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Abstract
Circular dichroism (CD) spectroscopy is highly sensitive to the secondary structure (SS) composition of proteins. Several 
methods exist to either estimate the SS composition of a protein or to validate existing structural models using its CD spec-
trum. The accuracy and precision of these methods depend on the quality of both the measured CD spectrum and the used 
reference structure. Using a large reference protein set with high-quality CD spectra and synthetic data derived from this 
set, we quantified deviations from both ideal spectra and reference structures due to experimental limitations. We also deter-
mined the impact of these deviations on SS estimation, CD prediction, and SS validation methods of the SESCA analysis 
package. With regard to the CD spectra, our results suggest intensity scaling errors and non-SS contributions as the main 
causes of inaccuracies. These factors also can lead to overestimated model errors during validation. The errors of the used 
reference structures combine non-additively with errors caused by the CD spectrum, which increases the uncertainty of 
model validation. We have further shown that the effects of scaling errors in the CD spectrum can be nearly eliminated by 
appropriate re-scaling, and that the accuracy of model validation methods can be improved by accounting for typical non-
SS contributions. These improvements have now been implemented within the SESCA package and are available at: https 
://www.mpibp c.mpg.de/sesca .
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Introduction

Circular dichroism (CD) spectroscopy is known for its high 
sensitivity to the secondary structure (SS) composition of 
proteins, especially when bright, synchrotron radiation (SR) 
light sources are used as shown by Kelly et al. (2005). CD 
spectra are routinely used to estimate protein SS composi-
tions, both as a laboratory quality control and to monitor 
structural changes in proteins. The latter requires the vali-
dation of proposed structural models, either by estimating 
SS compositions from the measured spectra and compar-
ing them to the SS composition of structural models, or by 

predicting CD spectra from the structural models and then 
comparing those to measured spectra.

In our previous study, we described and assessed a new 
method (SESCA) by Nagy et al. (2019) that allows both CD 
predictions and SS estimation based on CD spectroscopy 
for protein model validation. SESCA approximates the CD 
signals as linear combinations of empirical “basis spectra”, 
representing contributions from SS elements of the protein 
(such as �-helices). SESCA uses several sets of basis spectra 
(basis sets), which represent CD signals of SS elements of 
a classification algorithm. During CD predictions, SESCA 
extracts the fraction of residues classified as being part of 
each SS element (SS composition) from a 3D protein model, 
and uses them as coefficients for the basis spectra to compute 
the predicted CD spectrum of the model. Alternatively, the 
basis spectra can be fitted to a measured CD spectrum to 
obtain coefficients that estimate the most likely SS composi-
tion of the protein.

The accuracy of both CD prediction and SS estimation 
depends on several assumptions as outlined by Fasman 
(1996) concerning both measurements of the reference 
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proteins which the basis spectra are extracted from, as well 
as the measurements on the proteins of interest: 

1. The protein concentrations during CD measurements 
are accurately known. To extract accurate basis spec-
tra from different measurements and proteins, the CD 
spectra need to be properly normalized, which requires 
an accurate determination of the respective protein con-
centrations. Unfortunately, the relevant measurements 
suffer from a 10–25% uncertainty as shown by Hunziker 
et al. (1999), introducing scaling errors to the measured 
CD spectra. The propagation of these errors reduces the 
accuracy of CD prediction and SS estimation methods. 
Therefore, many methods apply intensity scaling factors 
to correct the strength of measured CD signals.

2. The SS composition of reference proteins is accurately 
known, and reflects the SS composition under the con-
ditions of the CD measurement. Methods that rely on 
empirical basis spectra require reference SS composi-
tions, usually obtained from structural models deter-
mined by X-ray diffraction (XRD) or nuclear magnetic 
resonance (NMR) measurements. Structure determina-
tion typically requires conditions different from those of 
CD measurements (e.g. different concentrations), which 
may alter the protein structure. As a result reference SS 
compositions typically deviate from those of the solu-
tion structure by 10 % on average according to Kihara 
(2005), reducing the accuracy of empirical SS estima-
tion 1and CD prediction methods.

3. The measured protein samples are free of contamination, 
and non-SS CD contributions can be neglected. Non-SS 
contributions from the protein include tertiary structure 
CD contributions, far ultra-violet (UV) CD signals from 
natural or modified amino acid side chains, co-factors, 
and ion coordination sites. The most studied of those are 
side chain contributions, which, however are typically 
smaller than 10% of the SS contributions, see Nagy et al. 
(2019).

Under these ideal conditions, the measured CD spectra are 
identical to the SS signal of proteins. Accordingly, devia-
tions between the model SS and the estimated SS are caused 
solely by errors of the protein model, and deviations between 
predicted and measured CD spectra are proportional to the 
model SS errors as well. However, as we have shown previ-
ously using a large set of globular proteins in Nagy et al. 
(2019), an average deviation of 25% remains between the 
measured CD spectra and the estimated SS signal, despite 
using high-quality SR-CD spectra, using accurate models 
derived from XRD/NMR measurements, and re-scaling the 
CD spectra to reduce potential scaling errors. These results 
suggest that typical assumptions about CD data are often 
violated, which also affects the accuracy of model validation.

Here, we will address two questions: first, to which extent 
are the above assumptions violated in typical SR-CD data 
sets? Second, how do such deviations affect the accuracy 
of SS estimation, CD prediction, and model validation 
methods? To answer the second question, we constructed 
a synthetic reference data set including typical violations, 
for which the deviations in the reference data are precisely 
known, and their effects are exactly calculable.

Methods

Experimental errors

Typical deviations from the assumptions listed above were 
estimated based on the analysis performed by Nagy et al. 
(2019) on the SP175 reference set assembled by Lees et al. 
(2006), which contains high-quality structures and SR-CD 
spectra for 71 proteins with diverse SS compositions.

Briefly, the correct SS composition for the protein in solu-
tion was estimated through deconvolution of its re-scaled 
CD spectrum. The scaling factors applied to the measured 
spectra quantified scaling errors in the data set. Deviations 
between the estimated correct SS and the reference SS com-
position were used to quantify structural errors. Finally, non-
SS contributions were quantified by averaging the deviations 
between the re-scaled CD spectra and CD signals back-cal-
culated from the estimated SS.

The scaling factor �j for each reference protein was deter-
mined based on six predicted spectra, each calculated from 
the same reference structure using different prediction meth-
ods. Four of these predictions were made by SESCA basis 
sets (DS-dT, DS5-4, DSSP-1, HBSS-3), one was determined 
by the predictor DichroCalc, and one by a specialized basis 
set BestSel_der as described in Nagy et al. (2019). Note 
that the first two basis sets were based on the SS definitions 
of DISICL by Nagy and Oostenbrink (2014), whereas the 
last two are based on DSSP by Kabsch and Sander (1983), 
and HbSS by Nagy et al. (2019), respectively. BestSel_der 
is based on BestSel SS classes by Micsonai et al. (2015), 
and Dichrocalc by Bulheller and Hirst (2009) predicts CD 
spectra directly from the 3D structure. For each prediction, a 
scaling factor was calculated to minimize root mean squared 
deviation (RMSD) between the measured and predicted CD 
spectrum. The final �j for the protein j was calculated as the 
average of its six obtained scaling factors, whereas the scal-
ing error of its CD spectrum is given by

After all reference CD spectra were re-scaled by the �j val-
ues, the four SESCA basis sets were used to obtain the 

(1)Δ[�]scale
j

=
|�j − 1|

�j
.
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estimated SS composition ( Cest
ji

 ) through CD deconvolution. 
The deviation ( ΔSSj ) between the estimated and reference 
SS compositions were computed according to

where Cest
ji

 and Cref
ji

 are the coefficients of SS class i in protein 
j for the estimated and reference structures, respectively. The 
obtained ΔSSj values from each basis set were again aver-
aged for every protein j to estimate the SS deviation of refer-
ence structures in the SP175 set.

For each protein, the estimated prediction error caused by 
non-SS CD contributions ( Δ[�]0

j
 ) was calculated and nor-

malized by the re-scaled average spectrum intensity

where [�]est
jl

 and [�]ref
jl

 are back-calculated and measured spec-
tral intensities of protein j at wavelength l, respectively. 
Similar to SS deviations, Δ[�]0

j
 values calculated using the 

4 SESCA basis sets were averaged for each protein in the 
SP175 set to obtain a final estimate on its non-SS 
contributions.

Next, the noise-to-signal ratio Δ[�]tot
j

 for each reference 
protein was determined by dividing the total prediction error 
by the average intensity of the estimated SS signal

Again, the four obtained values from SESCA basis sets were 
averaged for each protein j to estimate the final noise-to-
signal ratio for all reference proteins.

The distribution of scaling factors ( �j ), SS deviations 
( ΔSSj ), non-SS contributions ( Δ[�]0

j
 ), and noise-to-signal 

ratios ( Δ[�]tot
j

 ) of the SP175 set were used to describe the 
typical deviations from the assumed ideal experimental data, 
as well as to generate synthetic data sets that test the effect 
of these deviations during SR-CD-based model validation.

Synthetic data

A synthetic data set of structures and CD spectra with pre-
cisely known errors were created to test the effect of differ-
ent deviations from the ideal experimental data on the CD 
prediction, SS estimation, and model validation methods.

A “correct model” was defined with a typical SS compo-
sition of 30% �-helix , 40% �-strand and 30% random coil.

(2)ΔSSj =
∑

i

|Cest
ji

− Cref
ji
|

2
,

(3)Δ[�]0
j
=

�����
∑

l ([�]
est
jl

− �j[�]
ref
jl
)
2

∑
l (�j[�]

ref
jl
)
2

,

(4)Δ[�]tot
j

=

�����
∑

l ([�]
pred

jl
− [�]ref

jl
)
2

∑
l ([�]

est
jl
)
2

.

From that model, a “correct CD signal” (purple-dashed 
curve in Fig. 1) was generated by predicting the CD spec-
trum of the correct model with the DS5-4 basis set of 
SESCA, see Nagy et al. (2019). For the CD prediction, SS 
fractions of the correct model were assigned to the coef-
ficients of basis spectrum “Helix1”, “Beta1”, and “Other”, 
respectively.

Structural deviations were modelled by constructing 20 
synthetic models with altered SS compositions that covered 
the �–�-coil SS space (see Table 1).

CD deviations were modelled by constructing 20 syn-
thetic CD spectra with scaling errors, non-SS contributions 
or both (Table 2).

Scaling errors were modelled by multiplying the correct 
spectrum with 1∕�k = {0.3, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.5} to 
obtain four under-scaled (subsequently S−) and four over-
scaled (S+ ) CD spectra.

Errors from non-SS CD contributions were modelled 
by adding a “contamination” signal (blue-dashed curve in 
Fig. 1) to the correct spectrum. The contamination signal was 
obtained by estimating the SS composition of bovine lacto-
ferrin (SP175/42) from its measured CD spectrum, and sub-
tracting its estimated SS signal from the measured one. This 
contamination was re-scaled to the same average intensity 

Fig. 1  Constructing synthetic CD spectra. Synthetic spectra are con-
structed from a SS signal (purple-dashed line), a weighed non-SS sig-
nal (blue-dashed line), and a scaling factor ( 1∕�k ). The non-SS signal 
is scaled to a given fraction ( wk , here 0.2) of the average SS signal 
intensity, then added to the SS signal, to imitate non-SS contribu-
tions of different sizes. Finally, this combined CD signal (in magenta) 
is multiplied by a scaling factor (here 1.3) to mimic scaling errors, 
yielding the final synthetic spectrum (in red). The weighs and scaling 
factors for all used synthetic spectra are provided in Table 2
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as the correct spectrum, and then was added to the correct 
spectrum with weights of wk = {± 0.1,± 0.3,± 0.5,± 1.0} to 
create two series of CD spectra (C+ and C−) with increasing 
non-SS contributions.

Further, a set of four CD spectra (CS) was generated that 
included both contamination and scaling errors. For these 
spectra, weights wk = {0.2,−0.3, 1.0,−1.0} were used to 
add contamination, then the resulting spectra were scaled 
by 1∕�k = {1.3, 0.8, 0.7, 1.1} , respectively.

The error in each synthetic spectrum k was calculated and 
normalized by the correct CD signal

where [�]kl and [�]correct
l

 are CD intensities of spectrum k and 
the correct spectrum at wavelength l, respectively.

Deconvolution methods

We used three different deconvolution methods termed D1, 
D2, and D3 to study the effects of experimental errors on 

(5)Δ[�]
spect

k
=

����
∑

l ([�]kl − [�]correct
l

)
2

∑
l ([�]

correct
l

)
2

,

SS estimation accuracy. All three methods use the DS5-4 
basis set and perform several simplex searches in the SS 
composition space based on an adaptive Nelder–Mead algo-
rithm suggested in Gao and Han (2012), and implemented in 
the deconvolution module of the SESCA package by Nagy 
et al. (2019). The three methods differ in the number of 
searches performed as well as in the applied constraints as 
described below. We note that the application of such con-
straints reportedly affects the accuracy of the deconvolution, 
depending on the experimental error of the CD spectrum of 
interest, as discussed by Manavalan and Johnson (1985).

For D1, 500 simplex searches were performed, each start-
ing from a random SS composition. As constraints, each 
basis spectrum coefficient was required to be non-negative 
and their sum to be unity. For D2, the sum of coefficients 
was not required to be unity and, due to faster convergence, 
only 200 searches per protein were performed. D3 proceeds 
as D2, except the coefficients are not restricted to non-neg-
ative values during the search.

At the end of the deconvolution, the search resulting in 
basis set coefficients with the best fit (smallest RMSD) to 
the measured spectrum was accepted. For the accepted fit, 

Table 1  Synthetic models with diverse SS compositions used for 
error assessment

The table provides the name and the identifier j of the model, the 
fraction of residues classified as �-helix, �-strand, and other second-
ary structure classes, as well as the true SS deviation ( ΔSSj ) from the 
correct model (j = 0) of the synthetic data set

Model j �-Helix �-Strand Other ΔSSj (%)

Correct 0 0.3 0.4 0.3 0
AB+30 1 0.0 0.7 0.3 30
AB+20 2 0.1 0.6 0.3 20
AB+10 3 0.2 0.5 0.3 10
AB-10 4 0.4 0.3 0.3 10
AB-20 5 0.5 0.2 0.3 20
AB-30 6 0.6 0.1 0.3 30
AB-40 7 0.7 0.0 0.3 40
BC+36 8 0.3 0.04 0.66 36
BC+26 9 0.3 0.14 0.56 26
BC+16 10 0.3 0.24 0.46 16
BC+6 11 0.3 0.34 0.36 6
BC-6 12 0.3 0.46 0.24 6
BC-16 13 0.3 0.56 0.14 16
BC-26 14 0.3 0.66 0.04 26
AC+23 15 0.07 0.4 0.53 23
AC+13 16 0.17 0.4 0.43 13
AC+3 17 0.27 0.4 0.33 3
AC-3 18 0.33 0.4 0.27 3
AC-13 19 0.43 0.4 0.17 13
AC-23 20 0.53 0.4 0.07 23

Table 2  Synthetic CD spectra with diverse CD deviations used for 
error assessment

The table lists the name and identifier k of the synthetic spectra, the 
scaling factors 1∕�k , and weights wk used to add scaling errors and 
non-SS contamination to the correct spectrum (k = 0), as well as true 
deviation Δ[�]spect

k
 from the correct spectrum (k = 0), expressed as a 

percentage of the true spectrum intensity

Spectrum k 1∕�k wk Δ[�]
spect

k
 (%)

Correct 0 1.0 0.0 0
S+10 1 1.1 0.0 10
S+20 2 1.2 0.0 20
S+30 3 1.3 0.0 30
S+50 4 1.5 0.0 50
S−10 5 0.9 0.0 10
S−20 6 0.8 0.0 20
S−30 7 0.7 0.0 30
S−70 8 0.3 0.0 70
C+10 9 1.0 0.1 10
C+30 10 1.0 0.3 30
C+50 11 1.0 0.5 50
C+100 12 1.0 1.0 100
C−100 13 1.0 − 1.0 100
C−50 14 1.0 − 0.5 50
C−30 15 1.0 − 0.3 30
C−10 16 1.0 − 0.1 10
CS−1 17 1.3 0.2 34
CS−2 18 0.8 − 0.3 56
CS−3 19 0.7 1.0 84
CS−4 20 1.1 − 1.0 113
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all negative coefficients were set to zero, and subsequently 
coefficients were re-normalized to add up to unity. This 
procedure yielded plausible SS compositions for all three 
methods, and also provided the optimal scaling factors for 
the measured spectra for D2 and D3.

Model validation methods

We tested the accuracy of five potential validation methods, 
which may be used to evaluate the quality of protein struc-
tural models with SESCA by Nagy et al. (2019). Three meth-
ods (V1, V2, and V3) are based mainly on CD deconvolu-
tion, the other two (V4 and V5) are based on CD predictions.

Specifically, V1 estimates the SS composition of a tar-
get protein without corrections to the CD spectrum, using 
deconvolution method D1. The error of its proposed model 
( ΔSSest

j
 ) is then calculated according to Eq. 2. Method V2 

is similar to V1, except that the deconvolution is done by 
D2, which includes re-scaling the measured CD spectrum 
during the SS estimation. Method V3 is also similar to V1, 
except that prior to the deconvolution step, the measured CD 
spectrum is re-scaled to match the intensity of the predicted 
CD spectrum of the proposed model. We note that method 
D3 was not considered for model validation based on its 
sensitivity to non-SS contributions discussed in “Effects on 
the accuracy of SS estimation methods”.

V4 and V5 first predict CD spectra from the proposed 
protein structure, then calculate ΔSSest

j
 from the deviation 

of the predicted and measured CD spectra ( RMSDj ) accord-
ing to

where mf  is a predetermined sensitivity parameter. For both 
methods, the measured CD spectrum is re-scaled to mini-
mize the RMSDj prior the estimation of the model error. The 
two methods differ in their sensitivity parameters, which was 
mf = 15.6 kMRE (thousand mean residue ellipticity units 
or 1000° cm2 dmol−1 ) for V4 and mf = 30.7 kMRE for V5. 
The former was determined based on a calibration using the 
SP175 set as described in Nagy et al. (2019), whereas the 
latter was derived using the same calibration performed on 
a set of 500 random generated synthetic reference proteins, 
that mimicked the distribution of SS compositions, estimated 
scaling errors and non-SS contributions of the SP175 set (the 
latter two distributions are discussed in “Experimental error 
distribution”).

Model validation accuracy

The accuracy of all model validation methods described 
above was evaluated from the synthetic data set described 

(6)ΔSSest
j

=
RMSDj

mf

,

in “Synthetic data” using two different metrics. First, the 
model validation error for a given synthetic CD spectrum k 
was calculated as

where N is the number of proteins, ΔSSest
jk

 is the estimated 
SS deviation between model j and the correct model, deter-
mined using spectrum k, and ΔSStrue

j
 is true SS deviation 

listed in Table 1. Second, a ranking score Rk was determined, 
which quantifies how many of the other 20 synthetic models 
had ΔSSest

jk
 values lower or equal to the correct model. Both 

ΔΔSSk and Rk values were computed systematically for each 
CD spectrum in the synthetic data set, to assess the change 
in model validation accuracy as a function of experimen-
tal errors in the reference CD spectrum. Finally, the mean 
and standard deviation of model errors ( ΔΔSS ) and ranking 
scores (avg. rank) were computed to quantify the overall 
performance of the method.

Results

Experimental error distribution

First, we characterized the typical deviations from the three 
assumptions that define ideal SR-CD data (see the “Intro-
duction”). These deviations were quantified for 71 reference 
proteins of the SP175 set (assembled by Lees et al. (2006)) 
through scaling errors and non-SS contributions of their 
measured CD spectra (collectively referred to as CD devia-
tions), as well as through SS deviations between their struc-
tural model and estimated correct structure (see “Experi-
mental errors”).

Figure 2a shows the distribution of the scaling factors �j , 
i.e. the ratios of assumed and correct protein concentrations, 
that compensate for estimated scaling errors in the SR-CD 
spectra. As expected from random errors due to measure-
ment uncertainty, the distribution of the �j values is close to 
normal, with a mean of 0.87 and a standard deviation (SD) 
of 0.25. The SD also agrees well with the typical uncertainty 
reported for protein concentration measurements reported by 
Hunziker et al. (1999), and by Gill and Von Hippel (1989). 
The fact that the mean value is smaller than unity is likely 
due to protein adsorption at the cell surface during the CD 
measurements, effectively decreasing the actual concentra-
tion in the bulk.

Figure 2b shows the SS deviations ΔSSj , calculated as an 
average over predictions from four different SESCA basis 
sets (discussed in “Experimental errors”). These are also 
close to be normally distributed, with a mean of 0.14 and 
a SD of 0.05. These SS deviations between the reference 

(7)ΔΔSSk =

∑N

j=1
(ΔSSest

jk
− ΔSStrue

j
)

N
,
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structures and the SS composition derived from the meas-
ured CD spectra are larger than the 10% expected from com-
paring X-ray structures and NMR structures of the same 
protein by Manavalan and Johnson (1985). Note, however, 
that expected 10% deviation is based on a classification of 
only three SS classes, whereas the four SESCA basis sets 
have three to six SS classes. The mean SS deviation over 
all reference proteins computed for individual basis sets 
increases monotonically with the number of SS classes 
from 7% for three SS classes (magenta) to 19% for six SS 
classes (cyan), which may explain the obtained larger aver-
age deviations. However, we also note that the uncertainty 
of the estimated correct SS compositions derived from the 
CD spectra (see “Experimental errors”) may also contribute 
to the obtained SS deviations.

Figure 2c shows the distribution of non-SS contributions 
Δ[�]0

j
 , estimated from the difference between the SS contri-

bution derived from deconvolution and the (re-scaled) meas-
ured spectrum (see “Experimental errors”). Clearly, a trun-
cated Gaussian fit (black line) expected from a random 

positive deviation does not describe this distribution well. 
For about half of the reference CD spectra, the non-SS con-
tributions are smaller than 20% of the CD signal intensity, 
consistent with the assumption that, for these cases, the sig-
nal is dominated by the SS contributions. However, for the 
rest of the proteins, larger non-SS contributions of up to 60% 
are seen, with one outlier close to 80%. We note that non-SS 
contributions tend to be smaller for �-helical proteins (blue 
symbols) than for �-sheet and Coil proteins, due to the 
stronger CD signal of �-helices. Further, due to the fitting 
procedure used to estimate the correct SS compositions, the 
histogram in Fig. 2c rather underestimates the actual devia-
tions. These findings render the question of how the non-SS 
contributions affect the interpretation of CD spectra particu-
larly relevant. We will address this question further below.

To quantify the combined effects of the above three devi-
ations, the noise-to-signal ratios Δ[�]tot

j
 were also calculated 

for each reference protein. These ratios, similar to the non-
SS contributions, are not normally distributed, and a wide 
range of ratios between 0.1 and 1.6 was obtained for the 

Fig. 2  Estimated error distribu-
tion in the SP175 reference set. 
Histograms show the binned 
distribution of estimated 
intensity scaling factors due 
to incorrect normalization (a) 
and non-SS contributions (c) 
of the measured CD spectra in 
the reference set, as well as the 
fraction of mis-classified amino 
acids in the reference structures 
(b) and noise-to-signal ratios 
(d) of the predicted CD spectra 
caused by the above three 
factors. Solid lines indicate 
expected occurrences assum-
ing Gaussian fits, truncated to 
positive values for c and d. The 
turquoise and magenta symbols 
in panel B show the distribution 
of SS deviations estimated using 
only the DS-dT and DS5-4 basis 
sets with three and six basis 
spectra, respectively (the black 
distribution is an average over 
four basis sets). The blue and 
red symbols in panel c show 
non-SS contributions for the �
-helical and � + coil sub-popu-
lations of SP175, respectively
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SP175 set. This distribution also shows that, even with the 
best experimental information available, the noise caused by 
non-ideal experimental data is larger than 40% of the SS 
signal for over half of the studied reference proteins.

Considering the estimated noise levels, it is surprising 
that in our previous study of Nagy et al. (2019), the accu-
racy of SESCA basis sets appeared to be robust to errors in 
the SP175 reference set. This robustness is likely observed 
because the basis spectra are determined from a large set 
of structures and CD spectra, and the influence of errors 
from individual proteins is largely reduced due to averaging. 
However, during model validation, we cannot rely on such 
cancellation of errors in the reference CD spectrum and the 
SS composition of the protein of interest (henceforth, target 
protein). Therefore, the remaining sections will focus on the 
effect of CD and SS deviations of the target protein with 
respect to the accuracy of SS estimation, CD prediction, and 
model validation methods.

Effects on the accuracy of SS estimation methods

First, we tested how CD and SS deviations affect the accu-
racy of the three SS estimation methods D1, D2, and D3, 
described in “Deconvolution methods”. All three methods 
estimate the SS composition of the target protein by spec-
trum deconvolution, approximating its measured CD spec-
trum with a linear combination of basis spectra. The meth-
ods differ in the constraints applied to the basis spectrum 
coefficients during the search for the best approximation. D1 
applies both normalization and non-negativity constraints 

to the coefficients, D2 only applies the non-negativity con-
straint, and D3 applies no constraints.

As a first step, we consider the effects of CD deviations 
on the accuracy of SS estimation methods, because these 
deviations directly affect CD deconvolution. Then, as a 
second step, we illustrate how the errors from CD devia-
tions and SS deviations in reference structures combine for 
model validation methods based on SS estimation, such as 
the scheme we used to estimate CD and SS deviations in 
“Experimental error distribution”.

We test the effect of CD deviations in the target spectrum 
by gauging the accuracy of SS estimates from 21 synthetic 
CD spectra, to which we intentionally introduced given 
amounts of scaling errors and non-SS contributions (listed in 
Table 2). The error of methods D1, D2, and D3 for synthetic 
(target) spectrum k was determined from the deviation ΔSSk 
between their SS estimate and the correct SS composition 
of the synthetic data set. Figure 3 shows how these errors 
increase in response to different CD deviations. Comparing 
the errors we obtained from synthetic spectra with the same 
type of CD deviations (corresponding colours and symbols) 
highlights that the SS estimation accuracy strongly depends 
on the applied constraints as well as the CD deviation type.

We first focus on the errors of method D1 (Fig. 3a). This 
method constrains the basis set coefficients to be positive 
and sum up to unity, such that the coefficients are equal to 
the fraction of amino acids in a particular SS class. The 
obtained ΔSSk for D1 average to 20.4% and increase almost 
linearly up to a 25% deviation in the target spectrum. At 
larger CD deviations, D1 shows a slightly higher sensitivity 
to scaling errors (S+ and S− subsets shown in light and dark 

Fig. 3  Accuracy of SS estimation methods. The panels show devia-
tions between the estimated and correct secondary structure compo-
sition ( ΔSSk ) as a function of errors in the reference CD spectrum 
for deconvolution methods D1 (a), D2 (b), and D3 (c), described 
in “Deconvolution methods”. Light green and dark green symbols 
denote under-scaled (S−) and over-scaled (S+ ) CD spectra, blue and 

black triangles depict CD spectra with two types of non-SS contami-
nation signals (C+ and C−), and brown star symbols denote spectra 
with both scaling and contamination errors (CS), respectively (see 
“Synthetic data”). The error of the spectrum is expressed as a per-
centage of the correct secondary structure signal
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green) than to non-SS contamination (C+ and C−, in blue 
and black). For synthetic spectra with both scaling errors and 
non-SS contributions (CS, in brown), the SS estimation error 
for D1 remains moderately large and changes nearly linearly 
with summed CD deviation. We note that, despite its lim-
ited accuracy, several methods (including SESCA) enforce 
similar constraints as D1 during their SS estimation. Further, 
the D1 SS search did not always converge due to the applied 
constraints. Because the search minimizes the error of the 
approximation, the error values obtained for D1 are likely 
overestimated. Non-convergence is also the likely reason for 
the 1.3% SS deviation observed at 0% spectrum error. Fig-
ure 3b shows the same analysis for method D2, which only 
applies non-negativity constraints, and re-normalizes the 
best fitting coefficients at the end of the SS search. Because 
this procedure effectively re-scales the measured CD spec-
trum during the search, it eliminates SS estimation errors 
from scaling errors. However, as seen from the errors of the 
C + and C− subsets, D2 shows an increased sensitivity to 
non-SS contamination. The considerable difference of ΔSSk 
obtained for the C + and C− spectrum subsets also indicates 
that D2 is more sensitive to the shape of the contamination 
signal. Overall, D2 still yields the smallest average error of 
14.4% for the synthetic data set. The better accuracy may 
explain why some of the more recent deconvolution algo-
rithms (e.g., BestSel by Micsonai et al. 2015) are based on 
similar constraints.

Carrying the idea of relaxing constraints one step fur-
ther, it has been suggested by Manavalan and Johnson 
(1985) not to constrain the coefficients at all during the 

spectrum approximation (as in method D3, Fig. 3c). The 
errors obtained for D3 are zero for S + and S− subsets, but 
larger than 30% for all other synthetic spectra, leading to an 
average SS estimation error of 27.3%. These ΔSSk values 
indicate that D3 also eliminates the effect of scaling errors, 
but it is much more susceptible to over-fitting due to non-SS 
contributions. Based on these large SS estimation errors and 
the distribution of non-SS contributions reported in “Experi-
mental error distribution”, we expect method D3 to be rather 
inaccurate for about one third of the proteins of the SP175 
set. Consequently, we decided not to analyse methods using 
unconstrained deconvolution further.

The obtained results enable us to determine how much 
the estimated SS compositions, on average, differ from the 
true solution structure of the CD measurement as a function 
of CD deviations in the spectrum. The synthetic data set 
also allows us to assess how these differences affect model 
validation methods based on SS estimation. To this aim, we 
consider the combined effect of errors in the SS estimation 
and the error in the structural model(s) to be validated (e.g. 
reference structures from X-ray crystallography). To test the 
combined effect of these errors, in a second step, we use 20 
synthetic SS compositions with different SS deviations from 
the correct structure (see Table 1). In Fig. 4, these synthetic 
models play the role of experimental ’known’ structures that 
are compared to the estimated SS composition based on the 
CD spectrum.

Initially, we estimate the true SS composition from the 
correct synthetic CD spectrum ( k = 0 in Table 2, no scal-
ing errors or non-SS contributions) to determine ΔSSest

jk
 , the 

Fig. 4  Errors in the reference structure affect model validation. The 
estimated SS deviation ( ΔSSjk ) between the reference and correct 
structure is shown as function of the true SS deviation for deconvo-
lution methods D2 (a) and D1 (b). The symbols depict the smallest 
(empty squares) and largest (full diamonds) estimated SS deviations 
for synthetic reference models of a given true SS deviation. Symbols 

in black denote SS estimates based on the correct CD spectrum of 
the set (no CD deviations), whereas red symbols were based on a 
spectrum with typical CD deviations (CS−1, see Table 2). The black 
solid lines show the expected SS deviation based on accurate SS esti-
mates. Red solid lines indicate expected estimated SS deviations, if 
the errors caused by the CD and SS deviations were additive
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estimated SS deviation of each synthetic model j. In Fig. 4a, 
b, these estimated SS deviations (black symbols) are shown 
for methods D2 and D1, respectively, as function of the true 
SS deviation. Because D2 always estimates the true SS com-
position accurately from the correct synthetic spectrum, the 
estimated model errors are equal to the true SS deviation, 
and the black symbols in Fig. 4a fall on the black solid line 
that indicates an accurate model validation. The estimated 
SS deviations for D1 (Fig. 4b) differ slightly from the true 
SS deviations on several instances, most likely because the 
SS estimation does not always converge. Overall, for using 
an ideal CD spectrum, the correct SS compositions are 
exactly or almost exactly recovered by the two methods and, 
therefore, in this case, the observed SS deviations only—and 
trivially—reflect the difference between the reference and 
true SS compositions.

Next, we estimate the SS deviations from the true struc-
ture using a synthetic CD spectrum with CD deviations typi-
cal for the SP175 set (CS−1, k = 17 in Table 2), which cause 
a 7.9% and 25% error in the estimated SS composition of D2 
and D1, respectively. We attribute this large difference in the 
SS estimation error to the fact that D2 compensates for the 
30% scaling error in the spectrum, whereas D1 does not. If 
we expect the errors from CD and SS deviation to be addi-
tive, then estimated SS deviations should fall on the solid red 
lines, for which the offsets are errors of the SS estimation. 
However, the obtained ΔSSest

jk
 values (red symbols) indicate 

that the effect of CD and SS deviations are often not fully 
additive, because the estimated SS deviations are usually 
larger than the true SS deviation, but by less than the SS 
estimation error. These results suggest that CD deviations 
generally lead to an overestimation of the true SS deviation, 
which increases with the error of the applied SS estimation 
method.

Further, the dashed lines in Fig. 4 connect the smallest 
(empty symbols) and largest (full symbols) estimated SS 
deviations in the synthetic data set observed for a given true 
SS deviation. The difference between the minimum and 
maximum estimated SS deviations is zero for accurate SS 
estimations (Fig. 4a black lines) and increases with the SS 
estimation error up to 26% (Fig. 4b red lines). In addition, 
some estimated SS deviations in Fig. 4b are even smaller 
than the true SS deviation indicating a cancellation of errors. 
The obtained data suggest that the non-additive summation 
of errors from CD and SS deviations introduces and uncer-
tainty during model validation, which also increases with the 
error of the SS estimation. Potentially, the estimated SS devi-
ation for any SS composition may change between its true 
SS deviation plus or minus the SS estimation error. When 
CD deviations cause large errors in the SS estimate, this 
uncertainty may mislead the model validation and prevent 
the precise determination of the correct SS composition. The 

results also highlight the importance of re-scaling the CD 
spectra to reduce the uncertainty from scaling errors, and to 
improve the precision of model validation.

Effects on the accuracy CD predictions

We also tested the effect of SS and CD deviations on the 
accuracy of CD prediction methods. These methods com-
pute CD spectra from proposed model structures of the 
target protein, and the predicted spectra can be compared 
to a measured reference spectrum for model validation. We 
note that CD prediction methods are affected by errors in 
the proposed protein models (i.e. the SS deviation between 
the proposed and correct structure), but CD deviations in 
the reference spectrum do not influence their predictions 
directly. However, scaling errors or non-SS contributions 
cause deviations between the predicted and measured CD 
spectra and, therefore, they reduce the prediction accuracy 
and interfere with model validation.

In Fig. 5, we show the CD prediction accuracy quanti-
fied by two common metrics. First, the root mean squared 
deviation ( RMSDj ) of CD intensities between the com-
pared spectra of protein j, and second, a normalized ver-
sion ( NRMSDj ) by Mao et al. (1982), where the RMSD 
is divided by the RMS of the measured CD intensities. 
The RMSD quantifies the absolute deviation between the 
measured an predicted spectra, whereas the NRMSD is a 
relative deviation with respect to the measured CD signal.

In Fig. 5a, b, we depict the effect of SS deviations in 
the protein model by predicting CD spectra for all 21 SS 
compositions of our synthetic data set and comparing them 
to the correct CD spectrum of the set. In the absence of 
CD deviations, both RMSDj and NRMSDj values are lin-
early correlated with the SS deviation of synthetic model 
j, with a slope that depends on which SS fractions deviate 
from the correct model. Additionally, the prediction accu-
racy using both metrics can be approximated from the SS 
deviation with a single linear function (Pearson correlation 
coefficient of 0.917), in agreement with the model valida-
tion results in our previous study of Nagy et al. (2019).

Figure 5c, d shows the change in RMSD and NRMSD, 
respectively, in response to increasing CD deviations. 
Here, the CD spectrum was predicted from the correct SS 
composition and compared to all 21 synthetic CD spectra 
with given scaling errors and non-SS contributions (see 
Table 2). The RMSDj values in Fig. 5c increase linearly 
with an identical slope for all five subsets of generated 
CD spectra, indicating that this metric is invariant to 
the type of the CD deviation. In contrast, the increase of 
NRMSDj values in Fig. 5d is non-linear and depend on the 
error type, because CD deviations affect the normaliza-
tion term (i.e. the spectrum intensity) differently. Accord-
ingly, the change in NRMSDj values is superlinear when 
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the measured spectrum intensity is underestimated (S−), 
but sublinear for spectra with non-SS contributions (C+ 
and C−) and overestimated spectrum intensities (S+).

We also tested the combined effect of SS and CD devia-
tions through synthetic spectrum and SS model pairs that 
include both. The observed RMSDj and NRMSDj values for 
these combinations clearly show that the effect of CD and SS 
deviations is not additive for CD predictions, and introduces 
a similar uncertainty to the model validation as observed 
for SS estimation methods in “Effects on the accuracy of SS 
estimation methods”. Despite their non-additivity, the square 
sum of the errors from CD and SS deviations show a Pearson 
correlation of 0.953 with the square of total RMSDj . This 
behaviour is expected for CD spectra with independent error 
components, as discussed in our previous study Nagy et al. 
(2019). A similar trend is also observed for NRMSDj val-
ues, with a weaker Pearson correlation (0.911) and a slope 
smaller than unity (0.88). Because the non-linear response 
to CD deviations leads to a more complex NRMSD profile, 
we only consider RMSD-based prediction methods for the 
subsequent assessment of the effects on model validation.

Comparison between model validation methods

Finally, we compared the accuracy and reliability of five 
structural model validation methods (see “Model validation 
accuracy”) with respect to certain deviations in the reference 
CD spectrum. Our aim is to determine which method is most 
suitable for assessing the quality of model structures using 
SESCA, described in Nagy et al. (2019).

Three of the validation methods (V1–V3) are based on 
the deconvolution of the validation spectrum, and subse-
quently computing the difference between the estimated 
SS composition and the SS of the proposed models. From 
these methods, V1 and V2 use deconvolution methods D1 
and D2 (“Effects on the accuracy of SS estimation meth-
ods”), respectively, to estimate the correct SS composition. 
The comparison of V1 and V2 illustrates how re-scaling 
the CD spectrum intensity affects model validation. Method 
V3 mimics the model validation scheme we used to esti-
mate typical CD and SS deviations in “Experimental error 
distribution”. This method first re-scales the measured CD 
spectrum based on the spectrum predicted from the model 
structure, then estimates the correct SS composition using 
D1 to compare it with that of the model. The other two meth-
ods, V4 and V5, are based on CD predictions. They both 
re-scale the CD spectrum, and estimate the model error from 
the deviation between model’s predicted spectrum and the 
validation spectrum using a sensitivity parameter. The two 
methods differ in this parameter, which was extracted from 
experimental reference data for V4, and from synthetic data 
for V5, respectively (see “Model validation methods”).

The average performance of each validation method was 
assessed based on the 441 possible spectrum/model com-
binations of the synthetic data set. First, for each method, 
we estimated the model error ( ΔΔSSest

jk
 , “Model validation 

accuracy”) for every synthetic model j based on synthetic 
spectrum k, and compared it to the true SS deviation of the 
used model from the correct model of the set. The obtained 
model validation errors were averaged for each spectrum 
( ΔΔSSk ) to determine how the CD deviations in the vali-
dation spectrum affect the errors of the model validation 
method. We used the collection of computed ΔΔSSk values 
with increasing CD deviations (henceforth, error profile) to 
describe the behavior of each method.

Figure 6a shows the error profile of all five methods 
(dashed lines) for the C− subset of synthetic spectra to illus-
trate the effect of non-SS contributions in the reference CD 
spectrum. Overall, the model validation error correlates pos-
itively with non-SS signals in the spectrum. The observed 
increase of ΔΔSSk is almost linear for the prediction-based 
methods (V4 and V5). In contrast, it increases faster at lower 
errors for deconvolution-based methods (V1–V3), but more 
slowly at large spectrum errors. In particular, the largest 
increase is seen for V2, which is not unexpected consider-
ing that the underlying D2 deconvolution method shows a 
larger sensitivity to non-SS contributions.

It is also informative to analyse the model validation 
error in the absence of CD deviations (i.e. the offset of the 
error profiles). Because deconvolution-based model valida-
tion always assumes negligible non-SS signals in the CD 
spectrum, the offset for V1–V3 is expected to be zero. This 
is indeed the case for V2, whereas for V1, an average 1.8% 
deviation is introduced due convergence problems. For V3, 
re-scaling the CD spectrum to match the predicted spectra 
of incorrect models introduces an even larger offset of 7%. 
The prediction-based model validation methods assume an 
average (non-zero) CD deviation, which should lead to a 
negative offset in their profiles. This is indeed observed for 
V5 (− 2%), but not for method V4, for which the offset was 
14%. The most likely explanation for this large positive off-
set is an incorrect sensitivity parameter, which for V4 was 
determined by calibration using estimated SS deviations of 
the SP175 reference set. We note that these estimated devia-
tions were determined by a modified version of method V3 
(see “Experimental errors”), which, at typical CD deviations 
(30%) overestimates the model errors by approximately 15%. 
The propagation of this error to V4 through its sensitivity 
parameter would explain the observed offset as well as the 
large difference between the sensitivity parameters of V4 
and V5.

We assess the effect of scaling errors in reference CD 
spectra in Fig. 6b, which shows error profiles for the S + sub-
set of synthetic spectra. These error profiles have the same 
offsets but different increase compared to the profiles for 
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non-SS contributions. For V1, which does not re-scale the 
validation spectrum, model validation errors increase almost 
linearly with scaling errors, whereas ΔΔSSk remains nearly 
constant for V2–V5. This trend strongly suggests that re-
scaling the reference spectrum indeed eliminates the effects 
of scaling errors during model validation.

To provide an overall measure of accuracy for the studied 
validation methods, we also computed the mean and SD of 
all obtained model validation errors ( ΔΔSS , “Model valida-
tion accuracy”). As Table 3 shows, method V5 predicts the 
error of synthetic models with the highest accuracy with 
ΔΔSS = 3.3%, followed by the three deconvolution-based 
methods V2, V3, and V1 with 11.5, 11.7, and 14.4%, respec-
tively, whereas the lowest accuracy is achieved by method 
V4 (ΔΔSS = 24.5%). Note, that the individual model vali-
dation errors vary greatly between the model/spectrum 
pairs for most methods, as shown by their considerable 

5–15% standard deviations from the average ΔΔSS . This 
variation can mainly be attributed to the uncertainty caused 
by the non-additive summation of errors from CD and SS 

Table 3  Average performance of validation methods

The table lists the name of the method, its average model validation 
error ( ΔΔSS ) and standard deviation (SD), as well as the average and 
SD of its ranking score (avg. rank)

Method ΔΔSS (%) SD (%) Avg. rank SD

V1 14.4 8.4 4.9 3.4
V2 11.5 4.9 2.8 2.3
V3 11.7 9.2 3.0 3.3
V4 24.5 15.0 2.9 3.1
V5 3.3 7.3 2.9 3.1

Fig. 5  Accuracy of CD spectrum predictions. RMSD (a, c) and 
NRMSD (b, d) values quantify the accuracy as the deviation of a pre-
dicted CD spectrum from a reference spectrum. Panels a and b show 
the accuracy of CD spectra predicted from synthetic SS composi-
tions with a given error (SS deviation), and compared to the correct 
reference CD spectrum. Panels c and d show deviations of the CD 
spectrum predicted from the correct SS composition, compared to 
reference CD spectra with a given error (CD deviation). The coloured 
symbols indicate different types of structural and spectral deviations. 
The symbols in panels a and b denote changes between the fraction 

of �-helices ( � ) to �-strands ( � ) and Random coils (c). The symbols 
in panels c and d denote under-scaled (S−) or over-scaled (S+ ) CD 
spectra, spectra with two types of non-SS contamination signals (C+ 
and C−), and spectra with both scaling and contamination errors 
(CS). The blues lines in panels a and b show the best linear fit on 
all SS deviation and RMSD/NRMSD pairs. The red line in panel c 
shows a linear fit on all CD deviation and RMSD pairs, whereas the 
red line in panel d indicates the same linear fit with RMSD values 
normalized by the intensity of the correct CD spectrum
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deviations, which increases with the CD deviations of the 
validation spectrum.

The presented model validation errors allow us to draw 
a number of conclusions. First, positive ΔΔSS values indi-
cate that all five methods overestimate the average error of 
synthetic models. This fact is not unexpected, given that the 
synthetic data set contains slightly larger than typical CD 
and SS deviations, due to the over-representation of extreme 
test cases.

Second, the largest contribution to model validation 
errors is due to the assumption that CD spectra are solely 
defined by the SS composition of the protein. Because con-
siderable non-SS contributions are found for more than 
half of the tested reference proteins, this assumption likely 
leads to the overestimation of model errors for deconvo-
lution-based methods. Further, the better average accuracy 

of method V5 indicates that assuming an average non-SS 
contribution improves model validation significantly.

Third, V4 over-estimates the error of the synthetic models 
considerably. This result is particularly important since V4 is 
the current model validation method of SESCA. This inac-
curacy had not been detected so far, because both the cali-
bration and the cross-validation of the method were based 
on estimated SS deviations using CD deconvolution, which 
led to a cancellation of errors. This conclusion also suggests 
that the error calibration for SESCA should be carried out 
using synthetic data, for which the errors in the reference 
data are known.

Finally, the error profiles of method V3 indicates that the 
estimated SS deviations in “Experimental error distribution” 
of the SP175 set were indeed overestimated. SS deviations 
obtained by method V5 suggest an average 10% error for the 
SP175 reference structures. Further, estimating the model 

Fig. 6  Accuracy and reliability of model validation methods. Vali-
dation results shown for the C− (triangles) and S + (pluses) subsets 
of synthetic spectra, representing the effects of non-SS contribu-
tions and scaling errors, respectively. Results from model validation 
methods V1–V5 are depicted in different colours (shown in panel b). 
The accuracy of validation methods (panels a, b) is quantified by the 
average difference ( ΔΔSSk ) between the estimated and true errors 
of the SS composition. These values are computed over 21 synthetic 

SS models for each synthetic reference CD spectrum and shown as 
a function of the error in the spectrum (CD deviation). The standard 
error of ΔΔSSk values is shown as error bars. The reliability of the 
validation methods (panels c, d) is quantified by a ranking score for 
each reference spectrum, determined by the estimated error of the 
correct SS model, compared to that of other models. The error in the 
CD spectrum is expressed as the percentage of the correct secondary 
structure signal
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errors using different basis sets yield more consistent results 
with method V5 than that of V3, highlighting that V5 is 
more robust to the choice of the basis set.

In addition to the model validation accuracy, we also 
quantified how reliably model validation methods identify 
the correct SS composition, given a certain deviation from 
the ideal CD spectrum. To this aim, a ranking score Rk for 
each synthetic spectrum k was determined using a given 
validation method. The ranking is given by the number of 
synthetic SS models with a lower or equal estimated error 
than the correct model of a synthetic data set. For our data 
set, the ranking for a spectrum can change between 0 and 
20, with Rk = 0 meaning that the correct SS composition 
is uniquely identified by the validation method despite the 
errors in the CD spectrum.

Figure 6c shows ranking scores of all five validation 
methods for representative synthetic spectra with non-SS 
contributions (C− subset). As the figure indicates, in the 
absence of CD errors, all methods are able to identify the 
correct SS composition accurately, regardless of differences 
in their average accuracy. However, in the presence of 10% 
or larger non-SS contributions, Rk scores increase for all 
methods, indicating an increasing uncertainty of the true 
SS composition. This uncertainty is most likely due to the 
non-additive combination of CD and SS deviations, which 
entails partial error cancellation for certain model-spectrum 
combinations.

For a comparison, Fig. 6d depicts ranking scores for 
CD spectra with scaling errors only (S+ subset). The full 
effect of scaling errors is shown through method V1, for 
which the ranking scores increased similarly as seen for the 
non-SS contributions. Ranking scores for methods V2, V4, 
and V5, even in the presence of large scaling errors, remain 
zero due to re-scaling the CD spectra during validation. The 
effect of scaling errors is also reduced but not eliminated 
for V3, because here, the CD spectra are re-scaled based 
on the predicted spectrum of the (often incorrect) model 
SS composition. The SS deviations of the model combined 
with re-scaling and non-convergence of the deconvolution 
results in SS models within 6% deviation from the correct 
one showing the smallest apparent error and, therefore, 
yielding a non-zero rank.

To compare the overall reliability of the five validation 
methods, the average and SD of the obtained ranking scores 
was also calculated over all synthetic spectra. As the values 
listed in Table 3 show, the average rank of V1 is close to 5, 
whereas V2–V5 have similar average ranks between 2.8 and 
3.0. The mean values and the large scatter of ranking scores 
between individual synthetic spectra suggest that, although 
V1 is less reliable for CD spectra with large scaling errors, 
the other four methods identify the correct SS composition 
with similar uncertainty.

Taken together, ranking scores and average model errors 
indicate that re-scaling the measured CD spectrum elimi-
nates the effect of scaling errors and improves the reliability 
of model validation methods. However, non-SS contribu-
tions still impose an uncertainty on the estimated model 
errors and limit their precision. Calibration using synthetic 
CD data allowed us to take typical non-SS contributions into 
account and improve the accuracy of the SESCA model vali-
dation scheme compared to classical deconvolution-based 
methods that neglect these contributions.

Conclusions

To interpret the CD spectra of proteins in terms of estimat-
ing secondary structure content or validating putative model 
structures, several assumptions are required. These are accu-
rately known reference secondary structures and protein 
concentrations during CD measurements, as well as negli-
gible non-secondary structure contributions to the spectra. 
Using the SP175 reference set, we assessed and quantified 
to what extent these assumptions are fulfilled or violated for 
synchrotron radiation CD spectra. Our results suggest, that, 
even for the most accurate SR-CD measurements, uncertain-
ties in the protein concentration and non-SS contributions 
typically lead to 30% deviation of the measured spectrum 
from the true SS signal. In addition, typical reference SS 
compositions derived from X-ray crystallography or NMR 
spectroscopy also deviate from the SS composition during 
CD measurements by an average 10%, introducing further 
uncertainty to CD interpretation methods.

We also probed the effects of the observed CD and SS 
deviations on the accuracy of SS estimation, CD prediction, 
and model validation methods. To this aim, we constructed a 
synthetic reference data set of 21 CD spectra and SS compo-
sitions, for which we deliberately introduced known amounts 
of deviations based on those obtained for the SP175 set.

Testing the various methods on the synthetic data set 
shows that non-ideal CD spectra lead to errors in secondary 
structure estimation and decrease the accuracy of CD spec-
trum predictions. During the validation of structural models, 
typical SR-CD deviations generally lead to the overestima-
tion of the model error, and to a 5–15% uncertainty of the 
true SS composition. Although none of the tested model 
validation methods can eliminate the uncertainty, applying 
a method that takes the average CD deviations into account 
improves the model validation accuracy considerably. Our 
findings suggest that SESCA secondary structure estimation 
and model validation schemes can be improved based on the 
obtained distributions of CD deviations.

Using this new information, we implemented a new ver-
sion of SESCA that automatically applies spectrum re-scal-
ing during deconvolution and includes more accurate error 
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estimates for model validation, obtained from systematic cal-
ibration based on synthetic SR-CD data. We note that for CD 
spectra recorded by conventional spectrometers, which have 
larger measurement errors and a narrower wavelength range 
than CD spectra measured with synchrotrons, the derived 
error estimates and may underestimate the uncertainty of the 
model error. To better assess the accuracy of models using 
conventional CD spectra, a separate set of error parameters 
should be derived using the approach described here.

The new results discussed in this study will also allow to 
go beyond determining the single SS composition that fits 
a given CD spectrum best and calculate the likelihood of 
all putative SS compositions for an improved uncertainty 
assessment.
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