
More Bang for Your Buck: Improved use of GPU Nodes
for GROMACS 2018
Carsten Kutzner ,*[a] Szilárd Páll,[b] Martin Fechner,[a] Ansgar Esztermann,[a]

Bert L. de Groot,[a] and Helmut Grubmüller[a]

We identify hardware that is optimal to produce molecular
dynamics (MD) trajectories on Linux compute clusters with
the GROMACS 2018 simulation package. Therefore, we
benchmark the GROMACS performance on a diverse set of
compute nodes and relate it to the costs of the nodes, which
may include their lifetime costs for energy and cooling. In
agreement with our earlier investigation using GROMACS 4.6
on hardware of 2014, the performance to price ratio of con-
sumer GPU nodes is considerably higher than that of CPU
nodes. However, with GROMACS 2018, the optimal CPU to

GPU processing power balance has shifted even more toward
the GPU. Hence, nodes optimized for GROMACS 2018 and
later versions enable a significantly higher performance to
price ratio than nodes optimized for older GROMACS ver-
sions. Moreover, the shift toward GPU processing allows to
cheaply upgrade old nodes with recent GPUs, yielding essen-
tially the same performance as comparable brand-new hard-
ware. © 2019 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26011

Introduction

Molecular dynamics (MD) simulation is a well-established compu-
tational tool to investigate and understand biomolecular function
in atomic detail from a physics perspective. A simulation system
of a solvated molecule can comprise thousands to millions of
atoms, depending on whether it is a small protein or a large com-
plex like a ribosome[1] or a viral shell.[2] To derive the time evolu-
tion of atomic movements on biologically relevant time scales,
millions of time steps need to be computed. For statistically signif-
icant results, this process is usually repeated many times with
varying starting conditions. Consequently, the investigation of a
single biomolecular system can easily occupy a number of mod-
ern compute nodes for weeks, whereas all simulation projects of a
typical research group performing MD calculations will keep a
medium-sized compute cluster running nonstop.

Whether the necessary cluster hardware is purchased by the
department that uses it or the services of a high performance
computing (HPC) center are used, eventually someone has to
decide on what to buy. This decision is not straightforward as
the available hardware is quite diverse. What node specifica-
tions should be used? Should they rather have many weak
compute cores or fewer strong ones? Are multisocket nodes
better than single-socket nodes? How many CPU cores are
needed per GPU and what GPU type is optimal? What about
memory and interconnect?

All-rounder cluster nodes designed for many diverse software
applications usually contain top-end CPUs, GPUs with high dou-
ble precision floating point performance, lots of memory, and
an expensive interconnect. The result of meeting all these needs
at once is a very low ratio of computation performance to node
price for each individual application. Our approach is completely
opposite: maximized cost-efficiency by specialization. We focus on
a particular application, namely MD, and look for hardware that

yields the highest simulation throughput for a fixed budget, mea-
sured in total length of produced trajectory over its lifetime.

The set of available MD codes for biomolecular simulations is
diverse and includes, among others, ACEMD,[3] Amber,[4] CHARMM,[5]

Desmond,[6] LAMMPS,[7] NAMD,[8] OpenMM,[9] and GROMACS.[10] We
use GROMACS, because it is one of the fastest MD engines available,
widely-used, and freely available.

Our basic question is: Given a fixed budget, how can we pro-
duce as much MD trajectory as possible? Accordingly, we mea-
sure simulation performances for representative biomolecular
MD systems and determine the corresponding total hardware
price. We do not aim at a comprehensive evaluation of cur-
rently available hardware, we merely aim at uncovering hard-
ware that has an exceptional performance to price (P/P) ratio,
which is the efficiency metric used in this study, for version
2018 of the GROMACS MD code.

As our study prioritizes the efficiency and total throughput of
generating trajectories (assuming plenty of concurrent simula-
tions), we do not consider use-cases where generating an indi-
vidual trajectory as fast as possible is preferred. Whereas the
latter can be important, for example, in exploratory studies,
faster simulations require strong scaling, which always comes at
a cost due to the inherent trade-off between simulation rate and

[a] C. Kutzner, M. Fechner, A. Esztermann, B. L. de Groot, H. Grubmüller
Theoretical and Computational Biophysics, Max Planck Institute for
Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
E-mail: ckutzne@gwdg.de

[b] S. Páll
Center for High Performance Computing, KTH Royal Institute of Technology,
10044, Stockholm, Sweden

Contract Grant sponsor: Deutsche Forschungsgemeinschaft; Contract
Grant number: SPP 1648; Contract Grant sponsor: European Union;
Contract Grant number: H2020-EINFRA-2015-1-675728

© 2019 Wiley Periodicals, Inc.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2418

https://orcid.org/0000-0002-8719-0307
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


parallel efficiency. At the same time, running a large number of
independent or weakly coupled simulations is a widely used and
increasingly important use case. Thanks to continuous advances in
simulation performance, many well-optimized MD engines like
that of GROMACS have useful trajectory generation rates even
without large-scale parallelization. Additionally, problems that pre-
viously required the generation of a few long trajectories are now-
adays often addressed by ensemble methods that instead need a
large number of shorter trajectories.[11–15] Hence, large compute
resources with a single fast interconnect are often not a must.
Instead, the ideal hardware in these instances is one with fast
“islands” and a more modest interconnect between these. In fact,
on such machines, results can in some cases be obtained as fast
or faster, and crucially more cost-effectively. In our case, consider-
ing current hardware limitations and software characteristics, for
ultimate efficiency reasons, the fast “islands” are represented by a
set of CPU cores and a single GPU.

In addition to the P/P ratio, when evaluating systems, we
take into account the two following criteria: (1) energy con-
sumption, as it is one of the largest contributors to trajectory
production costs and (2) rack space, which is limited in any
server room. We cover energy consumption in a separate
section of the paper, whereas space requirements are implicitly
taken into account by our hardware preselection. We require an
average packing density of at least one GPU per height unit U
of rack space for server nodes to be considered: a 4 U server
with 4 GPUs meets the criterion.

In an earlier investigation using GROMACS 4.6 with 2014
hardware,[16] we showed that the simulation throughput of an
optimized cluster is typically two to three times larger than that
of a conventional cluster. Since 2014, hardware has been evolv-
ing continuously and fundamental algorithmic enhancements
have been made. Therefore, using the two exact same MD test
systems, we provide this update to our original investigation
and point the reader to the current hardware yielding the best
bang for your buck with GROMACS 2018.[10,17]

We focus on hardware evaluation and not on how GROMACS
performance can be optimized, as that has already been exten-
sively discussed.[16] Most of the performance advice given in our
original paper are still valid if not stated otherwise. Particular
remarks for a specific GROMACS version are available in the online
user guide at http://manual.gromacs.org/ in the section called Get-
ting good performance from mdrun.

GROMACS load distribution schemes

GROMACS uses various mechanisms to parallelize compute work
over available resources so that it can optimally benefit from the

hardware’s capabilities.[10,18] Processes sharing the computation of
an MD system (these processes are called ranks) communicate via
the message passing interface (MPI) library, while each rank can
consist of several OpenMP threads. Each rank can optionally have
its short-range part of the Coulomb and van der Waals interac-
tions (the pair interactions) calculated on a GPU, if present; this
process is called offloading and is illustrated in Figure 5. The long-
range part of Coulomb interactions is computed with the particle
mesh Ewald (PME) method,[19] which can be performed on a sub-
set of the available ranks for improved parallel efficiency. Alterna-
tively, from version 2018 on, PME can also be offloaded to a GPU.
On the lowest level of the parallelization hierarchy, SIMD (single
instruction multiple data) parallelism is exploited in almost all
performance-sensitive code parts.

Summary of the 2014 investigation

To illustrate the advancements, both on the implementation side
as well as on the hardware side, over the past 5 years, we summa-
rize the main points of our original investigation in the following.

In our original investigation,[16] we determined hardware prices
and GROMACS 4.6 performances for over 50 different node con-
figurations built from 12 CPU and 13 GPU models. In particular,
we compared consumer GPUs with professional GPUs. Profes-
sional GPUs like NVIDIA’s Tesla and Quadro models are typically
used for computer-aided design, computer-generated imagery,
and in HPC. Consumer GPUs, like the GeForce series, are mainly
used for gaming. They are much cheaper (up to about 1000 € net
compared to several thousand Euro for the professional cards)
and lack some of the features the professional models offer, for
example, regarding memory and double precision floating-point
performance.

Our two main benchmark systems (that we continue to use
in the present study) were an 80 k atom membrane protein
embedded in a lipid bilayer surrounded by water and ions
(MEM) and a 2 M atom ribosome system (RIB) solvated in water
and ions, see Table 1 for specification details. On each hardware
configuration, we determined the fastest settings for running a
single simulation of each system by performing a scan of the
parameters controlling the parallelization settings, that is, the
number of MPI ranks, the number of OpenMP threads, and the
number of separate PME ranks.

We concluded from our investigation (Fig. 1) that single CPU-
only nodes and nodes with professional GPUs have a comparably
low P/P ratio, whereas consumer GPUs improve the P/P ratio by a
factor of 2–3. Adding the first consumer GPU to a node yields the
largest increase of the P/P ratio, whereas adding too much GPU
power can also lower the P/P ratio (for instance, compare the 2×

Table 1. Specifications of the MD benchmarks. Our principal benchmarks are done with atomistic MEM and RIB systems, whereas for comparison, we
also benchmark two coarse grain systems (VES and BIG 0) using the Martini force field.

MD system MEM[20] RIB[1] VES[21] BIG

Number of particles 81,743 2,136,412 72,076 2,094,812
System size (nm) 10.8 × 10.2 × 9.6 31.23 22.2 × 20.9 × 18.4 142.4 × 142.4 × 11.3
Time step (fs) 2 4 30 20
Cutoff radii (nm) 1.0 1.0 1.1 1.1
PME mesh spacing (nm) 0.12 0.135 – –

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2419

http://manual.gromacs.org/
http://WWW.C-CHEM.ORG


E5-2680v2 nodes with 2 and 4 GTX980 GPUs in Fig. 6 of the origi-
nal publication[16]).

Parallelizing a simulation over many nodes to increase the
performance leads to a dramatic decrease of the P/P ratio
(Fig. 1, top right corner). For projects where the total amount of
sampling is more important than the length of the individual

trajectories, it is therefore advisable to run many single-node
simulations instead of a few multinode ones.

Hardware and software developments 2014–2018

Hardware developments. Over the past 5 years, GPU compute
power has significantly increased (compare Table 2 and Fig. 2).
The recent NVIDIA Turing architecture GPUs (olive bars) are two
to three generations ahead of the Kepler and Maxwell architec-
tures (black bars) we tested in 2014 and have improved single
precision (SP) floating point performance by more than three-
fold in this period. This was enabled by a leap in semiconductor
manufacturing technology, shrinking transistors from the
28 nm process used in Kepler and Maxwell to 12 nm on Volta
and Turing, and increasing transistor count more than fivefold. In
contrast, during the same period, CPU manufacturing has taken a
more modest step forward from 22 to 14 nm. However, effective
MD application performance of GPUs has in some cases improved
even more than what raw floating point performance would sug-
gest, thanks to microarchitectural improvements making GPUs
more efficient at and therefore better suited for general purpose
compute. As an example, consider the performance of the
compute-bound nonbonded pair interaction kernel (Fig. 3, top
panel). While the throughput increase between earlier GPU gener-
ations, like the Tesla K40 to Quadro M6000 to Quadro P6000,
tracked the FLOP rate increase quite well (approximately 1.9× for
both), the Tesla V100 shows 1.7× improvement for only 1.1× SP
FLOP rate advantage (see purple bar on Figs. 2 and 3). Unlike the
aforementioned professional GPUs with similar maximum power
ratings, comparing consumer GPUs is less straightforward. How-
ever, a similar pattern is still well illustrated when contrasting the
Pascal generation GTX 1080Ti with the Turing RTX 2080 GPU.
Despite the approximately 10% lower FLOP rate as well as 10%

12 2

4

1

8

4

1

4

8
16

8

16

to
ta

l h
ar

dw
ar

e 
co

st
s 

(€
)

simulation performance (ns/d)

10010

103

104

105

2

×2

equal

perfo
rm

ance-to
-pric

e

GROMACS 4.6

2014

nodes with
professional GPUs

only CPUs
consumer GPUs

Figure 1. Summary of our original investigation testing GROMACS 4.6 on
nodes built from hardware available in 2014.[16] Hardware costs versus MEM
benchmark performance (circles) for three classes of node types: CPU-only
nodes (orange), nodes with professional Tesla GPUs (purple), and nodes
with consumer GeForce GPUs (green). Dotted lines connect GPU nodes with
their CPU counterparts. Circles connected by colored lines denote a cluster
built from that node type, numbers in the circles denote how many of these
nodes took part in the benchmark. The white lines are isolines of equal P/P
ratio. Moving down from one isoline to the next increases the P/P ratio by a
factor of two (red shaded area = low P/P ratio, green shaded area = high
P/P ratio). [Color figure can be viewed at wileyonlinelibrary.com]

Table 2. Technical specifications of GPU models used in this study. Frequency and SP FLOP for professional NVIDIA GPUs are based on the default and
maximum “application clocks,” while for the consumer NVIDIA and AMD GPUs are based on the published base and boost clocks. Note that the NVIDIA
GeForce GPUs will often operate at even higher clocks under compute workloads than those indicated by the boost clock (even without factory
overclocking), especially in wellcooled environments. For GPUs that were available in 2018, the last column lists the approximate net price in 2018. Note
that only the NVIDIA cards can execute CUDA code, whereas on AMD cards OpenCL can be used.

Model Manufacturer Architecture Compute units Base–boost clock (MHz) SP TFLOPS ≈ price (€ net)

NVIDIA consumer GPUs:
GTX 680 NVIDIA Kepler 1536 1006–1058 3.1–3.3 –
GTX 980 NVIDIA Maxwell 2048 1126–1216 4.6–5 –
GTX 1070 NVIDIA Pascal 1920 1506–1683 5.8–6.5 310
GTX 1070Ti NVIDIA Pascal 2432 1607–1683 7.8–8.2 375
GTX 1080 NVIDIA Pascal 2560 1607–1733 8.2–8.9 420
GTX 1080Ti NVIDIA Pascal 3584 1480–1582 10.6–11.3 610
RTX 2070 NVIDIA Turing 2304 1410–1710 6.5–7.9 450
RTX 2080 NVIDIA Turing 2944 1515–1710 8.9–10.1 640
RTX 2080Ti NVIDIA Turing 4352 1350–1545 11.8–13.4 1050
AMD GPUs:
Radeon Vega 64 AMD Vega 4096 1247–1546 10.2–12.7 390
Radeon Vega FE AMD Vega 4096 1382–1600 11.3–13.1 850
NVIDIA professional GPUs:
Tesla K40c NVIDIA Kepler 2880 745–875 4.3–5 –
Tesla K80 NVIDIA Kepler 4992 562–875 5.6–8.7 –
Quadro M6000 NVIDIA Maxwell 3072 988–1152 6.1–7.1 –
Quadro GP100 NVIDIA Pascal 3584 1303–1556 9.3–11.1 –
Quadro P6000 NVIDIA Pascal 3840 1506–1657 11.6–12.7 4600
Tesla V100 NVIDIA Volta 5120 1275–1380 13.6–14.1 8000

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2420

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


lower maximum power rating, the 2080 is 40% and 29% faster in
nonbonded and PME computation, respectively. Across two gener-
ations of GPUs, we observe up to 6× and 4× performance
improvement for the GPU-offloaded GROMACS compute kernels,

the nonbonded pair interactions and PME electrostatics, respec-
tively. In contrast, while the theoretical FLOP rate of CPUs has
increased by a similar rate as that of GPUs, microarchitectural
improvements like the wider AVX512 SIMD instruction sets trans-
lated into an only relatively modest gain in application perfor-
mance, even in thoroughly SIMD-optimized codes like GROMACS.

This confluence of GPUmanufacturing and architectural improve-
ments has opened up a significant performance gap between CPUs
and GPUs, in particular for compute-bound applications like MD,
that do not heavily rely on double-precision floating point arith-
metic. Additionally, the performance per Watt advantage and the
affordability of high performance consumer GPUs, thanks to the
competitive computer gaming industry, have further strengthened
the role of GPUs in theMD community. The application performance
improvements on GPUs have also led to a shift in typical hardware
balance, important in applications that use offload-based heteroge-
neous parallelization, which motivated developments toward fur-
ther GPU offload capabilities of the GROMACSMD engine.

Software developments. On the software side, there have been
continuous improvements throughout the four major GROMACS
releases between our previous study and the present work: 5.0
(June 2014), 5.1 (August 2015), 2016 (August 2016), and 2018
(January 2018). These releases yielded advances in algorithms
(improved pair interaction buffer estimates), SIMD parallelization
(in PME, improved bonded, constraints, and new update kernels),
and kernel optimizations (improved force accumulation), as well
as widespread multithreading optimizations (like sparse summa-
tion for per-thread bonded force outputs). Efforts in designing
code to increase on-node parallelism (wider SIMD units, higher
core counts, and more accelerator-heavy compute nodes) both
aim at fueling performance improvements throughout the years
making better use of existing hardware but also at preparing the
code for hardware evolution, an investment that promises future
benefits.

Two significant improvements allowed the 2018 release to take
further leaps in performance. First, the dual pair list extension of
the cluster pair algorithm[22] was developed with two goals: reduc-
ing the computational cost of pair search (and domain decompo-
sition) and facilitating optimal simulation performance without
manual parameter tuning. The dual pair list algorithm enables
retaining the pair list far longer, while avoiding nonbonded com-
putation overheads. This is achieved by building a larger pair list
less frequently (every 100–200 MD steps) using a suitably longer
buffered interaction cutoff. By using a frequent pruning step based
on a short buffered cutoff, a smaller pair list with a lifetime of typi-
cally 5–15 MD steps (value auto-tuned at runtime) is obtained,
which is then used in evaluating pair interactions. Less frequent
pair search significantly reduces the cost of this expensive compu-
tation whereas the list pruning avoids introducing overheads of
extra pair interaction evaluations due to a large buffer. The added
benefit is that tuning the search frequency to balance these two
costs for optimal performance is no longer needed.

The second major improvement is that, while GROMACS versions
4.6, 5.x, and 2016 could offload only the short-range part of Cou-
lomb and van der Waals interactions to the GPU, in the 2018 release
the PME mesh part can also be offloaded to CUDA-enabled devices

Figure 2. Raw SP floating-point performance of selected GPU models as
computed from cores and clock rate (shaded area depicts FLOPS when
running at boost/maximum application clock rate). Consumer GPUs that
were part of the 2014 investigation are depicted in black, recent consumer
GPUs in shades of green, Quadro and Tesla professional GPUs in purple.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Throughput of the GPU-offloaded computation: short-range
nonbonded interactions (top panel) and PME long-range electrostatics
(bottom panel) across GPU devices representing the various hardware
generations and categories in this study. Coloring matches that of Figure 2.
Throughput of computation is expressed as atoms per millisecond to aid
comparing to the raw FLOPS. Measurements were done by profiling kernel
execution (with concurrency disabled) of a run with a TIP3P water box of
384,000 atoms (cutoff radii 1.0 nm, PME mesh spacing 0.125 nm, time step
2 fs), chosen to allow comparing different GPUs with different scaling
behavior each at peak throughput for both kernels. [Color figure can be
viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2421

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


(Fig. 5). By enabling offload of more work, the computational bal-
ancewithin GROMACS can be shifted such that it exploits the shift in
hardware balance in the recent years. This improvement makes it
possible to efficiently utilize nodes with more and stronger GPUs
and it enables significantly higher P/P ratios than prior versions on

recent hardware. At the same time, sticking to the offload-based
parallelization approach with improvements focused on both CPU
and GPU is still important and has two major benefits: (1) It makes
sure that nearly all of the versatile GROMACS features remain
supported with GPU acceleration (as opposed to limiting use of
GPUs to only the subset of common features ported to GPUs).
(2) Additionally, offload allows minimizing the risk of vendor lock-in,
which is not negligible when the hardware of the dominant manu-
facturer can only be employed (withmeaningful performance) using
proprietary tools and nonstandards-based tools and programming
models.

As PME offloading with OpenCL will only be supported starting
from the 2019 release, we did not include AMD GPUs in our bench-
mark study yet. However, we expect that recent AMD GPUs will be
competitive against similarly priced NVIDIA consumer GPUs, as
suggested by both the nonbonded kernel performance (see Fig. 3)
and by the proxy P/P ratio (Fig. 4).

The offloading approach works best at a balanced GPU/CPU
compute power ratio, that is, if the ratio is adapted to the typical
requirements of GROMACS simulations (Fig. 5). With our bench-
marks and our hardware choices, we aim to determine this opti-
mum. The more compute work is offloaded, the more this
balance is shifted toward the GPU, which enables higher P/P ratios

Figure 4. Proxy metric for P/P ratio of selected GPU models, computed as
GROMACS 2018 GPU kernel performance divided by price given in Table 2.
Light/shaded bars of each row show P/P derived for timings of nonbonded
kernels only, dark bars show P/P derived from total timings of nonbonded
and PME kernels. The P/P of the AMD Vega 64 is estimated from the
measured throughput of AMD Vega FE but the price of Vega 64. [Color
figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d)

Figure 5. Comparison of different offloading schemes employed by GROMACS 4.6, 5.x, and 2016 (B) and GROMACS 2018 (C, D). Differently colored boxes
represent the different main force computation parts of a typical MD step, whereas gray boxes represent the CPU-GPU data transfers. By offloading compute-
intensive parts of the MD step and using algorithms to optimize concurrent CPU-GPU execution, the wall-time required by a time step (black vertical arrow)
is decreased. A. Without GPUs, the short-range nonbonded interactions (blue), PME (orange), and the bonded interactions (red) are computed on the CPU.
Once all forces have been derived, the atomic positions are updated (white). B. Since version 4.6, GPU(s) can compute the nonbonded forces, while the
CPU(s) do PME and the bonded forces. As a result, the wall clock time per MD step is significantly shortened, at the small expense of having to communicate
positions x and forces F between CPU and GPU (gray). C. Version 2018 introduced the dual pair list algorithm, which i) reduces the number of short-range
nonbonded interactions that are calculated, and ii) reduces the frequency of doing pair search on the CPU (not shown here). There is no computational
overhead added, as the dynamic list pruning (green box) happens on the GPU(s), while the CPU updates the positions (white). D. Since version 2018, also
PME can be computed on a GPU, further reducing the wall clock time per MD step, if enough GPU processing power is available. [Color figure can be viewed
at wileyonlinelibrary.com]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2422

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


if GPUs are cheap. The switch to GROMACS 2018 shifted the opti-
mal CPU/GPU balance significantly toward the GPU, as shown in
the following.

Assembling optimal GPU nodes for GROMACS 2018. Choosing
the right hardware components to build a node with a compet-
itive P/P ratio is a puzzle on its own (Fig. 6). Let us for a
moment focus on the proxy P/P ratio of the GPUs only (Fig. 4).
Considering raw GROMACS GPU kernel throughput, of the Pas-
cal architecture GPUs, the 1080 offers the highest P/P ratio,
whereas of the Turing GPUs, the 2070 performs best. However,
considering GPUs with optimal P/P ratio only is not always be
the best solution, as a node is often more expensive the more
GPUs it can accommodate (see Fig. 6 for an example). As a
result, to optimize for the combined P/P ratio of a whole node,
it is typically better to choose a consumer GPU with a lower P/P
ratio but higher performance.

Apart from the Gold6148F × 2 node with two Tesla V100’s
(Table 3 bottom, and Fig. 9 top), we did not build and bench-
mark any nodes with professional GPUs for two reasons: (i) A
Tesla GPU already costs more than most of the tested nodes
including their consumer GPU(s). (ii) For MD simulations with
GROMACS, the added benefit of using professional GPUs is
marginal (ECC reliability and warranty) and consumer models
with comparable application performance generally exist.

Methods

For the main part of this study, the same two benchmark input
files as in our 2014 investigation were used (Table 1), to facilitate
the comparison between new and old hardware and software.

Software environment

Benchmarks done for evaluating GROMACS developments used
the latest release of each version. All other benchmarks have
been performed using GROMACS 2018, with AVX2_256 SIMD
instructions switched on at compile time for Intel CPUs and
AVX2_128 SIMD instructions for AMD CPUs (with the exception of
Table 4, where AVX_256 was used reflecting the hardware capabili-
ties). Additionally, as version 4.6 did not have SIMD kernel support
for the AVX2_256 instruction set, here we used the AVX_256 build
with adding the -mavx2 -mfma compiler optimization flags to
allow AVX2 instructions to be generated.

On nodes with no or a single GPU, GROMACS’ built-in
thread-MPI library was used, whereas on multi-GPU nodes Intel
MPI 2017 was used. OpenMP support was always enabled.

Additionally, GROMACS was linked against the portable hard-
ware locality library hwloc[23] version 1.11. On nodes without
GPUs, the FFT needed by PME is calculated on the CPU. There-
fore, we employed FFTW 3.3.7,[24] compiled with GCC 4.8 using
the options --enable-sse2 --enable-avx --enable-avx2 that are
recommended for best GROMACS performance. On GPU nodes,
CUDA cuFFT was automatically used with PME offloading.

All hardware was tested in the same software environment
by booting the nodes from a common image with Scientific
Linux 7.4 as operating system (except the Gold6148/V100
nodes, which ran SLES 12p3, and the GROMACS evaluation
benchmarks, which ran on nodes with Ubuntu server 16.04.)

GROMACS was compiled either with GCC 5.4 and CUDA 8.0
or with GCC 6.4 and CUDA 9.1 for the main study, while in the
GROMACS evaluation section GCC 7.3 and CUDA 10 was used.

Impact of compiler choice and CUDA version

To assess the impact of the chosen GCC/CUDA combination
on the measured performances, we ran MEM benchmarks on
identical hardware, but with both CUDA/GCC combinations.
On a node with two E5-2670v2 CPUs plus two GTX 1080Ti
GPUs, our MEM benchmark runs consistently faster with
GCC6.4/CUDA9.1 over GCC 5.4/CUDA8, by 3.5% (average over
10 runs). On an E3-1270v2 CPU with GTX 1070, the factor is
about 4%, whereas on a workstation with E5-1650v4 and GTX
980 it is about 1.5%. To correct for this effect when compar-
ing hardware, the performances measured with the older
GCC/CUDA combination have been multiplied with the fac-
tor 1.025.

The performance difference between using CUDA 9.1 and
CUDA 10.0 was determined in a similar manner and as it turned
out to be less than 0.5%, we did not correct for this small effect.

Benchmarking GROMACS performance evolution

For GROMACS evaluation benchmarking (Figs. 7 and 8), data col-
lection protocols tailored for characterizing performance of the
various code versions were used. All runs were carried out using a
GPU attached to the PCI bus of the CPU employed (or the first
CPU where the master thread of the run was located when both
CPUs were used in Fig. 8). Two CPU threads per core were used,
profiting from HyperThreading with threads pinned.

For the evaluation of performance as a function of CPU cores
per GPU (Fig. 8), we would ideally use CPUs that only differ in
the number of cores and are identical otherwise. We mimicked
such a scenario with a single CPU model by using just a part of

(a)

(b)

(c)

(d)

Figure 6. Breakdown of node costs into
individual components for four exemplary
node types. Costs for CPU, RAM, and SSD disk
are identical for nodes A–D, however, with two
GPUs (B, D) a chassis with a stronger power
supply has to be used, making the node
significantly more expensive. [Color figure can
be viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2423

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


its available cores. However, as modern CPUs, when only par-
tially utilized, can increase the clock frequency of the busy
cores, the comparison would be unfair. We therefore made sure
that the cores not used by our benchmark were kept busy with
a concurrent CPU-only GROMACS run (using the same input
system as the benchmark), so that approximately the same
clock frequency is used independent of how many cores the
benchmark runs on.* GROMACS evaluation benchmarks were
repeated three times, with averages shown.

Lastly, all compile and runtime settings, other than the ones
tested, were left at their default or autotuned values (including
pair search frequency and CPU-GPU load balancing).

Measuring the performance of a node

The performance of different node types can be assessed in vari-
ous ways. Moreover, different benchmark procedures lead to dif-
ferent hardware rankings. Our requirements on the benchmarking
procedure and the resulting hardware ranking were (1) The
benchmarks should closely mimic the intended hardware use.
(2) Aggregation of compute power (e.g. combining hardware
components of two nodes into a single node), which may offer
price and rack space savings, should not be penalized.

Our motivation for the second requirement is the following:
Assume you compare (a) two single-socket nodes with CPU X

Table 3. Single-node performances (average over two runs) for GROMACS 2018 and corresponding P/P ratios. On nodes with N GPUs, the aggregate
performance of N simulations is reported (except 4R where four simulations are run).

U processor AMD/Intel Sockets × cores Clock (GHz) Mounted GPUs MEM (ns/d) RIB (ns/d) ≈price (€ net)
P/P MEM

(ns/d/ 122 €)
P/P RIB

(ns/d/ 1530 €)

1 E3-1270v5[a] 1 × 4 3.6 1070 62.96 3.14 1300 5.78 3.61
1 E3-1270v5[a] 1 × 4 3.6 1070Ti 70.05 3.23 1395 6.13 3.54
1 E3-1270v5[a] 1 × 4 3.6 1080 71.16 3.1 1440 6.03 3.29
1 E3-1270v5[a] 1 × 4 3.6 1080Ti 84.63 3.8 1630 6.33 3.57
1 E3-1240v6[b] 1 × 4 3.7 – 11.7 0.69 1040 1.37 1.02
1 E3-1240v6[a] 1 × 4 3.7 1070 68.72 3.48 1350 6.21 3.94
1 E3-1240v6[a] 1 × 4 3.7 1080 78.04 3.48 1460 6.52 3.65
1 E3-1240v6[a] 1 × 4 3.7 1080Ti 95.45 4.38 1650 7.06 4.06
1 E3-1240v6[b] 1 × 4 3.7 2080 110.69 4.85 1680 8.04 4.42
1 E3-1240v6[b] 1 × 4 3.7 2080Ti 133.26 5.77 2090 7.78 4.22
1 Core i7-6700K[a] 1 × 4 4.0 1070 67.69 3.28 1350 6.12 3.72
1 Core i7-6700K[a] 1 × 4 4.0 1080Ti 92.52 4.03 1650 6.84 3.74
1 Silver 4110[a] 1 × 8 2.1 1080Ti 97.63 5.27 1910 6.24 4.22
1 Silver 4110[a] 1 × 8 2.1 1080 × 2 131.17 6.98 2840 5.63 3.76
1 Silver 4110[a] 1 × 8 2.1 1080Ti × 2 155.66 8.84 3220 5.9 4.2
1 E5-2630v4[a] 1 × 10 2.2 1070 73.61 3.84 1630 5.51 3.6
1 E5-2630v4[a] 1 × 10 2.2 1070Ti 82.41 4.02 1695 5.93 3.63
1 E5-2630v4[a] 1 × 10 2.2 1080 83.42 3.83 1740 5.85 3.37
1 E5-2630v4[a] 1 × 10 2.2 1080Ti 104.01 4.99 1930 6.57 3.96
1 E5-2630v4[b] 1 × 10 2.2 2080 115.41 5.88 1960 7.18 4.59
1 E5-2630v4[b] 1 × 10 2.2 2080Ti 146.28 7.27 2370 7.53 4.69
1 E5-2630v4[a] 1 × 10 2.2 1080Ti × 2 179.51 8.58 2860 7.66 4.59
1 E5-2630v4[b] 1 × 10 2.2 2080 × 2 201.33 10.13 2920 8.41 5.31
1 Silver 4114[a] 1 × 10 2.2 1070Ti 81.31 4.49 1855 5.35 3.7
1 Silver 4114[a] 1 × 10 2.2 1080 82.89 4.34 1900 5.32 3.49
1 Silver 4114[a] 1 × 10 2.2 1080Ti 103.9 5.57 2090 6.06 4.08
1 Silver 4114[b] 1 × 10 2.2 2080Ti 147.29 7.85 2530 7.1 4.75
1 Silver 4114[a] 1 × 10 2.2 1080 × 2 142.7 7.29 3020 5.76 3.69
1 Silver 4114[a] 1 × 10 2.2 1080Ti × 2 165.19 9.58 3400 6.07 4.31
D Ryzen 1950X[b] 1 × 16 3.4 1080Ti 94.9 5.01 2440 4.75 3.14
D Ryzen 1950X[b] 1 × 16 3.4 2080 106.08 5.56 2470 5.24 3.44
D Ryzen 1950X[b] 1 × 16 3.4 1080Ti × 2 172.62 9.16 3050 6.9 4.6
D Ryzen 1950X[b] 1 × 16 3.4 2080 × 2 196.73 10.08 3110 7.72 4.96
D Ryzen 1950X[b] 1 × 16 3.4 2080 × 3 267.51 12.79 3750 8.7 5.22
D Ryzen 1950X[b] 1 × 16 3.4 2080 × 4 332.83 14.07 4390 9.25 4.9
1 Epyc 7401P[b] 1 × 24 2.0 – 28.71 2.28 3500 1 1
1 Epyc 7401P[b] 1 × 24 2.0 1080Ti × 2 191.66 9.49 4720 4.95 3.08
1 Epyc 7401P[b] 1 × 24 2.0 1080Ti × 4 369.06 16.96 5940 7.58 4.37
2 Gold6148F × 2[c] 2 × 20 2.4 V100 × 2 300.76 19.95 23,200 1.58 1.32
2 Gold6148F × 2[c] 2 × 20 2.4 V100 × 2 (4R) 393.32 27.27 23,200 2.07 1.8

U = rack space requirements in units per node, D for desktop chassis. P/P ratios were normalized such that values ≥1 result.
[a] Using CUDA 8.0 + GCC 5.4 + Intel MPI 2017.
[b] Using CUDA 9.1 + GCC 6.4 + Intel MPI 2017.
[c] Using CUDA 10.0 + GCC 6.4 + Intel MPI 2018.

*Note that with this protocol the last level cache is shared by the two
runs colocated on the CPU. Hence, measurements are not equivalent
with turning off CPU cores not intended to be used and fixing a
constant CPU frequency across all active cores, an alternative which
would provide benchmarks for a small number of cores with an
unrealistic amount of cache.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2424

http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


and GPU Y each, to (b) a dual-socket node with two CPUs of
type X and two GPUs of type Y. The aggregate performance of
(a) and (b) is expected to be identical, as two independent sim-
ulations can always run on (b).

A benchmark protocol matching both requirements is run-
ning N simulations on nodes with N GPUs in parallel, each using
1/N of the available CPU cores or hardware threads, and
reporting the aggregate performance, that is, the sum of the
performances of the individual simulations. This protocol can
easily be executed by using the GROMACS-multidir command
line argument. As in the initial phase, the load balancing mech-
anisms have not yet found their optimum, we excluded the first
n time steps from the performance measurements that were
run for a total of ntot time steps. For the MEM and VES bench-
marks, we used n = 15,000 and ntot = 20,000, whereas for the
RIB and BIG benchmarks, we used n = 8000 and ntot = 10,000.

On single-socket nodes with one GPU, using a single rank
with as many OpenMP threads as available cores (or hardware
threads) is usually fastest, as one avoids the overhead intro-
duced by MPI and domain decomposition.[16,17] Therefore, the
single-GPU benchmarks of the old investigation and the pre-
sent study are comparable, whereas on multi-GPU nodes, the
new benchmark protocol is expected to yield a higher aggre-
gate performance than the single-simulation performance that
was measured in 2014.

Power consumption measurements

We measured the power consumption of a node with the
Linux programs ipmi-sensors version 1.5.7 (http://www.gnu.org/
software/freeipmi/) and ipmitool version 1.8.17 (https://github.
com/ipmitool/ipmitool). On some nodes, for example, on the
Ryzen workstations that do not support reading out the power
draw via ipmi, we used a VOLTCRAFT Power Monitor Pro
multimeter. In all cases, we computed the average of 60 sepa-
rate power readings with 1 s time difference each. During the

power measurements, the RIB benchmark was running with the
same settings that were used to derive the performance.

Coarse grain simulations with Martini

In order to check to what extent the results from the atomistic
benchmarks are transferable to coarse grain simulations, we
added benchmarks that use the Martini[25,26] force field. With
Martini, the particle density is lower than for all-atom force
fields and the electrostatic interactions are usually not calcu-
lated via PME. Therefore, it is unclear whether the hardware
optimum for coarse grain simulations is the same as for atomis-
tic simulations.

To facilitate the comparison with the atomistic systems, we
chose coarse grain systems with a similar number of particles,
respectively, see Table 1. The small Martini benchmark system
“VES” is a POPE vesicle in water and with a total of 72,076 parti-
cles, comparable in size with the MEM atomistic benchmark. It

Table 4. Single-node performances for GROMACS 2018 as in Table 3 but for upgrading existing nodes with modern GPUs. Here, the P/P ratios have been
calculated from the performance increase (i.e., performance with upgraded GPU(s) minus performance with old GPU) and the cost of the GPU(s). All
benchmarks use CUDA 9.1, GCC 6.4, and, for the multi-GPU setups, Intel MPI 2017. For optimum performance, PME mesh part was offloaded to the GPU,
except where indicated (?).

U Processor Intel Sockets × cores Clock (GHz)
Mounted
GPUs

MEM
(ns/d) RIB (ns/d) ≈price (€ net)

P/P MEM
(ns/d/ 122 €)

P/P RIB
(ns/d/ 1530 €)

Existing node with old GPU:
1 E3-1270v2 1 × 4 3.5 680 26.9? 1.6 0 - -
With upgraded GPU:
1 E3-1270v2 1 × 4 3.5 2080 91.7 4 640 12.4 5.7
Existing node with old GPUs:
2 E5-2670v2 × 2 2 × 10 2.5 780Ti × 2 104.8? 6.7 0 - -
With upgraded GPUs:
2 E5-2670v2 × 2 2 × 10 2.5 1080 × 2 163.4 7.8 840 8.5 1.9
2 E5-2670v2 × 2 2 × 10 2.5 1080Ti × 2 208.4 10.2 1220 10.4 4.3
2 E5-2670v2 × 2 2 × 10 2.5 1080Ti × 4 361.2 17.9 2440 12.8 7
Existing node with old GPUs:
2 E5-2680v2 × 2 2 × 10 2.8 K20Xm × 2 83.2? 5 0 - -
With upgraded GPUs:
2 E5-2680v2 × 2 2 × 10 2.8 1080Ti × 2 212.7 10.1 1220 12.9 6.4
2 E5-2680v2 × 2 2 × 10 2.8 2080 × 2 237.7 11.5 1280 14.7 7.8
2 E5-2680v2 × 2 2 × 10 2.8 2080 × 4 409.6 20.3 2560 15.6 9.2

Figure 7. Evolution of the GROMACS performance on GPU nodes for
versions 4.6–2018. The short-range nonbonded interactions were offloaded
to the GPU in all cases, whereas for version 2018, also the PME mesh
contribution can be offloaded (topmost black bars). Tesla V100 and GTX
1080 GPUs were mounted in a node with two Xeon E5-2620v4 processors
(2× 8 cores). The Tesla K80 GPU was mounted in a node with two Xeon
E5-2620v3 processors (2× 6 cores). [Color figure can be viewed at
wileyonlinelibrary.com]

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2425

http://www.gnu.org/software/freeipmi/
http://www.gnu.org/software/freeipmi/
https://github.com/ipmitool/ipmitool
https://github.com/ipmitool/ipmitool
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


is one of the example applications available for download at
www.cgmartini.nl.[21] The large Martini benchmark system “BIG”
was created from the mammalian plasma membrane example
system.[27] To arrive at the final large benchmark system, a
patch of 2 × 2 copies in x- and y-directions of the original mem-
brane was created with gmx genconf, resulting in a final mem-
brane with 2,094,812 particles, thus comparable in size to the
RIB atomistic benchmark.

Following the suggestions for Martini simulations with GPUs,
we used the New-RF set of simulation parameters.[28,29] As with
version 2018, the dual pair list algorithm was introduced (see
Fig. 5C), we increased the neighbor searching interval from
20 (as used in the New-RF parameter set) to 50 steps (with an
inner pair list lifetime of four steps) for improved performance.

Results

Evaluation of GROMACS performance developments

As shown in Figure 7, thanks to the algorithmic improvements
and optimizations described earlier, across the initial four
releases since our previous study, between versions 4.6 and
2016, simulation performance improved by up to 65% on
previous-generation hardware (e.g. Tesla K80) and by as much
as 75–90% on more recent hardware (e.g. GTX1080 and Tesla
V100). Between the 2016 and 2018 versions with PME on the
CPU, we measured a 6%–9% performance increase (light and
dark blue bars in Fig. 7), which is largely due to the dynamic
pruning algorithm. We expect this advantage to grow even
larger with future GPU hardware because the faster the GPU-
offloaded computation gets, the larger the benefit of this algo-
rithm will be. For the given benchmark systems and server
setups, we observe additional PME offload improvements of
35%–84% when using recent GPUs (see black bars in Fig. 7). At
the same time, on the legacy hardware setup, offloading to the
older generation Tesla K80 leads to slowdown. To better under-
stand this performance change, we explore the performance

characteristics of the heterogeneous PME-offload code in
GROMACS 2018 in the following.

Our evaluation benchmarks were carried out on servers rep-
resenting GPU-dense setups, consisting of Xeon CPUs with
rather modest performance combined with fast accelerators.
These are traditionally challenging for GROMACS as illustrated
by the strong dependence of the performance on the number
of cores used (indicated by the dotted lines in Fig. 8). One of
the main performance goals of the GROMACS 2018 develop-
ment was to reach a close to the peak simulation rate of the
previous offload scheme (non-bonded only) on balanced hard-
ware, but with only a few CPU cores accompanying the GPU. Of
our benchmarked hardware setups, the GTX 1080 (light green
curves in Fig. 8) combined with about 12–14 cores of the
E5-2620v4 processors could be considered a balanced setup.
For the two systems, with only four cores per GPU, the PME-
offload feature allows reaching 80% and 90% of the peak with
no PME offload, respectively.

Whereas the 2016 release required many fast cores to
achieve a good load balance between CPU and GPU, with the
2018 release, in most cases, only 4–6 slower (typical server)
cores as the ones in our benchmarked systems are sufficient to
reach >80% of the peak simulation performance (e.g., as
obtained with all 16 cores of a node here). Workstations typi-
cally have a few cores, but these are fast. In contrast, servers
often have more but slower cores than workstations. To com-
pare the raw CPU processing power of both node types, we
consider the “core-GHz”, that is, the number of cores multiplied
with the clock frequency. We determined that 10–15 “core-
GHz” is generally sufficient to reach close to peak performance
with a mid- to high-end GPU in typical biomolecular simulation
workloads like the ones used here. If there is however signifi-
cant work left for the CPU after offloading the nonbonded and
PME computation (e.g. a large amount of bonded interactions
or a free energy computation setup), more CPU cores may be
required for an optimal balance. Additionally, this balance does
of course shift as bigger and faster GPUs become available, like

Figure 8. GROMACS 2018 performance as a
function of CPU cores used per GPU. The
GTX 1080, RTX 2080, and Tesla V100 cards
were installed in server nodes along Xeon
E5-2620v4 processors (2× 8 cores), whereas
the Tesla K80 was installed in a node with
two E5-2620v3 processors (2× 6 cores).
Solid lines illustrate performance with PME
offloaded to the GPU, whereas dotted lines
with smaller symbols indicate performance
with PME computed on the CPU (cores
indicated on the horizontal axis). [Color figure
can be viewed at wileyonlinelibrary.com]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2426

http://www.cgmartini.nl
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


the Tesla V100 (or the similarly performing GeForce RTX 2080Ti)
does in fact need around 8–10 cores equivalent to 16–20 “core-
GHz” before the performance curve flattens (purple lines). The
increasing size of GPUs however also poses a computational
challenge: large devices are difficult to saturate and cannot
obtain their peak throughput with common workloads like the
MEM benchmark, which is why the advantage of the Tesla V100
over the RTX 2080 is relatively small especially in comparison to
the much larger RIB benchmark case (purple and dark green
lines on Fig. 8).

An additional benefit of PME offload is that the achievable
peak performance also increases and, with fast GPUs, a signifi-
cant performance increase is achieved (see dark green and pur-
ple lines in Fig. 8) that was previously not possible with slower
accompanying CPUs. Conversely, however, with CPU-GPU
setups ideal for earlier GROMACS versions, PME offload may
not improve performance. In particular on legacy GPU hard-
ware, PME offload is often slower what is reflected in the early
performance cross-over around 5–6 cores per GPU in the Xeon
E5-2620v3 CPUs with Tesla K80 benchmarks (solid and dotted
pink lines).

In summary, the 2018 version, thanks to the combination of
the dynamic pruning algorithm and PME offload, enables using
fewer and/or slower CPU cores in combination with faster
GPUs, which is particularly suitable for throughput studies on
GPU-dense hardware. With hardware setups close to balanced
for the 2016 release, PME offload will not lead to significant
performance improvements but the new code capabilities open
up the possibility for upgrades with further accelerators. As an
example, given an 8-core workstation CPU (like an AMD Ryzen
7 2700), which will be approximately as fast as 10–16 cores in
Figure 8, when combined with a GTX 1080, there would be little
improvement from PME offload, and even with an RTX 2080,
the improvement would be modest (assuming similar workload
as ours). However, in such a workstation, adding a second GPU
would nearly double the performance.

Which hardware is optimal for MD?

Table 3 and Figure 9 show the results of our current hardware
ranking. Overall, the P/P ratio of the examined consumer GPU
nodes is about a factor of 3–6 higher compared to their

Figure 9. (Aggregate) simulation performance
in relation to net node costs. MEM (circles)
and RIB (stars) symbols are colored depending
on CPU type. Symbols with white fill denote
nodes without GPU acceleration; dotted lines
connect GPU nodes with their CPU
counterparts. Gray: isolines of equal P/P ratio
like in Figure 1 with superior configurations to
the lower right. Old nodes with upgraded
GPUs from Table 4 are shown in yellow-
orange colors (legend). [Color figure can be
viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2427

http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


counterparts without GPUs. The P/P ratios of new nodes with
consumer GPUs are all very similar; most of them are less than
a factor of 1.5 apart and thus scatter about one isoline in the
log–log plot (Fig. 9). Note that this similarity results from our
hardware preselection and does not imply that any node with
consumer GPU(s) has a comparable P/P ratio. There are lots of
hardware combinations possible that we did not consider
because high costs of one or more individual components pre-
clude a competitive P/P ratio from the start.

The cheapest nodes with a good P/P ratio, starting at ≈ 1400
€ net, are Intel E3-1270v5, E3-1240v6, or Core i7-6700K CPUs
combined with a GeForce 1070(Ti), respectively. The best P/P
ratio (with current pricing) is offered by combining a E5-2630v4

or Ryzen 1950X CPU with two (or possibly more) RTX 2080
GPUs starting at 3000 € net. The best aggregate performance
for consumer GPU nodes was identified for the AMD Epyc
24-core node combined with four 1080Ti GPUs.

Concerning space requirements, most node types listed in
Table 3 fit in one height unit (U) of rack space. One exception is
the Ryzen Threadripper 1950X that was available in a desktop
chassis only (using ≈ 4 U, if mounted in a rack).

Alternative: Upgrade existing nodes with recent GPUs

An attractive alternative to replacing old GPU nodes with
new hardware is to solely exchange the existing GPUs with

Figure 10. Breakdown of total costs for
selected node types, taking into account 0.2
€ per kWh for energy and cooling, for a
lifetime of 5 years. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 11. RIB performance of selected node
types in relation to their energy efficiency.
Nodes without GPUs (white fill) show both
low performance as well as low energy
efficiency, independent of GROMACS version
and CPU generation. Best energy efficiency is
recorded for GROMACS 2018 in combination
with new GPUs (black- and green-filled
symbols). [Color figure can be viewed at
wileyonlinelibrary.com]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2428

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


more powerful recent models. Due to offloading even more
interaction types to the GPU, compared to older versions,
GROMACS 2018 demands more compute power on the GPU

side, but less on the CPU side. As a result, CPU models from a
few years ago often ideally combine with modern GPUs.

For instance, the performance gain for a dual 10-core node
with two K20Xm GPUs that was part of the 2014 investigation
is a factor of 3.5 for the MEM benchmark for switching the old
GPUs with recent RTX 2080 models. Table 4 lists the perfor-
mance gains for different upgrade scenarios. The top line in
each section shows the performance of an old node with
GROMACS 2018, whereas the following lines show how perfor-
mance increases when GPUs are upgraded. Depending on the
exact old and new GPU type, one can easily achieve a twofold
higher aggregate performance from these nodes for the com-
paratively small investment of just having to buy the GPUs and
not whole nodes. Performance-wise it makes no difference
whether four 1080Ti GPUs are combined with a new Epyc 7401
processor (24 cores), or with two old E5-2670v2 processors
(2 × 10 cores). The yellow and orange symbols in Fig. 9 show
the performance of these nodes in relation to the costs for
upgrading them with modern GPUs.

Energy efficiency

To establish the total costs of a node over its lifetime, we deter-
mined its power consumption. Assuming a net cost of 0.2 € per
kWh for energy and cooling, we calculated the total costs of
selected node types as the sum of hardware and energy costs,

Figure 12. RIB trajectory costs for selected node types assuming 5 years of
operation, including costs of 0.2 € per kWh for energy and cooling. The top
part shows results from 2014 using GROMACS 4.6,[16] the lower part depicts
results using GROMACS 2018 on recent hardware and on old hardware that
was upgraded with new GPUs (lowermost three bars). Nodes without GPUs
have the highest trajectory production costs (asterisks). [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 13. (Aggregate) simulation performance in relation to net node costs as in Figure 9, but for the two coarse grain benchmarks (the vesicle and the big
membrane patch) using the Martini force field. VES (squares) and BIG (triangles) symbols are colored depending on CPU type. Symbols with white fill denote
nodes without GPU acceleration; dotted lines connect GPU nodes with their CPU counterparts. Reused old nodes with new GPUs are shown in orange colors
(legend). [Color figure can be viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2429

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


over 5 years of operation (Fig. 10, five separate 1 year blocks
given for energy and cooling costs). For the considered node
types and an average lifetime of 3–5 years, the costs for hard-
ware and energy are similar. This will, however, not generally
be the case, for example, with professional GPUs, the costs for
hardware can easily be three times as high.

Figure 11 shows the energy efficiency of selected node types
in relation to their GROMACS performance. With GROMACS
2018, in addition to their considerably higher simulation perfor-
mance, GPU nodes deliver more than two times the perfor-
mance per Watt compared to CPU nodes.

We derive the total costs for producing MD trajectories on
different node types by putting the hardware and energy costs
in relation to the amount of produced trajectory (Fig. 12). We
make three main observations: (1) Trajectory costs are highest
on nodes without consumer GPUs (these are marked with aster-
isks in the Figure). (2) For GROMACS 4.6 on hardware of 2014,
trajectory costs on the best GPU nodes are 0.5–0.6 times that of
their CPU-only counterparts. (3) With GROMACS 2018 and cur-
rent hardware, this factor is reduced to about 0.3.

Coarse grain models

The Martini systems were run on a subset of the node types
used for the atomistic benchmarks, Figure 13 shows the results.
The overall picture is quite similar to the atomistic benchmarks
(Fig. 9) but there are some differences as well.

As for the atomistic systems, the P/P ratio is significantly
higher for nodes with consumer GPUs than for CPU nodes.
However, the gap between CPU nodes and consumer GPU
nodes is less pronounced than in the atomistic case. It is about
a factor of 2–4 for the small VES system and a factor of 1.5–2
for the BIG membrane in terms of P/P. As in the atomistic case,
reused old nodes upgraded with up-to-date consumer GPUs
have the best P/P ratios.

Although the workload of a Martini coarse grain MD system
is quite different from the workload of an atomistic system
(lower particle density, no PME mesh), it turns out that the
node types that are optimal for atomistic MD are also very well
suited for running coarse grain simulations.

Conclusions for GROMACS 2018

In 2014, we found that nodes with consumer GPUs provide the best
bang for your buck due to their significantly higher trajectory out-
put per invested Euro compared to nodes without GPUs or nodes
with professional GPUs. This applies equally to GROMACS 2018 on
current hardware. Moreover, the existing gap has considerably wid-
ened: Taking into account raw node prices, today with GROMACS
2018 one can get a factor of three to six times more trajectory on
consumer GPU nodes as compared to a factor of two to three in
2014 with GROMACS 4.6. When including costs for energy and
cooling, this factor has increased from two to about three.

This marked improvement became possible by offloading also
the PME mesh computations to the GPU, in addition to the short-
ranged nonbonded interactions. PME offloading moves the opti-
mal hardware balance even more toward consumer GPUs.
CPU/GPU combinations identified as optimal in P/P ratio require

about four to eight CPU cores per 1080Ti or 2080; a generally use-
ful rule-of-thumb is that for similar simulation systems as the ones
shown here, 10–15 “core-GHz” are sufficient and 15–20 “core-GHz”
are also future-proof for upgrades (or better suited for workloads
with additional CPU computation).

Additionally, PME offloading offers the possibility to cheaply
upgrade GPU nodes once tailored for older GROMACS versions.
By keeping everything but exchanging the old GPUs by state-
of-the-art models, an optimal CPU/GPU balance can be restored
for GROMACS 2018, at the comparatively small investment for
GPUs only.

Outlook

Since hardware is continuously evolving and new components
(CPUs, GPUs, barebones, boards, etc.) will become available in
future, it is likely that configurations with an even higher P/P ratio
than identified in this article will appear. Readers who have access
to hardware configurations that were not covered here are encour-
aged to download our CC-licensed benchmark input files from
https://www.mpibpc.mpg.de/grubmueller/bench to perform their
own benchmarks such that we can include these data into updated
versions of the Tables.

It is worth noting that the presented results do transfer very
well to the GROMACS 2019 code, just released at the time of writ-
ing this article. On the performance front, this release has only
modest additions with a few notable exceptions only. This release
introduces PME offload support using OpenCL, which is particu-
larly useful on AMD GPUs, especially in light of how favorably the
(now previous-generation) Radeon Vega GPUs compare to the
competition. Their advantage is particularly pronounced when
comparing their P/P ratio against Tesla GPUs (see Figs. 3 and 4).

The additional feature of the 2019 release worth noting is the
ability to offload (most) bonded interactions with CUDA. However,
as GROMACS has highly optimized SIMD kernels for bonded inter-
actions, this feature will have a beneficial performance impact only
in cases where either available CPU resources are low or the simu-
lation system contains a significant amount of bonded work. For
our benchmarks, that would mean that the cases where just a few
cores are paired with fast GPUs would be improved, as the 1–3
core range of the purple and dark green lines in Figure 8 indicate.

Acknowledgments

We thank Petra Kellers for thoroughly reading the manuscript; her
suggestions led to numerous improvements. We thank the MPCDF,
especially Markus Rampp and Hermann Lederer, for general help and
for providing some of the hardware that has been benchmarked. This
study was supported by the DFG priority programme Software for
Exascale Computing (SPP 1648) and by the BioExcel CoE (www.
bioexcel.eu), a project funded by the European Union contract
H2020-EINFRA-2015-1-675728, the SSF Infrastructure Fellow pro-
gramme, and the Swedish e-Science Research Centre (SeRC).

Keywords: molecular dynamics � GPU � parallel computing �
energy efficiency � benchmark � GROMACS � computer
simulations � CUDA � performance to price � high through-
put MD

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2019, 40, 2418–2431 WWW.CHEMISTRYVIEWS.COM2430

https://www.mpibpc.mpg.de/grubmueller/bench
http://www.bioexcel.eu
http://www.bioexcel.eu
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


How to cite this article: C. Kutzner, S. Páll, M. Fechner, A.
Esztermann, B. L. de Groot, H. Grubmüller. J. Comput. Chem
2019, 40, 2418–2431. DOI: 10.1002/jcc.26011

[1] L. Bock, C. Blau, G. Schröder, I. Davydov, N. Fischer, H. Stark, M. Rodnina,
A. Vaiana, H. Grubmüller, Nat. Struct. Mol. Biol. 2013, 20, 1390.

[2] M. Zink, H. Grubmüller, Biophys. J. 2009, 96, 1350.
[3] M. Harvey, G. Giupponi, G. D. Fabritiis, J. Chem. Theory Comput. 2009, 5,

1632.
[4] R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, R. C. Walker,

J. Chem. Theory Comput. 2013, 9, 3878.
[5] B. R. Brooks, C. L. Brooks, III., A. D. Mackerell, Jr.., L. Nilsson, R. J. Petrella,

B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves,
Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im,
K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor,
C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock,
X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.

[6] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen,
J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon,
Y. Shan, D. E. Shaw, Scalable Algorithms for Molecular Dynamics Simula-
tions on Commodity Clusters. Proceedings of the ACM/IEEE Conference
on Supercomputing (SC06): Proceedings of the 2006 ACM/IEEE Confer-
ence on Supercomputing, Tampa, FL, 2006, pp. 43-43. https://
ieeexplore.ieee.org/document/4090217

[7] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, A. N. Tharrington, Comput.
Phys. Commun. 2012, 183, 449.

[8] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.

[9] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns,
J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye,
M. Houston, T. Stich, C. Klein, M. R. Shirts, V. S. Pande, J. Chem. Theory
Comput. 2013, 9, 461.

[10] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,
E. Lindahl, SoftwareX 2015, 1-2, 19.

[11] M. Lundborg, C. L. Wennberg, A. Narangifard, E. Lindahl, L. Norlén,
J. Control. Release 2018, 283, 269.

[12] J. D. Chodera, F. Noé, Curr. Opin. Struct. Biol. 2014, 25, 135.
[13] I. Buch, T. Giorgino, G. De Fabritiis, PNAS 2011, 108, 10184.
[14] N. Plattner, S. Doerr, G. De Fabritiis, F. Noé, Nat. Chem. 2017, 9, 1005.

[15] S. Chen, R. P. Wiewiora, F. Meng, N. Babault, A. Ma, W. Yu, K. Qian, H. Hu,
H. Zou, J. Wang, S. Fan, G. Blum, F. Pittella-Silva, K. A. Beauchamp,
W. Tempel, H. Jiang, K. Chen, R. Skene, Y. G. Zheng, P. J. Brown, J. Jin,
C. Luo, J. D. Chodera, M. Luo, bioRxiv 2018, 8, e45403.

[16] C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. de Groot,
H. Grubmüller, J. Comput. Chem. 2015, 36, 1990.

[17] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl, In Lect. Notes
Comput. Sci. 8759, EASC 2014; S. Markidis, E. Laure, Eds., Springer Inter-
national Publishing, Switzerland, 2015, p. 1.

[18] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput.
2008, 4, 435.

[19] U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, J. Chem. Phys.
1995, 103, 8577.

[20] B. L. de Groot, H. Grubmüller, Science 2001, 294, 2353.
[21] MARTINI. Coarse grain forcefield for biomolecules–Example application

“lipid vesicles”. http://www.cgmartini.nl/index.php/example-applications2/
lipid-vesicles Accessed May 20, 2019.

[22] S. Páll, B. Hess, Comput. Phys. Commun. 2013, 184, 2641.
[23] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, R. Namyst, hwloc: A generic framework for man-
aging hardware affinities in HPC applications. Parallel, Distributed and
Network-Based Processing (PDP), 2010, 18th Euromicro International
Conference on. 2010; pp 180–186.

[24] M. Frigo, S. G. Johnson, Proc. IEEE 2005, 93, 216.
[25] S. J. Marrink, A. H. De Vries, A. E. Mark, J. Phys. Chem. B 2004,

108, 750.
[26] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. De Vries,

J. Phys. Chem. B 2007, 111, 7812.
[27] MARTINI. Coarse grain forcefield for biomolecules–example applica-

tion “plasma membrane”. http://www.cgmartini.nl/index.php/examp
le-applications2/lipid-membranes, Accessed May 5, 2019.

[28] D. H. De Jong, S. Baoukina, H. I. Ingólfsson, S. J. Marrink, Comput. Phys.
Commun. 2016, 199, 1.

[29] F. Benedetti, C. Loison, Comput. Phys. Commun. 2018, 228, 146.

Received: 4 March 2019
Revised: 29 May 2019
Accepted: 4 June 2019
Published online on 1 July 2019

WWW.C-CHEM.ORG SOFTWARE NEWS AND UPDATES

Wiley Online Library J. Comput. Chem. 2019, 40, 2418–2431 2431

https://doi.org/10.1002/jcc.26011
https://ieeexplore.ieee.org/document/4090217
https://ieeexplore.ieee.org/document/4090217
http://www.cgmartini.nl/index.php/example-applications2/lipid-vesicles
http://www.cgmartini.nl/index.php/example-applications2/lipid-vesicles
http://www.cgmartini.nl/index.php/example-applications2/lipid-membranes
http://www.cgmartini.nl/index.php/example-applications2/lipid-membranes
http://WWW.C-CHEM.ORG

	 More Bang for Your Buck: Improved use of GPU Nodes for GROMACS 2018
	Introduction
	GROMACS load distribution schemes
	Summary of the 2014 investigation
	Hardware and software developments 2014-2018
	Hardware developments
	Software developments
	Assembling optimal GPU nodes for GROMACS 2018


	Methods
	Software environment
	Impact of compiler choice and CUDA version
	Benchmarking GROMACS performance evolution
	Measuring the performance of a node
	Power consumption measurements
	Coarse grain simulations with Martini

	Results
	Evaluation of GROMACS performance developments
	Which hardware is optimal for MD?
	Alternative: Upgrade existing nodes with recent GPUs
	Energy efficiency
	Coarse grain models

	Conclusions for GROMACS 2018
	Outlook
	Acknowledgments


