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We developed a Bayesian method to extract macromolecular structure information from sparse single-molecule
x-ray free-electron laser diffraction images. The method addresses two possible scenarios. First, using a “seed”
structural model, the molecular orientation is determined for each of the provided diffraction images, which are
then averaged in three-dimensional reciprocal space. Subsequently, the real space electron density is determined
using a relaxed averaged alternating reflections algorithm. In the second approach, the probability that the “seed”
model fits to the given set of diffraction images as a whole is determined and used to distinguish between
proposed structures. We show that for a given x-ray intensity, unexpectedly, the achievable resolution increases
with molecular mass such that structure determination should be more challenging for small molecules than for
larger ones. For a sufficiently large number of recorded photons (>200) per diffraction image an M1/6 scaling
is seen. Using synthetic diffraction data for a small glutathione molecule as a challenging test case, successful
determination of electron density was demonstrated for 20 000 diffraction patterns with random orientations
and an average of 82 elastically scattered and recorded photons per image, also in the presence of up to 50%
background noise. The second scenario is exemplified and assessed for three biomolecules of different sizes. In all
cases, determining the probability of a structure given set of diffraction patterns allowed successful discrimination
between different conformations of the test molecules. A structure model of the glutathione tripeptide was refined
in a Monte Carlo simulation from a random starting conformation. Further, effective distinguishing between three
differently arranged immunoglobulin domains of a titin molecule and also different states of a ribosome in a
tRNA translocation process was demonstrated. These results show that the proposed method is robust and enables
structure determination from sparse and noisy x-ray diffraction images of single molecules spanning a wide range
of molecular masses.
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I. INTRODUCTION

X-ray crystallography is a powerful tool to obtain high-
resolution structural information of macromolecules. How-
ever, this technique requires a crystalline specimen; hence,
many proteins that cannot be crystallized are inaccessible.
Further, the crystal environment may sterically hinder con-
formational motions, such that structural heterogeneity, often
crucial for protein function, may be altered or suppressed.
Another limitation of x-ray crystallography is the phase
problem. Because only the intensities of discrete Bragg
reflections are measured, the phases need to be retrieved by
other means [1–3].

A step towards single-molecule x-ray scattering exper-
iments is nanocrystallography. While this technique still
requires crystalline specimen, it offers a clear advantage in
cases where all attempts to grow larger crystals, as required for
traditional crystallography, have failed, but nanocrystals have
been grown successfully. In 2011, Chapman et al. [4] reported
a 8.5 Å resolution structure from Photosystem I nanocrystals
using a hard x-ray free-electron laser (XFEL), and, recently, a
2.1 Å resolution lysozyme structure was determined de novo
from microcrystals [5].

Scattering experiments on single molecules, using ultra-
short XFEL pulses, hold the promise to overcome the above
limitations of traditional x-ray crystallography [6]. In such
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experiments, a stream of hydrated particles enters the x-ray
beam at a high rate, ideally of one molecule per pulse [7],
and one diffraction image per molecule is recorded. Many
(104 . . . 106) diffraction images can thus be recorded, but only
relatively few elastically scattered photons (of the order of
10 . . . 1000, depending on molecular mass) per diffraction
image are expected, including substantial noise [8]. Similarly
to single-molecule cryoelectron microscopy, the images need
to be sufficiently accurately aligned and averaged to obtain
sufficient signal-to-noise ratios; here it is for the Fourier
transform of the electron density in reciprocal space. Because
it is challenging to experimentally control the orientation of
each molecule during scattering for proper classification prior
to averaging, this orientation is here assumed to be random
and thus needs to be determined a posteriori from the obtained
diffraction images.

While in x-ray crystallography low-intensity radiation is
distributed over many molecules in the crystal lattice, in XFEL
experiments extremely high doses will be absorbed by a single
molecule within the very short time of few femtoseconds. For
example, after focusing to an ∼100-nm diameter spot, the flux
of XFEL pulses will be higher than that of the synchrotron-
radiation used in x-ray crystallography by at least a factor of
106 [9]. As a result, during the XFEL pulse, each atom of the
target molecule will absorb several photons, which will knock
out many electrons via the photo effect and subsequent Auger
processes. Due to the perturbed chemistry, and in particular
due to the substantial excess charge of the nuclei, the molecule
will undergo a rapid Coulomb explosion [6]. Hence, if the
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pulse is too long, the recorded diffraction image will be
compromised [9,10]. Therefore, femtosecond exposure times
are essential to enable recording of the diffraction pattern
before the initial structure suffers severely from ionization
effects due to the very high radiation dose. Achieving pulse
lengths in the femtosecond regime will therefore also allow us
to obtain time-resolved structural information, which is crucial
to elucidate functional conformational dynamics, e.g., during
enzymatic catalysis or protein folding dynamics [11].

In the absence of crystal symmetries, the diffraction pattern
is continuous, which enables one to oversample the molec-
ular transform [12]. Recently developed iterative phasing
algorithms allow one to exploit this additional information
to generate the phases required for back-transforming the
absolute-squared Fourier amplitudes and thus to retrieve the
real space electron density from the available data [8,12–16].

Here, we will address the question regarding what resolu-
tion can be achieved in these experiments and whether the high
intensity delivered by the XFEL pulse yields sufficiently many
elastically scattered photons from a single molecule to be able
to obtain the molecule’s electron density from averaging the
diffraction images. Indeed, only very few photons are expected
for one scattering event. For example, a 500-kDa molecule is
expected to scatter only about 4×10−2 per Shannon pixel for
mean photon count in the high-resolution part [8], assuming the
XFEL beam is focused to a 100-nm diameter spot. Obtaining
such a small focal spot is challenging; in fact, for recently
conducted experiments with ultraintense x rays a focal spot
close to 100 nm was achieved [17]. The resulting very low
signal-to-noise ratio implies that only very little information
on the molecular structure is contained within each single
diffraction pattern. Second, even at higher signal-to-noise
ratios, each single diffraction pattern provides only partial
information about the molecule, as the detector plane covers
only part of a certain Ewald sphere in reciprocal space.
As in x-ray crystallography, many different orientations of
the molecule need to be recorded to fully sample three-
dimensional (3D) reciprocal space. Whether this is indeed
possible under the given conditions, and whether atomistic
resolution can be achieved, critically depends on the ability to
determine the unknown molecular orientation for each of the
many recorded diffraction images with sufficient accuracy or
to circumvent this problem.

To this end, Huldt et al. [18] proposed the “common line”
orientation determination method. This approach rests on the
fact that two Ewald spheres, corresponding to diffraction
patterns recorded on the detector plane, intersect in reciprocal
space, creating a common curve. Locating the common line in
any three diffraction patterns suffices to determine the relative
orientations of the Ewald spheres. However, because of the
expected low photon count the images have to be averaged first.
Huldt et al. have proposed to group the diffraction patterns by
evaluating the cross-correlation function between any two of
them, which limits the applicability of this method to mean
photon counts of 10 per pixel or more [8], i.e., three orders of
magnitude higher than the expected XFEL values.

As an alternative, a method suggested by Fung et al. [19]
uses generative topographic mapping to determine a maximum
likelihood manifold in the orientational space, which serves
to arrange the diffraction patterns into orientation classes. A

clear advantage of this approach is the fact that the only input
required, apart from the diffraction patterns, is the dimen-
sionality of the orientational space. However, averaging of
the diffraction patterns within determined orientation classes
might lead to information loss, resulting from insufficient
sampling of 3D reciprocal space as we will show in the Results
section. Also, the number of elastically scattered photons
required per image, about 100 (excluding the innermost central
pixels), is rather high for small molecules. A similar method
exploiting symmetries resulting from image formation was
proposed recently [20].

Loh and Elser [21] proposed an expansion–expectation
maximization–compression (EMC) method to iteratively max-
imize the likelihood of an intensity model of an irradiated
molecule in reciprocal space with respect to a set of diffraction
images. In their approach, the orientation of the images was
estimated using an intensity model, which was further updated
by averaging the images in 3D reciprocal space. It was demon-
strated that the method is capable of determining the structure
of a GroEL molecule at 2-nm resolution from simulated
diffraction images. A similar approach was developed by
Tegze and Bortel [22].

A complementary route was taken recently by eliminating
the need to determine the individual orientations altogether
[23,24]. Rather, the molecular shape is represented by a
spherical harmonic expansion of the diffraction intensity in
reciprocal space, determined from cross-correlations between
diffraction images. However, it is unclear how much detail can
be extracted, and similarly to the correlation based “common
line” method, realistic signal-to-noise ratios will probably
remain inaccessible also for this method.

Recently, Liu et al. demonstrated a Monte Carlo refinement
of a low-resolution electron-density model by the angular cor-
relation function of many diffraction images [25]. Similarly to
approaches used in small-angle x-ray scattering experiments,
the authors use a grid representation of the electron density,
which they locally perturb by performing random dilations or
erosions and compare the resulting correlations with the ones
rising from the experimental data. It is worth noting that this
method is applied to diffraction images obtained from many
identical, randomly oriented molecules per exposure. In con-
trast, Oroguchi and Nakasako have suggested reconstructing
the 3D electron density from two-dimensional (2D) projections
from diffraction images of multiple copies of a molecule [26].

The correlation approach was also pursued by Starodub
et al. [27]. By using partial triple correlation of scattered in-
tensity distribution an electron-density map of two polystyrene
spheres with a diameter of 91 nm was obtained with a
20-nm resolution. Although the demonstrated procedure was
restricted to an object with cylindrical symmetry, which
reduces the complexity of correlation analysis, a more general
treatment utilizing full triple correlation analysis should enable
one to obtain high-resolution structure information in the
absence of any symmetry [24].

To overcome the limitations of low photon counts and to
be able to address realistic signal-to-noise ratios, while still
achieving atomic resolution, we here discuss two comple-
mentary approaches (Fig. 1). The first is similar to the EMC
algorithm [21] in that for each picture its orientation is de-
termined via a rigorous Bayesian framework from very sparse
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FIG. 1. (Color online) Two approaches to structure determination from single-molecule diffraction experiments. For each recorded image,
photon arrival positions are shown in red (dark gray) dots. (a) The spatial orientation (θ,ψ,ϕ) of the irradiated molecule, here a glutathione,
is determined for each of the images separately, and the molecular transform is derived by averaging the images in reciprocal space. (b) A
structure that fits best to the entire set of photon arrival positions is determined.

data using a “seed” model. Our approach differs from the EMC
algorithm [21] in that it considers probabilities of all individual
photons instead of describing the diffraction images in terms
of photon counts per pixel and using a noise model such as the
Poisson approximation. Thereby our approach captures photon
counts for which the Poisson approximation does not hold. We
note that for the large number of incident photons expected
in XFEL experiments, our more general formulation and the
Poisson approximation should yield similar results. We apply
this statistical approach to accurately determine the molecular
orientation for single XFEL diffraction images individually
[Fig. 1(a)] for subsequent averaging. The achievable accuracy
will then be assessed as a function of molecular mass, incident
beam intensity, and background noise level. Using simulated
XFEL data, it will be shown that the averaged intensity in
reciprocal space is accurate enough to allow the calculation
of electron densities at atomistic resolution and at up to
50% background noise levels, which so far has not been
demonstrated.

In the second approach, we propose to use the Bayesian
framework to find, among several given candidate structures,
the one which fits best to the given set of diffraction patterns
as a whole. This approach is an instance of Bayesian model
comparison and aims at obtaining ratios of evidence among
different structures as models in order to distinguish among
them [28]. In that case, instead of determining the orientation
for every single image separately, the probability of the
model structure is calculated from the entirety of all possible
orientations of the model and from the whole set of given
diffraction patterns [Fig. 1(b)]. For the small tripeptide as
a test case, it is demonstrated that this approach allows for
the de novo structure determination via a Monte Carlo (MC)
approach. For larger molecules, for which the search space
becomes too large, we will demonstrate that it is still possible to
distinguish among different conformations of three Ig domains
of a titin molecule as well as among different states of a

ribosome during the tRNA translocation process. In all of
these cases, by calculating the probability of a structure given
set of images for each of selected structures, the most probable
structure is determined.

II. RESULTS AND DISCUSSION

Our approach is similar in spirit to the one developed re-
cently for single-molecule Förster resonance electron transfer
(FRET) experiments, which, by applying Bayes’s theorem,
π (�|X) ∝ f (X|�) p(�), allows for high-resolution recon-
struction of distance trajectories from very few recorded
FRET photons [29]. Here, the posterior probability distribution
π (�|X) of orientations � given a single diffraction pattern
X is computed from the conditional probability density (or
likelihood) f (X|�) that a particular diffraction pattern is
observed given a particular orientation and the a priori
orientation distribution p(�). This information is then used
to assemble the 3D reciprocal space density from many 2D
Ewald projections, each from one of the recorded diffraction
images. In the second approach, again using Bayes’s formula,
the posterior probability π (S|{X}) of a whole structure S given
a complete set of diffraction patterns {X} is calculated and
used for structure discrimination.

A. Posterior probability distribution

We assume a total number of incident photons Ntotal =
I0FA, resulting from focusing an XFEL beam with an intensity
I0 to a focal spot area FA. Of those, for each recorded
diffraction image i, ni photons are recorded at positions
Xi = {(x(l)

i ,y
(l)
i )}l=1...ni

on the image plane; all other photons
are not recorded. We denote the orientation of the molecule
entering the beam by �i = (θi,ψi,ϕi). The probability of
registering a particular configuration of recorded photons Xi ,
given a certain molecular orientation, is thus expressed by a
product of independent probabilities of detecting a photon at
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position (x(l)
i ,y

(l)
i ) and the probability of Ntotal − ni photons

not being recorded

f (Xi |�i) ∝
(

1 − A�i

Ntotal

)Ntotal−ni ni∏
l=1

I�i

[
�k

(
x

(l)
i ,y

(l)
i

)]
Ntotal

∝
(

1 − A�i

Ntotal

)Ntotal−ni ni∏
l=1

I�i

[
�k

(
x

(l)
i ,y

(l)
i

)]
. (1)

Here I�i
[�k(x(l)

i ,y
(l)
i )] is the intensity value (see Sec. III) in a

detector pixel corresponding to the recorded photon position
(x(l)

i ,y
(l)
i ) and A�i

= ∑Npixel

l=1 I�i
[�k(x(l),y(l))] is the expected

amount of elastic scattering for orientation �i registered by
the detector with Npixel pixels.

Equation (1) describes a multinomial distribution, up to a
constant combinatorial factor that cancels in Bayes’s formula.
Note that the distribution in Eq. (1) by construction accounts
for shot noise with a mean equal to the expected number
of photons per pixel. Correspondingly, in the limit of small
probabilities of detecting a photon and Ntotal � ni , this
distribution converges towards a Poisson distribution with
respect to photon counts per pixel. Additional background
noise, e.g., due to inelastic scattering, is included by an
appropriate noise model as described in Sec. III.

Because the a priori probability distribution for the (un-
known) orientation of the scattering molecule can be assumed
isotropic, the probability distribution for the molecular orien-
tation given the recorded photon positions, π (�i |Xi) is—via

Bayes’s formula—also given by Eq. (1), up to an irrelevant
normalization factor.

Note that this approach requires a “seed model” for the
respective probability calculations. As a first step, to explore
the achievable resolution, we will use the reference structure as
the “seed model,” which in our synthetic setting is, of course,
known. Subsequently, in a second step this somewhat circular
requirement will be dropped within the context of finding a
structure best fitting to a given set of diffraction images.

As a test case, we simulated XFEL diffraction images
for the tripeptide glutathione and subsequently derived the
posterior orientation distribution as described above. To this
end, we have computed the intensity distribution on the
detector plane by Fourier transforming the electron density
of the test molecule (as described in Sec. III) for a chosen
orientation. From the obtained intensity distribution, Poisson
distributed random numbers were drawn to determine the
number of photons for each detector pixel. An average photon
count of about 82 (shot noise only) was chosen, including the
innermost central pixels that are usually protected by the beam
stop. Excluding this central peak, 54 photons per diffraction
image were considered on average. A total of 20 000 diffraction
pictures was calculated and used for the electron-density
calculation. Background noise was simulated by including
additional Gaussian distributed photons corresponding to 10%
and 50% of the average photon count per picture.

Figure 2 shows an example of a cut (ψ ϕ plane) through the
three-dimensional posterior probability surface thus obtained
for one particular diffraction image. A clear maximum can be

FIG. 2. (Color online) Examples of posterior probability surfaces π (�|X). Shown are cuts through the three-dimensional angular
probability landscapes obtained for a glutathione molecule with actual orientation θ = 73◦,ψ = 52◦,ϕ = 34◦ using diffraction images with shot
noise only (left) and with additional 50% background noise (right). Slices at the � value corresponding to the posterior maximum (θmax = 75◦

for shot noise only, θmax = 63◦ for background noise) are depicted at a logarithmic scale (top row). The insets (bottom row) show the maximum
peaks at a linear scale.
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seen in the logarithmic plot (top row). The zoom below, using
a linear probability scale, shows that this peak is indeed quite
pronounced. Its maximum is shifted, due to the shot noise,
by ca. 2.2◦ (θ = 75◦,ψ = 52◦,ϕ = 33◦) with respect to the
actual orientation (θ = 73◦,ψ = 52◦,ϕ = 34◦), which is well
within the half width of the peak of about 3.2◦. Given the fact
that only 65 scattered photons have been used, the obtained
accuracy is remarkable.

Including additional 50% background noise (e.g., nonelas-
tically scattered photons) slightly changes the posterior prob-
ability landscape (right two plots in Fig. 2). In particular,
the maximum shifts to θ = 63◦,ψ = 50◦,ϕ = 38◦ and is
somewhat broader (half width of 4.1◦) than for shot noise
only.

B. Orientation determination and electron-density calculation

As the detector plane corresponds to a fragment of an Ewald
sphere, whose position in reciprocal space in turn depends
on the orientation of the molecule, we calculated the 3D
molecular transform from the obtained diffraction patterns by
appropriately mapping the detector plane onto the respective
section of the Ewald sphere, as determined from the obtained
orientation. By accumulating the photons from the Ewald
sphere into corresponding 3D voxels of a Cartesian grid, an
average 3D reciprocal space density is obtained.

For orientation determination, we compared two ap-
proaches, which we will refer to as “maximum likelihood” and
“Bayesian,” respectively. The maximum likelihood method
uses the position of the maximum of the posterior probability
distribution, computed from Eq. (1), as a point estimate of
the orientation that most likely gives rise to the observed
diffraction pattern. The Bayesian approach, in contrast, uses
the entire posterior probability distribution as a weighting
function, and thus each orientation is represented with an
appropriate weight. Accordingly, the Bayesian method is
expected to be less sensitive to information loss due to
insufficient sampling as well as to the necessary discretization
of reciprocal space.

Figure 3 compares cuts through the obtained 3D molecular
transform along the kx axis. The plots in the upper row serve
to compare the two above approaches; the bottom row shows
the influence of the background noise on the accuracy of
the Bayesian approach. Below each of the four profiles, the
difference between the reference and calculated molecular
transform is shown. The molecular transform was calculated
from 20 000 simulated diffraction images, containing on
average 82 elastically scattered photons. Additional 10% and
50% photons, relative to the mean scattered photon count, were
considered to simulate different background noise levels.

As can be seen, both the maximum likelihood as well as
the Bayesian approach allow us to determine the molecular

FIG. 3. (Color online) Quality of determined
molecular transforms. Shown are cuts along the
kx axis of the calculated molecular transform (blue
solid lines) compared to the reference (red dashed).
Below each panel, the difference [green (light gray)]
between the calculated and the reference molecular
transform is shown. The top row shows differences
in the high-resolution regime between the two tested
methods, the maximum likelihood and Bayesian; the
bottom row shows the effect of different levels of
background noise for the Bayesian method.
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TABLE I. R factors obtained for the maximum likelihood and Bayesian structure determination methods at two different noise levels:
shot noise only (SN) and with additional 50% background noise (BN). The upper three rows contain R factors showing the accuracy of
the determined molecular transforms. In the lower three rows, R factors reflect the resemblance in reciprocal space of the retrieved electron
densities to the reference densities. R factors were computed using intensity values within a sphere with a 4.4 Å−1 radius (last column).

Method Noise level R factor (|�k| � 4.4 Å−1)

Molecular transform determination Max. likelihood SN 0.48
Bayesian SN 0.21
Bayesian 50% BN 0.23

Electron-density determination Max. likelihood SN 0.54
Bayesian SN 0.27
Bayesian 50% BN 0.28

transform quite accurately, particularly in the small wave-
vector regime. In the large k-vector regime, the Bayesian
approach is clearly superior and captures details that are
missed by the maximum likelihood approach. Apparently, this
improvement is due to the additional information contained
within the posterior probability distribution, which also allows
for a better coverage of reciprocal space. The enhanced
accuracy of the Bayesian approach is also reflected in the
respective R factors (upper three rows of Table I).

Background noise (bottom row in Fig. 3) in the diffraction
images was modeled by adding Gaussian-distributed random
photon positions to the intensity distribution model in Eq. (1)
used for the posterior probability calculations. After averaging
the diffraction images in 3D k space, the background noise
was subtracted from the calculated molecular transform.
This approach enabled us to retrieve accurate profiles for
background noise levels of 10% and 50%, respectively. As
is also reflected in the calculated R factors (the second and
the third row of Table I), no significantly deteriorated density
compared to the shot noise only case is observed.

To test if the above robustness is also reflected in the quality
and the level of resolved detail of the calculated electron-
density map in real space, we calculated and compared the
electron density from the respective molecular transforms
using relaxed averaged alternating reflections algorithm [16]
(Fig. 4). Indeed, as can be seen by comparing the middle
row with the top reference density, the maximum likeli-
hood approach (left) yields a less accurate electron density
in the shot noise only case than the Bayesian approach.
Corresponding R-factor values are listed in the fourth and
fifth rows of Table I.

The loss of detail was expected from the respective lack of
high-resolution information in reciprocal space. The bottom
row in Fig. 4 demonstrates the effect of the background noise
on the quality of the calculated electron density using the
Bayesian approach. No significant difference is seen between
the maps restored from shot noise only images and those with
additional 10% or even 50% background noise. A similar
quality of the structures derived from images with 50%
background noise and with shot noise only is also reflected in
the R-factor values (bottom two rows of Table I). These results
allow us to conclude that the Bayesian approach is robust
against substantial noise levels and, unlike the maximum
likelihood approach, does not suffer from high-resolution
structural information loss.

C. Resolution dependence on molecular mass

Having established that even the structure of relatively small
biomolecules can be solved from quite sparse single-molecule
diffraction data, we next asked how, under these conditions,
the expected resolution scales with molecular mass over a
larger range, given different beam intensities and background
noise levels.

To this aim, we estimated the spatial resolution �x via
the product of angular resolution ��, i.e., the estimated
orientation uncertainty, and radius of gyration Rg of the
irradiated molecule. The angular resolution ��, in turn, was
estimated via the respective posterior probability distribution
as the mean distance to the correct orientation. Distances
between two orientations were computed using Riemannian
metrics [30].

Two opposing effects are expected. On the one hand,
according to the law of large numbers, the accuracy �� of the
orientation estimate should increase with the number Nphot of
recorded photons, �� ∝ N

−1/2
phot [31]. This can be seen, e.g., by

considering a diffraction image with Nphot of recorded photons
that gives rise to a well-pronounced maximum at �max in the

FIG. 4. (Color online) Quality of calculated electron densities.
Top: Reference density; middle: densities obtained by maximum
likelihood (left) and Bayesian (right) methods. The bottom row
demonstrates the robustness of the Bayesian method to the back-
ground noise (BN) levels of 10% (left) and 50% (right).
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likelihood distribution and in the resulting posterior probability
landscape. We further assume that this diffraction image is a
superposition of m independent photon positions subsets, each
of them containing Nsub = Nphot/m photons that are drawn
from the same likelihood distribution. By Taylor expansion
of the logarithm of the likelihood for the superimposed
image around �max it can be seen that the width of the
maximum scales with m−1/2. Because Nphot is proportional to
the molecular mass M and to the beam intensity I0, we expect
�� ∝ (I0M)−1/2. On the other hand, the achievable spatial
resolution �x ∝ Rg�� for given orientational accuracy de-
creases with the size of the molecule, given, e.g., by the radius
of gyration Rg ∝ M1/3. Combining these two effects yields the
somewhat counterintuitive result �x ∝ I

−1/2
0 M−1/6, i.e., the

achievable spatial resolution increases with molecular mass
or size. The above assumption that it is the small molecules
which represent the most challenging test cases, rests on this
scaling argument.

To assess the validity of the expected scaling, we repeated
the above synthetic glutathione scattering experiments with
varying beam intensity and, hence, varying average number of
scattered photons ranging from Nphot = 24 to 3724. For each
synthetic experiment, 500 diffraction images were generated
and used to determine the average orientational error ��.
In Fig. 5, the intersection of the vertical dashed line labeled
“GTT” with the colored curves shows the achieved resolutions
(vertical axis), which provide an estimate for the expected
resolution for molecular mass M = 307 Da.

Further, assuming Nphot ∝ I0M , these data can be used to
estimate the expected resolution for any molecular mass by

FIG. 5. (Color online) Achievable resolution for different molec-
ular masses and incident beam intensities. Solid lines (dots) represent
a signal with shot noise only and dashed lines (diamonds) a signal
with additional 50% background noise. Line colors encode incident
beam intensities (photons/Å2). The resolution achievable with x-ray
crystallography (∼1–5 Å) is highlighted in green (light gray). The
molecular masses of the test molecules used in this study are indicated
on the x axis; glutathione (GTT), titin, and ribosome. The dot-dash
line shows the expected slope of −1/6.

considering a “scaled” glutathione molecule of α-fold size
and mass α3M (horizontal axis in Fig. 5). For large photon
numbers (>200), the obtained colored curves for different
beam intensities I0 indeed show the expected resolution
increase ∝ M−1/6 and also ∝ I

−1/2
0 . For small photon counts,

a stronger variation of resolution with molecular mass is seen
because the m−1/2 scaling of the orientation determination
error breaks down. Specifically, in addition to orientations
close to the correct one, pronounced posterior probabilities are
also obtained for misaligned orientations (by typically 180o).
For very few photons (left ends of the curves), the achievable
resolution saturates at a maximal average orientational error
of 90o for that reason.

The black lines show the achievable spatial resolutions
for an assumed beam intensity of I0 = 4.0×106 photons/Å2

for 12-keV photons focused to a 100-nm spot [6]. Currently
available beams offer comparable intensities (approximately
105 photons/Å2 photons in a 1-μm focal spot), however, for
energies up to 2 keV [9]. Remarkably, already this assumed
intensity level would suffice to resolve structures such as three
Ig domains of a titin molecule or a ribosome with a resolution
similar to that typically achieved by x-ray crystallography
[green (light gray) region]. Smaller molecules require higher
intensities; e.g., to achieve atomic resolution for glutathione
(GTT), a 50-fold intensity would be required, corresponding
to a 10-nm focal spot, which also seems within reach for
6-keV pulses [32].

D. Structure optimization

So far we have shown that the first Bayesian approach is
capable of accurately determining the molecular orientation for
each single diffraction image, given a “seed structure.” We will
now introduce the second approach that considers the fit to the
whole registered set of diffraction images rather than to each
single diffraction image. We will then embed this approach
within a refinement procedure, in which the “seed structure”
is iteratively optimized in real space. This approach will be
particularly useful when studying conformational motions by
XFEL single-molecule scattering, in which case an already-
known conformation can serve as the seed structure. To that
end, the expression for posterior probability needs to be mod-
ified such as to calculate the probability of a structure, given a
complete set of diffraction patterns. This probability will then
serve to guide structure optimization in a Monte Carlo scheme.

In Eq. (1) the structure was assumed to be known; now it
will be treated as an unknown parameter to be determined
form the posterior probability distribution. The likelihood
of observing the diffraction pattern Xi = {(x(l)

i ,y
(l)
i )}l=1,...,ni

given the structure Sj = {r(j )
1 , . . . ,r(j )

N }, defined as a set of N

atomic positions, and the orientation �
(j )
i = (θ (j )

i ,ψ
(j )
i ,ϕ

(j )
i ) of

the j -th structure for diffraction pattern i is

f
(
Xi |Sj ,�

(j )
i

) ∝
[

1 − A
(
�

(j )
i ,Sj

)
Ntotal

]Ntotal−ni

×
ni∏

l=1

I
[
R

(
θ

(j )
i ,ψ

(j )
i ,ϕ

(j )
i

)
�k

(
x

(l)
i ,y

(l)
i

)
,Sj

]
, (2)
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where I (�k,Sj ) is the intensity in a detector pixel
corresponding to a scattering vector �k and structure
Sj , R(θ (j )

i ,ψ
(j )
i ,ϕ

(j )
i ) is a rotation matrix corresponding

to the orientation �
(j )
i = (θ (j )

i ,ψ
(j )
i ,ϕ

(j )
i ), A(�(j )

i ,Sj ) =∑Npixel

l=1 I [R(θ (j )
i ,ψ

(j )
i ,ϕ

(j )
i )�k(x(l),y(l)),Sj ] is the expected

amount of elastic scattering for the orientation �
(j )
i of structure

Sj registered by a detector with Npixel pixels, and Ntotal is the
total number of incident photons. Because all probabilities
f (Xi |Sj ,�

(j )
i ) are independent, the total probability of obtain-

ing a whole set of diffraction patterns {Xi} is given by the
product

f
({Xi}|Sj ,

{
�

(j )
i

}) =
∏

i

f
(
Xi |Sj ,�

(j )
i

)
. (3)

Assuming a uniform distribution of structural coordinates,
Bayes’s theorem yields the posterior probability

π
(
Sj ,

{
�

(j )
i

}∣∣{Xi}
) ∝

∏
i

f
(
Xi |Sj ,�

(j )
i

)
. (4)

By integrating this expression with respect to �
(j )
i , one obtains

the posterior probability distribution of structure Sj ,

π (Sj |{Xi}) ∝
∏

i

∫∫∫
f

(
Xi

∣∣Sj ,θ
(j )
i ,ψ

(j )
i ,ϕ

(j )
i

)
× sin θ

(j )
i dθ

(j )
i dψ

(j )
i dϕ

(j )
i , (5)

which will serve to assess how well structure Sj , during
refinement, fits to the recorded set of diffraction patterns.

As a proof of principle, this approach is demonstrated for
the above glutathione structure. Starting from a randomly
chosen structure (i.e., randomly chosen dihedral angles), each
dihedral angle is changed by a Gauss-distributed random
angle. For each MC step, the posterior probability of the new
structure, πj = π (Sj |{Xi}), was calculated from Eq. (5) and
compared to that of the structure obtained in the previously
accepted step. As an acceptance criterion, the Metropolis
criterion [33] was used, with energies Ej = −kBT ln πj .
Accordingly, the new structure was accepted only if ξ <

exp(−�E/kBT ) = πj/πj−1, where ξ is a random number
between [0,1).

For the glutathione tripeptide, only 200 synthetic diffraction
images were used, with a mean photon count of ca. 76 photons
per picture, assuming an incident beam intensity of
2×108 photons/Å2. No background noise was included.
Figure 6 shows the optimization and convergence of the
(normalized) posterior probability π (S|{X}) for 12 random
starting structures during subsequent MC runs. Two sample
random starting structures are shown in the pink and green
boxes. As can be seen, the reference structure, from which the
synthetic diffraction images were calculated, was approached
already after few hundred accepted MC steps, and, after about
1000 accepted steps, a typical root-mean-square deviation
(RMSD) of 0.02 Å between the most probable structure
[lower right, orange (dark gray)] to the target structure [yellow
(light gray)] was reached.

In contrast to the small peptide glutathione, de novo MC
refinement of proteins is currently complicated by the huge
conformational space that has to be sampled. We therefore

FIG. 6. (Color online) Monte Carlo structure refinement of glu-
tathione. The logarithm of normalized probability that the accepted
structure simultaneously agrees with 200 synthetic diffraction images
containing 76 photons was plotted for 12 independent MC runs (color
lines) starting from different random structures. Two examples of
starting structures are shown in green (mid-left) and pink (bottom
left) boxes. After about 500 steps, the most probable structure is
found. A comparison of the refined [orange (dark gray)], i.e., the
most probable, and the reference structure [yellow (light gray)] is
shown in the bottom right corner.

asked if, for larger molecules, our method is capable of
distinguishing between correct and incorrect conformations.
To this aim, we considered a 283 residues titin construct
consisting of three Ig domains (Ig67–Ig69) that are internally
rigid but loosely coupled to each other by flexible PEVK
linkers (PDB entry 2RIK [34]).

A set of conformations that differ in their mutual domain
orientations was generated from a 2.81-ns molecular dynamics
(MD) simulation of the titin molecule in vacuum with intra-
domain distance restrains, leaving all linkers flexible. The
structure at 2800 ps was chosen as the reference, from which a
set of 200 diffraction images was generated with an average of
376 photons per picture, assuming an incident beam intensity
of 4×106 photons/Å2. Only shot noise was considered, i.e.,
no background noise was included. For each of the pro-
posed structures the posterior probability πj = π (Sj |{Xi}) and
RMSD to the reference structure were calculated. For each of
the 290 sampled conformations, Fig. 7 shows the respective
posterior probability (symbols) as a function of its RMSD
from the target structure. As an illustration of the structural
differences, the target structure [Fig. 7(a)] is shown in blue,
along with three sample structures [Figs. 7(b), 7(c), and 7(d)].

Indeed, the largest probability is obtained for the target
structure, and any deviation from this structure results in a
lower probability. This is true even for an RMSD as small as
0.6 Å (note the large log-scale), which suggests that the target
structure would be correctly identified among all 290 trial
structures from the diffraction data to better than 0.6 Å RMSD.

According to the estimated dependency of achievable
resolution on molecular mass (Fig. 5), our method should also
work for very large biomolecular complexes. To test the limits
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FIG. 7. (Color online) Ability to identify the correct titin struc-
ture. Two hundred synthetic images with 376 photons per picture
(inset: sample image) were generated for the reference structure (a).
For 290 different conformations, the normalized posterior probability
(blue symbols) is plotted as a function of the RMSD with respect to
the reference structure. Insets show three intermediate structures,
(b), (c), and (d).

of the Bayesian approach, we have chosen near-atomistic
structural models of the ribosome (molecular mass: about
2.5 MDa) as a test case, also because of its high internal
dynamics at multiple length scales during the translation cycle,
which has been characterized recently [35,36]. Seven struc-

FIG. 8. (Color online) Ability to identify the correct ribosomal
translocation state. Two hundred synthetic diffraction images with
1.075×105 photons per picture were generated from the reference
structure (pre1 state). For seven different translocation states, the
logarithm of the normalized posterior probability and the RMSD
with respect to the reference (pre1 state) was calculated. The inset
shows an overlay of the pre1 [red (dark gray)] and the pre5 [yellow
(light gray)] states, in particular, structural differences within subunits
(surface) and the tRNA chains (cartoon) are highlighted. Boxes next
to each of the points depict the location of the tRNA chains in the
ribosome at corresponding translocation states.

tures at different stages during translation were used for pos-
terior probability calculations, kindly provided by Ref. [36].
The pre1 state was chosen as the reference structure, from
which 200 diffraction images with on average 1.075×105

photons per picture were generated, assuming an incident
beam intensity of 4×106 photons/Å2. Of particular functional
importance are the pronounced structural changes of the bound
tRNA during its translocation. We have therefore studied
the ability of our approach to distinguish among different
structures at three different, increasingly challenging, levels.

First, differences involving the complete ribosome structure
were considered. Figure 8 shows the posterior probability
versus the RMSD for all seven states (symbols). The schematic
representations at each point indicate the position of the tRNA
chains at the three binding sites A, P, and E (as defined
in, e.g., Ref. [35]) in those states. An overlay of pre1 [red
(dark gray)] and pre5 [yellow (light gray)] structures shows
the extent of structural differences caused by both rotation of
subunits (represented as a surface) and displacement of tRNA
chains (represented as a cartoon). As expected, the reference
structure yields the largest probability and can therefore be
reliably identified by an enormous probability ratio against
the other six structures. Overall, structural deviations from
the reference (expressed in terms of RMSD) result in lower
posterior probabilities. The rightmost structure is an exception,
presumably due to a partial compensation between subunits
rotation and tRNA translocation.

FIG. 9. (Color online) Tracing local structural changes during
tRNA translocation. For each translocation state model, obtained
by embedding the native tRNA chains conformation within the
subunit structure of the pre1 state, normalized posterior probability
was calculated (y axis) using 200 synthetic diffraction images with
1.075×105 photons per picture generated from the pre1 state. Bottom
x axis corresponds to the RMSDs of whole structures, while the upper
axis shows the RMSDs of the tRNA chains alone. The difference
between the translocated [yellow (light gray)] and the reference
chains [red (dark gray)] is shown for each of the states. The inset
demonstrates the differences between the tRNA chains locations from
the pre1 and the pre5 states, embedded in the ribosomal structure of
the pre1 state (shaded surface).
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Next, we focused at the tRNA, which in itself is only a
very small part of the entire ribosome: Can our method also
pinpoint structural changes of the tRNA only, against a large
background of (unchanged) ribosome residues? To address this
question, the tRNA chains from the seven different ribosome
state structures were inserted into the pre1 ribosome structure,
such that the only difference among the resulting set of seven
structures is the position and the internal structure of the
bound tRNA. Again, Fig. 9 shows a pronounced decrease of
the posterior probability with increasing structural deviation,
expressed in RMSD, of the tRNA from the reference structure.
The lower x axis corresponds to the RMSD value of the entire
complex with respect to the pre1 state, while the upper x axis
marks the RMSD value of the unaligned tRNA chains alone.
The actual difference between the reference chains [red (dark
gray)] and the replaced ones [yellow (light gray)] is illustrated
by the sample overlays of tRNAs for states other than the
pre1. Apparently, and despite the large ribosome background
that in this case does not yield any structural information,
it was possible to detect quite local changes of the tRNA
conformation along the translocation process. We therefore
assume that, in general, ligand binding will be accessible to
single-molecule x-ray diffraction.

In the third step, we finally asked if this sensitivity is re-
tained even against the background of an inaccurate ribosome
seed structure. To this aim, the seven tRNA configurations

FIG. 10. (Color online) Tracing local structural changes during
tRNA translocation using an inaccurate structure model. For each
translocation state model, obtained by embedding the native tRNA
chains conformation within the subunit structure of the pre2 state
(inaccuracy of the model), normalized posterior probability was
calculated (y axis) using 200 synthetic diffraction images with
1.075×105 photons per picture generated from the pre1 state. The
bottom x axis corresponds to the RMSDs of whole structures,
while the upper axis shows the RMSDs of the tRNA chains alone.
The difference between the translocated [yellow (light gray)] and the
reference chains [red (dark gray)] is shown for each of the states. The
inset demonstrates the difference between the tRNA chains locations
from the pre1 and the pre5 state embedded in the ribosomal structure
of the pre2 state (shaded surface).

were embedded into the ribosome structure of the pre2 state,
while the diffraction images were generated using the pre1
state. In a similar way as above, Fig. 10 shows the obtained
posterior probabilities for the seven chimera structures. Again,
the reference structure turns out to be the most probable one
with respect to the set of recorded diffraction images and
therefore would be readily identified. Still, a clear decrease
of the structure probability with increasing displacement of
the tRNA chains is seen, despite the inaccuracy of the seed
model, albeit with a somewhat smaller but still significant
ratio between the target structure and the second-best candidate
ln(πtarget/π2nd) ≈ 4.04×103.

III. METHODS

A. Intensity distribution model and diffraction images

In ultra-short-pulse single-molecule XFEL experiments,
both the intensity of the incident pulse and the electron density
of the specimen are time dependent, the latter as a result of
radiation damage by the incident beam. For unpolarized x-ray
pulses, the registered intensity is given by

I (�k) = r2
e

1 + cos2 2θ

2
�


×
∫ ∞

−∞
I0(t)

∣∣∣∣
∫∫∫

ρ(r,t)e2π i�k·rdV

∣∣∣∣
2

dt, (6)

where I0 is the incident beam intensity, re is the classical
electron radius, θ is the scattering angle, �
 is a solid angle
subtended by a pixel on the detector plane, and ρ(r,t) is the
time depended electron density [6]. Assuming sufficiently
short pulses with low temporal coherence, intensity distri-
butions were computed as incoherently summed scattering
amplitudes of a time-independent electron density. If required,
Eq. (6) can be generalized to account for polarized pulses
and partial coherence between time slices should be possible,
which is, however, beyond the scope of this paper.

The electron density was modeled as a sum of Gaussian
functions centered at positions of nonhydrogen atoms, with
amplitudes given by the number of electrons and standard
deviations equal to the atomic radius of particular elements. All
intensity distributions were calculated for a 1 Å wavelength
(photon energy of 12 keV) on a 200×200×200 grid with a
6.3×10−2 Å−1 spacing for the glutathione, a 300×300×300
grid with a 6.3×10−3 Å−1 spacing for the titin, and a
300×300×300 grid with a 1.3×10−3 Å−1 spacing for the
ribosome. A beam intensity I0 of 2×108 photons/Å2, a result
of focusing approximately 1.57×1012 photons to a 10-nm
diameter spot, was assumed for the glutathione and I0 =
4×106 photons/Å2 (approx. 3.14×1012 photons in a 100 nm
diameter spot) for the titin and the ribosome.

From the intensity I (�k), sample images with ni photons
were generated to test our method. To that aim, photon
positions were chosen at random, following the intensity
distribution defined in Eq. (6). For efficiency reasons, here
the stochastic fluctuations in registered photon counts were
approximated by a Poisson distribution,

p(n,�k) = [I (�k)]n

n!
e−I (�k), (7)
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where n is the number of photons registered at a pixel to which
�k points to; photons at �k = 0 were used in the orientation
determination approach but not for calculating the structure
probability in the second approach.

From all recorded photons, only those elastically scattered
by the target molecule contribute to the signal, others form
background noise. To mimic experiments, this noise was de-
scribed by adding normal distributed photons to the diffraction
images defined above. The width of the distribution, 1/10
of the detector size, was chosen such that the background
noise mainly affected the center of the images, as in recent
experiments [37]; a small amount of background noise within
the high-resolution regions was tolerated. Accordingly, for the
calculation of posterior probabilities, an appropriate Gaussian
function was included within the right side of Eq. (1).
Assuming a reduced number of inelastically scattered photons
due to energy filtering, 10% and 50% ratios of background
noise photons to the mean signal photons per picture were
considered.

For the glutathione we assumed a 121×121 pixel
(6 cm×6 cm) detector, a 241×241 pixel (1.2 cm×1.2 cm) one
for the titin, and 241×241 pixel (2.4 mm×2.4 mm) one for the
ribosome, in each case placed 10 cm from the molecule.

B. Random orientation generation

Single molecules entering the XFEL beam were assumed
to be oriented randomly, following a uniform distribution.
To generate uniformly distributed orientations, Euler angles
were sampled from a probability density given by g(θ,ψ,ϕ) =
(8π )−1 sin θ [38], i.e., ψ ∈ I [0,2π ), ϕ ∈ I [0,π ), and θ =
arccos z, where z ∈ I [−1,1].

We used the Gnu Scientific Library [39] implementation of
the “Mersenne twister” algorithm [40] as the pseudo-random-
number generator for simulating the diffraction images.

C. Computing posterior distributions

To obtain the posterior probability distribution in both the
maximum likelihood and Bayesian method, for a diffraction
pattern the probability π (�i |Xi) was calculated from Eq. (1)
for orientations sampled on a grid. Given a particular
orientation, the intensity distribution on the detector plane
I�[�k(x,y)] was computed by projecting the corresponding
Ewald sphere onto the detector plane. Intensity values on the
Ewald sphere were trilinearly interpolated from the 3D grid
representation of the molecular transform calculated before-
hand from the model structure. All posterior probability values
were expressed as logarithms to avoid numerical underflows,
and the results were exponentiated when necessary.

To obtain sufficient orientational resolution at affordable
computational cost, relevant regions with large posterior
probability were sampled at increased resolution. To that aim,
after all probability maxima were located on a coarse grid, the
relevant regions around these maxima were subsequently fine
sampled. Euler angles θ = (0,π ), ψ = [0,2π ), and φ = [0,π )
were discretized on the coarse grid with a 10◦ step. The
subsequent subsampling was performed with a 2◦ step, with
the relevant regions defined by the ratio of the fine sampled
probability to the maximum of coarse sampled probability,

exceeding a given threshold πfine(�i |Xi)/π coarse
max � 10−3 for

the glutathione and πfine(�i |Xi)/π coarse
max � 5×10−4 for the

titin and the ribosome.
In the maximum likelihood approach, the position of the

fine sampled maximum was used as the orientation estimate,
whereas in the Bayesian method all probability values above
the threshold were used as a weighting function W fine

i (�i) =
πfine(�i |Xi)/πfine

max.
All posterior probability distributions for estimating the

accuracy �� of orientation determination were calculated
using a 1◦ step. Diffraction images were generated from the
glutathione molecule rotated with respect to the reference by
θ = 58◦, ψ = 74◦, and ϕ = 136◦.

To calculate the posterior probability of a structure given a
set of diffraction pictures π (Sj |{Xi}), the likelihood for each
picture in the set f (Xi |Sj ,θ

(j )
i ,ψ

(j )
i ,ϕ

(j )
i ) was integrated over

all orientations using the rectangle rule. Source code will
be available at http://www.mpibpc.mpg.de/9660732/28-SM-
Ultrafast-XRay-Diffraction.

D. Electron-density determination

To calculate the electron density in real space from the
molecular transform, the relaxed averaged alternating reflec-
tions algorithm (RAAR) [16] was used. Before applying the
algorithm to the calculated 3D molecular transform, a random
phase was assigned to each amplitude |F (�k)| = √

I (�k).
The amplitude |F (0)| was included in the calculations.

The finite support in the real space was defined as a cube
with an edge twice the length of the radius of gyration (for
the glutathione Rg = 4.5 Å) centered at the origin and was
kept constant. Phases were retrieved in 300 iterations of the
RAAR algorithm. The β parameter was updated according
to a smooth approximation of a step function from the initial
value β0 = 0.75 to the final value βmax = 0.99 centered at
the seventh iteration [16]. We used the fast Fourier transform
implementation from the FFTW library [41] to project the data
from the real to reciprocal space and vice versa.

The quality of determined molecular transforms and re-
trieved electron densities was assessed in terms of R factors,

R =
∑ ||Fref(�k)| − |Fdet(�k)||∑ |Fref(�k)| , (8)

where |Fref(�k)| is the amplitude of the Fourier transformed
reference electron density and |Fdet(�k)| is the result of
the performed structure determination. All R factors were
computed within a 0.22 Å resolution sphere (|�k| � 4.4 Å−1).

E. MC simulation for de novo structure determination

To generate random structures of the reference glutathione
tripeptide, we changed the dihedral angles in the glycine
and cysteine residues. Starting structures for the MC were
generated by assigning random dihedral angles from a uniform
distribution. At each MC step, new dihedral angles were
obtained by varying previous angles using a normal-distributed
random step. For each MC run, an initial average step size of
10◦ was used. The step size was halved when the acceptance
ratio dropped below 0.2 and doubled when this threshold was
exceeded.
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To prevent the simulation from being trapped in a local
minimum of the energy landscape, simulated annealing [42]
was applied. By introducing a dimensionless temperature ratio
Tr = T/Ta, the Metropolis criterion reads

ξ < exp

[
(ln πj − ln πj−1)T

Ta

]
=

(
πj

πj−1

)Tr

, (9)

where Ta is the annealing temperature and T is a pseu-
dotemperature ensuring nondimensionality of the argument
of the exponent function. For annealing, the temperature
ratio was changed at each accepted MC step according to
Tr(n) = T f

r + (T 0
r − T f

r )e−nτ , where n denotes the number
of previously accepted MC steps, T 0

r = 0.002 is the starting
temperature ratio, T f

r = 1.2 is the final temperature ratio, and
τ = 0.005 is a time constant. Values of these parameters were
chosen heuristically.

F. MD simulation of the titin molecule in vacuum

To create a set of structures, the simulation was carried
out using the GROMACS 4.5 simulation package [43] with
the OPLS-AA force field [44]. Long-range electrostatic in-
teractions (beyond a cutoff radius of 1.0 nm) were computed
with the particle mesh Ewald method [45]. Lennard-Jones
interactions were calculated up to a cutoff of 1.4 nm. The
temperature of the protein was kept at 300 K by coupling it to
a temperature bath using the velocity rescale algorithm [46]
with a time constant of 0.2 ps. All bonds were constrained with
the LINCS algorithm [47], additional distance restrains were
put on atoms within same Ig domains. An integration time step
of 2 fs was used. The total length of the trajectory was 2.81 ns,
and snapshots were taken every 100 ps. During the last 10 ps of
the simulation, snapshots were taken every 1 ps to obtain con-
formations with small structural changes from the reference
structure and thus to also fill the small RMSD gap in Fig. 7.

IV. SUMMARY AND CONCLUSION

We have discussed and assessed two Bayesian approaches
for structure determination and discrimination from sparse
and noisy single-molecule x-ray diffraction data. The first
approach requires a “seed model,” which serves to determine
the orientation of the irradiated molecule for each of the
collected images separately. For each obtained orientation,
the registered photons are mapped onto the appropriate Ewald
sphere, and the molecular transform is accumulated from many
diffraction images in 3D reciprocal space. Two orientation de-
termination variants were compared. The maximum likelihood
approach uses the position of the maximum of the posterior
distribution function as the orientation estimate, whereas the
Bayesian approach uses the complete information contained
within the posterior probability to derive orientation estimates.
As expected, the Bayesian approach yielded a more accurate
sampling of 3D reciprocal space.

The structure of the posterior probability landscape depends
both on the number of registered photons and on the level
of background noise. As one should expect, with increasing
number of photons, the maximum of the probability distri-
bution becomes narrower, thus improving the accuracy of

the orientation estimate. Inclusion of additional background
noise photons broadens the probability distribution maximum.
Probably contrary to first intuition, the obtained orientational
accuracy as a function of average photon count per diffraction
image showed that, in terms of achievable resolution for a
given beam intensity, it is the small molecules that are most
challenging. The spatial resolution improves with molecular
mass to the power of − 1

6 , hence better resolution is expected for
larger molecules both in the absence and presence of additional
background noise. Currently available beam intensity of about
4×106 photons/Å2, focused to a 100-nm focal spot, will not
yield 80 photons per diffraction image, which were assumed
in this work for the test tripeptide; however, such a photon
count could be achieved with a 10-nm focal spot, which
seems not unrealistic within the near future. Determining
larger biomolecular structures using presented methods should
already be within reach with the present advances at the
Stanford Linear Accelerator Center.

In the second approach, instead of assigning an orientation
to each of the diffraction patterns separately, the probability
that a particular structure gives rise to all recorded images is
calculated. As a result, it is possible to identify a structure that
simultaneously fits best to all collected diffraction images.
Further, because the structures are defined in real space, no
phase retrieval is required. Using the posterior probability
of a structure given a set of diffraction images as a Monte
Carlo acceptance criterion, de novo structure determination of
a tripeptide was demonstrated. Structure refinement of longer
polypeptide chains or proteins will be challenging due to the
severe sampling problem. Several strategies to address this
problem have, e.g., been developed for structure determination
from small angle scattering x-ray experiments (SAXS) [48],
which should be applicable to the case at hand. The size and
resolution limits, to which these methods extend, however,
remain to be established.

For the three Ig domain titin construct as well as for the
ribosome, our approach proved to be capable of discriminating
between slightly different candidate conformations, even for
RMSD values as small as 0.6 Å. Additionally, in the case of the
ribosome, very local small structural changes were correctly
identified against a large structural background, thus demon-
strating how, e.g., translocation of tRNA chains within a ribo-
somal complex could be tracked. Obtaining insight into spe-
cific regions of interest in complex biological systems should
also be possible, even with slightly inaccurate model structures
used for probability calculations. Taken together, these results
strongly suggest that the structure and slight structural changes
of even small molecules should be accessible through single-
particle femtosecond XFEL diffraction experiments.
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APPENDIX: DERIVATION OF EQ. (1)

To derive an expression for the likelihood f (Xi |�i) of
registering a configuration of ni recorded photons positions
Xi = {(x(l)

i ,y
(l)
i )}l=1...ni

for a given molecular orientation �i ,
we assume a uniform beam intensity I0 over an area FA,

resulting in Ntotal incident photons. A diffraction pattern is
formed by registering n1,n2, . . . ,nm photons in m detector
pixels. The remaining Ntotal − ∑m

j=1 nj photons are not reg-
istered. The probability of observing the diffraction image
with (n1,n2, . . . ,nm) photon counts for all m pixels, and
Ntotal − ∑m

j=1 nj outside, follows a multinomial distribution,

f (n1,n2, . . . ,nm) = Ntotal!(
Ntotal − ∑m

j=1 nj

)
!
∏m

j=1 nj !

(
1 −

∑m
j=1 Ij

Ntotal

)Ntotal−nj m∏
j=1

(
Ij

Ntotal

)nj

∝
(

1 −
∑m

j=1 Ij

Ntotal

)Ntotal−nj m∏
j=1

I
nj

j ,

(A1)

where Ij is the expected amount of elastic scattering in the j -th pixel calculated using Eq. (6), and thus Ij /Ntotal is the probability
of a single photon being registered at j -th pixel. Considering arrival positions (x(l)

i ,y
(l)
i ) of all ni = ∑m

j=1 nj photons separately,

the above product reads
∏ni

l=1 I [�k(x(l)
i ,y

(l)
i )], which yields Eq. (1).
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