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The suitability of principal component analysis (PCA) to yield slow collective coordinates for use within a
dimension reduced description of conformational motions in proteins is evaluated. Two proteins are considered,
T4 lysozyme and crambin. We present a quantitative evaluation of the convergence of conformational
coordinates obtained with principal component analysis. Detailed analyses of (>200 ns) molecular dynamics
trajectories and crystallographic data suggests that simulations of a few nanoseconds should generally provide
a stable and statistically reliable definition of the essential and near constraints subspaces. Moreover, a
systematic assessment of the density of states of the dynamics of all principal components showed that for
an optimal separation of time scales it is crucial to include also side chain atoms in the PCA.

1. Introduction

Conformational motions in proteins are ubiquitous and often
essential for their function.1 Molecular dynamics (MD) simula-
tions have been used with increasing success to study these
motions.2-4 However, the accessible simulation times of at most
hundreds of nanoseconds are much shorter than the micro- to
millisecond time scales at which most of the biomolecular
processes occur, for example, the gating of ion channels,
allosteric interactions, ligand binding, molecular recognition,
chemomechanical energy conversion, and many others.5-8

To render these essential biomolecular processes accessible
to simulation, a drastic reduction of the large number of degrees
of freedom is required, for example, by collective Langevin
dynamics (CLD).9 A prerequisite for such an approach is a
suitable separation of the protein dynamics into slow and fast
degrees of freedom. The dynamics of the slow ones is then
evolved actively, whereas the typically large number of fast
degrees of freedom are treated in an effective manner.

However, for protein dynamics with its continuous spectrum
of time scales, a clear separation between slow and fast degrees
of freedom cannot be achieved. Necessarily, some of the
effectively treated modes exhibit relaxation times in the order
of the time scales of the explicitly treated modes. One
consequence is that memory effects can generally not be
neglected in protein dynamics.9 Especially for strongly overlap-
ping time scales, a sufficiently accurate treatment of the resulting
effects is difficult or even impossible. The achieved level of
time scale separation, therefore, strongly affects the accuracy
of the dynamical model, which motivates the goal to achieve
the best possible separation.

The absence of any canonical slow degrees of freedom in
macromolecular dynamics has triggered many different phe-
nomenologically motivated selections including implicit sol-
vent,10 combined atom or bead models,11-14 and the treatment
of polypeptides as chains of stiff “platelets”, for which only
ψ-φ backbone angles are retained as explicit degrees of

freedom.15,16 A somewhat related approach is the Gaussian
network model.17

However, by restricting the model to certain atoms or groups
of atoms and omitting others, only a very small subset of all
possible collective degrees of freedom is considered. One may,
therefore, expect to achieve improved dimension reduced
descriptions of protein dynamics by systematically deriving
collective coordinates with principal component analysis (PCA)
from short MD simulations. For PCA18-20 and the related quasi-
harmonic analysis,21-24 as well as for singular value decomposi-
tion,25,26 it has been shown that typically more than 90% of
their total atomic motion is described by less than 5% of all
degrees of freedom.20,27-29 The essentialsubspace,20 spanned
by the PCA modes contributing most to the atomic displacement,
is a promising candidate as active space for dimension reduced
dynamics.

Indeed, the drastically reduced dimension of the essential
space has often been exploited with great success in functional
studies,30-34 enhanced sampling techniques,35-37 or simple
models of protein dynamics.38-41 However, our dimension
reduced dynamics approach requires that the essential subspace
contains a sufficiently large fraction of the atomic motion also,
and particularly, on time scales far beyond the length of the
MD simulation used for its derivation. Of course, it is also
necessary to obtain a converged free energy landscape for all
degrees of freedom in the reduced space, which in a free MD
simulation will likely take much longer than the convergence
of the subspace directions. However, if a sufficiently converged
essential subspace can be obtained from a relatively short MD
simulation, subsequently a variety of biased sampling methods
can be used, such as umbrella sampling and weighted histogram
techniques,42,43thermodynamic integration,44,45Jarzynski’s iden-
tity-based methods,46 or metadynamics.47,48

A similar strategy has recently been proposed to include
backbone flexibility into docking.35,49In this context, structures
corresponding to grid points in a low dimensional space spanned
by some PCA or normal mode analysis (NMA) modes are
generated and subsequently targetted via conventional docking
schemes. A related application of PCA uses three PCA modes
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to bias the search for homology models.50 For PCA to become
valuable in these approaches, however, the number of degrees
of freedom has to be very small, as the number of grid cells
grows exponentially with the dimension.

Motivated by these and other possible advances, we will here
study whether and to which extent PCA modes obtained from
short MD simulations are able to describe conformational motion
on long time scales and how many PCA modes have to be used
to achieve a sufficient accuracy.

Due to the crucial role of the separation of time scales
described above, we also have to address this issue for the
essential and nonessential PCA modes. Since the equipartition
theorem yields a slow effective frequency,ωi

eff ∼ (kBT/〈ci
2〉)1/2,

for large amplitude modes, it has been argued previously that
essential PCA modes describe indeed slow motion.27 However,
the crucial question of the extent that fast motions “leak” into
the dynamics of the essential modes has not yet been addressed.
Therefore, we analyze in section 4 power spectra of principal
modes to establish whether and under which conditions PCA
is able to extract “pure” slow motions.

The remaining part of this study will address the question of
whether the essential subspace obtained from a short (nano-
second) MD simulation describes a considerable and sufficient
amount of the overall protein motion observed on long time
scales. This question of the convergence of principal modes has
already been studied previously and led to controversial
discussion.51-54 However, all of these studies were restricted
to nanosecond MD simulations and, therefore, revisiting this
issue is timely. Motivated by a study by deGroot et al.,55 which
overcame sampling limitations by exploiting the many available
X-ray crystallographic structures for T4 lysozyme,56,55 which
revealed a remarkable correspondence between the first eigen-
vectors of MD and X-ray ensembles, we used this complemen-
tary approach at the convergence of PCA subspaces. A similar
approach was recently used to analyze how well normal modes
can describe the conformational motion of proteins. It has been
shown that 1% of the modes contribute about 50% to the root-
mean-square difference (RMSD) between two corresponding
crystal structures in different conformational states.57 Further
evidence for a fast convergence of PCA subspaces was obtained
for the transmembrane regions of several proteins employing
sampling times of 10 ns.58 For the now accessible time scales
of several hundred nanoseconds, we will, therefore, revisit these
questions in sections 5 and 6 and discuss our results in light of
the previous studies.

As a reference for long time dynamics, we used two MD
trajectories, one of length 450 ns of the 46 residue protein
crambin, which has a relatively stable structure, and a second
of length 200 ns of the 164 residue protein T4 lysozyme, which
is known to undergo significant conformational dynamics.59-62

In particular, its opening and closing motion is believed to be
crucial for the substrate entering and leaving the active site.60

As a further reference for long time dynamics, an X-ray
ensemble comprising 38 T4 lysozyme structures crystallized in
25 different crystal forms56 will be used. These structures include
both opened and closed conformations and, thus, provide an
alternative access to the conformational freedom available to
the protein.55

The proper assessment of subspace similarities and their
interpretation is nontrivial. Here, for a given subspace (e.g., from
PCA of a short MD simulation), we define in the Theory section
its similarity with the reference ensemble as the part of the
overall atomic displacement that is described within the sub-
space. The convergence of the PCA subspaces is tracked by

computing their similarity for a wide range of sampling times.
To assist proper interpretation, we will also compare our results
to the convergence obtained for PCA subspaces of a multi-
dimensional random walk. Moreover, as an alternative similarity
measure, we compute the RMSD between structures of the
reference ensemble and their best representations in the con-
sidered PCA subspace.

The proposed similarity measured requiresa priori knowledge
of the full-length MD simulation. However, in real-world
applications, one needs to judge if the PCA subspaces are
sufficiently converged purely on the basis of the available (short)
MD simulation. Thus, we present in section 7 estimates of the
convergence of PCA subspaces purely on the basis of short MD
simulations.

2. Theory

Principal component analyses (PCA) is carried out by
diagonalizing the covariance matrix

wherex ) r - 〈r 〉 denotes protein atomic displacement vectors
in the 3N dimensional configurational space,N the number of
atoms,r an atomic coordinate vector, and the angular brackets
denote averages over an MD trajectory. To focus on collective
motions of the internal protein dynamics, translational and
rotational motions are customarily removed by least-squares
fitting to a reference structure,r ref.20 The (normalized) eigen-
vectors ofC yield the PCA modes,{aj}j)1...3N, and the principal
components; that is, atomic displacements projected onto mode
j are obtained ascj ) aj‚x.

In the following sections, we study the convergence of PCA.
In particular, we focus on the question of the extent that the
few slow collective coordinates determined fromshort MD
simulations via PCA can be used to describe the ensemble of a
long (reference) MD simulation.

A commonly used quantity measures the fraction of the
atomic displacements that can be described with a given subset
of principle components,{aj}j)1...m, with m < 3N20

whereλi denotes the eigenvalue of the PCA modeai. However,
two limitations impede a straightforward application of this
approach to the case at hand: (A) Equation 2 is restricted to
cases where the ensemble for PCA and the reference ensemble
are identical. (B)Ω is based purely on the eigenvalues,λi, of
the covariance matrix, and, thus, probes only the second
moments of the ensemble density, that is, its variances and
covariances. This leads to an unnecessarily coarse-grained
comparison of the respective ensembles.

The two following steps adapt this measure to our case and
increase its resolution beyond second moments. As a starting
point, we express eq 2 in terms of ensemble averages:

wherex denotes a protein configuration,||‚|| denotes the norm,
and P(x) ) ∑i)1

m (ai‚x)ai denotes the projection to them-
dimensional PCA subspace, that is,||P(x)|| ) ∑j)1

m cj
2. This

fully equivalent formulation ofΩ immediately suggests a
solution to the first problem (A): The ensemble average〈〉 is

C ) 〈xxT〉 (1)

Ω ) ∑
i)1

m

λi / ∑
j)1

3N

λj (2)

Ω )
〈||P(x)||2〉

〈||x||2〉
(3)
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simply performed over the reference ensemble, whereasP
projects to eigenvectors obtained from a PCA of ashort MD
simulation. This generalization, however, still contains the
unnecessary coarse-grained comparison of second moments
only. Therefore, alleviating the second limitation (B) ofΩ, we
prefer to compute the fractional loss of atomic square displace-
ment for every single configurationbeforethe ensemble average
is carried out, that is,

The similarity measure quantifies how accurate a configuration,
x, is described using only the selected number of PCA modes.
Furthermore, it has the convenient property 0e γ e 1.

Note thatγ is related to the well-known root-mean-square
inner product (RMSIP) used in the literature to quantify overlap
between two PCA subspaces.53-55 Denoting the two PCA
subspaces by their eigenvectors,{ui} and{vj}, respectively, we
choose as the projectionP(x) ) ∑i)1

m (ui‚x)ui and as the
reference ensemble for the average〈〉 in eq 4 an isotropic
distribution of unit vectors in the second subspace, that is,x )
∑j)1

m λjvj, where∑j)1
m λj

2 ) 1. Using||x|| ) 1 and〈λj
2〉 ) 1/m,

eq 4 evaluates to

Thus,γ differs from RMSIP in that this measure depends on
the underlying ensemble and in particular on the size of the
fluctuations along the eigenvectors, which is obviously not the
case for RMSIP. For our purposes, such dependency is
desireable, because for given eigenvectors and projection, larger
fluctuations imply larger contributions to the total approximation
error. Because this property is not captured by RMSIP, we will
useγ here. A different quantity that has been suggested in the
literature is the covariance matrix overlap.63 This measure,
however, includes also the extent of sampling in the subspace,
and, thus, is rather a measure of convergence of sampling than
of convergence of PCA subspaces. Also, for this reason, we
prefer γ over the measures suggested previously in the
literature.53-55,63

Note that〈||P(x)||/||x||〉 ≈ xγ might be considered as an
alternative choice, which would compare lengths rather than
squared lengths and would yield larger similarity values. Yet,
we preferredγ over 〈||P(x)||/||x||〉, because the Pythagorean
relation

enables direct interpretation ofγ as additive percentages, which
is not possible for the linear expression.

The right-hand side of eq 5 relates to a recent proposal by
Petrone et al.,57 to quantify the contribution of a normal mode
subspace to the overall conformational change between two
structures based on their RMSD. In particular, they computed
the residual RMSD between a reference structure and its closest
possible representation using a subset of normal modes. Because
the RMSD has the advantage of an accustomed interpretation,
we followed this proposal and calculated the average residual

RMSD between structures of the reference ensemble and their
best representations in the tested PCA subspace, that is,||x -
P(x)||/M(1/2), whereM is the number ofCR atoms.

3. Methods

3.1. Molecular Dynamics Simulation.Two proteins, crambin
and T4 lysozyme, were considered as test systems. For crambin,
two molecular dynamics (MD) simulations, CR1 and CR2, were
started from the crystal structure (Protein Data Bank entry
1CBN).64 The simulations were carried out with the
GROMOS96 force field F49A1.65 The protein was solvated in
2718 SPC water molecules.66 The total simulation system
comprised 8563 atoms. The simulations were carried out using
periodic boundary conditions in a dodecahedronal box. Simula-
tion CR1 was run for 450 ns, and coordinates were recorded
every 0.1 ps. To obtain high resolution Fourier spectra, an
additional simulation, CR2, starting from a snapshot of CR1
was performed for 100 ps, with coordinates and velocities
recorded at every 2 fs time step.

A further MD trajectory, T4L, 200 ns long and started from
the crystal structure of coliphage T4 lysozyme M6I (PDB entry
150L, chain D) was kindly provided by Bert L. de Groot. For
this trajectory, the OPLS all atom force field67 was used. The
protein was solvated in 8898 TIP4P water molecules and 8 Cl-

counterions. Periodic boundary conditions in a rectangular box
were applied. Coordinates were recorded every 1 ps.

All molecular dynamics (MD) simulations were carried out
using the Gromacs simulation suite.68 Lincs and Settle69,70were
applied to constrain covalent bond lengths, allowing an integra-
tion step of 2 fs. Electrostatic interactions were calculated using
the particle-mesh-Ewald method.71,72The temperature was kept
constant by separately coupling (τ ) 0.1 ps) the peptide and
solvent to an external temperature bath.73 The pressure was kept
constant by weak isotropic coupling (τ ) 0.1 ps) to a pressure
bath.73

3.2. Projection of Velocities to Principal Coordinates.
Projected velocities,c̆j(t) ) aj‚vc(t), were computed from
velocities, vc(t), which were corrected for contributions of
translational and rotational motion. In this way, consistency with
the positions was reached, that is,cj(t) ) ∫0

t c̆j(τ) dτ + cj(0).
The translational velocities were computed from the displace-
ment vectors,d(ti), which connect center of mass and origin.
Rotational velocities were computed from the rotation matrices,
R(ti), which minimize RMSD to the reference structure,xref.
Taken together, the corrected velocities were obtained from

where∆t denotes the sampling interval.
3.3. Spectral Densities.Spectral densities,gj, of the PCA

modes,aj, were computed from the discrete Fourier transform
of the projected velocities,c̆j(tk), as

whereXj(ω) ) ∑k)0
M-1 c̆j(tk) exp(-iωk∆t/M) and thetk denoteM

time steps with interval∆t.
Test computations with a sampling time step of∆t ) 2 fs

showed that allgj vanish for frequencies above 50 ps-1. This
frequency is the Nyquist frequency corresponding to a sampling
time step of∆t ) 10 fs. Thus, sampling with this time interval
avoids aliasing effects and was thus used for all recordings of
velocities described below.

γ ) 〈||P(x)2||
||x|| 〉 (4)

〈||P(x)2||〉isotropic)
1

m
∑
i)1

m

∑
j)1

m

(ui·vj)
2

〈||P(x)||2
||x||2 〉 ) 1 - 〈||x - P(x)||2

||x||2 〉 (5)

vc(ti) ) v(ti) - ∆t[d(ti-1) - d(ti) + R(ti-1) x(ti) - R(ti) x(ti)]

gj(ω) )
|Xj(ω)|2

2π
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3.4. PCA Subspace Stability.The PCA modes were obtained
from short trajectory fragments with differing lengths,T, ranging
from 20 ps to 450 ns. For every set of PCA modes, the
similarity, γ (cf. section 5), with the full-length trajectory was
computed. The error bars∆γj for the mean similarity at a given
fragment sizeτ, γj(τ) ) M-1∑T)τ γ, were computed as

where M denotes the number of fragments of lengthT. For
sufficiently small fragment sizes,M ) 20 fragments were chosen
with equidistant spacing along the available trajectory; for larger
fragment sizes, 1-18 (overlapping) fragments were chosen with
a separation of half their size. Snapshots were taken every 0.1
ps forT < 500 ps and every 1 ps forT > 500 ps, respectively.

To compute themutual similarity, γ̃, for two adjacent
fragments of equal length, a PCA was carried out for the first
fragment, and eq 4 was used, with the ensemble average〈〉
replaced by an average over all configurations of the second
fragment.

Inner product matrices between eigenvectors obtained by PCA
of two different fragments (later shown as Figure 9) are
computed as

whereηR
(i) denotes theRth eigenvector obtained from theith

fragment (i ) 1,2) and where bothR andâ run from 1 to 3N.
The inner product matrices were computed for fragments of sizes
500 ps, 5 ns, and 100 ns, respectively, that start att1 ) 100 ns
and t2 ) 350 ns for CR1 and att1 ) 0 ns andt2 ) 100 ns for
T4L, respectively.

3.5. Analysis of the X-ray Crystallographic Data. The
stability analysis of PCA subspaces obtained from the MD
simulation T4L was repeated with an ensemble of X-ray
crystallographic structures as reference instead of the full-length
MD simulation. Only structures from different crystal forms
were included in the analysis; for a list of the PDB entries used,
see ref 55. The stability analysis was performed on theirCR
coordinates. Residues 163 and 164 were excluded from the
analysis because their coordinates were absent in many of the
PDB entries. The same atoms were used in the PCA of the
fragments of the MD simulation T4L.

4. Separation of Time Scales by PCA

In this section, we investigate whether and how principal
component analysis (PCA) can be applied to identify slow
collective modes, which are suitable for a dimension reduced
description of protein dynamics, for example, by collective
Langevin dynamics.9 As pointed out in the Introduction, this
technique describes (few) slow collective modes explicitly,
whereas the remaining (many) fast degrees of freedom are
treated in an effective manner. Because strongly overlapping
time scales cause memory effects, we analyze to which extent
PCA achieves a separation of time scales. To this end, we
compute the vibrational density of states along different PCA
modes. Usually, PCA is carried out on subsets of the protein
atoms such asCR atoms only;29,55 thus, the influence of such a
preselection of atoms is addressed.

Figure 1a-d shows examples of frequency distributions of
MD trajectory CR2 projected on single PCA modes. Panels a
and c show the first mode of PCA carried out on allCR atoms

and heavy atoms, respectively. A high index mode of the
respective PCA was plotted in panels b and d (CR, 84th/138
modes; heavy atoms, 601st/981 modes). The first mode of the
PCA carried out onCR atoms, that is, mode 1/CR, (panel a)
showed the expected slow contributions,ν < 5 ps-1. With
similar weight, however, intermediate and also fast dynamics,
ν ≈ 20 ps-1, contributed to this mode. The latter are likely to
result from angle vibrations, which occur at these characteristic
time scales. Higher frequencies corresponding to bond vibrations
are suppressed by the constraints used. The density of states of
mode 84/CR in panel b lacks contribution of the slowest motions
but shows hardly any change compared to mode 1/CR in the
distribution of the remaining frequencies.

In contrast, the two corresponding modes obtained by PCA
carried out on all heavy atoms showed a significantly improved
separation of spectra. Both showed narrower frequency distribu-
tions than theCR-based modes. The spectrum of mode 1/heavy
(panel c) contained only frequencies belowν < 5 ps-1, whereas
mode 601/heavy showed only frequencies aboveν > 10 ps-1.

To gain a more systematic overview, we plotted the mean
(Figure 1e) and width (Figure 1f) of the frequency distribution
for every mode and for the four analyzed atom sets:CR atoms,
backbone atoms, heavy atoms, and all atoms. For theCR atoms,
the nearly constant mean and the constantly large width
underscores the lack of proper time scale separation. In contrast,
for the heavy atoms, the strong dependency of the average
frequency on the mode index, together with the initially small
widths, shows that, indeed, a much improved separation is
achieved, as already indicated by the examples (cf. Figure 1c,d).
An intermediate result is obtained for backbone atoms; the mean
of the slightly broader frequency distribution increases, albeit
with a smaller slope.

Obviously, the separation of time scales improved with the
number of atoms used for the PCA. To rule out that this
improvement is merely due to the increased number of degrees
of freedom, we carried out a similar analysis for the small
peptide neurotensin (6 residues) and HLA (385 residues) (the
MD simulation of HLA-B27 is described in ref 74). Both
systems exhibited the same dependency of the time scale
separation on the selected atom set (results not shown). In
particular, the first of the 1155CR modes showed strong high
frequency contributions. This finding confirmed that the selec-
tion of an appropriate atom set is crucial to extract slow modes
with PCA, independent of system size. In all cases, the best,
and sufficient, time scale separation was achieved only if all
heavy atoms were used for the PCA.

Does inclusion of hydrogen atoms further improve the time
scale separation? Figure 1e shows that the improvement is
actually small, presumably because the high frequency motion
of these light particles is largely uncoupled to the slow modes.
Accordingly, an increased mean frequency is seen only for the
fastest 20% of the modes (Figure 1e, dashed line). Thus,
omission of the hydrogen atoms from the PCA does not affect
the dynamics of the slower modes.

These findings show that PCA is indeed able to identify
systematically slow modes describing conformational motion.
Moreover, the best separation of time scales was obtained if all
heavy atoms of the protein were considered, whereas insufficient
separation was seen if only theCR atoms were included.

The latter finding was somewhat unexpected, because slow
modes are generally nonlocal and, therefore, should be well-
described by the motion of theCR alone. We suggest strong
coupling of the intraresidue atomic motion as a possible
explanation and illustrate its effect by a simplified example.

∆γj ) (∑
i

M 1

M(M - 1)
(γ - γj)2)-1/2

PRâ ) ηR
(1)‚ηâ

(2)
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Consider motion within a three-dimensional highly elliptical
harmonic well, tilted with respect to the coordinate axes, such
that the three degrees of freedom are strongly coupled. Obvi-
ously, PCA applied to all three degrees of freedom will identify
as modes the three principal axes of this elliptical well. One of
these modes, parallel to the shortest principal axis, will describe
the fastest motion within the well. This mode is uncoupled to
the two other slow frequency modes, thus yielding optimal
separation of time scales. In contrast, if one of the three degrees
of freedom is omitted (in analogy to including only theCR in
the PCA), part of the high frequency mode will project into the
two remaining degrees of freedom. For purely geometrical
reasons, this part will also contaminate the (projected) slow
modes and, therefore, cannot any more be isolated by PCA.
This simple example also illustrates why exclusion of hydrogen
atoms alone does not deteriorate the separation of time scales,
because the hydrogen atomic motion is nearly uncoupled to that
of the heavy atoms.

5. Convergence of Conformational Subspaces

In this section, we analyze whether slow collective coordi-
nates extracted fromshortMD simulations with PCA are able
to describe the long time protein dynamics sufficiently well.
To this end, we carried out PCA analyses on fragments of
varying length extracted from the molecular dynamics (MD)
simulations of the proteins crambin (CR1) and T4 lysozyme
(T4L), respectively.

Similarities,γ (cf. section 5), between the whole ensemble
and its projection to different subsets of PCA modes were

computed for a wide range of subspace dimensions,m, that is,
the number of principal components used to describe the protein
motion. All similarities were computed using a 450 ns MD
trajectory for crambin and a 200 ns MD trajectory for T4
lysozyme, respectively. The tested subspaces were derived from
short fragments of the respective trajectories.

PCA analyses were carried out using different subsets of
atoms. For crambin, the analysis was carried out for allCR atoms
(CR1/CR, cf. Figure 2a,b) and for all heavy atoms (CR1/heavy,
cf. Figure 2c,d). For T4 lysozyme, only the analyses for theCR
atoms (T4L/CR, cf. Figure 3a,b) is shown.

Starting with CR1, Figure 2 shows that similarities (mostly)
increase with both a larger fragment length (horizontal axis)
and an enlarged PCA subspace size,m. The similarities for the
largest fragment size, thereby, reflect the well-known result that
5-10% of the eigenvectors describe a large fraction of the
motion.20 For instance, the curves corresponding tom ) 14
(10% of 138 eigenvectors in CR1/CR) andm ) 40 (5% of 981
eigenvectors in CR1/heavy) reach 0.8 at the largest fragment
size.

To focus on the dependency of the similarity on the fragment
length, Figure 2b,d shows the curves normalized by their
respective maximum similarity. In particular,CR PCA subspaces
of m ) 14 computed from short MD simulations of length 1 ns
describe 67% of the whole ensemble generated in the 450 ns
simulation, which was 86% of the maximally achievable limit
for subspaces of that size. Similarly, CR1/heavy PCA subspaces
of m ) 40 reached 81% of the maximally achievable limit after
a sampling time of 5 ns. Thus, at least for the systems at hand,

Figure 1. Comparison of spectral densities for different PCA modes. PCA analyses were carried out on the four different atom sets:CR atoms,
backbone atoms, heavy atoms, and all atoms. Densities of states for selected PCA modes are shown in parts a-d. Densities of states for all modes
are characterized by their averages (e) and widthsσ (f). To facilitate comparison despite different numbers of modes, the mode number was
expressed as a fraction of 1.
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already subspaces from relatively short nanosecond simulations
capture a fraction almost as large as the fraction of the long
time protein dynamics that is described by subspaces derived
from a PCA over the full-length trajectory.

The same analysis carried out for T4L/CR (cf. Figure 3a,b)
reveals even higher similarities; for example, at a fragment size
of 5 ns,γ(m)30)≈ 0.84 for T4L/CR, whereasγ(m)60)≈ 0.72
andγ(m)9) ≈ 0.54 for CR1/heavy and CR1/CR, respectively.
Here, subspaces spanned by approximately the same fraction
of the total number of eigenvectors were compared, that is, 30/
492, 60/981, and 9/138 for T4L/CR, CR1/heavy, and CR1/CR,
respectively.

These large similarity values can be interpreted by comparison
to the convergence of PCA of a random walk. Figure 4 shows
the similarity curves for a random walk involving 200 000 steps
in 200 dimensions. In contrast to the protein data, the similarities
are very low for all but those fragments that include more than
half of the whole random walk. As can be seen, the dominating
directions change considerably during the course of the random
walk. In contrast, the dominating directions of a long MD
simulation of proteins are contained within fragments as short
as 1% of the total length of the MD simulation.

As an alternative, and probably more intuitive measure of
how much of the slow conformational protein dynamics is
captured by short time PCA subspaces, we computed the average
residual RMSD, that is, the average RMSD between structures
in the reference MD ensemble and their projections to the PCA
subspaces (cf. section 5). As can be seen in Figure 5a, already
a sampling of 1 ns suffices to yield anm ) 9 dimensional
subspace of CR1/CR that can describe structures in the MD
ensemble CR1 up to an average RMS difference of less than 1
Å. For the correspondingm) 30 dimensional subspace of T4L/
CR, the same level of accuracy is reached at a sampling time of
5 ns (Figure 5b). Comparison of Figure 2a and Figure 3a shows
that these accuracy levels correspond to a similarity value above
0.5 for CR1 and above 0.84 for T4L, respectively.

We note that an accuracy of 1 Å is similar to that of high
quality X-ray crystallographic structures. Thus, subspaces with

Figure 2. Convergence of conformational subspaces for Crambin. (a,c) Similarity,γ, eq 4, between the whole ensemble (CR1) and its projection
to PCA subspaces of different dimensionality (cf. legends) obtained from varying short fragments (cf. abscissa) of the 450 ns trajectory CR1. (b,d)
Same as figures above, but the similarities are normalized by the maximally achievable similarity for the respective subspace dimensionality. Note
that the selected subspace dimensionalities (legends) are chosen, such that the corresponding lines in all plots stand for approximately the same
fraction of all available degrees of freedom. 3/132≈ 20/981.

Figure 3. Convergence of conformational subspaces for T4 lysozyme
measured by similarities of the PCA subspaces of T4 lysozyme with
the full-length MD trajectory of T4L: (a) absolute; (b) normalized (cf.
caption of Figure 2).

Dimension Reduced Description of Protein Dynamics J. Phys. Chem. B, Vol. 110, No. 45, 200622847



an RMSD below this threshold should allow for a sufficiently
accurate description of the conformational dynamics of the
respective proteins. This is particularly significant in light of
the fact that the ensembles of structures considered here, CR1
and T4L, contain mutual differences up to 4.4 and 6.7 Å,
respectively.

Until now, we have only shown how well the reference
ensembles can be described by PCAon aVerage. What remains
to be established is the distribution of residual RMSD values
for the individual structures. This information might also be
relevant for flexible docking problems, where PCA might be
used to generate structures that are subsequently tested as
docking targets.35,49Figure 6 shows scatter plots of the residual
RMSD values for all structures of the respective reference
ensemble described by subspaces of dimensionm ) 20 whose
directions were obtained by PCA of short MD simulations of
lengths 200 ps and 1 ns for crambin and T4 lysozyme,
respectively. Here, the residual RMSD is defined as the RMSD
between a structure,r, and its projection onto the subspaceP(r),
whereas the total RMSD is the RMSD betweenr and the average
structure,〈r〉. For both proteins, the distributions are of a similar
shape and the residual RMSD values are strongly correlated
with the total RMSD (r > 0.75). Moreover, up to a total RMSD
of ≈2.5 and≈4.3 Å for crambin and T4L, respectively, the
distributions of residual RMSD values are rather broad, as they
show significant scatter at both sides of the solid lines given
by the linear fits. For larger total RMSD values, this distribution
narrows and focuses at the upper edge. Thus, for a total RMSD
above the threshold values,≈2.5 and≈4.3 Å, respectively, the
quality of the description of the structures in the PCA subspaces
decreases. These overall features of the distribution of residual
RMSDs are observed for the full range of subspace dimension-
alitites and fragment lengths (results not shown), although the
width of the distribution narrows with larger dimensionality,
m. Also, for higher subspace dimensionalities and longer

fragment lengths, a downward tilt of the distributions is
observed; that is, a better description of the overall structural
changes is achieved. This finding is also seen from the slopes
of the linear fits, shown in Figure 6 for various subspace
dimensionalities and fragment lengths. Interestingly, the slope
of the linear fit is very similar for both proteins, crambin and
T4L, for the m ) 20 PCA subspaces derived from 1 ns
simulations, although T4L has over 3 times moreCR atoms.
Although far from strong evidence, this finding indicates that
also for larger proteins similar numbers of degrees of freedom
and similar PCA sampling times will allow a description of the
dynamics to this level of accuracy.

The presented results show that for both proteins, crambin
and T4 lysozyme, MD simulations of a few nanoseconds suffice
to derive conformational subspaces that are suitable to describe
the conformational dynamics at time scales of several 100 ns.
Similar results were also obtained for the B1 domain of Protein
G (200 ns, 1PGB, OPLS, GROMACS, data not shown), which
further supports our conclusion that this behavior is a general
feature of protein dynamics.

One might argue that the observed fast convergence of PCA
is due to a fast initial drift of the MD simulation away from a

Figure 4. Convergence of PCA subspaces of a random walk measured
by similarity with the full-length random walk with the same number
of sample points as in the MD trajectory for T4L: (a) absolute; (b)
normalized (cf. caption of Figure 2).

Figure 5. Convergence of conformational subspaces from RMSD.
Shown is the average RMSD between structures from the reference
ensembles (a) MD simulation CR1, (b) MD simulation T4L, and (c)
38 X-ray crystallographic structures of T4 lysozyme, respectively, and
their projections to PCA subspaces derived from varying short fragments
(horizontal axis) of the respective MD simulations CR1 and T4L.
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constrained starting position due to crystal packing forces or
NMR restraints toward the center of the energy basin in the
force field used. Such an effect, however, can be ruled out, as
the short MD trajectory fragments used for the PCA have been
taken from different times along the long MD trajectory (cf.
Methods). Furthermore, the stabilities obtained for a certain
fragment length, say 10 ns, show no correlation to the position
of the fragment within the long MD trajectory (results not
shown).

6. Sampling in the Reference MD Simulations

The data presented in the previous section points toward a
remarkably fast convergence of PCA subspaces. However, such
fast convergence could, trivially, also be due to the absence of
any slow conformational changes in the reference MD simula-
tions. To rule this out, we computed RMSD matrices on the
full length of both trajectories CR and T4L, shown in parts a
and b of Figure 7, respectively. The distinct bright blocks on
the diagonal reveal larger conformational transitions. Bright off-
diagonal blocks indicate that a certain conformational substate
was revisited. Thus, these data show that the crambin simulation
as well as the T4L trajectory have sampled at least three major
conformational regions. In contrast, for both trajectories, the
majority of the fragments smaller than 50 ns included only one
of these conformational states. PCA subspaces obtained from

these fragments yielded high similarities despite lacking any
information regarding the two other major conformational
regions.

For T4L, the availability of more than 200 T4L structures
crystallized in more than 25 different crystal forms present in
the Protein Data Bank56 enables a complementary approach to
test our findings. Assuming that each crystal structure represents
a possible conformation in solution, this set of structures
provides an experimental access to the conformational flexibility
of the protein at atomic resolution.55 As described in section
3.5, we obtained in analogy to ref 55 an ensemble of 38
crystallographic structures, and repeated the convergence analy-
sis with this experimental reference ensemble (cf. Figure 8).
The PCA subspaces converge against the experimental reference
ensemble with similar speed as against the long MD ensemble

Figure 6. Distribution of residual RMSD values. The two scatter plots
(red points) show residual RMSD values against total RMSD values,
where the residual RMSD values quantify the distance between
structures from the reference ensembles (a) MD simulation CR1, (b)
MD simulation T4L, respectively, and their projections to (m ) 20)
PCA subspaces derived from (a) 200 ps and (b) 1 ns, short fragments
of the respective MD simulations. The black triangles mark the contours
of these distributions as they are tilted downward due to the larger (m
) 50) PCA subspaces. The solid lines denote linear fits and also
illustrate the tilt of these distributions. The dashed lines denote linear
fits to the distributions of residual RMSD values obtained for (m )
20, red) and (m ) 50, black) PCA subspaces, respectively, and for
longer MD fragments ((a) 1ns and (b) 10 ns). For clarity of the figure,
the corresponding distributions are not shown.

Figure 7. Conformational sampling characterized by RMSD matrices.
Each element,mij, of these matrices denotes theCR RMSD (cf. color
bars) between theith andjth snapshot of the respective trajectory: (a)
CR1; (b) T4L.
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(cf. Figure 3a,b). Only for fragment sizes larger than 20 ns PCA
subspaces describe the reference MD simulation slightly better
than the X-ray ensemble. This excess similarity with the MD
ensemble reflects the increasing overlap between the PCA and
reference MD ensemble. In other words, it reflects the fact that
also the>100 ns trajectories do not fully cover the accessible
conformational space. The same trend is observed for the
average RMSDs between reference and projected structures (cf.
Figure 5b,c).

7. Criteria for Sufficient Convergence

In the previous sections, we found evidence for fast conver-
gence of sufficiently large PCA subspaces. This result could
only be establisheda posteriori, that is, by comparison to a
long MD simulation, which, however, is typically not available.
On the contrary, usually the quality of the chosen PCA subspace
needs to be assesseda priori, that is, on the basis of the short
MD simulations available. One established approach rests on
the covariance matrix overlap.63 However, this also includes
the extent of sampling, which is not of interest here. Instead,
often the sum of all squared inner products between the basis
vectors of the two compared subspaces is used. While this is a
good starting point, it has the drawback of weighing all
directions equally (cf. Theory). This is not the case of oura
posteriori measure,γ, where the use of the true ensemble
guarantees that less important directions of the subspace have
also less impact on the result. As an approximation toγ, we
suggest to compute the mutual similarity,γ̃, between two halves
of an available short MD trajectory (cf. Methods). This measure,
γ̃, as well as the similarity,γ, itself, depends on the chosen
subspace dimension and will never reach unity. Rather, this
measure allows one to judge how accurate a PCA subspace of
a certain dimension might describe the true ensemble. Admit-
tedly, using the probably largely undersampled MD ensemble

of the second half of the obtained trajectory will lead most likely
to an overestimation of the similarity. However,γ̃ will not
depend too strongly on the amount of sampling in the reference
ensemble, because the similarity probes the slope of a linear
regression to the scatter plot||P(x)|| vs ||x||. Thus, further
sampling adds only points to the regression but does not
necessarily change the slope.

To check if this a priori approach indeed yields similar results
as the a posteriori approach, mutual similarities,γ̃, for short
fragments of the trajectories CR1 and T4L were compared to
the similarity,γ. For a realistic test, we computedγ̃ for adjacent
fragments of the trajectories with lengths ranging from 200 ps
to 200 ns. Fragment lengths in the nanosecond range reflect
the typical situation, where the two (adjacent) halves of an
available trajectory are used.

Figure 10 showsγ and γ̃ obtained for all three PCA sets:
CR1/CR, CR1/heavy, and T4L/CR, respectively. A linear fit to
the data yieldsγ̂ ) 1.04γ̃ - 0.07 with a correlation coefficient
of r ) 0.98. In particular,γ̂ differs from γ only by a root-
mean-squared error of≈0.04. We conclude that the mutual

Figure 8. Convergence of conformational subspaces for T4 lysozyme
measured by similarities of the PCA subspaces of T4 lysozyme with
an ensemble of 38 X-ray crystallographic structures of T4L: (a)
absolute; (b) normalized (cf. caption of Figure 2).

Figure 9. Comparison of the principal components between two
fragments provided by the inner product matrix eq 6. The insets show
the same data zoomed to the inner products between the first 50
principal components: (a-c) CR1/heavy atoms; (d-f) T4L/CR. The
gray scale focuses at the interval 0...0.1 because most inner products
fall into this interval.
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similarity, γ̃, can be reliably used to estimate the sampling
convergence.

8. Discussion and Conclusions

We have shown that collective coordinates obtained from
PCA analyses of relatively short (nanoseconds) molecular
dynamics (MD) simulations provide collective degrees of
freedom that should be suitable for an effective dimension
reduced description of protein dynamics, for example, collective
Langevin dynamics.9 As an important aspect of a dimension
reduced description, we checked to what extent PCA yields a
separation of time scales. We found that, if based on the
displacements of allheaVy atoms (as opposed toCR atoms only),
PCA provides slow degrees of freedom that are free of
contributions from the fast vibrational dynamics.

The main result is that PCA yields collective coordinates, of
which already few describe a large fraction of the overall atomic
displacements even at 100 ns time scales. In particular, for the
protein T4 lysozyme, 10% of the principal components obtained
from a 5 nsexplicit MD trajectory describe more than 90% of
the total atomic displacements observed in a long 200 ns
simulation. This holds true even though three different confor-
mational states were visited for extended periods of time (>50
ns each) during the 200 ns simulation, of which only one
contributed to the PCA. Hence, the conformational dynamics
within a single conformational state contains significant infor-
mation of the transitions to other conformations.

Interestingly, the analysis of the residual RMSD distribution
(Figure 6) points to the somewhat counterintuitive notion that,
to reach a given quality level, with increasing system size,
decreasingrelative fractions of all degrees of freedom are
required. For example, 5% of all degrees of freedom for T4
lysozyme allow for a similar quality improvement as 15% for
crambin. Clearly, a wider range of protein sizes will have to be
studied to provide further support.

These encouraging results on the convergence of PCA
subspaces need to be discussed in light of a previous study by
Balsera et al.,52 which at that time necessarily focused on much
shorter time scales. This study found slow convergence of the
fluctuation amplitudes along the largest PCA modes and
concluded, differing from our findings at larger time scales, that
this behavior could complicate the extraction of long time scale

modes from short MD simulations. In particular, comparing the
directions of eigenvectors of two halves of a 470 ps simulation
trajectory for a 375 residue protein, the authors found only little
overlap, and concluded that insufficient convergence of the
directions was reached. Our results show that this behavior is
also seen for the longer time scales studied here.

However, much more relevant within the context of dimen-
sion reduced descriptions is the convergence ofsubspacesrather
than that of individual eigenvectors. To this end, Balsera et al.
analyzed inner product matrices and found only little tendency
toward inner products near the diagonal, which they also
interpreted as insufficient convergence. At the short 500 ps time
scale, and also focusing at the largest 50 eigenvectors (insets
of Figure 9a,d), we obtained results for CR1 and T4L that are
similar to the ones obtained for the much larger G-actin by
Balsera et al. However, at the much longer time scales
accessible, and for the smaller proteins considered here (46 and
164 residues, respectively, vs 375 residues), a different picture
emerges (Figure 8b,c,e,f). Here, a pronounced narrowing of the
diagonal band is seen, reflecting much better convergence. For
100 ns, this is even seen for the first 50 eigenvectors (inset).
Taken together, only little convergence is seen at a sub-
nanosecond time scale for large proteins, whereas pronounced
convergence sets in for small proteins at the 5 ns time scale.
This finding, together with the demonstrated separation of time
scales, suggests that PCA provides indeed suitable subspaces
for a dimension reduced description of protein dynamics on long
time scales.

We emphasize that the observed fast convergence of sub-
spaces does not imply that meaningful and well-defined
directions ofsingleprincipal components can be extracted from
short MD simulations. Indeed, the inner product matrices (cf.
Figure 9) confirm that single modes change considerably
between different sampling windows.

We also want to discuss our results in light of possible
docking applications. Although a selection of 20-100 degrees
of freedom already allows a drastic dimension reduction, this
number is not sufficiently small as to allow exhaustive grid
searches in PCA subspaces; therefore, one may ask if a very
small number of PCA modes obtained from short MD simula-
tions actually yields sufficient information of the true confor-
mational motion to allow their use in flexible docking or as
reaction coordinatesin enhanced sampling techniques, such as
umbrella sampling. As an illustration, consider a five-
dimensional subspace, for which a residual RMSD as large as
4 Å for structures from the T4L ensemble is obtained. Whether
this value is sufficiently small for docking applications remains
to be established. Subsequent structural refinement might
improve the situation considerably.

The fact that respective subspaces show much better con-
vergence is a consequence of the observed partial separation of
time scales. As a possible reason, we propose that although the
slow modes may not yet be sufficiently sampled at a given MD
time scale, the high frequency modes will be sampled suf-
ficiently well to determine well-converged high frequency
subspaces. The orthogonal low frequency subspaces, therefore,
will show similar convergence despite insufficient sampling of
the individual modes. An immediate consequence is that a
sufficiently large chosen PCA subspace contains most of the
slow conformational motions. The unexpected and encouraging
news is that “sufficiently large” can be as few as 5-10% of
the 3N degrees of freedom, which provides a sound basis for
future dimension reduced descriptions of protein dynamics.

Figure 10. Comparison between mutual similarity,γ̃, and full-length
similarity, γ, values. The mutual similarities between PCA subspaces
obtained for fragments [ti, ti + ∆t] and adjacent fragments [ti + ∆t, ti
+ 2∆t] (cf. Methods) are plotted against the similarity obtained by
comparing PCA subspaces obtained from fragments [ti, ti + ∆t] with
the whole trajectory. This analysis was carried out for CR1/CR (O),
CR1/heavy (×), and T4L/CR (∆). The data points correspond to the
subspace dimensionalities listed in the legend to Figure 2. The line
depicts a linear regression carried out over all three data sets.

Dimension Reduced Description of Protein Dynamics J. Phys. Chem. B, Vol. 110, No. 45, 200622851



Acknowledgment. We thank Bert de Groot for providing
the T4L trajectory and Rainer Bo¨ckmann for providing the
HLA-B27 trajectory. This work has been supported by Volks-
wagen Foundation, grants I/80436 and I/78839.

References and Notes

(1) Wand, A. J.Nat. Struct. Biol.2001, 8 (11), 926-931.
(2) Norberg, J.; Nilsson, L.Q. ReV. Biophys.2003, 36 (3), 257-306.
(3) Karplus, M.; McCammon, J. A.Nat. Struct. Biol.2002, 9 (9), 646-

652.
(4) van Gunsteren, W. F.; Bakowies, D.; Baron, R.; Chandrasekhar,

I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D. P.; Glaettli, A.; Huenen-
berger, P. H.; Kastenholz, M. A.; Oostenbrink, C.; Schenk, M.; Trzesniak,
D.; van der Vegt, N. F. A.; Yu, H. B.Angew. Chem., in press.

(5) Feher, V. A.; Cavanagh, J.Nature (London)1999, 400(6741), 289-
293.

(6) Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R.
Nature2001, 414 (6859), 43-48.

(7) Wand, A. J.Science2001, 293 (5534), U1-U1.
(8) Volgraf, M.; Gorostiza, P.; Numano, R.; Kramer, R. H.; Isacoff,

E. Y.; Trauner, D.Nat. Chem. Biol.2006, 2 (1), 47-52.
(9) Lange, O. F.; Grubmu¨ller, H. J. Chem. Phys.2006, 124, 214903.

(10) Roux, B.; Simonson, T.Biophys. Chem.1999, 78, 1-20.
(11) Marrink, S. J.; Tieleman, D. P.Biophys. J.2002, 83 (5), 2386-

2392.
(12) Ayton, G.; Voth, G. A.Biophys. J.2002, 83 (6), 3357-3370.
(13) Head-Gordon, T.; Brown, S.Curr. Opin. Struct. Biol.2003, 13

(2), 160-167.
(14) Liwo, A.; Khalili, M.; Scheraga, H. A.Proc. Natl. Acad. Sci. U.S.A.

2005, 102 (7), 2362-2367.
(15) Ulmschneider, J. P.; Jorgensen, W. L.J. Chem. Phys.2003, 118

(9), 4261-4271.
(16) Sartori, F.; Melchers, B.; Bottcher, H.; Knapp, E. W.J. Chem. Phys.

1998, 108 (19), 8264-8276.
(17) Kloczkowski, A.; Mark, J. E.; Erman, B.Macromolecules1989,

22 (3), 1423-1432.
(18) Kitao, A.; Hirata, F.; Goj, N. Chem. Phys.1991, 158 (2-3), 447-

472.
(19) Garcia, A. E.Phys. ReV. Lett. 1992, 68 (17), 2696-2699.
(20) Amadei, A.; Linssen, A. B. M.; Berendsen, H. J. C.Proteins1993,

17 (4), 412-425.
(21) Karplus, M.; Kushick, J. N.Macromolecules1981, 14 (2), 325-

332.
(22) Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, D.Macromolecules

1984, 17 (7), 1370-1374.
(23) Levy, R. M.; Srinivasan, A. R.; Olson, W. K.; McCammon, J. A.

Biopolymers1984, 23 (6), 1099-1112.
(24) Teeter, M. M.; Case, D. A.J. Phys. Chem.1990, 94 (21), 8091-

8097.
(25) Bahar, I.; Erman, B.; Haliloglu, T.; Jernigan, R. L.Biochemistry

1997, 36 (44), 13512-13523.
(26) Romo, T. D.; Clarage, J. B.; Sorensen, D. C.; Phillips, G. N.

Proteins1995, 22 (4), 311-321.
(27) Hayward, S.; Kitao, A.; Hirata, F.; Goj, N. J. Mol. Biol. 1993, 234

(4), 1207-1217.
(28) Kitao, A.; Goj, N. Curr. Opin. Struct. Biol.1999, 9 (2), 164-169.
(29) Berendsen, H. J. C.; Hayward, S.Curr. Opin. Struct. Biol.2000,

10 (2), 165-169.
(30) Daidone, I.; Amadei, A.; Roccatano, D.; DiNola, A.Biophys. J.

2003, 85 (5), 2865-2871.
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