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Gs(r,t)

In addition to the time-dependence of the msd, also the self-part of the van Hove correla-
tion function Gs(r, t) is an interesting measure to characterize anomalous diffusion. Here,
Gs(r, t) is the probability that a particle has moved within a time span t a distance r. The
Gs(r, t) for a proton on a surface (figure S1) shows that the surface displacement exhibits
long-tailed behavior with respect to a normal distribution, indicating anomalous surface
diffusion.

Figure S1: Gs(r,t) of a proton on a membrane surface. The gaussian fits correspond to a
normal distributed surface displacement, and the simulation data represent the observed
surface displacement.

Periodic image contribution to autocorrelation function

The autocorrelation function of the hydronium-lipid hydrogen bonds gives the probability
that after a certain time interval t the hydronium forms a hydrogen bond with the same
lipid. Because we used periodic boundary conditions in our simulation, it is possible that
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the proton binds to the periodic image of this lipid. As a result, the autocorrelation
function would reach a constant value between zero and one, rather than decay to zero.

In our simulations, the probability that the hydronium-lipid hydrogen bond was re-
formed with a periodic image was negligible. We obtained this probability from the two
dimensional diffusion equation, which yields a distribution of 2D displacement,

dmolecule(r, t) ∼ r exp(−r2/4Dt), (1)

with 4Dt the 2D msd at time t and r the displacement. After normalization of the lipid
phosphor and the hydronium distribution, the probability to encounter a periodic image
after time t was

p(t) =

rbox∫
0

dH3O+(r, t) · dPlipid
(rbox − r, t)dr (2)

with rbox the smallest box vector (finite size). For instance, at t = 300 ps, equation 2
yielded a probability of 10−13 for a hydronium in the hb1 ensemble to interact with a
periodic image lipid. In the hb2 and hb3 ensemble this probability was even smaller, due
to the smaller msd of the hydronium.

Simplified model

In our atomisic simulation of an excess proton in the vicinity of a lipid membrane we
find a non-linear relation between the proton mean square surface displacement and time,
characterized by an initial subdiffusive regime that was followed by a small superdiffusive
regime (Figure 4). The diffusion of a proton over a lipid membrane was thus highly
anomalous, in contrast to the standard Fickian diffusion observed for a proton moving
through bulk solvent.

Multiple phenomena are contributing to the highly anomalous surface diffusion of the
proton. First, protons that are bound to a lipid followed the lipid’s self-diffusion pattern
within the bilayer, which is subdiffusive at short timescales (upto 50 ns) [1]. Second,
protons that are trapped in a free-energy well on the surface experienced a local caging
effect, which, in combination with a low percolation rate, also leads to a subdiffusive
regime [2, 1]. Finally, the strong surface affinity of the proton, with the occasional bulk-
mediated long diffusion pathway, typically leads to a superdiffusive regime [3]. The key
aspect in these three phenomena is a favorable interaction between the lipids and the
proton that results in a reduction of freedom of surface movement. The latter leads to the
highly anomalous surface diffusion of the proton.

Remarkably, figure 4 shows that the superdiffusive regime was present only shortly
within our simulations and the diffusion quickly became normal (i.e. Fickian), rather
than extending over a long time-period and approaching the bulk diffusion coefficient [3].
To address this issue, we turned to a simplified model and focused on solutions of the
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Figure S2: Illustration of the grid used to solve the diffusion equation. Accessible gridpoints
are represented by spheres. Black spheres have a lower free-energy than gray spheres. Here,
a small part of the grid with a well size of 2 gridpoints is shown.

diffusion equation (equation 3), modeled according to the characteristics of our atomistic
simulations. Since the free-energy of the proton is not equal throughout the whole system
(i.e. there is a surface affinity), the flux J in the diffusion equation depends on the chemical
potential gradient.

δc(r)

δt
= ∇J (3)

= ∇Mc(r)∇µ(r) (4)

where µ(r) and c(r) are the chemical potential and the concentration of the excess proton
at location r, respectively, M is a coefficient equivalent to the diffusion coefficient in Fick’s
diffusion equations, and ∇ represents the vector differential operator del.

We solved the diffusion equation for a 2 dimensional system numerically. Therefore,
the evolution of an initial point density on the surface was approximated by performing
small timesteps on a grid (figure S2), where we utilized boundary conditions based on the
results of our atomistic simulations. The presence of the membrane was represented by an
excluded volume for y < 0, and the protons surface affinity by a lower free energy associated
to the grid points directly adjacent to the excluded volume. To reduce the computational
overhead, we used a bulk-to-surface free energy difference of -8 kJ mol−1 instead of -
13 kJ mol−1, thereby shortening the manifestation of the anomalous diffusion regime. To
create the energy wells on the surface that trap the protons, the excluded volume was
protruded into the surface adsorption layer periodically. For simplicity, we omitted the
proton binding to a lipid molecule and, consequentially, we expected a subdiffusive regime
corresponding to the caging effect and a superdiffusion regime due to the occasional bulk-
mediated diffusion pathway.
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Figure S3: Numerical solutions to the differential equation describing proton diffusion in
the vicinity of an adsorbing membrane. The gridsize was 600x600, the free energy differ-
ence between surface and solvent was -8 kJ mol−1, M in the bulk was set to 1 gridpoint2

step−1 and the well-size was varied.

The mean square surface displacement of a proton in this simplified system displayed
the same characteristic subdiffusive and superdiffusive regimes that we observed in the
atomistic simulations (figure S3). Especially the system with a wellsize of 6 gridpoints
compared very well to the results of the atomistic simulations.

In a further comparison between the solution of the diffusion equation and the atomistic
simulations we found a discrepancy in the time-dependent diffusion coefficient (figure S4).
The diffusion coefficient in the atomistic simulations quickly levels off in the course of our
simulations, whereas the diffusion coefficient in the simplified model keaps on increasing
and asymptotically approaches the linear diffusion coefficient of the no-well system. A
major difference between the coarse-grained model and the atomistic simulations is the
use of periodic boundary conditions in the latter. As a result, a periodic image membrane
is present at short distance. After adding a second membrane in the coarse-grained model,
the time-dependent diffusion coefficient (dashed line in figure S4) compares much better to
that obtained from atomistic simulations. Thus, the periodic image membrane limits the
length of the proton bulk excursions, which reduces the contribution of the bulk-mediated
diffusion, shortening the superdiffusive regime.

How to experimentally validate bulk-mediated surface diffusion

In this section we propose a possible experiment to distinguish between bulk-mediated
and on-surface diffusion of a proton over a membrane. Since the fundamental difference
between these two diffusion modes is whether or not a superdiffusive regime appears, we
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Figure S4: Time dependent diffusion coefficient for surface diffusion on a model membrane.
For model parameters see figure S3.

focussed on this aspect in the design of the experiment.
A clear difference between superdiffusion and normal diffusion is the relation between

time and msd. On the one hand, a superdiffusion regime leads to a super-linear relation,
whereas, on the other hand, normal (Fickian) diffusion leads to a linear relation. By mea-
suring the travel time between a proton source and a proton sensor for various distances, it
is possible to experimentally measure the msd as a function of time, and thus to determine
the predominant diffusion mode within the measured time- and lengthscale.

Before proposing an experiment we stress that the time- and lengthscale should match
that of the onset of the expected superdiffusive regime, because the superdiffusive regime,
which approaches a linear asymptot, is indistiguishable from standard diffusion at time-
and lengthscale where the msd is close to this asymptot. In our simulations, the superdif-
fusive regime starts around 1 ns and stretches over an unknown period of time, with a
corresponding lengthscale starting around 1 nm2. Consequently, the experimental time
and length scale that we are looking for are a few tens of ns and nm2. On a lipid bilayer
this is almost on the scale of a single lipid, which has a surface area of approximately
0.6 nm2. Thus the distance between a proton source and a proton sensor can only be a
few tens of lipids.

To control the distance between the proton source and the proton sensor on the nm
length scale one can think of a rigid linker. Clearly, the resulting linked source and sensor
cannot be allowed to interact with other linked pairs, which requires very low concentra-
tions and careful design of the linker to avoid aggregation. This is a considerable challenge,
but, if possible, a proper linker would allow the existence of a superdiffusive regime to be
tested by varying the length of the linker within the relevant length scale. If the linker
distance falls within the superdiffusive regime, a super-linear relation between the square
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of the linker distance and the time of maximum sensor activity should be observed.
Alternatively, it may be easier to measure the mean distance traveled by the protons

from source to sensor in order to determine the dominant diffusion mode. After a single
proton is released on a lipid membrane the average length of the path traveled to reach
a sensor will depend on the sensor concentration. Variation of the sensor concentration
will change the average distance traveled to a sensor and can thus be used to experimen-
tally determine the relation between time and mean squared displacement. Release and
measurement of a single proton is impracticle, but, if one could control the distribution of
proton sources into a regular evenspaced array, variation of the sensor concentration should
similarly allow to distinguish between a superdiffusive and a normaldiffusive regime.

To determine how the difference in sensor signal will be manifested we modeled such
an experimental setup by solving an extended diffusion equation,

δcH+(r)

δt
=∇McH+(r)∇µH+(r) (5)

− kasscH+(r)csensor(r) + kdisscsensorH(r) (6)

δcsensor(r)

δt
=D

(
δ2csensor(r)

δx2
+
δ2csensor(r)

δy2

)
(7)

− kassµH+(r)csensor(r) + kdisscsensorH(r) (8)

δcsensorH(r)

δt
=D

(
δ2csensorH(r)

δx2
+
δ2csensorH(r)

δy2

)
(9)

+ kassµH+(r)csensor(r)− kdisscsensorH(r) (10)

assuming the following reaction between the proton and the sensor

H3O+ + sensor ⇀↽ H2O + sensorH+ (11)

with D the surface diffusion coefficient of the (protonated) sensor, which is treated as a
constant. Note that the sensor is assumed to be part of the membrane and, hence, diffusion
normal to the membrane is not taken into account.

We solved this set of diffusion equations in a similar manner as we did in the case of
proton diffusion. We added the (protonated) sensor to the surface layer of our grid model,
both inside and outside the wells. The proton association/ dissociation from a sensor
located inside or outside a well was related to the surface layer or the bulk, respectively.
Within the computational and model limits, we tried to resemble a real system as close as
possible, but we note that both the large timestep and the significant simplification make a
direct translation of our solution onto a target experiment unfeasible. Instead, our results
should rather be interpreted qualitatively.

The diffusion equations were solved on a 80x80 grid using reflective boundary con-
ditions. The gridspacing was 0.1 nm and the timestep 1 ns. The proton and sensor
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displacement were set to 10−2 nm2 ns−1 and 10−5 nm2 ns−1, respectively. Proton adsorp-
tion to the surface was set equal to the proton bulk-displacement in one dimension, and
proton desorption was derived from e−∆G/kT = kads

kdes
with ∆G = −11.5 kJ mol−1. The

proton-sensor association constant was set to 1 and the dissociation constant was calcu-
lated from kdiss = kass ·KA with KA the sensor acidity constant set to 6 for the bulk. A
bulk pH of 8 was used, and the sensor surface concentration was varied between 10−5 and
10−1 molecules lipid−1, where one lipid was assumed to occupy eight gridpoints.

The initial steady-state was disrupted by the release of one proton at the origin, corre-
sponding to an approximate release concentration of 1 proton per 100 lipids. The enhanced
proton concentration on the surface slowly decays, due to an increased association with
the sensor as well as an increased surface desorption. Simultaneously, the concentration
of the protonated sensor increases and the concentration of the unprotonated sensor de-
creases, until a new equilibrium is established. Since the surface desorption is a ceaseless
process, this equilibrium cannot be maintained, and the concentration of the proton as
well as the protonated sensor starts to fall, whereas the concentration of the unprotonated
sensor begins to rise. This turning point in the (protonated) sensor concentration yielded
a maximum in the sensors activity.

From the time dependence of the maximum sensor activity as a function of sensor
concentration one can distinguish between normal- and super-diffusion. Indeed, when
comparing the super-diffusion systems, i.e. the well systems, to a normal diffusion sys-
tem, we observe a different decay profile of the tmax activity upon increasing concentration
(figure 12). Thus systems with a clear superdiffusive regime can be distinguished by the
different decay in tmax activity, which is characterized by a second minimum or a shoulder
in the plot of the powerlaw exponent α (δ ln tmax activity/δ ln csensor).

Regular 2D arrays of small colloidal particles on a substrate [4] may present a suitable
base for the array of proton sources; a hydrophobic caged proton (6,7-dimethoxycoumarin-
4-yl) [5, 6] can be used as an instantaneous proton source; and Fluorescein [5, 6, 7, 8] or
OregonGreen [8] linked to a lipid can be used as a proton sensor.

We remark that an experiment in which neither the proton source nor the proton sensor
location is fixed cannot be used to distinguish between superdiffusion and normaldiffusion,
because on average there is neither a source nor a sensor gradient on the surface, and, as a
result, no net flux of either on the surface. This does not mean that the time to maximum
activity cannot be different for distinct diffusion modes, rather the time to maximum sensor
activity will not depend on the distance traveled between source and sink, and can thus
not be used to find anomalous diffusion.

Finally, we also considered FCS to track the protons surface diffusion. FCS has the
advantage that the proton diffusion can be measured in equilibrium [7], but since the
diffusion model is used as input to interpret the autocorrelation function of the signal
intensity, FCS is only useful if the diffusion mode is known.
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Hydroxide parameters

Figure S5 shows a figure of our hydroxide model with the values of the parameters.

qO (e) -1.32
qH (e) 0.321

ε (kcal/mol) 0.0514
σO (Å) -
σV 1 (Å) 2.916
σV 2 (Å) 2.5
σHH (Å) 1.12 / 1.43

1Positioned on qH site
2For combination rule 1
3For combination rule 2

Figure S5: Structure and non-bonded parameters of our hydroxide model.

Radial distribution function of excess proton in water

To verify whether HYDYN describes the properties of the excess proton in water, we
performed HYDYN simulations of the hydrated proton in a small water box and analyzed
the trajectory. The intermediate transfer congurations such as the pseudo-Zundel complex,
which are observed in a HYDYN simulation, are a clear distinction to non-reactive force
field simulations. The consequences for the solvation structure are apparent from the radial
distribution functions, shown in Figure S6.

Although the RDF contains the main features of experimental and ab initio MD RDFs,
there are some differences. The first peak is too narrow and, since HYDYN captures the
right coordination number of 3, also too high. The RDF contains a shoulder around 3.2 Å,
associated with the waters in the lone-pair region, albeit less pronounced than in ab initio
MD or MS-EVB3 [9, 10]. The peak for the second solvation shell is present, but at too
high value. Including polarization (via the SWM4-NDP model) improves the situation
somewhat and brings this peak to slightly lower values. The diffusion constant of the
excess proton in water at 300 K is 4.4 ·10−5 cm2s−1,in line with MS-EVB3 results 2.8 ·10−5

cm2s−1 and experiment 9.3 · 10−5 cm2s−1. Therefore, while our model is less accurate
than MS-EVB or CPMD with respect to the water structure, it is sufficiently accurate to
capture the anomalous diffusion.
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Figure S6: Radial distribution function for the donor-acceptor Oxygen atoms (O∗-O) in a
HYDYN simulation with different force fields.
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