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Can Principal Components Yield a Dimension Reduced Description of Protein Dynamics on
Long Time Scales?
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The suitability of principal component analysis (PCA) to yield slow collective coordinates for use within a
dimension reduced description of conformational motions in proteins is evaluated. Two proteins are considered,
T4 lysozyme and crambin. We present a quantitative evaluation of the convergence of conformational
coordinates obtained with principal component analysis. Detailed analyse2@® (1s) molecular dynamics
trajectories and crystallographic data suggests that simulations of a few nanoseconds should generally provide
a stable and statistically reliable definition of the essential and near constraints subspaces. Moreover, a
systematic assessment of the density of states of the dynamics of all principal components showed that for
an optimal separation of time scales it is crucial to include also side chain atoms in the PCA.

1. Introduction freedom!>16 A somewhat related approach is the Gaussian

7
Conformational motions in proteins are ubiquitous and often network madef

essential for their functiohMolecular dynamics (MD) simula- However, by restricting the model to certain atoms or groups

tions have been used with increasing success to study thesé)f at(_)ms and o_mlttlng others, only a very sm_aII subset of all
motions?~4 However, the accessible simulation times of at most possible collective degrees of freedom is considered. One may,

hundreds of nanoseconds are much shorter than the micro- totherefore, expect to achieve improved dimension reduced

millisecond time scales at which most of the biomolecular descriptions of.protein.dyna}mi.cs by systematically Fjeriving
processes occur, for example, the gating of ion channels,couecn\’e coordl_nates_wnh principal cztz)mponent analysis (P(_ZA)
allosteric interactions, ligand binding, molecular recognition, from sh(_)rtMD S'T“lE'zi‘"O”S- For PGA. and the related quast-

chemomechanical energy conversion, and many ofhérs. harmonic analysidt—2* as well as for singular value decomposi-

i 25,26 i 0,
To render these essential biomolecular processes accessibl on, it has been shown that typically more than 90% of

. ; S : 0
to simulation, a drastic reduction of the large number of degreesd gir total ?;omlg %ozt;(_)zg $hdescr|b(?[_d llsnybless téf:)an 5% O(; all
of freedom is required, for example, by collective Langevin egrees ot Ireedort: € essentiasubspace; spanne

dynamics (CLD)Y A prerequisite for such an approach is a .by the PC.A.modes qontributing mostto the atomic displacement,
suitable separation of the protein dynamics into slow and fast is a promising candidate as active space for dimension reduced

degrees of freedom. The dynamics of the slow ones is then dynamics. ) ) ) )
evolved actively, whereas the typically large number of fast ndeed, the drastically reduced dimension of the essential
degrees of freedom are treated in an effective manner. space has often been exploited with great success in functional
. . L - . i 0—34 H ; 37 .
However, for protein dynamics with its continuous spectrum stuc(jjlels? ; enha}ncgd samc?gllzllg] techniquies; odr. S|mp!e
of time scales, a clear separation between slow and fast degree5n° €is o protgm ynamics. .However, our dimension
of freedom cannot be achieved. Necessarily, some of the reduced dynamics approach requires that the essential subspace

effectively treated modes exhibit relaxation times in the order contains a sufficiently large fraction of the atomic motion also,
of the time scales of the explicitly treated modes. One and particularly, on time scales far beyond the length of the

consequence is that memory effects can generally not beMP simulation bus?d for its denzi/a}tmn. Of coulrseoi itis aflso i
neglected in protein dynamiéEspecially for strongly overlap- ~ N€cessary to obtain a converged free energy landscape for a

ping time scales, a sufficiently accurate treatment of the resulting 9€9rees of freedom in the reduced space, which in a free MD
effects is difficult or even impossible. The achieved level of simulation will likely take much longer than the convergence

time scale separation, therefore, strongly affects the accuracyOf the subspace directions. However, if a sufficiently converged

of the dynamical model, which motivates the goal to achieve €SS€ntial subspace can be obtained from a relatively short MD
the best possible separation. simulation, subsequently a variety of biased sampling methods
The absence of any canonical slow degrees of freedom in can b.e used, such as umbre]lg samplmg and We'ght.Ed .hlstogram
macromolecular dynamics has triggered many different phe- 'ﬁcht?muv(ejé%“:ﬁeggodynarplg |ntegr_até|?‘l:£45\]arzynskl‘s iden-
nomenologically motivated selections including implicit sol- 1tY-0ased methods; or metadynamics:: _
vent1° combined atom or bead modéls14 and the treatment A similar strategy has recently been proposed to include
of polypeptides as chains of stiff “platelets”, for which only Packbone flexibility into docking>*°In this context, structures
¥—¢ backbone angles are retained as explicit degrees of corresponding to grid points in a low dimensional space spanned
by some PCA or normal mode analysis (NMA) modes are

* Corresponding author. Phone:49-551-201-2301. Fax+49-551-201-  generated and subsequently targetted via conventional docking
2302. E-mail: hgrubmu@gwdg.de. schemes. A related application of PCA uses three PCA modes
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to bias the search for homology modeélszor PCA to become computing their similarity for a wide range of sampling times.

valuable in these approaches, however, the number of degreed o assist proper interpretation, we will also compare our results

of freedom has to be very small, as the number of grid cells to the convergence obtained for PCA subspaces of a multi-

grows exponentially with the dimension. dimensional random walk. Moreover, as an alternative similarity
Motivated by these and other possible advances, we will heremeasure, we compute the RMSD between structures of the

study whether and to which extent PCA modes obtained from reference ensemble and their best representations in the con-

short MD simulations are able to describe conformational motion Sidered PCA subspace.

on long time scales and how many PCA modes have to be used The proposed similarity measured requigiori knowledge

to achieve a sufficient accuracy. of the full-length MD simulation. However, in real-world
Due to the crucial role of the separation of time scales aPplications, one needs to judge if the PCA subspaces are

described above, we also have to address this issue for thedufficiently converged purely on the basis of the available (short)

essential and nonessential PCA modes. Since the equipartitiodID Simulation. Thus, we present in section 7 estimates of the

theorem yields a slow effective frequeno;f‘,ﬁ ~ (ke T/G20Y2, convergence of PCA subspaces purely on the basis of short MD

for large amplitude modes, it has been argued previously thatsmulatlons.

essential PCA modes describe indeed slow mdtidtowever, > Theor

the crucial question of the extent that fast motions “leak” into = y

the dynamics of the essential modes has not yet been addressed. Principal component analyses (PCA) is carried out by

Therefore, we analyze in section 4 power spectra of principal diagonalizing the covariance matrix

modes to establish whether and under which conditions PCA

is able to extract “pure” slow motions. C=0mx'0 Q)

The remaining part of this study will address the question of h — [ — GOdenot tein atomic displ t vect
whether the essential subspace obtained from a short (nano-‘.N erex =r enotes protéin atomic displacement vectors

second) MD simulation describes a considerable and sufficient " the N dlmensllonal co_nflguranonal spads,the number of
amount of the overall protein motion observed on long time atoms,r an atomic coordinate vector, and the angular brackets

scales. This question of the convergence of principal modes hasdenote averages over an MD trajectory. To focus on collective

already been studied previously and led to controversial moti(_)ns of th? internal protein _dynamics, translational and
discussiorP~>4 However, all of these studies were restricted rotational motions are customarily removed by least-squares

to nanosecond MD simulations and, therefore, revisiting this fitting to a reference structureye.® The (normalized).eigen-
issue is timely. Motivated by a study by deGroot efiyhich ~ YECtors Ofﬁ y,'fr']d t”.‘e PtCA T“%‘.’es’lv‘""i}i=l---3? a”d.th? pJ'“C'tpa' .
overcame sampling limitations by exploiting the many available _compogter_] s’d a _ 'i a_.om|c ISplacements projected onto mode
X-ray crystallographic structures for T4 lysozy’¥&> which J alre tﬁ ?IITG as = "f'[i X wdv th fPCA
revealed a remarkable correspondence between the first eigen- n the foflowing sections, we study the convergence o :

vectors of MD and X-ray ensembles, we used this Complemen_IL(ZV\EJaSrIt(I:l\?IigII\év;i\];ZCLéf)O?‘gi;g?egugztg?nic:ce?ir:’(r:igt |\t/|h|§t the
tary approach at the convergence of PCA subspaces. A similar : . .
y app g P simulations via PCA can be used to describe the ensemble of a

approach was recently used to analyze how well normal modes ; .
bp y y long (reference) MD simulation.

can describe the conformational motion of proteins. It has been A | d tit the fracti f th
shown that 1% of the modes contribute about 50% to the root- commonly used guantiy measures the fraction of the
atomic displacements that can be described with a given subset

mean-square difference (RMSD) between two corresponding £ orincipl S a. ith m < 3N20
crystal structures in different conformational steteEurther of principle components,a}j=1..m with m

evidence for a fast convergence of PCA subspaces was obtained m 3N
for the transmembrane regions of several proteins employing Q= ,1,/ A 2)
sampling times of 10 n¥ For the now accessible time scales = JZ :

of several hundred nanoseconds, we will, therefore, revisit these
questions in sections 5 and 6 and discuss our results in light ofwhere; denotes the eigenvalue of the PCA magleHowever,
the previous studies. two limitations impede a straightforward application of this

As a reference for long time dynamics, we used two MD @pproach to the case at hand: (A) Equation 2 is restricted to
trajectories, one of length 450 ns of the 46 residue protein cases where the ensemble for PCA and the reference ensemble
crambin, which has a relatively stable structure, and a secondare identical. (B)2 is based purely on the eigenvalués, of
of length 200 ns of the 164 residue protein T4 lysozyme, which the covariance matrix, and, thus, probes only the second
is known to undergo significant conformational dynantit$? moments of the ensemble density, that is, its variances and
In particular, its opening and closing motion is believed to be covariances. This leads to an unnecessarily coarse-grained
crucial for the substrate entering and leaving the active®site. comparison of the respective ensembles.
As a further reference for long time dynamics, an X-ray  The two following steps adapt this measure to our case and
ensemble comprising 38 T4 lysozyme structures crystallized in increase its resolution beyond second moments. As a starting
25 different crystal forn®§ will be used. These structures include  Point, we express eq 2 in terms of ensemble averages:
both opened and closed conformations and, thus, provide an )
alternative access to the conformational freedom available to o = JIPCYIID 3)
the protein®® x| 20

The proper assessment of subspace similarities and their
interpretation is nontrivial. Here, for a given subspace (e.g., from Wherex denotes a protein configuratiops|| denotes the norm,
PCA of a short MD simulation), we define in the Theory section and P(x) = ¥, (ax)a denotes the projection to the+
its similarity with the reference ensemble as the part of the dimensional PCA subspace, that jR(X)|| = zjm:l ¢ This
overall atomic displacement that is described within the sub- fully equivalent formulation ofQ immediately suggests a
space. The convergence of the PCA subspaces is tracked bysolution to the first problem (A): The ensemble averages
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simply performed over the reference ensemble, wheReas RMSD between structures of the reference ensemble and their
projects to eigenvectors obtained from a PCA «hert MD best representations in the tested PCA subspace, that is,
simulation. This generalization, however, still contains the P(x)||/M®2), whereM is the number ofc, atoms.

unnecessary coarse-grained comparison of second moments

only. Therefore, alleviating the second limitation (B)@f we 3. Methods

prefer to compute the fractional loss of atomic square displace- 3 1 Molecular Dynamics Simulation.Two proteins, crambin
ment for every single configuratidreforethe ensemble average  ang T4 lysozyme, were considered as test systems. For crambin,

is carried out, that is, two molecular dynamics (MD) simulations, CR1 and CR2, were
started from the crystal structure (Protein Data Bank entry

’P(x)2||D 1CBN)% The simulations were carried out with the

V=X (4) GROMOS96 force field F49A% The protein was solvated in

2718 SPC water moleculé%.The total simulation system

comprised 8563 atoms. The simulations were carried out using
periodic boundary conditions in a dodecahedronal box. Simula-
tion CR1 was run for 450 ns, and coordinates were recorded
every 0.1 ps. To obtain high resolution Fourier spectra, an
additional simulation, CR2, starting from a snapshot of CR1
was performed for 100 ps, with coordinates and velocities

The similarity measure quantifies how accurate a configuration,
X, is described using only the selected number of PCA modes.
Furthermore, it has the convenient propertgQy < 1.

Note thaty is related to the well-known root-mean-square
inner product (RMSIP) used in the literature to quantify overlap
between two PCA subspac®s>> Denoting the two PCA recorded at every 2 fs time step.

subspaces by their eigenvectdrsy} and{v;}, respectively, we A further MD trajectory, T4L, 200 ns long and started from

choose as the projectioR(x) = Zin;; (ui-x)ui and as the  the crystal structure of coliphage T4 lysozyme M6l (PDB entry
reference ensemble for the averadeéin eq 4 an isotropic 1501 chain D) was kindly provided by Bert L. de Groot. For

distribution of unit vectors in the second subspace, that#s, s trajectory, the OPLS all atom force fi€ldvas used. The
Y% Avj, where3 L, 42 = 1. Using||x|| = 1 and4;*0= 1/m, protein was solvated in 8898 TIP4P water molecules and 8 Cl
eq 4 evaluates to counterions. Periodic boundary conditions in a rectangular box

were applied. Coordinates were recorded every 1 ps.

imm All molecular dynamics (MD) simulations were carried out
HIPCO| [otropic = _ZZ(UVV;)Z using the Gromacs simulation suffeLincs and Settlé®:"Owere

Mi=1j= applied to constrain covalent bond lengths, allowing an integra-
tion step of 2 fs. Electrostatic interactions were calculated using
Thus, y differs from RMSIP in that this measure depends on  the particle-mesh-Ewald methd872The temperature was kept
the underlying ensemble and in particular on the size of the constant by separately coupling € 0.1 ps) the peptide and
fluctuations along the eigenvectors, which is obviously not the splvent to an external temperature b&fihe pressure was kept
case for RMSIP. For our purposes, such dependency isconstant by weak isotropic coupling € 0.1 ps) to a pressure
desireable, because for given eigenvectors and projection, largebath?3
fluctuations imply larger contributions to the total approximation ~ 3.2. Projection of Velocities to Principal Coordinates.
error. Because this property is not captured by RMSIP, we will Projected velocitiesg(t) = a-vc(t), were computed from
usey here. A different quantity that has been suggested in the velocities, v(t), which were corrected for contributions of
literature is the covariance matrix overl®pThis measure, translational and rotational motion. In this way, consistency with
however, includes also the extent of sampling in the subspace,the positions was reached, that &(t) = /46 (7) dr + ¢(0).
and, thus, is rather a measure of convergence of sampling tharThe translational velocities were computed from the displace-
of convergence of PCA subspaces. Also, for this reason, we ment vectorsd(t;), which connect center of mass and origin.
prefer y over the measures suggested previously in the Rotational velocities were computed from the rotation matrices,
literature>3-55:63 R(t), which minimize RMSD to the reference structurgs.

Note that[|P(x)[|/||x||0~ +/y might be considered as an Taken together, the corrected velocities were obtained from

alternative choice, which would compare lengths rather than
squared lengths and would yield larger similarity values. Yet, Ve(t) = V() — Atld(t_,) — d(t) + R(t_,) x(t) — R(t) x(t)]

we preferredy over [JJP(x)||/[|x||C] because the Pythagorean o
relation whereAt denotes the sampling interval.

3.3. Spectral DensitiesSpectral densitiegy;, of the PCA

P 5 P 2 modes,g;, were computed from the discrete Fourier transform
PO D: 1— X GOl (5) of the projected velocities;(t), as

2 2
X1 [1X]]

enables direct interpretation pfas additive percentages, which gj(w) T or
is not possible for the linear expression.

The right-hand side of eq 5 relates to a recent proposal by whereXj(w) = 315" ¢(t) exp(—iwkAt/M) and thety denoteM
Petrone et aP! to quantify the contribution of a normal mode  time steps with intervalt.
subspace to the overall conformational change between two Test computations with a sampling time stepAdf= 2 fs
structures based on their RMSD. In particular, they computed showed that alb; vanish for frequencies above 50 psThis
the residual RMSD between a reference structure and its closesfrequency is the Nyquist frequency corresponding to a sampling
possible representation using a subset of normal modes. Becaustime step ofAt = 10 fs. Thus, sampling with this time interval
the RMSD has the advantage of an accustomed interpretation,avoids aliasing effects and was thus used for all recordings of
we followed this proposal and calculated the average residual velocities described below.
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3.4. PCA Subspace StabilityThe PCA modes were obtained
from short trajectory fragments with differing lengtfisranging
from 20 ps to 450 ns. For every set of PCA modes, the
similarity, y (cf. section 5), with the full-length trajectory was
computed. The error barsy for the mean similarity at a given
fragment sizer, y(r) = M~ 1, y, were computed as

Ay =

M 1 -1/2

S——— 7
—M(M — 1)

where M denotes the number of fragments of lengthFor
sufficiently small fragment size®d) = 20 fragments were chosen

with equidistant spacing along the available trajectory; for larger

fragment sizes, 118 (overlapping) fragments were chosen with
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and heavy atoms, respectively. A high index mode of the
respective PCA was plotted in panels b andGd, (84th/138
modes; heavy atoms, 601st/981 modes). The first mode of the
PCA carried out orC, atoms, that is, mode @4, (panel a)
showed the expected slow contributions,< 5 ps1. With
similar weight, however, intermediate and also fast dynamics,
v ~ 20 ps’L, contributed to this mode. The latter are likely to
result from angle vibrations, which occur at these characteristic
time scales. Higher frequencies corresponding to bond vibrations
are suppressed by the constraints used. The density of states of
mode 84C, in panel b lacks contribution of the slowest motions
but shows hardly any change compared to mod#, 1t the
distribution of the remaining frequencies.

In contrast, the two corresponding modes obtained by PCA

a separation of half their size. Snapshots were taken every 0.1¢arried out on all heavy atoms showed a significantly improved

ps forT < 500 ps and every 1 ps far > 500 ps, respectively.
To compute themutual similarity, ¥, for two adjacent

separation of spectra. Both showed narrower frequency distribu-
tions than theC,-based modes. The spectrum of mode 1/heavy

fragments of equal length, a PCA was carried out for the first (Panel ¢) contained only frequencies below: 5 ps™, whereas
fragment, and eq 4 was used, with the ensemble aveige Mode 601/heavy showed only frequencies above 10 ps™.
replaced by an average over all configurations of the second To gain a more systematic overview, we plotted the mean
fragment. (Figure 1e) and width (Figure 1f) of the frequency distribution
Inner product matrices between eigenvectors obtained by PCAfor every mode and for the four analyzed atom sélg:atoms,
of two different fragments (later shown as Figure 9) are backbone atoms, heavy atoms, and all atoms. FoCleoms,
computed as the nearly constant mean and the constantly large width
underscores the lack of proper time scale separation. In contrast,
for the heavy atoms, the strong dependency of the average
frequency on the mode index, together with the initially small

Whereng) denotes thexth eigenvector obtained from thieh Widt_hs, shows that, _ind_eed, a much improved separation is
fragment { = 1,2) and where both and run from 1 to 3. ach_leved, as already |r}d|cate_d by the examples (cf. Figure 1c,d).
The inner product matrices were computed for fragments of sizesAN intérmediate result is obtained for backbone atoms; the mean
500 ps, 5 ns, and 100 ns, respectively, that stati &t100 ns of_ the slightly broader frequency distribution increases, albeit

andt, = 350 ns for CR1 and &t = 0 ns andt, = 100 ns for with a smaller slope.

TAL, respectively. Obviously, the separation of time scales improved with the
3.5. Analysis of the X-ray Crystallographic Data. The number of atoms used for the PCA. To rule out that this
stability analysis of PCA subspaces obtained from the MD improvementis merely due to the increased number of degrees
simulation T4L was repeated with an ensemble of X-ray Of freedom, we carried out a similar analysis for the small
crystallographic structures as reference instead of the full-length peptide neurotensin (6 residues) and HLA (385 residues) (the

MD simulation. Only structures from different crystal forms MD simulation of HLA-B27 is described in ref 74). Both
were included in the analysis; for a list of the PDB entries used, systems exhibited the same dependency of the time scale
see ref 55. The stability analysis was performed on thgir separation on the selected atom set (results not shown). In
coordinates. Residues 163 and 164 were excluded from theparticular, the first of the 1158, modes showed strong high
analysis because their coordinates were absent in many of thdrequency contributions. This finding confirmed that the selec-
PDB entries. The same atoms were used in the PCA of thetion of an appropriate atom set is crucial to extract slow modes
fragments of the MD simulation T4L. with PCA, independent of system size. In all cases, the best,
and sufficient, time scale separation was achieved only if all
heavy atoms were used for the PCA.

Does inclusion of hydrogen atoms further improve the time

In this section, we investigate whether and how principal Scalé separation? Figure le shows that the improvement is
component analysis (PCA) can be applied to identify slow actually s'mall, prgsumgbly because the high frequency motion
collective modes, which are suitable for a dimension reduced ©f these light particles is largely uncoupled to the slow modes.
description of protein dynamics, for example, by collective Accordingly, an increased mean frequency is seen only for the
Langevin dynamic8.As pointed out in the Introduction, this ~ fastest 20% of the modes (Figure le, dashed line). Thus,
technique describes (few) slow collective modes explicitly, Omission of the hydrogen atoms from the PCA does not affect
whereas the remaining (many) fast degrees of freedom areth® dynamics of the slower modes.
treated in an effective manner. Because strongly overlapping These findings show that PCA is indeed able to identify
time scales cause memory effects, we analyze to which extentsystematically slow modes describing conformational motion.
PCA achieves a separation of time scales. To this end, we Moreover, the best separation of time scales was obtained if all
compute the vibrational density of states along different PCA heavy atoms of the protein were considered, whereas insufficient
modes. Usually, PCA is carried out on subsets of the protein Separation was seen if only tf@& atoms were included.
atoms such a€, atoms only??-55thus, the influence of such a The latter finding was somewhat unexpected, because slow
preselection of atoms is addressed. modes are generally nonlocal and, therefore, should be well-

Figure 1a-d shows examples of frequency distributions of described by the motion of th€, alone. We suggest strong
MD trajectory CR2 projected on single PCA modes. Panels a coupling of the intraresidue atomic motion as a possible
and c show the first mode of PCA carried out on@Jlatoms explanation and illustrate its effect by a simplified example.

— ), (2
Pos =707

4. Separation of Time Scales by PCA
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Figure 1. Comparison of spectral densities for different PCA modes. PCA analyses were carried out on the four different at@nagetss,
backbone atoms, heavy atoms, and all atoms. Densities of states for selected PCA modes are shown-ith. [ieetsiies of states for all modes
are characterized by their averages (e) and width{§). To facilitate comparison despite different numbers of modes, the mode number was
expressed as a fraction of 1.

Consider motion within a three-dimensional highly elliptical computed for a wide range of subspace dimensionshat is,
harmonic well, tilted with respect to the coordinate axes, such the number of principal components used to describe the protein
that the three degrees of freedom are strongly coupled. Obvi- motion. All similarities were computed using a 450 ns MD
ously, PCA applied to all three degrees of freedom will identify trajectory for crambin and a 200 ns MD trajectory for T4
as modes the three principal axes of this elliptical well. One of lysozyme, respectively. The tested subspaces were derived from
these modes, parallel to the shortest principal axis, will describe short fragments of the respective trajectories.
the fastest motion within the well. This mode is uncoupled to PCA analyses were carried out using different subsets of
the two other slow frequency modes, thus yielding optimal atoms. For crambin, the analysis was carried out foCattoms
separation of time scales. In contrast, if one of the three degree§CR1/C,, cf. Figure 2a,b) and for all heavy atoms (CR1/heavy,
of freedom is omitted (in analogy to including only t in cf. Figure 2c,d). For T4 lysozyme, only the analyses for@Ghe
the PCA), part of the high frequency mode will project into the atoms (T4LC,, cf. Figure 3a,b) is shown.
two remaining degrees of freedom. For purely geometrical  starting with CR1, Figure 2 shows that similarities (mostly)
reasons, this part will also contaminate the (projected) slow jncrease with both a larger fragment length (horizontal axis)
modes and, therefore, cannot any more be isolated by PCA.and an enlarged PCA subspace sineThe similarities for the
This simple example also illustrates why exclusion of hydrogen |argest fragment size, thereby, reflect the well-known result that
atoms alone does not deteriorate the separation of time scalesg 1094 of the eigenvectors describe a large fraction of the
because the hydrogen atomic motion is nearly uncoupled to thatmotion2° For instance, the curves correspondingno= 14

of the heavy atoms. (10% of 138 eigenvectors in CR1{) andm = 40 (5% of 981
i eigenvectors in CR1/heavy) reach 0.8 at the largest fragment
5. Convergence of Conformational Subspaces size.
In this section, we analyze whether slow collective coordi-  To focus on the dependency of the similarity on the fragment

nates extracted frorshort MD simulations with PCA are able  length, Figure 2b,d shows the curves normalized by their
to describe the long time protein dynamics sufficiently well. respective maximum similarity. In particuld@, PCA subspaces
To this end, we carried out PCA analyses on fragments of of m= 14 computed from short MD simulations of length 1 ns
varying length extracted from the molecular dynamics (MD) describe 67% of the whole ensemble generated in the 450 ns
simulations of the proteins crambin (CR1) and T4 lysozyme simulation, which was 86% of the maximally achievable limit
(T4L), respectively. for subspaces of that size. Similarly, CR1/heavy PCA subspaces
Similarities,y (cf. section 5), between the whole ensemble of m= 40 reached 81% of the maximally achievable limit after
and its projection to different subsets of PCA modes were a sampling time of 5 ns. Thus, at least for the systems at hand,
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Figure 2. Convergence of conformational subspaces for Crambin. (a,c) Similarigq 4, between the whole ensemble (CR1) and its projection

to PCA subspaces of different dimensionality (cf. legends) obtained from varying short fragments (cf. abscissa) of the 450 ns trajectory CR1. (b,d)
Same as figures above, but the similarities are normalized by the maximally achievable similarity for the respective subspace dimensionality. Note
that the selected subspace dimensionalities (legends) are chosen, such that the corresponding lines in all plots stand for approximately the same
fraction of all available degrees of freedom. 3/1:820/981.

TALC, The same analysis carried out for T@/(cf. Figure 3a,b)

1 : ~ reveals even higher similarities; for example, at a fragment size
of 5 ns,y(m=30) ~ 0.84 for T4LLC,, whereag(m=60)~ 0.72

andy(m=9) ~ 0.54 for CR1/heavy and CRQy, respectively.
Here, subspaces spanned by approximately the same fraction
of the total number of eigenvectors were compared, that is, 30/
492, 60/981, and 9/138 for T4C}, CR1/heavy, and CRT,
respectively.

These large similarity values can be interpreted by comparison
to the convergence of PCA of a random walk. Figure 4 shows
the similarity curves for a random walk involving 200 000 steps
in 200 dimensions. In contrast to the protein data, the similarities
are very low for all but those fragments that include more than
half of the whole random walk. As can be seen, the dominating
directions change considerably during the course of the random
walk. In contrast, the dominating directions of a long MD
simulation of proteins are contained within fragments as short
as 1% of the total length of the MD simulation.

As an alternative, and probably more intuitive measure of
how much of the slow conformational protein dynamics is
captured by short time PCA subspaces, we computed the average
residual RMSD, that is, the average RMSD between structures
in the reference MD ensemble and their projections to the PCA

o subspaces (cf. section 5). As can be seen in Figure 5a, already
fragmem‘gize(ns) 10 a sampling of 1 ns suffices to yield an = 9 dimensional

. ] subspace of CR(, that can describe structures in the MD
Figure 3. d(i)onv_ergler!tqe of (f:?ﬁfolrjrréilonzl subspac]:aisrlflolr T4 Iysozyrr_r; ensemble CR1 up to an average RMS difference of less than 1
measure similarities o e supbspaces O sozyme Wi . . .
the fuII-Iengt)t,1 MD trajectory of T4L: (a) abgolute; (b) norymali;/ed (cf. A. For the corresponding = 30 qlmensmnal SUbSpace. of T.4L/
caption of Figure 2). C,, the same level of accuracy is reached at a sampling time of

5 ns (Figure 5b). Comparison of Figure 2a and Figure 3a shows

already subspaces from relatively short nanosecond simulationsthat these accuracy levels correspond to a similarity value above
capture a fraction almost as large as the fraction of the long 0.5 for CR1 and above 0.84 for T4L, respectively.
time protein dynamics that is described by subspaces derived We note that an accuracyf @ A is similar to that of high
from a PCA over the full-length trajectory. quality X-ray crystallographic structures. Thus, subspaces with
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Figure 4. Convergence of PCA subspaces of a random walk measured 02 '
by similarity with the full-length random walk with the same number
of sample points as in the MD trajectory for T4L: (a) absolute; (b) 0.45F =--
normalized (cf. caption of Figure 2). £
1=
an RMSD below this threshold should allow for a sufficiently g 01
accurate description of the conformational dynamics of the =
respective proteins. This is particularly significant in light of 0.05}
the fact that the ensembles of structures considered here, CR1
and T4L, contain mutual differences up to 4.4 and 6.7 A, 0
respectively.

fragment size(ns)

Until now, we have only shown how well the reference )
ensembles can be described by P@faverage What remains Figure 5. Convergence of conformational subspaces from RMSD.
Shown is the average RMSD between structures from the reference

to be estak_)li_shed is the distribut_ior_1 of resi(_jual R_MSD values ensembles (a) MD simulation CR1, (b) MD simulation T4L, and (c)
for the individual structures. This information might also be - 3g x.ray crystallographic structures of T4 lysozyme, respectively, and
relevant for flexible docking problems, where PCA might be their projections to PCA subspaces derived from varying short fragments
used to generate structures that are subsequently tested aghorizontal axis) of the respective MD simulations CR1 and T4L.
docking target§>4°Figure 6 shows scatter plots of the residual

RMSD values for all structures of the respective reference fragment lengths, a downward tilt of the distributions is
ensemble described by subspaces of dimensien20 whose observed; that is, a better description of the overall structural
directions were obtained by PCA of short MD simulations of changes is achieved. This finding is also seen from the slopes
lengths 200 ps and 1 ns for crambin and T4 lysozyme, of the linear fits, shown in Figure 6 for various subspace
respectively. Here, the residual RMSD is defined as the RMSD dimensionalities and fragment lengths. Interestingly, the slope
between a structure, and its projection onto the subspd(e), of the linear fit is very similar for both proteins, crambin and
whereas the total RMSD is the RMSD betweeamd the average  T4L, for the m = 20 PCA subspaces derived from 1 ns
structure B[] For both proteins, the distributions are of a similar simulations, although T4L has over 3 times m&@g atoms.
shape and the residual RMSD values are strongly correlatedAlthough far from strong evidence, this finding indicates that
with the total RMSD ( > 0.75). Moreover, up to a total RMSD  also for larger proteins similar numbers of degrees of freedom
of ~2.5 and~4.3 A for crambin and T4L, respectively, the and similar PCA sampling times will allow a description of the
distributions of residual RMSD values are rather broad, as they dynamics to this level of accuracy.

show significant scatter at both sides of the solid lines given  The presented results show that for both proteins, crambin
by the linear fits. For larger total RMSD values, this distribution and T4 lysozyme, MD simulations of a few nanoseconds suffice
narrows and focuses at the upper edge. Thus, for a total RMSDto derive conformational subspaces that are suitable to describe
above the threshold values2.5 and~4.3 A, respectively, the  the conformational dynamics at time scales of several 100 ns.
quality of the description of the structures in the PCA subspaces Similar results were also obtained for the B1 domain of Protein
decreases. These overall features of the distribution of residualG (200 ns, 1PGB, OPLS, GROMACS, data not shown), which
RMSDs are observed for the full range of subspace dimension-further supports our conclusion that this behavior is a general
alitites and fragment lengths (results not shown), although the feature of protein dynamics.

width of the distribution narrows with larger dimensionality, One might argue that the observed fast convergence of PCA
m. Also, for higher subspace dimensionalities and longer is due to a fast initial drift of the MD simulation away from a
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Figure 6. Distribution of residual RMSD values. The two scatter plots
(red points) show residual RMSD values against total RMSD values,
where the residual RMSD values quantify the distance between
structures from the reference ensembles (a) MD simulation CR1, (b)
MD simulation T4L, respectively, and their projections tm € 20)
PCA subspaces derived from (a) 200 ps and (b) 1 ns, short fragments
of the respective MD simulations. The black triangles mark the contours
of these distributions as they are tilted downward due to the larger (
= 50) PCA subspaces. The solid lines denote linear fits and also
illustrate the tilt of these distributions. The dashed lines denote linear
fits to the distributions of residual RMSD values obtained fior=€

20, red) and fh = 50, black) PCA subspaces, respectively, and for
longer MD fragments ((a) 1ns and (b) 10 ns). For clarity of the figure,
the corresponding distributions are not shown.

Time (ns)

constrained starting position due to crystal packing forces or b 0 20 40 60 80 100 120 140 160 180
NMR restraints toward the center of the energy basin in the Time (ns)

force field used. Such an effect, however, can be ruled out, as

the short MD trajectory fragments used for the PCA have been 0 RMSD (nm)0.671
taken from different times along the long MD trajectory (cf.
Methods). Furthermore, the stabilities obtained for a certain _ ) ) 3 )
fragment length, say 10 ns, show no correlation to the position Figure 7. Conformational sampling characterized by RMSD matrices.

2 . Each elementn;, of these matrices denotes tg RMSD (cf. color
of the fragment within the long MD trajectory (results not bars) between thigh andjth snapshot of the respective trajectory: (a)

shown). CR1; (b) T4L.

6. Sampling in the Reference MD Simulations these fragments yielded high similarities despite lacking any

The data presented in the previous section points toward ainformation regarding the two other major conformational
remarkably fast convergence of PCA subspaces. However, suchegions.
fast convergence could, trivially, also be due to the absence of For T4L, the availability of more than 200 T4L structures
any slow conformational changes in the reference MD simula- crystallized in more than 25 different crystal forms present in
tions. To rule this out, we computed RMSD matrices on the the Protein Data Bafk enables a complementary approach to
full length of both trajectories CR and T4L, shown in parts a test our findings. Assuming that each crystal structure represents
and b of Figure 7, respectively. The distinct bright blocks on a possible conformation in solution, this set of structures
the diagonal reveal larger conformational transitions. Bright off- provides an experimental access to the conformational flexibility
diagonal blocks indicate that a certain conformational substate of the protein at atomic resolutid®.As described in section
was revisited. Thus, these data show that the crambin simulation3.5, we obtained in analogy to ref 55 an ensemble of 38
as well as the T4L trajectory have sampled at least three majorcrystallographic structures, and repeated the convergence analy-
conformational regions. In contrast, for both trajectories, the sis with this experimental reference ensemble (cf. Figure 8).
majority of the fragments smaller than 50 ns included only one The PCA subspaces converge against the experimental reference
of these conformational states. PCA subspaces obtained fromensemble with similar speed as against the long MD ensemble
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Figure 8. Convergence of conformational subspaces for T4 lysozyme
measured by similarities of the PCA subspaces of T4 lysozyme with °
an ensemble of 38 X-ray crystallographic structures of T4L: (a) 8®
absolute; (b) normalized (cf. caption of Figure 2). 700
600{ 1
(cf. Figure 3a,b). Only for fragment sizes larger than 20 ns PCA 5
subspaces describe the reference MD simulation slightly better4®
than the X-ray ensemble. This excess similarity with the MD 3%
ensemble reflects the increasing overlap between the PCA anc?®
reference MD ensemble. In other words, it reflects the fact that '™
also the>100 ns trajectories do not fully cover the accessible c‘ 1100 200 300 400 500 600 700 800 900§
conformational space. The same trend is observed for the
average RMSDs between reference and projected structures (cf

Figure 5b,c).

400

300

200

01 02 03 04 05 06 OF

Figure 9. Comparison of the principal components between two
o o fragments provided by the inner product matrix eq 6. The insets show
7. Criteria for Sufficient Convergence the same data zoomed to the inner products between the first 50

. . . principal components: (ac) CR1/heavy atoms; (df) T4L/C,. The
In the previous sections, we found evidence for fast conver- gray scale focuses at the interval 0...0.1 because most inner products
gence of sufficiently large PCA subspaces. This result could fall into this interval.

only be establishe@ posteriori that is, by comparison to a

long MD simulation, which, however, is typically not available. of the second half of the obtained trajectory will lead most likely
On the contrary, usually the quality of the chosen PCA subspaceto an overestimation of the similarity. However, will not
needs to be assessadriori, that is, on the basis of the short depend too strongly on the amount of sampling in the reference
MD simulations availableOne established approach rests on ensemble, because the similarity probes the slope of a linear
the covariance matrix overl&3.However, this also includes regression to the scatter plofP(x)|| vs ||x||. Thus, further

the extent of sampling, which is not of interest here. Instead, sampling adds only points to the regression but does not
often the sum of all squared inner products between the basisnecessarily change the slope.

vectors of the two compared subspaces is used. While thisis a To check if this a priori approach indeed yields similar results
good starting point, it has the drawback of weighing all as the a posteriori approach, mutual similaritigsfor short
directions equally (cf. Theory). This is not the case of aur  fragments of the trajectories CR1 and T4L were compared to
posteriori measure,y, where the use of the true ensemble the similarity,y. For a realistic test, we comput&dor adjacent
guarantees that less important directions of the subspace havdéragments of the trajectories with lengths ranging from 200 ps
also less impact on the result. As an approximatiory teve to 200 ns. Fragment lengths in the nanosecond range reflect
suggest to compute the mutual similaripy between two halves  the typical situation, where the two (adjacent) halves of an
of an available short MD trajectory (cf. Methods). This measure, available trajectory are used.

7, as well as the similarityy, itself, depends on the chosen Figure 10 shows andy obtained for all three PCA sets:
subspace dimension and will never reach unity. Rather, this CR1/C,, CR1/heavy, and T4lQ,, respectively. A linear fit to
measure allows one to judge how accurate a PCA subspace othe data yield$y = 1.04y — 0.07 with a correlation coefficient

a certain dimension might describe the true ensemble. Admit- of r = 0.98. In particular,y differs from y only by a root-
tedly, using the probably largely undersampled MD ensemble mean-squared error ¢£0.04. We conclude that the mutual
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1

modes from short MD simulations. In particular, comparing the
0ol directions of eigenvectors of two halves of a 470 ps simulation
T trajectory for a 375 residue protein, the authors found only little
5 o8 overlap, and concluded that insufficient convergence of the
g o7l directions was reached. Our results show that this behavior is
= also seen for the longer time scales studied here.
S o8 However, much more relevant within the context of dimen-
E 0.5 sion reduced descriptions is the convergencaubbpacesather
£ than that of individual eigenvectors. To this end, Balsera et al.
0.4 » CR1/heavy atoms analyzed inner product matrices and found only little tendency
3L 2 TL/Ca toward inner products near the diagonal, which they also

083 04 05 06 07 08 09

mutual similarity T (a priori)

interpreted as insufficient convergence. At the short 500 ps time
scale, and also focusing at the largest 50 eigenvectors (insets

Figure 10. Comparison between mutual similarify, and full-length of Figure 9a,d), we obtained results for CR1 and T4L that are

similarity, y, values. The mutual similarities between PCA subspaces _. . . -
obtained for fragments[ t; + At] and adjacent fragments [ AL, t similar to the ones obtained for the much larger G-actin by

+ 2At] (cf. Methods) are plotted against the similarity obtained by Balsera et al. However, at the much longer time scales
comparing PCA subspaces obtained from fragmentg f- At] with accessible, and for the smaller proteins considered here (46 and

the whole trajectory. This analysis was carried out for GR1(O), 164 residues, respectively, vs 375 residues), a different picture
CR1/heavy &), and TALC, (A). The data points correspond to the  emerges (Figure 8b,c,e,f). Here, a pronounced narrowing of the
subspace dimensionalities listed in the legend to Figure 2. The line ;0404 hand is seen, reflecting much better convergence. For
depicts a linear regression carried out over all three data sets. - ’ . . .
100 ns, this is even seen for the first 50 eigenvectors (inset).

Taken together, only little convergence is seen at a sub-
nanosecond time scale for large proteins, whereas pronounced
convergence sets in for small proteins at the 5 ns time scale.
This finding, together with the demonstrated separation of time
scales, suggests that PCA provides indeed suitable subspaces

We have shown that collective coordinates obtained from for a dimension reduced description of protein dynamics on long
PCA analyses of relatively short (nanoseconds) molecular time scales.
dynamics (MD) simulations provide collective degrees of  \ye emphasize that the observed fast convergence of sub-
freedom that should be suitable for an effective dimension gpaces does not imply that meaningful and well-defined
reduced description of protein dynamics, for example, collective gjrections ofsingleprincipal components can be extracted from
Langevin dynamic8.As an important aspect of a dimension  ghort MD simulations. Indeed, the inner product matrices (cf.

reduced description, we checked to what extent PCA yields aFigure 9) confirm that single modes change considerably
separation of time scales. We found that, if based on the \qtween different sampling windows.

displacements of alleavy atoms (as opposed @, atoms only),
PCA provides slow degrees of freedom that are free of
contributions from the fast vibrational dynamics.

The main result is that PCA yields collective coordinates, of
which already few describe a large fraction of the overall atomic
displacements even at 100 ns time scales. In particular, for the
protein T4 lysozyme, 10% of the principal components obtained
from a 5 nsexplicit MD trajectory describe more than 90% of
the total atomic displacements observed in a long 200 ns
simulation. This holds true even though three different confor-
mational states were visited for extended periods of tirm&0(
ns each) during the 200 ns simulation, of which only one
contributed to the PCA. Hence, the conformational dynamics
within a single conformational state contains significant infor-

similarity, ¥, can be reliably used to estimate the sampling
convergence.

8. Discussion and Conclusions

We also want to discuss our results in light of possible
docking applications. Although a selection of-2000 degrees
of freedom already allows a drastic dimension reduction, this
number is not sufficiently small as to allow exhaustive grid
searches in PCA subspaces; therefore, one may ask if a very
small number of PCA modes obtained from short MD simula-
tions actually yields sufficient information of the true confor-
mational motion to allow their use in flexible docking or as
reaction coordinatesn enhanced sampling techniques, such as
umbrella sampling. As an illustration, consider a five-
dimensional subspace, for which a residual RMSD as large as
4 A for structures from the T4L ensemble is obtained. Whether
this value is sufficiently small for docking applications remains
mation of the transitions to other conformations. to be established. Subsequent structural refinement might

Interestingly, the analysis of the residual RMSD distribution MProve the situation considerably.
(Figure 6) points to the somewhat counterintuitive notion that, ~ The fact that respective subspaces show much better con-
to reach a given quality level, with increasing system size, vergence is a consequence of the observed partial separation of
decreasingrelative fractions of all degrees of freedom are time scales. As a possible reason, we propose that although the
required. For example, 5% of all degrees of freedom for T4 slow modes may not yet be sufficiently sampled at a given MD
lysozyme allow for a similar quality improvement as 15% for time scale, the high frequency modes will be sampled suf-
crambin. Clearly, a wider range of protein sizes will have to be ficiently well to determine well-converged high frequency
studied to provide further support. subspaces. The orthogonal low frequency subspaces, therefore,

These encouraging results on the convergence of PCA will show similar convergence despite insufficient sampling of
subspaces need to be discussed in light of a previous study bythe individual modes. An immediate consequence is that a
Balsera et al®2which at that time necessarily focused on much sufficiently large chosen PCA subspace contains most of the
shorter time scales. This study found slow convergence of the slow conformational motions. The unexpected and encouraging
fluctuation amplitudes along the largest PCA modes and news is that “sufficiently large” can be as few asB% of
concluded, differing from our findings at larger time scales, that the 3 degrees of freedom, which provides a sound basis for
this behavior could complicate the extraction of long time scale future dimension reduced descriptions of protein dynamics.
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