the Letter) to yield the first of
Eqs. (8) in the Letter. Furthermore, the average potential energy and the system’s entropy are defined as

〈U(t)〉T̃ ≡
∫
dxPT̃ (x, t)U(x), ST̃ (t) = −

∫
dxPT̃ (x, t) lnPT̃ (x, t) (S12)

and read, upon performing the integration and introducing ΛT̃k (t) ≡ 1 + (T̃ − 1)e−2µkt,

〈U(t)〉T̃ =
3

2

N∑
l=1

ΛT̃k (t), ST̃ (t) =
3

2

N∑
k=1

[
1− ln

(
µk

2πΛT̃k (t)

)]
. (S13)

In the projected, non-Markovian setting we are interested in the dynamics of an internal distance dij(t) ≡ |ri(t)−
rj(t)|. In normal coordinates this corresponds to

dij ≡ |ri − rj | =
N∑
k=1

|(Aik −Ajk) xk| . (S14)

By doing so we project out 3(N − 1) latent degrees of freedom and track only dij . The ’non-Markovian Green’s
function’, that is, the probability density of dij and time t given that the full system evolves from P eq

T̃
(X0) is defined

as

PT̃ (d, t) =

∫
dΩ

∫
dX0δ(

N∑
k=1

[Aik −Ajk]xk − d)G1(X, t|X0, 0)P eq

T̃
(X0)

= d2

∫ ∞
0

dl0l
2
0

∫
dΩ

∫
dΩ0δ(

N∑
k=1

[Aik −Ajk]xk − d)δ(

N∑
k=1

[Aik −Ajk]xk,0 − l0)G1(X, t|X0, 0)P eq

T̃
(X0)

≡
∫ ∞

0

dl0PT̃ (d, t, l0;P eq

T̃
), (S15)
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where we first project onto the vectors d and d0 and afterwards marginalize over all respective angles Ω and Ω0. Note
that the stept in line 2 of Eq. (S15) is actually not necessary but is preferable if one also wants to access the general
non-Markovian two-point joint density PT̃ (d, t, d0;P eq

T̃
). The calculation proceeds as follows.

We first preform two 3-dimensional Fourier transforms d0 → u and d→ v:

P̂T̃ (u, t,v0;P eq

T̃
) ≡ 1

(2π)6

∫
dde−iv·d

∫
dd0e−iu·d0PT̃ (d, t,d0;P eq

T̃
)

=
1

(2π)6

N∏
k=1

exp

[
−
Cijk
2µk

(1 + (T̃ − 1)e−2µkt)v2 −
Cijk
2µk

u2 − 2
Cijk
2µk

e−µktv · u

]
, (S16)

where we have introduced the short-hand notation

Cijk ≡ (Aik −Ajk)2. (S17)

Now we define, as in the main text, ΛT̃k (t) ≡ 1 + (T̃ − 1)e−2µkt as well as

Aij
T̃

(t) ≡
N∑
k=1

ΛT̃k (t)Cijk /2µk, Bij
T̃

(t) ≡ T̃
N∑
k=1

Cijk e−µkt/2µk, (S18)

and rewrite Eq. (S16) as

P̂T̃ (u, t,v0;P eq

T̃
) =

1

(2π)6
exp

(
−Aij

T̃
(t)v2 −Aij

T̃
(0)u2 − 2Bij

T̃
(t)v · u

)
, (S19)

which can be easily inverted back to give

PT̃ (d, t,d0;P eq

T̃
) = (4π)−3[Aij

T̃
(t)Aij

T̃
(0)− Bij

T̃
(t)2]−3/2 exp

(
−1

4

Aij
T̃

(0)d2 − 2Bij
T̃

(t)d · d0 +Aij
T̃

(t)d2
0

Aij
T̃

(t)Aij
T̃

(0)− Bij
T̃

(t)2

)
. (S20)

The marginalization is henceforth straightforward and yields

PT̃ (d, t, d0;P eq

T̃
) =

(dd0)2 exp

(
− 1

4

Aij

T̃
(0)d2+Aij

T̃
(t)d2

0

Aij

T̃
(t)Aij

T̃
(0)−Bij

T̃
(t)2

)
2π[Aij

T̃
(t)Aij

T̃
(0)− Bij

T̃
(t)2]3/2

∫ π

0

d cos θ exp

(
1

2

dd0BijT̃ (t) cos θ

Aij
T̃

(t)Aij
T̃

(0)− Bij
T̃

(t)2

)

=
dd0

2πBij
T̃

(t)

exp

(
− 1

4

Aij

T̃
(0)d2+Aij

T̃
(t)d2

0

Aij

T̃
(t)Aij

T̃
(0)−Bij

T̃
(t)2

)
[Aij

T̃
(t)Aij

T̃
(0)− Bij

T̃
(t)2]1/2

sinh

(
1

2

Bij
T̃

(t)dd0

Aij
T̃

(t)Aij
T̃

(0)− Bij
T̃

(t)2

)
. (S21)

The probability density of d at time t after having started from an initial density P eq

T̃
(X0) (i.e. the pre-quench

equilibrium) follows by simple integration and finally reads

PT̃ (d, t) =

∫ ∞
0

dl0PT̃ (d, t, l0;P eq

T̃
) ≡ d2

2
√
π
Aij
T̃

(t)−3/2e−d
2/4Aij

T̃
(t), (S22)

which is precisely Eq. (7) in the manuscript. The average potential of mean force, 〈U(t)〉T̃ ≡ −〈lnP
eq
1 (d)〉T̃ and

entropy, ST̃ (t) ≡ −〈lnPT̃ (d, t)〉T̃ (in units of kBT ), where 〈f(d)〉T̃ ≡
∫
dlPT̃ (l, t)f(l), in turn read

〈U(t)〉T̃ = ln
(

2
√
πAij

T̃
(0)3/2

)
−Aij

T̃
(t)1/2(2− γe + lnAij

T̃
(t)) +

3

2

Aij
T̃

(t)

Aij
T̃

(0)

ST̃ (t) = ln
(

2
√
πAij

T̃
(t)3/2

)
−Aij

T̃
(t)1/2(2− γe + lnAij

T̃
(t)) +

3

2
(S23)

where γe denotes Euler’s gamma. Using the results in Eq. (S23) as well as the definition of the equilibrium free energy,
F = − lnQ1 ≡ − ln

∫
dXe−U(X), (where all potentials are in units of kBTeq) we arrive at

D[PT̃ (t)||P1] = 〈UT̃ (t)〉 − ST̃ (t)− F, D[PT̃ (t)||P1] = 〈Ueff
T̃

(t)〉 − ST̃ (t), (S24)



4

which are exactly Eqs. (4) and (5) in the Letter. For any stable symmetric matrix Ξ the condition of equidistant
quenches D[PT̃+(0+)||P1] = D[PT̃−(0+)||P1] is satisfied by

T̃+ − T̃− = ln(T̃+/T̃−) → T̃+(T̃−) = −W−1(−T̃−e−T̃
−

), (S25)

where W−1(x) defined for x ∈ [−e−1, 0) denotes the second real branch of the Lambert-W function, which in turn
satisfies the following sharp two-sided bound [1]

2

3

[
1 +

√
2(T̃− − 1− ln T̃−) + T̃− − 1− ln T̃−

]
≤ T̃+(T̃−) ≤ 1 +

√
2(T̃− − 1− ln T̃−) + T̃− − 1− ln T̃−. (S26)

Kullback-Leibler divergence and uphill/downhill asymmetry in relaxation of a random Gaussian network

In the Letter we prove that for any reversible ergodic Ornstein-Uhlenbeck process uphill relaxation (i.e. for a
quench from T̃− ↑ 1 for which 〈U(0+)〉T̃− − 〈U〉1 < 0) is always faster that downhill relaxation (i.e. for a quench

from T̃+ ↓ 1 for which 〈U(0+)〉T̃− − 〈U〉1 > 0), where the pair of equidistant quenches T̃+ and T̃− is defined in the
Letter. To visualize this on hand of an additional instructive example, we generated a random Gaussian network
woth 10 beads by filling elements of the upper-triangular part of the connectivity matrix with a −1 according to a
Bernulli distribution with p = 0.7. The resulting matrix was then symmetrized and the diagonal elements chosen to
assure sure mechanical stability (i.e. ’connectedness’). The resulting connectivity matrix Γ is related to the general
Ornstein-Uhlenbeck matrix in Eq. (S3) via Ξ = Γ⊗ 1, where

Γ =



5 −1 −1 0 −1 0 0 0 −1 −1
−1 5 −1 0 −1 −1 0 0 0 −1
−1 −1 8 −1 −1 0 −1 −1 −1 −1
0 0 −1 7 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 9 −1 −1 −1 −1 −1
0 −1 0 −1 −1 7 −1 −1 −1 −1
0 0 −1 −1 −1 −1 7 −1 −1 −1
0 0 −1 −1 −1 −1 −1 7 −1 −1
−1 0 −1 −1 −1 −1 −1 −1 8 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 9


. (S27)

The corresponding results for D[PT̃ (t)||P1], whereby we tagged the distance between the 1st and 10th bead, i.e.
d = |r1 − r10| are shown in Fig. S1.
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Figure S1. D[PT̃±(t)||P1] as a function of time for a pair of equidistant quenches with T̃+ = 2.64 and T̃− = 0.24, which
illustrates the asymmetry in the thermal relaxation holds for any Gaussian Network (according to our proof).
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TILTED SINGLE FILE

We consider a system of N hard-core point-particles (the extension to a finite diameter is straightforward [2, 3])
diffusing in a box of unit length with a diffusion coefficient D, which we set equal to 1 and express energies in units
of kBTeq without any loss of generality. The particles with positions x = {xi} feel the presence of a linear potential

U({xi}) =
∑N
i=1 gxi. The Green’s function of the system obeys the many-body Fokker-Planck equation

(∂t − L̂T̃ )GT̃ (x, t|x0) ≡

(
∂t −

N∑
i=1

(∂2
xi

+ gT̃−1∂xi
)

)
GT̃ (x, t|x0) = δ(x− x0) (S28)

The confining walls are assumed to be perfectly reflecting, i.e J(xi)|xi=0 = J(xi)|xi=1 = −D(g/T̃ − ∂xi)GT̃ (x, t|x0) =
0,∀i. Moreover, particles are not allowed to cross, which introduces the following set of internal boundary conditions(

∂xi+1
− ∂xi

)
GT̃ (x, t|x0)|xi+1−xi=0 = 0,∀i. (S29)

Eq. (S28) with reflecting external boundary conditions J(xi)|xi=0 = J(xi)|xi=1 = 0,∀i and internal boundary condi-
tions in Eq. (S29) is solved exactly using the coordinate Bethe ansatz (we do not repeat the results here as they can
be found in [4]). It is convenient to introduce the particle-ordering operator

Ôx ≡
N∏
i=2

θ(xi − xi−1), (S30)

where θ(x) is the Heaviside step-function. Let ζT̃ (xi, t|x0i) be the Green’s function of the corresponding single-particle

problem and P eq

T̃
(xi) = limt→∞ ζT̃ (xi, t|x0i) the density of the equilibrium measure at temperature T̃ , then the Green’s

function can be written directly as

G1(x, t|x0) = N !Ôx

N∏
i=1

ζ1(xi, t|x0i)→ PT̃ (x, t) = N !Ôx

N∏
i=1

∫ 1

0

dxi0ζ1(xi, t|xi0)P eq

T̃
(xi0), (S31)

where the normalization factor N ! assures a correct re-weighing of non-crossing trajectories [4]. We expand the
Green’s function for a single particle at T̃ = 1 in a bi-orthonormal eigenbasis, ζ(x, t|x0) =

∑
k φ

R
k (x)φLk (x0)e−λkt,

where λ0 = 0, λk = π2k2 + g2/4 and

φLk (x) =
egx/2√

2λk
(g sin(kπx)− 2kπ cos(kπx)) , k > 0 (S32)

and φRk (x) = e−gxφLk (x), whereas for k = 0 we have φL0 (x) = 1, φR0 (x) = P eq
1 (x).

A key simplification in the calculation of order-preserving integrals as well as all projected, tagged-particle observ-
ables (incl. functionals; see e.g. [4]) is the so-called ’extended phase space integration’ introduced by Lizana and
Ambjörnsson [2, 3], according to which for any 1 ≤ M ≤ N and some function f(x) that is symmetric with respect
to permutation of coordinates xi

Ôx

N∏
i=1

∫ 1

0

dxi0f(x)δ(z − xM ) =

M−1∏
i=1

∫ z

0

dxi0

N∏
j=M+1

∫ 1

z

dxj0
f(xM = z, {xi 6=M})
(M − 1)!(N −M)!

. (S33)

With the aid of Eq. (S33) it is possible to calculate the Kullback-Leibler divergence as

D[PT̃ ||P1] =

∫
dxPT̃ (x, t) ln(PT̃ (x, t)/P1(x)) ≡

[∫ 1

0

dxP 1
T̃

(x, t) ln(P 1
T̃

(x, t)/P 1
1 (x))

]N
, (S34)

where P 1
T̃

(x, t) =
∫ 1

0
dx0ζ1(x, t|x0)P eq

T̃
(x0), and the second equality is a result of applying Eq. (S33). The result in

Eq. (S34) for a single file of 10 particles is depicted in Fig. (3a) in the Letter. For the sake of completeness, we also
present the exact explicit result for 〈U(t)〉T̃ ≡ gN〈x(t)〉T̃ , which reads

〈U(t)〉T̃ = gN

(
1− eg + g

g(1− eg)
+ 8

∞∑
k=1

(
gkπ

λk

)2
(T̃ − 1)(eg/2 − (−1)k)(eg/T̃ − (−1)keg/2)

(eg/T̃ − 1)[(T̃ − 2)2g2 + (2πkT̃ )2]
e−λkt

)
. (S35)
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The results for the non-Markovian tagged-particle dynamics can be derived analogously. The probability density
function for tagging the Mth particle is defined as

PT̃ (z, t) = Π̂x(z)PT̃ (x, t) ≡ Ôx

N∏
i=1

∫ 1

0

dxi0δ(z − xT )PT̃ (x, t) (S36)

and since PT̃ (x, t) is symmetric to permutation of particle indices Eq. (S33) can be applied. The exact result has the
form of a spectral expansion and reads

PT̃ (z, t) =
∑
k

V0k(z)V T̃k0e−λkt, (S37)

where k = {ki} is a N -tuple of non-negative integers and λk =
∑N
n=1 λkn are Bethe eigenvalues of the operator

L̂1 =
∑N
i=1(∂2

xi
+ g∂xi

) in a unit box under non-crossing conditions with λ0 = 0 and λki = π2k2
i + g2/4,∀k > 0. Let

NL = T − 1 and NR = N − T be the total number of particles to the left and to the right of the tagged particle,

respectively. Then V0k(z) and V T̃k0 in Eq. (S37) are defined as

V0k(z) =
mk

NL!NR!

2gα

T̃Ωg
T̃

(0, 1)

∑
{ki}

T 1
T (z)

NL∏
i=1

L1
i (z)

N∏
i=NL+2

R1
i (z) (S38)

V T̃k0 =
N !

NL!NR!

2gα

T̃Ωg
T̃

(0, 1)

∫ 1

0

dz
∑
{ki}

T T̃T (z)

NL∏
i=1

LT̃i (z)

N∏
i=NL+2

RT̃i (z) (S39)

where α = T̃ /(2 − T̃ ), Ωg
T̃

(x, y) ≡ e−gx/T̃ − e−gy/T̃ , and mk =
∏
i nki ! is the multiplicity of the Bethe eigenstate

corresponding to the N -tuple k, and the number nki counts how many times the eigenindex ki appears in the Bethe
eigenstate [4]. In Eq. (S39) we have introduced the auxiliary functions

T T̃T (z) = P eq

T̃
(z)

egx/2 (g sin(kT πz)− 2kT π cos(kT πz))√
2λkT

,∀kT > 0 (S40)

and T T̃T (z) = P eq

T̃
(z) for kT > 0 where P eq

T̃
(z) is defined as

Peq

T̃
(z) =

gN !

NL!NR!

Ωg
T̃

(0, z)NLΩg
T̃

(z, 1)NR

T̃Ωg
T̃

(0, 1)
e−gz/T̃ , (S41)

as well as

LT̃i (z) =

{
Ωg
T̃

(0, z)/Ωg
T̃

(0, 1), ki = 0

λ√αkiΦ
g,α
ki

(0, z) + kiπgΨg,α
ki

(0, z)(T̃ − 1)/(2− T̃ ), ki > 0

RT̃i (z) =

{
Ωg
T̃

(z, 1)/Ωg
T̃

(0, 1), ki = 0

λ√αkΦg,αki (z, 1) + kiπgΨg,α
ki

(z, 1)(T̃ − 1)/(2− T̃ ), ki > 0,

Note that λxk ≡ π2(xki)
2 + g2/4,∀k > 0, and

∑
{ki} denotes the sum over all possible permutations of k and the

functions Φg,αk (x, y) and Ψg,α
k (x, y) are defined as

Φg,αk (x, y) =
e−gx/2α sin(kπx)− e−gy/2α sin(kπy)

λαk
√

2λk

Ψg,α
k (x, y) =

e−gx/2α cos(kπx)− e−gy/2α cos(kπy)

λαk
√

2λk
. (S42)

Details of the calculations can be found in [4]. The evaluation of Kullback-Leibler divergence, ST̃ (t),ST̃ (t) as well as
〈U(t)〉T̃ cannot be carried out analytically and we therefore resort to efficient and accurate numerical quadratures.
The results are presented in Fig. (3) in the Letter.

We performed extensive systematic calculations for different values of g and N , various combinations of T̃± as
well as for different choices for tagged particles. All these calculations gave the same qualitative picture – without
any exceptions ’uphill’ relaxation was always faster. However, we are not able to prove rigorously that this is indeed
always the case. Therefore, for the single file the universally faster uphill relaxation is only a conjecture.
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NON-EXISTENCE OF A UNIQUE RELAXATION ASYMMETRY IN MULTI-WELL POTENTIALS AND
GENERIC CONDITIONS WHEN THE ASYMMETRY IS OBEYED

In the letter we demonstrated that the relaxation in single-well potentials is faster uphill than downhill. We have
proven that this is always the case near stable minima and for any reversible Ornstein-Uhlenbeck process. Based
on additional physical arguments we hypothesized that the asymmetry is a general feature of diffusion in single-well
potentials. However, as we remarked in the Letter, it is not difficult to construct counterexamples proving that the
asymmetry is not a general phenomenon in all reversible ergodic diffusion processes.

To that end we condider Markovian diffusion in rugged, multi-well potentials parametrized by

U(x) = e(ax6 + bx4 + cx3 + dx2), (S43)

with some appropriately chosen constants a, b, c, d and e. Let the dynamics evolve according to L̂T̃ = ∂2
x− T̃−1∂xF (x),

where F (x) = −6e(ax5 + 4bx3 + 3cx2 + 2dx) in a finite domain a ≤ x ≤ b with reflecting boundaries, and let the
corresponding Green’s function be the solution of the following initial-boundary value problem

(∂t− L̂T̃ )GT̃ (x, t|x0) = δ(x−x0), −(∂x− T̃−1F (x))GT̃ (x, t|x0)|x=a = −(∂x− T̃−1F (x))GT̃ (x, t|x0)|x=b = 0. (S44)

We solve the Fokker-Plank equation so defined via the Method of Lines. The results for three distinct parameter
sets is shown in Fig. (S2). We did not perform a systematic analysis of all the possible potentials. However, based
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Figure S2. In panels a,b) and e,f) the potential is a quartic with parameter a = 0, b = 1, c = 0, d = −6, e = 2 in panels
a and f anda = 0, b = 1, c = 0, d = −6, e = 0.1 in panels b and f. In the asymmetric potential in panels c and g with
a = 0, b = 1, c = 0.2, d = −6, e = 0.8 and panels c and f with a = 1, b = −6, c = 0, d = 9, e = 1.4, respectively, the single-well
asymmetry-pattern in fact becomes reversed. In a tripple-well with equally deep wells the asymmetry is again obeyed despite
the middle well being wider.

on our observations it seems that the different uphill/downhill relaxation patterns depend on how different entropic
contributions (i.e. intra-well entropy versus inter-well configuration entropy) change qualitatively with temperature
for potentials with several minima.

If we focus on the asymmetric case (Fig. S2c) we find that uphill relaxation is initially always faster, which is a
direct result of the physical mechanism at play that we present in the Letter. At longer time the asymmetry gets
inverted by the slow inter-well partitioning of probability mass. It is now not diffcult to understand that by making the
asymmetry smaller we will move the crossing point, where the corves intersect, closer to D[PT̃±(t)||P eq

1 ] = 0, such that
for a sufficiently small asymmetry – which in the letter we refer to near degeneracy – uphill relaxation will eventually
be faster for all times, for which D[PT̃±(t)||P eq

1 ] differs from zero by an amount that is not neglgible/detectable. For
a formal discussion of this situation see below.
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It is interesting and important to note that the asymmetry is also obeyed if the barrier is moderately high, i.e.
such that a small but non-neglible probability mass is located at the barrier (see Fig. S3). However, the quench must
then not be too strong. That is, an ’infinitely’ high barrier effecting a strict time-scale separation betwenn intra-well
and inter-well relaxation is not a neccessarry condition for the asymmetry to occur. To demonstrate this we ispect
overdamped relaxation according to Eq. (S44) in the following double well potential U(x) = ∆(x2 − 1)2, where we
choose (in units of kBTeq) ∆ = 3 and F (x) = −U(x)′.

0
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]

t
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Figure S3. a) Density of invariant measure at T̃ = 1 (i.e. equilibrium probability density), and the equidistant post-quench

probability densities at T̃+ = 3 and T̃− = 0.38; b) Corresponding time evolution of the Kullback-Leibler divergence depicting
that the asymmetry is obeyed.

In order to check that the observed effect in multi-well potentials is not an artifact of one-dimensional systems now
also inspect 2-dimensional multi-well potentials. To that end we consider 4-well potentials parametrized by

U(x, y) = ∆x(x2 − x2
0)2 + ∆y(y2 − y2

0), (S45)

where energy is measured in units of kBTeq. We solve the problem by the Alternating Direction Implicit method
(ADI) developed in [5] with 4-step operator splitting. We first focus on the limit of high barriers and quenches leaving
the inter-well partitioning of probability mass unaffected (see Fig. S4). According to the proposed principle and
prediction the symmetry is obeyes and uphill relaxation is always faster.

In Fig. S5 now inspect the case of a moderately high barriers (where the probability density on top of the barriers
does not vanishes). As expected the asymmetry is obeyed only for sufficiently small quenches, whereas it becomes
violated for stronger quenches (compare full and dashed lines). The reason for the violation is the fact that the
inter-well redistribution becomes the dominant step for strong quenches.

It seems that the asymmetry observed in single-well potentials persists in nearly degenerate potentials and ceases
to exists as soon as the potential becomes sufficiently asymmetric with sufficiently deep wells, where entropy attains
an additional inter-well configurational component, such that during relaxation the probability mass becomes re-
distributed between the wells in an asymmetric manner.

The asymmetry is obeyed in degenerate potentials in the presence of a time-scale separation

We now provide also formal arguments confirming that the symmetry must be obeyed in degenerate potentials in
the presence of a time-scale separation. We follow the work of Moro [6]. Since we are dealing with systems obeying
detailed balance the generator of the relaxation dynamics L̂ is always diagonalizable, i.e.

L̂T =
∑
k≥0

−λkψRk (x)ψLk (x0) (S46)
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Figure S4. Density of invariant measure at T̃ = 1 (b) (i.e. equilibrium probability density), and the equidistant post-quench

probability densities at (c) T̃+ = 2.88 and (a) T̃− = 0.35 for the 4-well potential in Eq. (S45) with parameters ∆x = ∆y = 3
and x0 = y0 = 1.; d) Corresponding time evolution of the Kullback-Leibler divergence depicting that the asymmetry is obeyed
for two pairs of equidistant temperatures.

where ψRk (x) and ψLk (x) are the orthonormal right and left eigenfunctions, respectively, (i.e.
∫
ψLk (x)ψRl (x)dx = δkl)

and −λk are real eigenvalues (λ0 = 0 as we have assumed that the potential is confining and the dynamics is ergodic).
The eigenfunctions constitute a complete bi-orthonormal basis,

∑
k ψ

L
k (x)ψRk (x′) = δ(x− x′). As a result of detailed

balance we have ψRk (x) = e−U(x)/kBTψLk (x) and ψR0 (x) = P eq
T ≡ e−U(x)/kBT /

∫
e−U(x)/kBT dx and ψL0 (x) = 1. Let

L̂†T be the adjoint (or ’backward’) generator, then we have the pair of eigenproblems L̂TψRk (x) = −λkψRk (x) and

L̂†TψLk (x) = −λkψLk (x).

The Green’s function of the relaxation problem, (∂t−L̂T )GT (x, t|x0) = 0 with GT (x, 0|x0) = δ(x−x0), decomposes
to

GT (x, t|x0) =
∑
k≥0

ψRk (x)ψLk (x0)e−λkt → PT̃ (x, t) =

∫
G1(x, t|x0)P eq

T̃
(x0)dx0. (S47)

In presence of a time-scale separation (as a result of the existence of one or more high energy barriers) the eigenvalue
spectrum of L̂ has a gap, i.e. ∃kmin such that λkmin+l � kmin∀l ≥ 1.

Assume now a set of M well-defined deep minima at x̂i, i = 1, . . . ,M . This implies kmin = M − 1. Let us define
localizing functions gi(x), i ∈ [1,M ] such that

ceq
i ≡

∫
gi(x)P eq

1 (x)dx →
∫
gi(x)ψRk (x) = 0,∀k ≥M, (S48)

ceq
i are the equilibrium site populations. The localizing functions therefore by definition separate the intra-well

relaxation from the inter-well ’hopping’ of probability mass. In turn this implies that gi(x) belong to the subspace
{ψLk (x)}, k < M , i.e.

gi(x) =

M−1∑
k=0

Bikψ
L
k (x),∀i ∈ [1,M ] (S49)
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Figure S5. Density of invariant measure at (a) T̃− = 0.69 (b) at T̃ = 1, and at (c) T̃+ = 1.5, (d) T̃− = 0.46 and (e) T̃+ = 2.5
corresponding to the 4-well potential in Eq. (S45) with parameters ∆x = ∆y = 2 and x2

0 = y2
0 = 1.; b) Corresponding time

evolution of the Kullback-Leibler divergence depicting that the asymmetry is obeyed for small quenches (a and c) and violated
for strong quenches (d and e).

and are thus by construction linearly independent but are so far only defined up to the expansion matrix B. We
determine B by imposing that the localizing functions should be localized near only one minimum x̂i and vanish at
all remaining minima, i.e. gi(x̂j) ' δi,j . Let the inverse of B be B−1, B−1B = 1. We finally fix gi(x) by imposing

the following resolution of identity
∑M
I=1 gi(x) = 1, which allows us to write

ψLi (x) =

M∑
k=1

B−1
ik gk(x),∀i ∈ [0,M − 1], (S50)

We now define the time-dependent population of the localizing sites (i.e. basins)

ci(t) ≡
∫
gi(x)G(x, t|x0)dx. (S51)
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The fact that gj(x) decompose unity implies that the total site population is conserved in time, i.e.

M∑
i=1

ci(t) ≡
M∑
i=1

∫
gi(x)G(x, t|x0)dx =

∫ M∑
i=1

gi(x)G(x, t|x0)dx = 1, (S52)

where we have used the fact that the integral and sum commute by Fubini’s theorem (note that we can write the
sum as an integral with respect to a counting measure). The localizing functions are linearly independent but not
orthonormal. For this purpose we define the M×M superposition matrix S with elements Sij ≡

∫
gi(x)P eq

1 (x)gj(x)dx
such that we can re-write the equilibrium site population as

ceq
i =

∫
gi(x)P eq

1 (x)

M∑
j=1

gj(x)dx =

M∑
j=1

Sij . (S53)

We now define a projection operator projecting onto the space of localizing functions

P̂q(x) ≡
M∑
i=1

qigi(x), qi ≡
M∑
k=1

S−1
i,k

∫
gi(x)P eq

1 (x)q(x)dx. (S54)

The time evolution of site populations then follows

dcj(t)

dt
=

∫
gj(x)∂tGT̃ (x, t|x0)dx =

∫
gj(x)L̂1GT̃ (x, t|x0)dx =

∫
GT̃ (x, t|x0)L̂†1gj(x)dx (S55)

≡
∫
GT̃ (x, t|x0)P̂L̂†1gj(x)dx =

∑
k,i

ck(t)S−1
k,i

∫
gi(y)L̂†1P

eq
1 (y)gj(y)dy ≡

∑
k,i

ck(t)S−1
k,iΓij , (S56)

where in the second line we used the fact that L̂†1gj(x) already lies in the subspace of localizing functions (because

L̂†TψLk (x) = −λkψLk (x) and Eq. (S49)) and the projection operator projects back onto said subspace. By defining
c(t) = (ci(t), . . . , cM (t))T we recognize from Eq. (S56) that the site populations obey the Markovian master equation

d

dt
c(t) = Mc(t), Mjk ≡

∑
i

S−1
k,iΓij , (S57)

where it can be shown that the transition rates entering M obey detailed balance [6]. It is obvious that Mceq =
0 and therefore an equilibrated site-population does not lead to any inter-well dynamics. The evolution upon a
temperature quench from T̃ follows from the evolution of the Green’s function, i.e. PT̃ (x, t) =

∫
G1(x, t|x0)P eq

T̃
(x0)dx0.

Therefore, any quench that will leave the site populations given the potential U(x) and Fokker-Planck operator L̂1

(L̂†1 respectively) almost unaffected, i.e.

Mc(0) ' 0, where ci(0) =

∫
gi(x)PT̃ (x, t = 0|x0)dx ≡

∫
gi(x0)P eq

T̃
(x0)dx0, (S58)

will lead to a faster uphill relaxation as a direct consequence of the fact that the intra-well (i.e. in each individual
well) relaxation is faster uphill. The above arguments can be arranged in a form that is fully rigorous, but since the
argumentation is essentially straightforward, we do not find it necessary to do so.

Small local modulations do not spoil the asymmetry

As stated in the Letter, small local modulations of the potential (� kBTeq) do not affect the asymmetry as longs as
the uphill quench is sufficiently small to assure that the modulation is . kBT

− . Then the system relaxes similarly as in
a perfectly smooth single well. To demonstrate that this is indeed the case we inspect the relaxation from equidistant
quenches in the potential in Eq. (S45) with ∆x = ∆y = 2 and x2

0 = y2 = 0.4 depicted in Fig. S6. If, however, we
make the quench too severe, such that the local modulations of the potential effectively reach |∆U(x)| & kBT

− the
asymmetry would become violated and the curves will eventually cross, rendering downhill relaxation faster.

A a final example we focus on an asymmetric quadruple-well with a pair of high barriers and a pair of low barriers
(the latter creating a small local modulation of the potential). In particular, we consider the relaxation in the potential
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Figure S6. a) Density of invariant measure at T̃ = 1 (i.e. equilibrium probability density), and the equidistant post-quench

probability densities at T̃+ = 1.8 and T̃− = 0.46 for the 4-well potential in Eq. (S45) with parameters ∆x = ∆y = 2 and
x2
0 = y2

0 = 0.4.; b) Corresponding time evolution of the Kullback-Leibler divergence depicting that the asymmetry is obeyed.

given in Eq. (S45) with parameters ∆x = 3,∆y = 2 and x0 = 0.5, y0 = 1 and inspect in Fig. S7 the following pairs of

thermodynamically equidistant temperatures, T̃− = 0.8, T̃+ = 1.25 and T̃− = 0.5, T̃+ = 2..
As anticipated, the uphill relaxation is faster for sufficiently small quenches (see Fig. S7f) and becomes violated for

stronger quenches (see Fig. S7g), where the Kullback-Leibler divergences also display an Mpemba-like effect (see also
next section).

GENERALIZED MPEMBA EFFECT FOR NON-MARKOVIAN DYNAMICS

A phenomenon closely linked to relaxation from a quench is the so-called Mpemba effect [7–9], according to which a
liquid upon cooling can freeze faster if its initial temperature is higher. Meanwhile the phenomenon has been extended
to cover relaxation processes in different systems: magneto-resistors [10], carbon-nanotubes [11], polymers crystalliza-
tion [12], clathrate hydrates [13], granular systems [14] and spin glasses [15]. Recently theoretical generalizations of
it for Markovian observables have been published [16–18]. Not long ago the phenomenon was also adressed in more
detail in the context of Markovian stochastic dynamics [16, 18].

Here we further extend the concept of the Mpemba effect to projected, non-Markovian observables. As before we
focus on the distance of two different generic configurations displaced from equilibrium at t = 0, such that one is
displaced further away than the other, whereas the time-evolution of the entire system is governed by the same Fokker-
Planck operator. In this setting, there are cases, where the more distant initial configuration reaches equilibrium faster
that the closer one. One can observe this effect in the two systems analyzed in the Letter (see Fig. S8). It is worth
to stress that the presence of the generalized Mpemba effect not only depends on the system and the initial condition
(like in the Markovian case) but also on the particular type of projection In Fig. S9 we demonstrate, on hand of the
same system (a tilted single file of 5 particles) from the same pair of pre-quench temperatures, that we can switch the
generalized Mpemba effect on and off by simply changing the particle we are tagging.
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Figure S7. b) Density of invariant measure at T̃ = 1 (i.e. equilibrium probability density), and two pairs of equidistant post-

quench probability densities at T̃+ = 1.25 (c) and 2 (e) and corresponding equidistant T̃− = 0.8 (a) and 0.5 (d), respectively,
for the 4-well potential in Eq. (S45) with parameters ∆x = 3,∆y = 2 and x0 = 0.5, y0 = 1.; f-g) Corresponding time evolution
of the Kullback-Leibler divergence depicting that the asymmetry is obeyed for small enough quenches but becomes violated (in
the form of an Mpemba-like effect) for stronger quenches.
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Figure S8. In the left panel we show time dependence of the Kullback-Leibler divergence for a Gaussian Chain of 100 beads,
while the right panel depicts a Single File of 10 particles (g = 5). In both cases we focus on non-Markovian observables, the
end-to-end distance for the Gaussian chain and on the 7th particle of the single file, respectively. For some pairs of initial
temperatures we notice the generalized Mpemba effect: systems that start further away from the equilibrium approach the
equilibrium configuration faster.
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Figure S9. Kullback-Leibler divergences for a single file of 5 particles with g = 1. If we tag the 2nd particle (solid lines) or the
5th (dashed lines) for the same pair of pre-quench temperatures one projection displays the generalized Mpemba effect while
the other one does not.
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